时间:2022-04-17 16:12:41
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇土钉支护技术论文范例。如需获取更多原创内容,可随时联系我们的客服老师。
关键词:土钉支护;设计;施工;现场监测
1前言
深基坑支护设计与施工是目前城市高层建筑施工的重点和难点,有不少建筑工程由于深基坑支护的失误,导致重大经济损失并延误工期。因此,在经济合理的前提下,确保深基坑支护工程的安全可靠,已成为当前城市建设中的一项重要课题。
土钉墙支护造价便宜,工期短,在10m左右的深基坑中大量的应用。某饭店深基坑采用土钉墙支护,通过设计、施工的控制以及在正常使用和雨季中的监控、处理,确保了基坑的安全。
2工程概况
某饭店总建筑面积6.1万m2(见图1),钢筋混凝土框架抗震墙结构,主楼16层,设有二层地下室,基础东西长258m,南北宽51m,筏板基础,基底标高-6.400m/-8.300m/-11.660m。地面标高为-0.350m~-0.790m,基坑开挖深度为6.030m~10.950m。
根据地质勘探报告揭示场地内基坑支护影响范围内岩土层主要为①填土层1.3~2.6m;②粘质粉土0~2.5m;③砂质粉土1.6~5m;④粉质粘土0.3~6.3m;⑤粉质粘土、粘质粉土、砂质粉土、粉砂4.8~11.7m。
场区内实测三层地下水,第一层上层滞水水位埋深0.80~3.00m,第二层潜水水位埋深5.80~8.50m,第三层潜水水位埋深25.40m。
基坑北侧临城市主干道,基坑南侧为住宅小区(6F),东侧为学校(3F)。
3基坑支护设计方案
根据现场实际情况,综合考虑安全、经济、场地条件、周边环境及施工工期等因素,采用土钉支护支护方案(见图2)。地质勘探报告揭示场地地下水位较高,实际开挖中自然地面下1.0m左右见水。
3.1基坑降水
考虑到保证地下室干燥施工作业,采用大口径管井抽水的降水方案,降水井布置在离开挖线1.0m处。基坑最深处底面标高为-11.66m,考虑将地下水降至基底下1.0m以下。沿基坑四周布管井83口,井距8.0m左右,在基坑内部局部集水坑处布置渗井。
降水井深度约11~16m;降水井孔径为φ600,全孔下入水泥砾石(砂)滤水管,管底封死,管外填滤料。滤料的规格2~4mm,滤料填至孔口以下2m,上部回填粘土封至孔口。
3.2土钉支护
出于地下结构施工操作空间的需要,基坑侧壁与地下结构外墙之间的肥槽为0.8m(见图3)。
Ⅰ区土钉墙高度6m,坡度1:0.2,布置4排土钉,采用Ф16HRB335钢筋,水平间距为1.5m,土钉长3m~6m,孔径110mm,排距1.5m。
Ⅱ区土钉墙高度11.66m,坡度1:0.3,布置7排土钉,采用Ф20HRB335钢筋,水平间距为1.5m,土钉长5m~9m,孔径110mm,排距1.5m。其中第二排采用7-Φ5预应力锚杆,长度14m。
土钉墙边坡面层挂Φ6.5@250×250钢筋网和1Ф16@1500横向压筋。
4土钉支护施工
工艺流程如下:基坑降水施工土方开挖至土钉标高下50cm土钉成孔杆体支放注浆坡面修正铺设钢筋网喷射混凝土重复工序至基坑底基底排水沟,基底施工。
土钉墙施工随土方开挖进行,基坑边坡原则上分段分层开挖,采用“中心岛”开挖方式,即先沿基坑边线开挖出10m宽条形护坡作业面。
土方开挖至土钉设计标高下0.5m后,采用机械成孔,孔径110mm,并对孔深、孔径、倾角进行控制。成孔后及时插放钢筋,并注浆。土钉杆体采用水灰比为0.5,P.O32.5普通硅酸盐水泥浆注浆,在一次注浆完成2.0h内进行二次补浆,并将孔口封堵。
喷射砼施工采用分段进行,同一分段内喷射顺序按照自下而上施工。面层喷射100mm厚C20细石混凝土,混凝土配合比为水泥:砂:石=1:2:2。
5施工监测
基坑支护工程监测内容为:土钉墙顶部水平位移观测;基坑周边沉降观测;地下水位监测。
5.1地下水位监测
