欢迎来到易发表网!

关于我们 期刊咨询 科普杂志

浅谈卫星通信技术

时间:2022-07-18 04:11:13

引言:易发表网凭借丰富的文秘实践,为您精心挑选了一篇浅谈卫星通信技术范例。如需获取更多原创内容,可随时联系我们的客服老师。

浅谈卫星通信技术

浅谈卫星通信技术:卫星通信技术航标遥测遥控系统应用

摘要:

为解决现行航标遥测遥控系统运行使用中的通信问题,实现对离岸较远、移动数据信号无法覆盖区域航标的运行状态进行实时监控,设计基于北斗卫星短报文通信方式架设的航标遥测遥控硬件结构和软件控制系统,提升沿海航标维护管理能力。

关键词:

港口;北斗卫星;航标;遥测遥控

0引言

近年来,随着我国海运规模不断扩大,海上通航安全的重要性日益凸显,对航海保障工作也提出了更高的要求。随着物联网技术的高速发展,航标遥测遥控系统在航标管理维护工作中发挥着重要的作用。目前,北方海区航标遥测遥控系统已在近海海域得到广泛使用,可以实现港域航标的有效管理。这些监测系统多采用GPS(全球定位系统)和GPRS/GSM(通信分组无线服务/蜂窝无线通信)技术实现对航标的精确定位及信息传输,但是受到GPRS信号覆盖范围小的限制,尤其是渤海湾内沿海港口大部分为人工疏浚航道,航槽狭长且离岸距离远,无法实现对远离陆地航标设施的遥测遥控。《北海航海保障中心发展战略(2013—2020)》中明确提出“到2020年,全面建成布局科学合理、功能配套完善、装备先进适用、运转协调规范、应急响应及时、服务可靠高效的综合航海保障体系,基本实现航海保障现代化,形成沿海全时域、多维化的综合保障能力,满足船舶航行安全和经济社会发展需要”的战略目标。因此,进一步提升航标管理维护效率,推进卫星导航应用,构建从远海到近岸层级递进的立体助航网络,成为航标管理单位的重点工作之一。

1航标遥测遥控系统发展现状

航标遥测遥控技术是“数字航标”建设的核心技术之一。航标遥测遥控系统的建设对于转变传统航标管理模式,提高航标管理质量,提升航标社会公共服务能力,都具有十分重要的意义。航标遥测遥控主要应用于航标灯器的监控、供电设备的自动控制和航标工作状态报警等方面。可采用的监测、控制设备包括遥控终端(RTU)、可编程控制器(PLC)等,可实现数据通信的设备包括数传电台、蜂窝电话(NMT)、卫星通信、无线通信和有线电话等。欧美航运大国在20世纪90年代初利用电子和通信技术建立航标遥测遥控系统,为航运业提供了高效服务。我国于2000年开始航标遥测遥控系统的研究工作,目前处于研究的初级阶段,许多技术问题尚未解决,尤其是北方海区渤海湾沿海人工疏浚航道中离岸较远航标遥测遥控数据通信问题成为遥测遥控系统推广使用的瓶颈,例如:天津港25万吨级航道里程22+000以东、黄骅港综合港区20万吨级航道里程20+000以东和渤海湾中部部分孤立危险物灯浮标等,遥测遥控终端无法依靠传统移动通信技术实现数据传输。

2北斗卫星通信技术的应用前景

我国自主研发的北斗卫星通信系统(BeidouNavigationSatelliteSystem)是一个分阶段演进的卫星系统,提供定位、集团用户管理和精密授时服务,不仅可以提供精确定位、导航和授时,还具有双向短报文通信功能,其卫星信号已实现我国全部和亚太大部分地区的无缝覆盖,可以实现GPRS信号覆盖不到区域的数据传输,完全满足航标遥测遥控系统对偏远航标的远程测控管理需求。[1]

