欢迎来到易发表网,期刊咨询:400-808-1701 订阅咨询:400-808-1721

关于我们 期刊咨询 科普杂志

无线通信论文优选九篇

时间:2022-07-10 16:10:22

引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇无线通信论文范例。如需获取更多原创内容,可随时联系我们的客服老师。

无线通信论文

第1篇

电力系统配网与骨干电网相比较,具有配电设备多、分支多、分布广、电网等级复杂、结构繁琐的特点,所以配网通信接线复杂,监控点分散,通信点多,这不仅要求提高无线通信的安全性和可靠性,而且要有较强的抗干扰能力,能够实现双向通信功能。笔者根据多年的工作经验,首先对配网自动化系统进行了概述,然后讲述了配网通信中无线通信技术的分类,然后着重介绍了LTE无线通信技术,最后为提高LTE无线通信技术的安全可靠性提出了几条措施,具有一定的现实意义和参考价值。

2配网自动化系统概述

配网自动化系统作为一种远程监控、协调、操作配电设备的自动化系统,集合了控制技术、通信技术和计算机技术,主要目的是提高配电网络的可靠性和安全性,在改进供电质量的前提下,降低资金投入,最大限度的提高安全性和可靠性。配网自动化系统结构图。配网自动化系统主要由四个部分组成:配电主站、现场监控、通信网络和配电子站。其中通信网络的主要功能是提供现场终端设备和配电主站之间的通信通道,实现数据监控和交流的功能。配网自动化系统的建立主要是为了提高供电可靠性和电压质量。按照信息流向的不同,配网自动化系统数据自动化可以分为上行数据和下行数据,其中上行数据是终端设备采集的数据向主站发送,而下行数据是主站向终端设备发送控制数据,实现控制功能。

3配网通信中无线通信技术的分类

电力系统配网自动化系统需要在主站和终端设备之间进行数据传递、控制和调节,而配电网络结构复杂,造成了通信节点多、节点相对分散、节点之间距离短的特点。无线通信技术应运而生。通常情况下,配网通信中无线通信技术可以分为:无线公网通信和无线专网通信。无线公网通信技术和无线专网通信技术各有优缺点,但是从当前的发展模式来看,无线公网通信技术具有更为广阔的发展前景和发展市场,特别是在LTE无线通信技术问世之后,极大的推动了配网通信的安全性和可靠性,将电网推向“信息化、自动化、互动化”的智能电网方向。

4LTE无线通信技术

LTE无线通信技术作为公网通信技术3G的一个延伸,改进增强了3G空中接入技术,采用OFDM和MIMO标准,大大改善了小区边缘用户的性能,提高了小区容量,并且降低了系统延迟时间。LTE无线通信技术定位于2G、3G、LTE移动业务的综合承载,以网络可靠性和安全性为出发点,致力于建立高速率、高可靠的通信网络。LTE无线通信技术和其他无线通信技术相比较具有多方面的优点:

(1)优化了空中接口技术,强化了数据传送速率;

(2)采用频分多址技术和多输入输出功能,作为无线网进化的准则;

(3)大大提高了上行速率和下行速率,能够分别达到50Mbps和100Mbps;

(4)优化了小区容量,小区之间切换性能大幅度提高;

(5)整体构架是在数据分组交换的基础进行的,能够最大限度提高数据传送效率;

(6)灵活性高,支持“配对”和“非配对”频谱分配,网络时延较低,用户面时延不大于5ms,信令面时延小于100ms。TD-LTE核心网的关键技术主要包括标识管理、节点选择、移动性管理、切换管理、IP地址分配和PDN连接服务和会话管理等,此外,为了提高通信的安全性和可靠性,系统还采用了NAS信令和RRC信令进行加密[3],进一步提高了可靠性。

5加强LTE无线通信技术可靠性的措施

LTE无线通信技术可靠性并不是传统意义上面的通信可靠性,指的是设备可靠性、网络可靠性和业务可靠性。TCP连接吞吐量和端时延成反比,当传输路径发生故障的时候,系统有两种反应机制:启用重传机制或者倒转路径,无论哪种机制,对于信息传递而言都会大大降低其可靠性和安全性,所以可靠性技术势在必行。通常情况下,提高LTE无线通信技术可靠性的方法有两种:快速检测和保护倒换技术,两者相互结合,互相补充,全面提高配电网络通信的可靠性。

5.1快速检测技术

LTE无线通信利用相邻系统之间的通信故障进行快速检测,进而快速建立起替代通道或者倒转到其他链路。当前,某些硬件设备(如SDH)提供了网络故障检测功能。典型的快速检测技术包括BFD、EthOAM、MPLSOAM,这些典型的快速检测技术能够检测相邻设备之间的报文发送和接收速率,如果在规定的时间间隔内收不到相应的报文,则进行相应的协议倒换。以BFD快速检测技术为例,BFD快速检测技术不仅能够快速检测通信故障,而且可以快速将故障通知应用层。BFD快速检测技术又可以分为BFDforPW机制和BFDforTE机制,前者主要是利用BFD完成隧道引导承载业务快速切换,达到业务保护的目的;后者是一种端到端的快速检测机制,能够检测通信隧道的链路和节点,提高通信可靠性。此外,在通信隧道LSP上面建立起BFD回话,能够利用快速检测技术检测出隧道故障,比如转发路径上的数据平面故障等等,为数据通信提供端到端的保护。