3设计原理

利用北斗卫星通信系统实现的航标遥测遥控系统同其他遥测遥控系统设计原理类似,均由航标运行信息监控平台和航标遥测遥控终端组成。终端上安装的信息检测装置可以检测航标灯的工作状况,将采集的终端数据及指令执行结果封装后,通过北斗卫星通信模块发送到北斗卫星网络中,网络将数据转发到北斗MQ服务器,北斗MQ服务器解码信息后将数据发送到MQSocket数据服务器,经过信息过滤,数据被保存到数据库中,数据处理服务器会定期检测收到的航标终端返回信息,并对数据进行有效性处理,再将数据保存到数据库中,以供应用服务器调用整合,并将最终结果展示给终端用户。用户也可通过基于应用服务器提供的Web界面,对指定航标终端发送遥测遥控数据,指令通过数据处理服务器过滤编码后保存于数据库中,MQSocket数据服务器实时监控数据库中待发送指令,发现新的指令后MQSocket数据服务器将遥测遥控数据重新封装,并通过指定端口发送到北斗MQ服务器,北斗MQ服务器将信息转发到北斗卫星通信网络中,数据到达航标终端后,航标终端解码并执行相关指令。[2]

4系统设计方案

4.1系统架构

航标遥测遥控系统具有复杂的系统功能,包含高带宽接入、高性能的软/硬件平台、网络平台和安全可靠机房环境等一系列软硬件措施,涉及网络与系统管理、服务器系统、数据存储体系、应用软件及自动检测与控制等多方面的技术。[3]利用北斗卫星通信技术的航标遥测遥控系统采用SAN架构为核心的互联方式。

4.2通信网关子系统

4.2.1与航标终端数据通信

通过北斗卫星通信网络与航标终端进行交互,接收航标终端上报数据信息,并依据系统定义的数据传输通信协议验证信息有效性(由于可能接收到不完整的信息,必须对信息进行拆包、组包操作,保证传递给应用程序的信息完整可靠),并将监控端下发的各种指令实时传递给航标终端。

4.2.2与应用程序通信

系统在接收针对航标终端的遥测遥控信息时,首先将信息缓存在北斗通信服务器收发缓存队列中,系统提供应用程序的通信接口,通过该接口将航标终端上传的完整信息传递给后台应用程序,并将遥控的相关信息传递到北斗服务器发送队列中,通过北斗网络发送到相应的航标终端。

4.2.3与Web服务程序通信

提供与Web程序人机交互界面接口,可以接收Web程序下发给航标终端的信息和航标终端的反馈信息,并选择相应的通道直观地展示给用户。

4.3系统结构

系统中北斗通信模块主要负责与北斗通信系统进行信息转换,提取北斗通信系统接收的航标终端信息,将Web服务接口发送的遥控指令放入北斗通信系统所对应的通道队列待发送。

5结语

随着北斗二代导航系统进入实际应用阶段,研究和应用基于北斗二代通信技术的航标遥测遥控终端设备将被提到各航标管理单位的计划日程。基于北斗卫星通信的航标遥控遥测单元的设计可以有效丰富航道安全监测信息的传输途径,对于远离海岸航标的智能化管理和信息采集具有重要意义。

作者:吕英龙 王剑 单位:北海航海保障中心天津航标处

浅谈卫星通信技术:卫星通信技术发展应用

摘要:

本文介绍了卫星通信的基本概念及相关技术,重点介绍卫星通信技术在中海油应用领域上的发展以及小站卫星通信方式的应用。

关键词:

卫星通信;海上石油卫星;VSAT;自动跟踪

1引言

20世纪90年代初,从中海油开始建立第一个卫星端站至今,已经有超过20年的卫星通信技术应用。目前,已经形成了以湛江、天津、深圳、上海这4个中心站点为核心的网状网络,且已经具备了链路相互备份功能。

2卫星通信在中海油的发展

2.1TES卫星系统

TES(TelephonyEarthStation)是基于卫星的全数字话音和数据通信的网状网,它在多个地球站之间提供网状连接,支持系统内任意地点远端站之间的电话、同步、异步数据通信,TES系统在中海油的应用主要用于话音与数据传输。运用的是C波段卫星的频分多址方式FDMA实现与地面站间的通信,使用四相相移键控QPSK或二相相移键控BPSK调制方式,信道编码采用编码效率为1/2或3/4的前向纠错FEC。TES是中海油海上平台初期使用的一种主要的卫星通信方式,主要承载的业务为话音业务,所使用的卫星资源前期以亚洲3号卫星为主,后来转至鑫诺1号卫星。