5.2保护倒换技术

保护倒转技术在快速检测技术之后,在事先建立好的通道上面,针对不同承载技术进行快速倒转,切换相关协议。在LTE网络中,保护倒转技术能够按照业务部署进行分类:L2VPN类、L3VPN类、网关类、链路类保护倒换技术。L2VPN类保护倒换技术主要是指PW冗余,L3VPN类保护倒换技术主要是指VPNFRR,网关类保护保护技术为E-VRRP,链路类保护倒换技术包括LDPFRR、混合FRR、TEFRR和TEHSB。其中不同保护技术相互结合可以提高通信可靠性,比如PW+L3VPN。按照保护倒转模式的不同可以分为三类:隧道保护、业务保护及网关保护。①隧道保护,主要保护网络内部链路和节点,能够保证倒换前后业务节点不变,及采用保护技术包括LDP快速收敛、LSP、TEFRR三种技术;②业务保护,主要保护前后业务源宿节点,能够汇聚汇聚路由器、RANER以及EPCCE节点故障,主要采用的保护技术包括PWRedun-dancy、VPNFRR、BFDforPW、BFDforTunnel;③网关保护,用于EPCCE及EPC与EPCCE之间的链路故障检测,相应的保护技术为E-VRRP。

6结语

第2篇

(1)卫星接入技术。这种通信接入技术被广泛应用于房地产、金融以及教育领域,主要是由于其技术可以有效地实现高速度的互联网连接以及高速度的数据包发放。同时还由于此种接入技术的实施方法比较稳定,所以在各个领域被广泛应用。

(2)红外光通信接入。这种通信接入技术由于其传输速率相对比较高,它的速度频率大约在3MB/s-621MB/s之间,这样就可以有效的促进数据之间的高速度传播。同时此技术的传输距离可以高达100米左右,并且以红外光为主要的工作波段,这样既不需要对其进行频率波段的申请,也不会影响其他通信系统的运行情况。

(3)微波宽带接入技术。这种技术适应的频率段主要是在28GHz的周围,并且采用的是蜂窝方式的网络布局,这样就可以有效地降低因为传输距离比较长而造成的损失和能源消耗。同时还可以有效地减少无线通信发射的功率,由此可知,这种通信接入技术比较应用于双向数据和图像传输。

2无线通信技术在电力系统的应用

2.1无线通信技术在电力输配电系统中的应用

在电力系统中,有关状态信息的搜集和控制命令的发送主要是将输变电无线与光纤集成通信系统放置在网络通信层;变电站的中心站主要是通过电力特种光缆与部署在输电线路杆塔上的远端单元进行相互的连接,其中中心站还可以通过链式自组网的模式来有效地实现它们之间的通信,并且可以通过利用输变电中心站设备和远端单元有效连接的无线与光纤集成通信系统,这样就可以实现底层终端信息的汇总和采集。此外,还可以利用远距离传输的方式将信息进行汇集到输变电系统主站中。在电力系统中运用输变电的时候,可以有效地采用分布式中心站与链式组网两者相互相结合的方式,这样就可以更加充分地利用输电线路光缆资源,从而就可以有效地实现光纤与无线组合网络之间的通信。由于在电力系统中应用配用电的时候,它需求不同,这样就需要促使系统具备智能化的链路传输能力,并且系统还需要具备流量实时监测技术,从而就可以有效地实现系统性能的动态感知。除此之外,在对系统进行实际的监控和测量的时候,要对流量控制技术进行具体的分析和研究,从而才能使链路传输能够有效地适应网络系统的变化。在配用电应用的过程中,需要很大的终端数量,同时由于基站系统承受的压力比较大。所以系统在运行的过程中就需要具备海量终端,并且还要有一定的接入能力。除此之外,在利用调度算法对基站系统进行运算中还需要对终端用户进行数据传输的监测。

2.2无线通信技术电力系统内部管理中的应用

在发电企业,内部管理工作是非常重要的,首先无线通信技术可以有效地实现远距离延伸,其中有一些管理人员在异地出差,这样就不能连接电厂设备的实际情况,他们可以通过利用SIM卡和GPRS网络掌握电厂大型设备,例如:高压变频器等的运行参数,这样就可以方便电厂内部的管理,也有效地解决了距离远的问题,同时也为电厂节约了资源和成本。然后电厂设备如果在运行的过程中,发生了以外的事故,可以起到应急的作用,保证电厂通信网络正常的运行。可以实现小范围的覆盖,对于电厂、变电站等区域,应该考虑采用无线通信系统进行语音网、数据网的无线覆盖,在业务流量需要不是特别大的地方应用这种方式,这样就减少了电厂线路的布局,从而也方便管理人员对电厂内部进行管理。

2.3无线通信技术在电力通信系统中的应用

无线通信网络的研究对象在电力系统中的发电、送电、变电、用电等等一切与电相关的信息和环节,而无线通信技术就是对这些环节的整合,从而保证发电行业的自动化发电和电力生产、输送都更加安全经济。同时无线通信技术可以采用高压骨干网架进行远距离、大容量以及低损耗输送,这样就促进了电力系统的可持续发展。除此之外还可以有效地实现不同单位、机构以及装置的实时监测。

2.4无线通信系统在电力终端系统中的应用

第3篇

1无线通信传输层协议研究的现实情况

与以往的通信方式相比,无线通信在快速部署和便捷接入上具有很大的优势,但是其主要阻碍在于信道的可靠性较低,在某些特殊场景中具有较高的延迟率和丢包率,利用无线网络传输层协议能够实现数据传输的可靠性。节点会以相对较低的速度进行转移,一旦检测到有数据丢失现象,它还会对数据进行备份。其在传输过程中,中间节点还会为接收到的报文进行缓存处理,通过多次重复手段成功接受报文,即RBC协议具有多重ACK机制。据此可以证明,上述两协议适用于两节点之间直接相连的传输情况,从智能终端到户内网关和数据融合中实现有效接入。因此,我们可以针对自组织结构对无线通信网络进行设计,并实现协议的高效传输。为无线传感器网络专门设计的TCP协议的应用是基于SACK报文依照传输路径回溯给源节点的主要手段。它能够对回溯传播路径的节点做检查,但是它会延长数据的传送时长,并造成流量的增多,导致无线网络传输负载过重的问题,造成网络的拥堵,引起连接吞吐量的急剧下降。对此,我们一定要提高数据的完整性,不断提高系统传输的实效性,对传输层动态机制设置保障。