2.2VSAT卫星系统

VSAT卫星通信系统的地面部分由中枢站、远端站和网络控制单元组成,中枢站的作用是汇集卫星来的数据然后向各个远端站分发数据,远端站是卫星通信网络的主体,VSAT卫星通信网就是由许多的远端站组成的,一般远端站直接安装于用户处,与用户的终端设备连接。VSAT卫星通信系统是中海油海上平台主要的卫星通信应用方式。此系统的特点是天线口径小、灵活性强、可靠性高、使用方便及小站可直接装在用户端等特点,利用VSAT用户数据终端搭配复用器使用,可同时承载话音业务和数据业务。VSAT卫星系统主要配合Netperformer系列复用器使用,Netperformer系列复用器使用了信元中继cellrelay技术,将语音流和数据流分割为特定的信元cells,然后将不同业务类型的信元cells复用到单一的物理或逻辑链接上,根据对时延的敏感程度不同对业务进行分类,并赋予不同的传输优先级,能有效保证话音业务质量,为中海油的海上平台及移动船舶提供稳定的话音及数据业务。目前中海油主要使用的是中星10号的卫星的转发器来承载卫星话音及数据业务。

2.3STARWIRE卫星网管系统

STARWIRE系统在网管NCS的支持下可提供PAMA,DAMA等业务,使用了先进的PCMA载波叠加专利技术,能有效的节省卫星转发器带宽。主要由NCS网管系统、ST用户终端、卫星三部分组成。STARWIRE卫星网管系统是第三代按需分配的卫星通信系统,终端设备内置路由功能,直接支持先进的IP网络互联业务。NCS网管通过控制信道监控ST的工作,ST之间通过控制信道FOW/ROW建立业务信道。中海油下属的4个中心站点通过STARWIRE网管系统能够有效管理所属辖区内的卫星小站。相对于早期卫星通信技术应用,NCS系统能够更加有效的对小站进行管理,节省卫星资源带宽。

2.4SKYEDGEⅡ卫星网管系统

SKYEDGEⅡ卫星网管系统是一个双向卫星通信系统,由两个方向的传输构成:入境基于DVB-RCS标准,采用MF-TDMA技术对资源进行预约分配减少数据碰撞;出境基于DVB-S2标准,支持CCM及ACM工作模式,可用于单播和组播数据、VoIP、ABIS等业务数据。系统主要由卫星主站、卫星/转发器、远端站三部分组成。SKYEDGEⅡ支持三种基本网络拓扑结构星型、网状、多星状。SKYEDGEⅡ卫星网管系统是目前中海油主要使用的卫星通信系统,利用此网管系统,将中海油的4个海上卫星中心站进行整合,形成了统一的大网管系统,对各中心站点进行链路互备,形成一个完整的多功能卫星网管系统。

3卫星通信技术在中海油的应用形式

3.1海事卫星A/C/F站的应用

海事卫星共有4颗卫星覆盖全球海洋,它们分别是大西洋西区、大西洋东区、印度洋区、太平洋区。海事卫星A站于2007年底正式停止运营,中海油海上船舶与移动式钻井平台目前以C站、F站为主要的应用。

3.2固定天线式的卫星通信应用

固定天线式卫星通信主要应用在中海油海上固定式采油平台、自升式钻井平台以及陆地端站上,是一种常规的卫星通信应用。固定式采油平台及自升式钻井平台主要以3.7米C波段的卫星天线为主,Ku波段卫星天线为辅。卫星中心站使用的是大口径卫星天线来承载卫星通信业务。固定天线式在中海油是最早的卫星通信应用,也是中海油目前最成熟的卫星通信应用,中海油内曾使用直径为12米的卫星天线作为卫星的主站使用。

3.3半自动跟踪天线式的卫星通信应用

半自动跟踪天线主要应用于中海油自升式钻井平台,天线以C波段的半自动跟踪天线为主。由于工作环境需求,自升式钻井平台需要经常更换钻井位置,期间钻井平台需要拖航至新的目的地,使用固定式卫星天线则需要经常性地对天线的方位及俯仰进行调整,且拖航期间无法使用。采用半自动跟踪天线可以在拖航期间自动寻星,主要缺点是无法360度旋转,实现不了全自动跟踪,有时需要人工进行干预。

3.4自动跟踪天线式的卫星通信应用

自动跟踪天线C波段主要以美国的SEATEL的97型全自动跟踪天线以及西安盘古通信技术有限公司的全自动跟踪天线为主;Ku波段主要以SEATEL的4006自动跟踪天线以及国内的一些动中通天线为主。中海油海上半潜式钻井平台一般以C波段的自动跟踪为主要的卫星通信,南海9号钻井平台所使用的自动跟踪天线卫星系统经过测试能够提供4Mb/s以上的链路带宽。Ku波段的自动跟踪天线主要应用与海上的移动船舶,包括拖轮及勘探船,这些移动船舶受限于天线的安装场地要求,而且对链路带宽要求不大,Ku波段的自动跟踪天线的应用非常适合在这类环境使用。

4结束语

卫星通信技术在中海油海上平台及移动船舶上有着超过20年的应用,从早期的TES小站的话音应用,到现在的多功能SKYEDGEⅡ网管系统的多业务综合应用,中海油在卫星通信应用方面已经覆盖了C,L,Ku等波段。随着中海油向深海发展,卫星通信技术将在中海油海上勘探、开发、生产方面发挥着重要的作用。

作者:施建衡 单位:中海油信息科技有限公司

浅谈卫星通信技术:卫星通信技术发展研究

摘要:

随着卫星通信技术的不断发展,卫星通信系统不仅为航天技术提供了强有力的科学支持,还因其具有频带宽、覆盖面大、容量大等优势,还被应用到了很多其他的领域之中,并起到了非常好的效果。所以文章对卫星通信技术的发展进程和应用实例进行分析和研究,希望卫星通信技术未来能得到更大的发展。

关键词:

卫星信息技术;发展趋向;应用研究

0引言

卫星通信系统是地球站与航天器之间或者地球站与地球站之间所建立的,通过信号的转发而进行的无线电通信方式,一般情况下包括卫星移动通信、卫星中继通信、卫星固定通信与卫星直接广播四个方式。

1卫星通信技术的发展

1.1卫星通信系统的网络发展

卫星通信系统的实现是由网络的形式进行服务的,它在现代的发展中一般可以分为两类,第一类的组成方式是多星形式的卫星通信网络;第二类的组成方式是单星形式的卫星通信网络。其中卫星通信网拓扑结构的发展十分迅速,因此以单星的组成方式为例,来对具体的发展情况进行介绍。通过结构图我们可以发现,最早使用的结构为星状网的结构,然后经过了网状网、网状与形状混合网、地面通信链路与卫星通信链路的混合网,由此可以看出,在单星组成的卫星通信网拓扑结构已经得到了很大的进步[1]。多星组成卫星通信网络可以提供国际移动式通信的业务的海事卫星系统和国际固定通信业务中的国际卫星系统两种。这两种系统分布在全球所有的辅助地面线路和地球站之中,这些系统之间还建立了比较全面的星间链路。

1.2卫星通信线路频段的发展

卫星通信线路频段的发展中最早所利用的商用通信卫星通信频段就是C频段,通过技术的发展,向上扩展到Ku、X和Ka频段之后,又向下扩展到L、S、VHF和UHF频段[2]。在以后的发展中还会拓宽到V频段或者其他更高的频段,另外,还有可能会利用激光的形式。卫星通信馈电线路是指卫星间通信线路、上行站、关口站与中心站。由此可见,当线路的频率提升的时候,可用带宽就会变大,传输容量会随之提高,这一方式比较容易适用在多媒体通信进而高速率数据传输之中,如果频率增加,波束宽度不变,天线尺寸如果变小,那么它的重量也会越轻。通过铱星卫星移动通信系统就,能够将地球上的任意两点形成同心,实现的方式是利用星间的线路。