2动态附加传输通道保障机制的描述

物联网无线通信传输机制会出现传输层数据堵塞的现象,进而导致丢包加速递增。如果当前的数据传输连接通道为S(V0,VDAPi),V0作为数据的源节点,那么VDAPi则是汇聚目的的节点,它可以通过任意一个DAP汇聚点与AMI系统接入。一旦to传输时刻出现拥堵现象,那么其节点也会通过自检手段发现源数据,使其逐步累积,并开始丢弃,直到拥堵点后向节点在未拆除区域同源数据的消失为止。此时,节点Vi和Vj就可以对连接通道堵塞的情况进行单独分析,从而快速启动多动态附加通道保障制度。物联网无线通信传输层动态通道保障机制主要采用的是漂白技术,节点Vi和Vj会沿着以往的传输通道回溯到向源和目的节点之中,S(V0,Vi)以红色着色,S(Vj,VDAPi)则为蓝色,并将其定义为永久色,不会出现褪色现象。然后,Ag-Red再从Vi出发,Ag-blu则从另一端出发,沿着自身的复合量数据进行探究,选取最佳的附加通道。想要实现通道传输的高质量特性,避免出现抖动,使其性能达到最佳,器在整个传送的过程中一定要保证好复合量度,并由残余带宽进行接收,将具体公式运算到其中:物联网无线通信传输层动态通道保障机制还运用了二类器,使其与二类通道成功建立了保证DSTC算法较高成功率的手段,并进一步分析了该算法的时间复杂情况。通过两级嵌套过程的建立,避免节点出现多次访问现象。

3系统结构分析和数学模型的建立

第4篇

由于煤炭生产的施工环境比较复杂,井下人员较多,设备流动性也较大,在生产操作中,常常采用多工种联合流水作业的形式进行煤矿开采,这就要求需要大量的重型设备参与到煤矿生产中,无论是在设备运输中,还是在安装、调试中,其都有较高的要求,若不注重煤炭井上井下的协同生产,则容易发生瓦斯爆炸等事故。然而,随着移动通信技术的发展,建立基于4G通信技术的无线移动通信系统,并将其应用于煤矿生产中,其不仅可以确保煤矿生产顺利进行,还可以完成紧急事故的处理,因此,煤矿4G无线通信移动系统的实现,具有十分重要的意义。

二、基于4G通信技术的煤矿无线通信系统

(一)无线移动通信系统架构

针对当前煤矿生产对无线移动通信系统的需求,利用4G中的TD-LTE通信技术来实现高传输速率的宽带无线网络,建立信息化、自动化、智能化于一体的煤矿安全生产管理系统,打破当前煤矿系统安全生产局面,将煤矿井下传感器、视频等各类业务数据进行统一的网络部署,有效解决信息孤岛的问题,确保煤矿安全生产,从而提高煤矿的生产效率。因此,建立基于分时长期演进(TD-LTE)的宽带无线网络,由于基于4G通信技术的无线移动通信系统可以在频谱带宽20MHz下可以实现上行峰值速率和下行峰值速率分别为50Mb/s,100Mb/s,其接入时延可以小于100ms,如表1所示[3],表示4G通信系统与3G无线通信系统的对比,因此,采用TD-LTE无线通信技术不仅可以满足语音和数据业务的实时传输,也可以有效避免数据丢包、延时等问题。下面对基于4G通信技术的无线移动通信系统进行对比分析:1.基于TD-LTE通信技术的系统架构。TD-TLE煤矿无线通信系统网络总体架构主要由基站、接入网关、BRAS及核心网通信构成,其中,核心网网元可以实现语音通信、数据传输及集群呼叫功能,其主要通过IMS+EPC+DSS集群模式来实现的[4]。2.建立基于TD-LTE通信技术的基站通信系统。将Femto/Pico基站应用于无线通信系统建设中,增强区域的覆盖范围,通过自身的传输网络统一接入到安全网关中,采用IPSEC的方式,以保证网络传输安全。当基站通过提供WLANAP来承载数据业务过程中[5],其也可以通过PDG直接接入网络来承载数据业务,为了确保提高高质量、高传输速率的数据和语音业务,则可以通过直接接入3GPP核心网来满足不同的产品需求,实现统一的业务活动,建立以SmallCell为基站的网管系统,从而实现下层无线网络通信系统与上层网管系统的对接。3.建立基于IMS+EPC+DSS集群模式的核心网[6]。在系统中设置核心网,其主要作用是提供用户连接、系统管理、网络承载等功能,分析该系统的核心网系统AXUNiEPC-5[7],其主要依托电信级EPC核心网的优势来实现网元MME、PGW等功能融为一体的模式,该核心网实现了移动办公、遥感业务、监视控制及电子商务等基本业务,其可以为用户提供安全可靠的LTE接入。另外,核心网系统还利应用了IMS系统,其是一种全新的多媒体业务形式,其不仅可以满足多样化的多媒体业务需求,还可以实现LTE语音业务系统,并且DSS核心网可以实现LTE的集群呼叫功能,DSS与EPC相比,其都采用了ATCA架构,并且都可以实现设备小型化的核心网。4.建立综合应用无线通信系统平台。利用分布式高性能计算机框架架构来建立一个安全、可靠、统一的综合应用系统平台,为了构建灵活、适用强的处理平台,应在软件处理平台基础上增加分析处理数据的专用支持工具,如支持LTE、Wi-Fi网络和终端的基站系统[8],实现数据传输、视频及语音等各类业务,提供统一的数据存储及应用接口,从而实现自动化管理的应用系统。