1.3卫星通信体制的发展

卫星的通信体制在近年来也得到了比较快速的发展。体制的改变就是卫星通信系统的工作方式发生了一定程度的进步和改变。例如卫星通信中所使用的信源编码方式、信号传输方式、信号交换方式、基带信号传输方式、基带信号多路复用方式、信号调制方式、差错控制的方式、多址方式、交换方式、信道方式和信号处理方式等等,这个结构呈现一种比较复杂的模式,所以用户会有很多种的选择方式。基带信号多路复用方式中分为:时分多路复用和频分多路复用两种方式,基带信号传输方式中分为:多路单载波与多路单载波。通过对卫星通信体制工作方式的具体介绍,可以分析出卫星通信体制具有很强的先进性,它在进行通信的过程中可以有效的节省射频信号的功率和带宽,还能够有效的提升信号传输的可靠性和质量。所以经过不断的更新和变化,如今的卫星通信体制的标准主要是产品的生产商和卫星运营商所指定的具体标准,而行业标准与国家标准还比较模糊,在生产的标准上没有一个完全统一的标准,所以在这种情况下,可以对国外比较先进的调制和编码技术进行借鉴,有效的改善编码的调制,让微信通信的技术适应更多种的实际工作模式。在这一目标上,近年来的尝试也得到了一定的发展成果,例如互联网的接入、交互电视、VoIP业务和高清晰度电视等等,其中DVB-S2通信体制的结构就有效地使用了比较先进的编码等技术方式。

1.4卫星通信中星座和轨道的发展

在卫星通信轨道的发展中最早是使用单星的静止轨道进行工作的,随着技术的不断发展,微信通信的轨道已经从静止的轨道变为多种轨道的卫星工作,并在工作中组成星座的形式。所以在目前的卫星通信轨道为大椭圆轨道、静止轨道和低轨道三种并存。其中大椭圆轨道在组网的过程中的卫星系统主要是由三颗天狼星组成,并对全时区域进行了覆盖。这一组网的轨道形成了美国移动的广播系统。而静止轨道分为三类,分别为多星共位组网区域覆盖工作、单行独立组网区域覆盖工作和多星异位组网全球覆盖工作。

1.5卫星通信中的卫星天线波束的覆盖发展

在卫星天线波束的覆盖发展上,最早是使用静止的卫星通信电线,后来经过发展而变为单重频率复用单椭圆波束覆盖、多重频率复用单椭圆波束覆盖、多椭圆波束覆盖,截止到现阶段,已经发展为更加多重的覆盖方式。一般情况下,会按照不同的实际情况使用波束的覆盖方式,最近出现一种新型的覆盖方式为蜂窝状多点波束覆盖方式,这种方式可以有效的利用波点来对天线增益进行提高,用户所使用的终端也更小了,从而达到了多次使用的目的。

2卫星通信技术的应用

2.1卫星通信技术中转发器的应用

卫星通信技术中转发器的使用可以实现信号的变频和放大。最早在卫星通信中的转发器是透明的,包括一次变频和两次变频的转发器。这种透明的转发器具有很强的实用性,所以在目前依然使用。经过一段时间的发展,有一部分的卫星通信使用了处理转发器的设备,从而对卫星收到的信号进行解调制与调制等步骤,还将其进行进一步的加工和处理,就能够让卫星通信的过程更加顺畅。处理转发器还分为空间交换转发器和信息处理成转发器,同时还有两种转发器相结合的处理转发器。在这之中,空间交换转发器在应用的时候是将接收到的多波束信号进行交换处理的方式,处理的时候一般都使用基带交换矩阵网络的方式和微波交换矩阵的网络。另外,信息处理转发器应用的时候,首先要将上行频率信号进行接收,再将接收到的进行解调,对处理后的信号进行编码识别、再生、帧结构重新排列等工作,处理完成之后再将这些信号传输到地球站当中。转发器在卫星通信中应用的功能很多,例如对信号进行再生与解调就能够有效的减少信号中的噪音,从而有效的提升卫星通信信号传输中的质量标准;对转发器的上下链路分别进行设计,并对接收到的信号进行解调的工作,就能够让上下链路具有不一样的多址方式和调制体制,从而有效的减少了地面设备的复杂性和传输的要求;在转发器进行信号的处理的时候,通过星上处理方式就可以实现用户线路的频率、信道、功率与波束的动态分配,才能够更有效的利用卫星的资源。

2.2卫星通信平台的应用

卫星通信平台是卫星通信技术应用中的重要形式,它在运行的时候一般时通过静止轨道卫星平台和低轨道卫星平台两种,其中静止轨道卫星平台要比低轨道卫星平台更大。近年来卫星的发射质量越来越趋于稳定,其发展趋势正在朝着高处理技术、大容量和高G/T的方向发展。静止轨道卫星平台也在技术的发展过程中越来越趋于稳定,例如罗拉公司所开发的LS卫星平台。

2.3通信地球站的运行

通信地球站已经开始越来越趋向于便携式的发展方式了,最早的地球站是重量大尺寸大的固定区域,但是经过技术的发展,重量和尺寸都逐渐的减小,如今最小的地球站已经变为一种手持终端的形式,所以卫星通信技术的应用已经在智能化、人性化的优势上取得了非常多的成果。

2.4卫星通信技术未来的应用趋势

除了用户终端的变化,卫星通信技术的其他方面也得到了长足的发展。电视节目的直播就可以不通过地面中转的方式,进行实时的传输。广播电视业务也已经实习前了单向到双向的转变,卫星固定通信业务双向通信与卫星直接广播业务单项通信之间的特性区别已经越来越迷糊,而且技术的发展也让卫星移动通信、卫星直接广播和卫星固定通信等业务都向着更加多元化的方向不断发展。

3结语

综上所述,随着卫星技术的不断发展和进步,未来会利用其的功能会越来越多,其发展的功能也会越来越趋于完备化。目前卫星通信的发展空间还很大,需要相关的人员对技术进行不断的优化和完善,让卫星通信技术为人类的生活提供更多的便捷。

作者:李会青 单位:国家新闻出版广电总局四九一台

浅谈卫星通信技术:卫星通信新技术的网络教育

一、基于地面的网络教育问题及卫星解决方法

1、卫星通信技术概述

(1)基于IP的卫星通信

IP(InternetProtocol),为互联网络协议。所谓基于IP,是指数据通信能透明地遵循IP通信协议。过去的VSAT卫星通信不能直接支持IP通信协议,而今天的VSAT能够很好地支持,且与地面IP通信几乎相同。人们也称其为卫星数字通信。

(2)DVB-S

标准卫星通信需要制定传输信道编码和调制标准。欧洲制定的卫星数字信号广播(DigitalVideoBroad-cast-bySatellite,DVB-S)标准,已被国际上大多数国家采用,我国也于1999年制订了《GB/T17700-1999卫星电视广播信道编码和调制标准》,与DVB-S标准兼容。

2、具有回传功能的卫星通信技术

该技术出现时间较晚,还未普及,特点是能够实现教师端和学生端的互动,具有如下两种方式:

(1)卫星小站直接回传。如欧洲标准的DVB-RCS,能够直接通过小的卫星天线将数据传回。

(2)通过地面网回传。将基于DVB-S标准的VSAT通信系统和地面互联网通信系统相结合,形成环路网络。本文中卫星通信新技术特指该技术(后文简称新技术)。

3、基于卫星通信新技术的网络教育优劣分析

传统卫星通信技术的优势:①通信距离不受地面距离和地形影响且覆盖面宽,这一特点适合我国地面通信不发达的偏远地区;②以广播方式工作,点对多点,使用者越多越便宜;③基于IP的卫星广播可传输以文件形式保存的多媒体课件,这一点是传统广播电视做不到的,容易和基于TCP/IP协议的软件联合使用,便于教学软件的使用和二次开发。传统卫星通信技术的劣势:①卫星带宽费用高,需要达到一定的教学点数,才能实现和地面网费用的平衡;②只负责发送教学内容,教师和学生间没有互动,学生无法向老师提出问题,教师无法获知学生的学习情况,导致教学效果无法跟踪,教学质量得不到保障。而新技术在解决地面互联网多媒体数据传输路由限制的同时,也解决了卫星双向通信费用较高的问题,符合绝大多数应用上行数据量少(请求信息为主)、下行数据量多(是海量信息或长时间的流媒体)的实际需求。这种方式避免了地面网的劣势,减少了卫星带宽的占用。

二、基于卫星通信新技术的网络教育应用模式

新技术有效弥补了原有卫星网络教育的不足,主教育/课件制作室里老师上课或者播放课件,能够通过互联网送到卫星主站,由卫星发送广播到各个接收站,接收站再把接收到的视音频或课件通过电化教育系统传到到各个学生面前。如果老师提问,学生端可以回答,回答内容通过电化系统连接互联网发回给老师;学生如果有问题,可通过电化系统连接互联网向老师发出提问申请,老师对于各个接收站的学生端可分别准许他们提问(这样避免了多个接收站同时提问造成的麻烦),然后学生的视音频或文件便可传给老师。这就形成了老师向学生传递的内容通过卫星,学生向老师传递的内容通过互联网的一个完整的环形结构,圆满完成了教学闭环。该结构适应了老师端发送内容较多、发至各个学生端的内容一致,而学生端反馈内容较少、因人而异的需求。如果引入一些即时课堂出题回答软件,老师拿出题目,学生作答,学生则能够实现与老师类似面对面的交流。