(二)无线移动通信系统功能概述

1.调度功能。调度系统是煤矿生产的重要通信手段,生产调度员通过利用调度功能来统筹调度所有资源,并对煤矿生产中各种突发状况进行处理,以保证煤矿生产顺利进行。调度功能主要包括生产进程管理、煤矿生产流程整合及资源分配等功能。2.语音业务。其主要包括以下几种业务:第一,移动电话,其可以提供语音通信功能;第二,紧急呼叫业务,当煤矿井下的集群用户发起紧急呼叫,呼叫中心将会做出答复,其类似与电话业务,具有简单方便、快速的特点;第三,主叫号码识别显示业务,其主要功能是提供主叫用户号码给被叫用户。3.集群通信。为了实现用户之间的通信,利用无线集群通信系统来实现自动化的信息共享功能,与公众无线移动通信相比,无线集群通信系统不仅可以提供系统内部的全呼、组呼之外,还可以提高双向通话功能,通过建立优先等级呼叫和紧急呼叫功能,以满足煤矿生产安全部门指挥调度的需求。4.增殖数据服务。在增殖数据业务中,主要包括提供视频通话、物联网接入、手机终端定位、多种数据等业务,其中,对于视频通话,通过手机实时进行无线视频业务,以便于井上工作人员的判断和决策;数据网接入,通过利用3G通信技术来实现终端及无线传感器等接口的采集,并利用物联网提供终端接入;手机终端定位,即利用4G无线通信技术来实现语音通话及矿用无线通信手机终端定位,即通过操作人员携带的手机与基站之间的信号传输来获得操作人员在井下的信息,这样地面上的工作人员则可以通过计算机来了解井下工作人员的信息,其可以确保煤矿井下的安全生产,同时也可以提供实时信息;数据业务,为了满足煤矿井下多种业务对宽带的需求,实现高速分组无线数据业务,并通过智能手机绑定内部系统,实现信息、视频监控及安全生产实时监控等功能,将综合自动化系统应用于系统中,实现组态软件实时显示功能,当煤矿井下出现异常情况,系统将会提供自动报警提示功能。

三、结束语

第5篇

1.1传输距离较远、速度较快

基于城域网的无线通信技术的建设采用的技术有两个,一个是OFDM技术,另一个是自适应编码技术。通过这两种技术可以实现无线网络的高发射功率和高信道利用率,网络覆盖范围广,在科学条件的检验下,有效覆盖达到50000米,网络最高的接入速度能够达到75Mbps,相比较于之前的无线局域网,无线城域网的传输速度是其300倍。

1.2广泛的多媒体服务

基于计算机城域网的无线通信技术自身特有无线的优势,可以向人们提供面向连接,服务实现多媒体化,以QoS保障完善的电信高级别技术服务,能够满足使用者多样化的各种多媒体需求。

1.3性能优良的终端接入功能

基于计算机城域网的无线通信技术有许多网络接入方式,并且能够使用有线网络来实现无线功能的扩展,包括利用当下热门的WIFI热点接入的方式进行网络信号的连接。这几种方式都以覆盖网络信号范围广泛,信号强度大等优点被人们广泛利用。基于计算机城域网的无线通信技术也可以实现宽带接入的最后一公里的网络信号,不需要借用传统方法的有线通信线路,将快速的网络信息接入用户,实现了高速的信息传递,提高了人们的使用效率。

1.4低廉的建设成本

高性价比在建设成本的计算上,城域网大大低于无线通信服务。无线通信服务相比较,城域网的功能保障的安全性能和灵活性其却更高,兼容性也更强。建设成本低,性能却更完善,因此基于计算机城域网的无线通信技术就有了高性价比的特点。

2基于城域网的无线通信技术的关键技术研究

基于计算机城域网的无线通信技术以WiMAX为支持技术,这项技术是根据IEEE802.16的精确标准制定。它拥有多种关键技术,其中包括网状体系结构、多载波调制技术和无线安全技术以及QoS支持服务质量等。网状体系结构对于MAC层业务结构与消息作出特定的规范,这种节结构可以允许多节点的多点之间的无线连接,这就为网络传输提供了多样化的网络搭配以及更强的兼容性。多载波调制技术是城域无线网络中的另一关键技术,它可以具体分析环境的不同,根据环境来进行不同的自适应选择调试方式。更近一步来说,WiMAX技术可以分为三种不同的调试方式,他们分别是单载波方式和256载波正交频复用方式(OFMD)以及一种可以实现多用户分接的2048载波(OFDMA)方式。这些方式有所不同,在使用时应有所区分。在出现特殊需求的时候,一般应该使用单载波方式,想要增大数据的传输能力和传输速度时,可以把传输信号调整制做到256个子载波上,然后通过256载波方式对信号进行传输,在此基础上想要实现对特定用户的信号需求,就需要使用2048载波方式,来实现面对多个用户的同时复接。在特殊情况或者是环境发生改变的情况下,自适应编码技术协同MAC层和物理层的附加功能就能够保证在外部环境改变的条件下不改变网络,能够有效保证网络的运行经过最佳的调试。有些传输技术的不同会产生不同的信号标准和要求的传输以及宽带分配,支持QoS就能够做到在MAC层加入面向连接的传输方式,实现上述要求。这项技术也能够将语音和视频的延迟时间降到最低。