三、基于卫星通信新技术的网络教育系统组成

基于卫星通信新技术的网络教育系统主要由以下5部分组成:

(1)主教室/课件制作室。在一个多媒体课堂的授课过程中,将授课信息,包括授课教案、老师讲解的视音频信息等通过摄像头和视频采集卡实时采集下来,同步合并生成课件,然后将录制好的课件进行剪辑和审核,最后加密。

(2)互联网。包括专线、ADSL、拨号等多种方式,负责传送教学内容和学生返回信息。

(3)卫星广播站。卫星广播站通过地面网络接收内容,并通过通信机打包成卫星信号传输上星。

(4)卫星接收端。卫星接收端由室外天线、变频器、馈线、室内卫星数据接收卡/接收盒、计算机等组成,卫星数据接收卡/接收盒安装在计算机上使用。卫星接收端从卫星信道接收广播站发出的信号,并还原成原始的教学内容。

(5)辅助教学单元。辅助教学单元为显示设备、麦克风、扬声器等,与卫星接收端的计算机联合完成教学活动。

四、基于卫星通信新技术的网络教育系统配置

1、硬件平台

(1)主教室/课件制作室(授课端)。主要包括计算机、摄像头(带同步录音)、视频采集卡及其配套的多媒体教室。

(2)播出内容服务器单元(授课端)和卫星广播站。主要包括网络设备、地面宽带网络接口。

(3)卫星终端(学生端)。包括接收天线等室外设备、卫星接收卡或接收盒、计算机等。

(4)辅助教学单元(客户端)。按用户教学需要配备单机、局域网、计算机教室、投影仪、打印机、音响设备等。

2、软件平台

(1)教学内容制作系统(授课端)。包括视音频压缩软件、课件制作软件、加密软件等。

(2)课堂教学系统(授课端)。由以下模块组成:支持TCP协议或UDP协议的教学软件、卫星信号接收卡/接收盒驱动程序、接收程序(含设定卫星接收参数、调频道、测试信号强度和质量的界面、条件接收PID识别)、解密程序等。

(3)多媒体电子教室软件(客户端)。提供了教师进行计算机辅助教学的平台,能够方便地利用多媒体课件提高教学质量。该软件只有在客户安装了计算机教室时才需要配备。

作者:顾捷 单位:南京中网卫星通信股份有限公司

浅谈卫星通信技术:卫星通信系统发展以及关键技术分析

在通信进入了高速传播、大容量宽带和多媒体个性化的移动时代,卫星通信成为了无线通信中最特殊的通信方式之一。但是建立在无线电微波通信系统基础上的卫星通信系统依然存在着一些技术上的开发问题和应用难点,需要在通信技术上找到关键的突破点。

1卫星通信系统的基本概念

卫星通信系统是一种把卫星作为信号中继站来接受和转发多个地面站之间微波信号的通信系统。一个完整的卫星通信系统是由卫星端、地面端和用户端这三个部分组成的。在地球上空作业的卫星端在微波通信的传递过程中起的是中转站的作用。包含了星载设备和卫星母体的卫星星体在空中接收地面站的电磁波,放大之后再发送到另一个地面站。设立在地表之上的多个地面站是连接卫星系统和地面公众网的固定接口和传送点,由地面卫星控制中心、跟踪站、遥测站和指令站等部门构成。人们连接网络的用户端通过地面站传送出入卫星系统的微波信号,形成庞杂而宽泛的通信链接。卫星通信系统的覆盖范围很广,在卫星信号覆盖区域内的任意地点都能够顺利进行通信,不会因为距离的变化而影响通讯信号的好坏。卫星通信的电磁波主要在大气层以外的区域传播,微波传递的性质较为稳定。所以卫星通信的工作频带宽,通信质量好。即使部分在大气层内部传播的电波会受到天气的影响,也仍然是一种信号稳定性和通讯可靠性很高的通信系统。但是,运行在高空轨道上的卫星在同时进行双向传输时,传递速率会延迟到秒级,电磁波的精确度也会有所下降,用于语音通话时会出现明显的中断现象。卫星在高空上的位置是按照预定轨迹运行的,因此,卫星始终处于一种运动状态,然而卫星通信系统中的线路连接都是无线链路,管理微波接收和微波传递的控制系统相当复杂,不易操纵和操作。