3WiMAX通信技术的应用

WiMAX通信技术拥有众多技术不具备的新的技术特点,现今应用最广泛的就在于实现运营商的城域网无线通信的铺设上。具体来说WiMAX通信技术的功能可以分为两个大方面,第一方面是将其作为一种补充,弥补现存的有线宽带接入方式,解决终端连接的问题,广泛的增大无线通信网接入的范围,使其接入方式具有灵活性的特点;另一个方面是将WiMAX通信技术直接作为城域网无线通信技术进行网络区域的覆盖,以此来弥补WIFI技术,这一方面可以对城市建设区域进行网络无线覆盖。具体如下:有些地方环境差或者有线网络接入比较困难,例如某些城市的建造区、新开发的偏远郊区、人口稀少网络信号传输差的技术弱的山区,再或者是网络普及较差的农村地区,在这些地方就可以直接将WiMAX通信技术直接应用,接入终端,在保证网络质量的基础上降低成本。WIFI热点覆盖区域有限,可以通过WiMAX通信技术弥补覆盖区域的不广泛,在网络热点之外使用WiMAX通信技术,来连接整个无线通信网络。

4总结

第6篇

甚低频范畴内的电磁波,被设定成无线互通必备的这种波形。把无线通信惯用的天线,看成电偶极子。电波传递特有的路径之中,天线运送过来的电波,先要经由覆盖着的上侧层级。例如:通信体系架构内的传导电流,会超出这一范畴的位移电流。选出来的参数,可分成电导率、电磁波特有的角频率、关联着的介电常数。甚低频段特有的区段,会满足拟定好的这一要求。真正去运算时,天线预设的埋深,应被拟定为零。发射天线被安设于地表以下的某深度之处。为此,应把运算得来的数值,乘以选取出来的衰减因子,就得来这一深度。

1.1区分多重区段

线路架设固有的距离、电磁波固有的波长,会表征着不同比值。依循拟定好的这些比值,可把选出来的区域电场,分出四种区段。具体而言,若预设的通信距离偏近,或拟定好的频次偏低,那么这一区段被设定成准静区。伴随距离拓展,细分出来的这些区段,依次设定成近区、中部架构下的中间区、偏远的区段。测量得来的频率范围,关涉着对应情形下的波长。例如:频率被拟定成10k赫兹这一数值以内,那么波长表征的数值,就被限缩在30千米;依循这一递增规律,可以推测得来幅值特有的衰减常数。由此可得,在偏低频次特有的区段内,如上的比值会满足特有的准静区;若拟定好的通信距离,没能超出2千米,那么给出来的通信范围,就被划归为近区。

1.2明晰运算流程

准静区特有的区段之中,应当经由审慎的运算,计算出拟定好的场,同时辨识场的特性。若给出来的频率既定,且通信距离特有的间隔偏近,那么体系架构以内的架设天线,就被看成近似态势下的恒流偶极子。场强及关联着的电流矩,会凸显出正比的关联;然而,场强与运算得来的电导率、场地固有的水平距离,却带有反比的关联。若拟定好的频率升高,则原初的这种距离,就会快速缩减。如上的运算中,没能考量偶极子特有的埋设深度。真实态势下,水平方位的这种偶极子,会被安设于特有高度的通信线路之内。真正去计算时,还应在拟定好的公式之中,添加衰减因子。

1.3埋地范畴内的偶极子

甚低频架构下的无线通信,拟定好的电场,会跨越这一范畴中的准静区、关联着的近区。接纳过来的信号,主要依凭运输特性的天线。为获取各个层级内的场强数量级,有必要明晰多重参数的更替规律。接收点区段之中的原有场强,会随同变更着的参数,而不断更替。例如:发射天线预设的埋设深度,被拟定成300米;拟定好的这种长度,表征着水平方位的电偶极子。运算得来的电流矩,会达到100A每米。天线固有的上侧区段,覆盖着等效特性的电导层。这一层级固有的电导率,被测定成每米0.018S。由此可推知,划分好的通信范畴,应被涵盖在准静区。把如上的条件,带入给出来的公式,就能明晰接收点关涉的电场;还能明辨电场随同频率而更替这样的规律。若选出了既定的一点,则可以明辨通信距离特有的彼此关联。

2应注重的事宜

依循地层固有的多样磁性,可以辨识这一层级以内的磁导率。除了带有铁磁特性的这种物质,其他范畴之中的关联物质,都很近似拟定好的真空状态。预设的介电常数,关联着极化场这样的频率;介电常数特有的测定及运算,也关涉周边范畴中的环境。干燥特性的区段环境,对于固定着的多重频率,都会保持恒定。潮湿特性的环境,对于关联着的声频,会凸显明晰的干扰。这样测定出来的电导率,会相差偏多的数量级。拟定好的这一电导率应被设定为恒定。为便利接续的通信设计,依循穿透点布设着的大致方向,可以经由运算,得来等效态势的电导率。把测算得来的这种参数,简化为惯常见到的、均质架构以内的电磁波,并拟定可用的穿透模式。等效情形下的电导率,可被概要拟定成平均值。在如上的运算中,应被涵盖的关联参数,包含总体的线路长度、线路固有的导体状态。依循通信地点特有的布设状态,得到平均态势中的电导率。

3结束语

第7篇

舰载无线通信设备通用测试诊断专家系统体系结构。被测无线通信设备通过射频检测线缆连通系统中的接口模块后,测试诊断管理模块依据系统提供的来自专家数据库的典型故障特征程序集所需的待测信息项,通过射频矩阵切换单元控制接口电路,选通测试诊断模块中的虚拟测试仪表,采集被测设备当前状态的信息数据,并将测试结果传输到测试诊断管理模块,与专家数据库提供的典型故障特征进行比对和逻辑推理,根据特征相似度锁定故障类型或故障范围,从而实现对故障进行诊断和定位的功能。逻辑推理方法是专家系统设计的关键,该系统的逻辑推理采用基于规则的精确推理和模糊推理相结合的方法设计。基于规则的精确推理主要是把专家数据库中与无线通信设备性能指标和故障案例有关的专家知识进行形式化描述,形成系统规则数据库,运用相关算法进行故障诊断和推理。基于模糊的推理规则是根据对关键信号参数的测试,推测计算出故障隶属度数值。首先通过研究被诊断设备,确定故障征兆和故障原因,并对其采用适当的方法进行模糊化和反模糊化处理,即确定隶属函数的表示形式;其次是根据事前的归纳和搜索或通过该领域的专家,总结出故障征兆和故障原因之间的逻辑关系,并建立模糊规则库;最后是采用模糊推理方法建立模糊推理机,以完成根据故障征兆进行模糊诊断推理的全过程。

2系统硬件设计

专家系统硬件包括嵌入式控制核心模块、测量切换矩阵模块、标准接口模块、总线控制模块、数控电源和电源管理模块、人机界面模块,以及由测试仪器设备构成的测量模块和连接被测无线通信设备的通用射频测试电缆等组成。嵌入式控制核心模块是系统的主控单元,以ARMMICRO2440A核心板为基础,嵌入了WINCE操作系统,并基于LabView开发了系统主控软件,实现对整个系统的控制与管理。测量切换矩阵模块以TMS320F28335数字信号处理器为核心,通过GPIB/VIX总线控制各种虚拟测试仪器,对采集到的信号数据进行运算和解析,并将解析后的数据上传给主控单元进行对比分析。标准接口模块提供LAN、USB、串行、GPIB、VXI等多种接口,通过切换矩阵来控制其中的射频同轴开关、可调衰减器、功率探测器和滤波放大器等接口电路。测量模块包含综合测试仪、矢量分析仪、频谱分析仪等测试仪表,用于采集所需的信号数据。总线控制模块通过RS232和1394接口实现主控单元对系统各部件的控制。数控电源和电源管理模块对系统供电进行智能化控制和管理。人机界面模块通过LCD屏实现专家对系统的操作和人机交互。

3系统软件设计

系统软件设计运用VC/VC++高级语言和NI公司的LabView,开发了故障测试诊断程序集、故障诊断专家知识库与设备信息数据库,以及仪器驱动程序集等软件系统。

3.1故障测试诊断程序集

测试诊断程序集软件由设备整机测试软件和单板测试诊断软件组成。整机测试程序根据诊断数据库提供的信息以树型方式显示功能检测项,当用户选择测试项后,系统依据测试诊断数据库中定义的测试流程完成测试并将测量结果和诊断数据库中的有关数据相比较,从而确定待测设备是否存在故障。单板诊断程序内部包括单板的各种信息注册表,该表将单板具有的所有特征信息组织在一起,可以直观显示单板中各元器件的型号参数等信息,在故障诊断过程中能以文字和图像突出显示的方式指导操作人员进行测试探头或夹具的定位,并能对故障诊断结论中的失效元件在实物图像上闪烁显示,使测试操作生动直观,诊断结果一目了然。

3.2故障诊断专家知识库与设备信息数据库

故障诊断专家知识库包括与整个诊断软件运行相关的专家诊断数据信息(如通信设备故障判别准则信息、检测参数指标、失效判据信息、检测部位-失效类型-失效判据-检测方法逻辑对照信息、故障预测结果、故障预测报告、历史维护记录、系统预设信息、代码信息等),全面反映通信设备及各板件的累计使用情况、历次维修情况、当前健康状况、损伤残留及待查隐患、任务能力评估以及预定的维修安排等,用来支持推理机根据检测数据对通信系统、子系统和设备板卡当前检测状况的变化做出正确的认定。设备信息数据库包括实时数据库和关系数据库,实时数据库用来装载来自接口适配器的实时检测数据,关系数据库用来装载通信装备整机及单板的型号、厂家、出厂日期、性能指标等基本属性信息表。

3.3仪器驱动程序

VXI总线即插即用(VPP,VXIplug&play)仪器驱动程序规范规定了仪器驱动程序开发者编写驱动程序的规范与要求,侧重于仪器的互操作性,可使得多个厂家仪器驱动程序共同使用,增强了系统级的开放性、兼容性和互换性。VPP规范提出了两个基本机构模型,第一个模型是仪器驱动程序的外部接口模型,它表示仪器驱动程序如何与外部软件系统接口,外部接口模型包括函数体、交互式开发接口、程序开发接口、VISAI/O接口和子程序接口,第二个模型是内部设计模型,它定义了仪器驱动程序函数体的内部结构,使用一些部件函数共同实现完整的测试和测量操作。

4主要技术指标

1)测试频率范围:1~500MHz。2)测试功能:频谱分析、频率/功率测量、信号激励、时域波形分析、基本电参量测量、音频信号分析、通信误码测试。3)测试速率:不小于50Mb/s。4)系统支持:VXI、PXI和LXI总线技术。5)系统软件:LabView、VisualC++。6)支持通信接口类型:GPIB接口、标准并口、RS232串口、LAN口、1394接口。7)电源及功耗:AC220V±10%、功耗不小于2kW。8)环境适应性:工作温度:-10~50℃,存储温度:-25~70℃。