2卫星通信系统的发展现状

2.1成本和需求之间的矛盾

现代的大众通信集中体现为宽带互联网和移动通信。卫星通信在宽带领域中不及光纤宽带便利迅捷,在移动领域中也没有地面蜂窝移动系统的性价比优势。在移动的长途通信费大幅下降的情况下,卫星长途通信的转发器费用却没有任何变化,大大提高了卫星通信系统的运行成本。这种成本高需求低的矛盾是卫星通信系统面临的最大尴尬。

2.2宽带IP的传输和实现问题

中国当前的宽带IP卫星系统基本上都采用的是ATM的传输技术。这种技术的性能支持卫星通信系统相关的指标要求,实现起来却很困难。在卫星ATM需要分层实现的说法上有两种不同的观点就是否改变现有卫星协议结构的问题展开着激烈的争论。含有ATM交换机的子网移动性管理因为过于复杂,至今也还没有找到解决的方案。

2.3数据传递的速度和效率问题

信息时代最需要的就是传递信息的快捷方式。建立在频分复用和码分复用技术基础上的传统传递方式已经满足不了卫星通信日益增长的用户需求。虽然随后又研发出了分组交换技术,但长距离传输延时的问题还需要更加有效的技术和措施来降低传输延时对实时数据的影响。

3卫星通信系统的关键技术

3.1数据压缩技术

数据压缩不仅可以节约传输时间和存储空间,还能提高通信的便捷性和频带的利用率。数据压缩技术在处理数据的专业领域里已经发展得相当成熟了。不管是静态的数据压缩还是动态的数据压缩都可以为卫星通信系统在时间、频带和能量上带来相对较高的传输效率。例如ISO对静态图像压缩编码的标准和CCOTT的H.26标准,以及MPEG62设计中的同步交互性和多媒体等技术都成为广泛应用于多媒体压缩的公认标准。

3.2多媒体准信息同步技术

卫星通信系统传输中所使用的多媒体准信息同步技术大致可以分为连续同步和时间驱动同步这两类。在卫星的多媒体通信中,可以选用缓冲法、反馈法或者时间戳法来实现多媒体准信息的精确同步。目前开发出来的同步技术有建立在近似同步时钟基础上的“多业务流同步协议”和以时间因果同步为特色,支持分布式协议的“多信息流会话协议”。

3.3智能卫星天线系统

要成功传输多媒体信息,对通信系统的带宽要求是2500MHz及以上。降雨等天气因素和地面吸收电磁波等客观的影响因素都会导致卫星ATM网络产生较为严重的突发错误。为了完成多波束覆盖的范围最大化,研究智能高性能天线的技术开发和具体应用是十分必要的。例如,卫星通信系统可以在平时采用多波束快速跳变系统,在需要完成跟踪和同频复用的低轨道系统中采用蜂窝式天线,在星上和同步轨道系统中采用相控阵列天线。

3.4卫星激光通信技术

卫星通信对传输速率的要求很高,就目前来说,卫星通信系统的载波都是电磁性的微波。但微波天线能够接受和传递的微波数量是有限的,这就需要激光通信的辅助甚至替换。激光通信技术可以在减轻卫星密度重量和体积大小的同时增大卫星的通信量,提高卫星通信的保密性、可靠性和传输速率。而且卫星通信的激光传输之间是不会相互干扰和影响的,是卫星通信在未来的主要发展趋势。

4结束语

和其它通信系统相比,卫星通信系统多具有的特点和优势是不可比拟的。但同时也存在着一些缺陷和不足。发展至今,卫星通信的成本问题、宽带IP问题和数据速率问题是最主要也是最紧要的问题难点。要想解决这些问题和难点,就要完善和开发卫星通信系统的关键技术,实现卫星通信质量和效率的有效提高。

优秀范文
相关文章
友情链接