5主要功能

5.1自治测试功能

系统提供序列化自动测试功能。以收信机为例,待测设备加电后,即可通过数据采集模块采集必要的数据,如电压、阻抗、频率甚至波形信号等,经过信号分析模块通过对测量的各种数据进行分析和处理完成对整机的诊断,如果整机诊断结果显示有故障,故障诊断模块会该将故障定位到某个板件,并在显示设备中显示相关结果,指导下一步的单板检测操作。单板检测需要将设备中板件卸下,插入系统的接口模块,通过宽带可控信号源模块产生板件检测所需要的电源、高频信号、逻辑信号等相关工作数据,并传送给板件,在故障诊断模块的控制下进行故障的分析诊断,可将故障定位到某级电路,甚至元器件,并通过显示设备显示测试诊断结果。

5.2故障诊断功能

系统通过不断的采集被测试设备的信息获得检测信号,通过信号处理得到设备特征信息,并与故障诊断专家知识库中的设备允许参数进行对比和一系列逻辑推理,快速找到最终故障或最有可能的故障位置,然后由用户来证实并形成诊断决策,最后建立维修方案并对设备进行维护和维修。

6结语

第8篇

本系统主要由STC89C52、飞思卡尔系列单片机K60、GSM通信模块、传感检测模块机电机控制模块等部分组成。控制部分本设计中采用双CPU的设计方案,分别用飞思卡尔公司的kinetis系列单片机K60和STC89C5C单片机。K60单片机主要用来采集传感器数据和控制舵机。STC89C52单片机主要是用来控制GSM发送短信息以及驱动步进电机STC89C52RC是一款高性能、低损耗的8位可编程微控制器,512字节的RAM、8K字节FLASH、32位双向IO口、全双工串行口、3个16位定时器/计数器,基友EEPROM及看门狗功能。同时,具有在线编程的功能,可是让使用者方便调试程序的可行性。ISP(在系统可编程)/IAP(在应用可编程),无需专用编程器,无需专用仿真器,可通过串口(RxD/P3.0,TxD/P3.1)直接下载用户程序,数秒即可完成一片。在正常使用是P0口需要接上拉电阻,这时候P0口为准双向IO口。STC89C52RC的P3口比较特殊,它既可以当做通用IO口来使用也可以采用其第二功能来使用。K60单片机是一款高速、高性能、低损耗的微控制器,该单片机是飞思卡尔公司推出Kinetis系列微处理器的一种,该系列微处理器是以ARMCORTEXM4为核心的32位微处理器。Kinetis系列微处理器基思卡尔公司先进的闪存技术(TFS)和先进的Flex存储功能,可以达到超过1000万次的擦写,该系列单片机具有非常强大的数据处理能力、该单片机拥有众多的引脚,并且很多引脚都具有复用引脚,可以通过配置寄存器来实现相应的功能,大致可以分为通用IO口(GPIO)模块、定时器模块、异步串行通信模块、模拟量(A)和数字量(D)相互转换模块、SPI模块、I2C模块、CAN等模块。图2为K60单片机及接口电路。通信模块GSM模块是集射频信号和基带信号于一体的通信传输模块,特别适合远距离数据传输、该模块符合标准通信传输协议、通过AT指令可以实现短信传输、拨打电话等服务。本系统采用TC35模块来实现收发短信,以此来实现终端的控制,达到智能控制的目的本系统中TC35模块通过串口与单片机连接,其接口电路如图2所示。TC35模块的TXD、RXD通过RS23与STC89C52RC单片机的RXD、TXD连接,以此来实现通过单片机来控制短息收发来达到远程控制和报警的目的。GSM模块与单片机连接,进行串口通信,GSM模块的TXD、RXD分别与单片机的RXD、TXD相连,并且经过电平转换,电平转换有MAX232进行。在GSM模块与单片机连接时要等待一段时间,GSM模块注册完成后,单片机才能通过程序来控制GSM模块发送短信,在通信时要注意波特率要一致,否者通信不正常,GSM模块不能正常发送短信。执行部分检测部分主要由MQ-2烟雾传感器、MQ-7一氧化碳传感器、火焰传感器、雨滴传感器、温度湿度传感器、ULN2003步进电机驱动芯片、红外传感器、MOC3041光耦、BTA16可控硅等组成。电源系统本设计采用LM2940来做5V稳压,由于K60单片机供电电源为3.3V,所以系统设计中还要有3.3V电源,设计中采用了AMS1117稳压芯片,电路见图3所示。

2软件设计

当电源上电后,程序开始初始化,各个模块开始测量数值,单片机开始读取各个模块采集回来的值,并通过液晶显示回来,比较各个模块采集值与阀值的大小,当超过阀值时,通过GSM短信报警。其程序流程图如图4所示。

3总结

第9篇

1LTE无线通信技术

LTE是LongTermEvolution的简称,主要将其看作3G向4G演变的一种新型的通信系统,替代了传统的2G/3G的通信系统。以OFDM以及MIMO等技术为核心的LTE无线通信技术,具有较高的下载能力,同时还能够哎20MHz的频谱宽带上提供上下行分别为50Mbps、100Mbps的高峰值速率。除此之外,该技术还可以使边缘用户的性能得到提升、使系统的延迟性得到降低。由此可见,LTE无线通信技术和传统的通信技术相比,其存在的诸多优势能够极大的满足现阶段物联网发展过程中的各项需求。

2LTE无线通信技术与物联网技术的结合

在物联网的主流业务模型中,有各种类型的业务、数据包频库、属性、终端密度等等,但是物联网的数据模型和QQ一样,模型较小、频率较高,因此极易使网络资源出现浪费的现象,从而导致网络效率较低,这一现象对物联网的发展产生了极大的阻碍。面对该种情况,LTE无线通信技术与物联网的结合就显得尤为重要。两项技术相互结合有着重要的意义。一方面,和传统通信技术不同,LTE无线通信技术作为发展的新型技术,LTE的终端在LTE与物联网技术相结合以及创新过程中发挥着非常重要的作用,而且物联网的各项应用要想得到快速发展,需要借助LTE技术终端的普及和推广来实现。另一方面,随着信息技术的快速发展,物联网信息的种类以及数量等都在不断增加,因此需要分析的数据量也在随之上升。与此同时,各种异构网络或者是两个以上系统之间的数据融合问题以及如何更加合理、有效的处理、整合数据信息等问题都成为物联网现阶段面临的重要难题。但是在这个LTE无线通信技术发展的时代,与物联网技术的相结合,可以更好的解决这一问题。对于物联网感知层面而言,LTE终端不仅需要对LTE天线以及LTE射频分别与射频识别、定位系统等技术进行研究和分析,还需要对LTE基带与射频识别基带的多模集成技术进行研究。在这些方面,LTE无线通信技术发挥着重要的作用。对于物联网的网络层面而言,2G/3G、WIFI以及有限网络是现阶段应用最为广泛的传输技术。因此,在LTE终端中,重点则是对无线传感器网络与LTE网络技术结合的过程进行研究,从而使异构网络运行更稳定、更快捷。在物联网的应用层面上,主要是实现物联网大量信息的存储和处理,并对数据挖掘、影像智能分析等进行解决和研究。在物联网的应用中,云计算是解决这写问题的关键所在。因此,将物联网技术与LTE技术融合,主要是实现云计算技术与LTE无线通信技术的融合,这样既可以使数据中心具有较高的安全性以及可靠性,还使得互联网服务便利又廉价,同时达到与LTE终端信息数据共享的目的。两项技术的结合,就能够有效避免信息泄露、黑客入侵等情况的发生。

二LTE无线通信技术

在物联网技术中的应用LTE无线通信技术与物联网技术的结合中,在物联网中,需要价格传感器以及控制器等通过局域网络来实现传感器的叠加,通过该种方式将LTE无线通信接入其中,此时大量的数据会通过局域网络进入到LTE无线通信中,这一过程产生的小规模、大频率的业务包会对无线网络造成巨大的压力。LTE无线通信技术主要是利用OFDM技术将庞大的信息传输信道分成若干个小的信息传输信道,在高速数据流得到转换的同时可利用层二调度器实现对无线资源的控制,使得小规模、高频率的业务包在LTE无线通信的条件下得以实现。此外,在LTE无线通信核心系统因为缺少主动释放的功能,无法在尚未检测到信息使就自动对链路进行释放,只有在接受入网消息的情况下,或者是以一定的方式告知核心网后才会实现该功能。LTE无线通信技术与物联网结合,如果从核心网的角度上看待该项技术在物联网中的应用。手机作为人们信息、数据交流、沟通和互换的重要手段,在使各项信息进行传输之后必须建立无线承载,此时便利用NAS作为消息传送的媒介,将相关数据向核心网进行传送,在这一过程中需要建立QCI无线承载来实现信息的传输。在数据信息传送的整个过程中,LTE系统的核心网络并未建立主动释放功能,只有在接收到了接入网的消息的情况下,或者是UE通过了NAS的消息通知,才能进行核心网的释放。如果从接入网方面来看,应该按照核心网的QCI参数设置对新接入的网络进行设置,而且LTE用户在进行数据传输得不知所措,不知道怎么学习了;(3)部分学习能力强的学生到了大学后,由于环境的改变,没有高考的压力,学习也变得懈怠。

三学习适应性对高职高专英语教学的影响

1促进教学方法、教学材料的改革学习

在高职高专实用英语课程中,以能力导向型教学法为基本的指导原则,并不意味排斥其他的教学方法,因为没有那一种教学法可以解决所有的教学活动中遇到的问题。还可以根据不同的教学活动,有变通的选择其他教学方法的应用,例如:合作学习语言法、内容型教学法、任务型教学法等,都可以尝试的应用到教学过程中,也能增强教学活动的趣味性。在教学活动中,相应的教学材料应该承担起指导、说明的作用:(1)教学材料应该集中体现人际交往能力的培养,表达、谈判等实用技能;(2)教学材料应该是易懂的、相互关联的、有趣味的,特别强调教学材料服务于工作过程整体性原则;(3)教学材料应满足学生自主学习的要求。内容的过难、过易都不利于学生的自主学习,因此要指导明确,难易适中。

2增强学生的学习自主性

学生是整个教学活动的主体,要激发学生的主观能动性,可以通过以下几点:(1)明确学习目标。学生在明确教学任务的基础上,独立完成教学活动的所有内容;(2)完善教学材料。在以贴近实际应用的语言环境为依托的教学活动中,学生自主形成评价机制。培养学生独立自主的学习习惯,自主筛选出工作环境中所使用到的英语语言应用能力,有意识的自我培养;(3)在于他人的交谈中,学会使用语言。语言的使用过程是交流的动态过程,不可避免的要与人交流,这样就创造了一个语言的使用环境,学生应体会语言使用的重要性;(4)学生的广泛学习。教学活动的时间是有限的,但是教学活动的指导意义是无限的,积极合理的引导学生,在课外广泛收集工作相关的英语语言是十分必要的。

四结论

相关文章
相关期刊