5月10日项目开工,到6月22日降水井施工完毕连续抽水后,水位基本维持在8m左右,不能满足施工的要求。经过分析,增加Ⅱ区水泵数量、调整水泵抽水深度后并昼夜抽水,使水位下降到开挖面1.0m以下。
5.2基坑位移监测
土方开挖前测定基坑坡顶水平位移、沉降位移初始值;坡顶水平位移、沉降监测点沿基坑坡顶边线设置,间距约30m;土方开挖过程中,每日监测一次。沉降观测的基准点设置在基坑开挖影响范围之外市政道路上。
水平位移的观测采用视准线法,以南侧基坑水平位移监测为例(见图4),在要进行位移观察的基坑槽壁上设一条视准线,并在该视准线两端基坑影响范围之外设置两个工作基点A、B,分别作为主站点及后视点,然后沿着该视准线在槽壁上分设若干观测点,直接在读数尺读出测点的位移。
开挖到设计深度,通过对水平位移监测数据分析,Ⅰ区6m深的基坑坡顶最大水平位移10mm,基坑顶部的侧向位移与开挖深度之比1.7‰,Ⅱ区11m深的基坑最大水平位移接近30mm,基坑顶部的侧向位移与开挖深度之比小于3‰,满足设计提出的监测值控制标准要求坡顶位移的警戒值30mm。以南侧基坑水平位移监测为例,变形发展见正常位移变形曲线(图5)。
6雨季中出现的危机情况和处理措施
7~8月北京地区进入雨季,夏季雨水天气给施工带来了不便和影响,随着几场暴雨的来临,危及边坡支护
安全的险情不断出现。
6.1危机情况
基坑边坡锚钉和面层喷射混凝土已施工完,在坑壁局部出现了出水点和悬挂水。基坑东侧边坡坑壁出水点水量逐步加大并迅速形成涌水和涌砂现象,东侧1~A轴到1~E轴土体局部塌方,紧临基坑5m的艺术学校院内侧出现裂缝。
南侧临住宅小区基坑支护变形超过警戒值,地面最大裂缝65mm(图6),实测南侧12#、13#观测点水平位移75mm,最大沉降位移170mm。水平位移变形发展见雨季位移变形曲线(图5)。
基坑西、北两侧场地条件较好,全部进行了硬化处理。从观测数据分析,开挖到设计深度,基坑坡顶水平位移在雨季中变形稳定。
6.2危机处理
对于坑壁局部渗水,在基槽四壁增加泄水孔,孔深0.6m,高度距槽底0.8m,间距2m。在护壁中插入周边带孔眼的包网塑料排水管,把局部渗水通过暗埋在土钉坡面内的塑料排水管引入基坑周边排水沟及集水坑中,利用水泵及时抽排,加快边坡粉土层排水固结。
基坑东侧1~A轴到1~E轴采取分级支护,首先把高2.5m,宽4.0m的土卸除,在-7.0m位置增加一排7-Φ5预应力锚杆,长度16m。
基坑南侧12#、13#观测点变形最大的位置延长到临近观测点,即11#~14#观测点之间近100m范围内边坡角堆土卸荷,堆土3.0m高,3.0m宽。在基坑南侧-3.0m位置增加一排7-Φ5预应力锚杆,长度16m。
按上述措施进行施工和危机加固处理后,对整个基坑及邻近建筑物的位移进行了跟踪监测,各观测点均处于稳定状态。同时对基坑开挖后,地面裂缝的开展情况进行了跟踪监测,各观测点的裂缝均处于稳定状态。
6.3原因分析
6.3.1经过现场复查,基坑东侧艺术学校院内离基坑水平距离6.5m,埋深3.5m,沿基坑分布两条污水管道,从南往北走向,将土体在垂直方向切成两段。院内雨水排入污水管道,污水管道不畅通,雨水渗入土体,致使东侧1~A轴到1~E轴基坑失稳,土体下滑。对本工程基坑周围地下管线埋设情况掌握不准确,场外来水影响了基坑的稳定。
6.3.2基坑南侧临住宅小区绿化带,坡顶距现状围墙2.0m。实测场地高差:场内比场外低0.5m。雨水渗入土体,基坑深度范围内的粉细砂地层,加上中间粉质粘土隔水层,影响半径小和渗透系数小,降水难度大,影响了基坑的稳定。
6.3.3基坑西、北两侧场地条件较好,全部进行了硬化处理。通过对水平位移监测数据分析,开挖到设计深度,基坑坡顶水平位移在10mm以内,变形稳定。说明水源远近是影响基坑稳定的主要因素。地表水渗入土体造成坡体土层的力学性能指标严重下降和坡体水压力增加。
7结论
7.1实践证明[2]:土钉墙支护结构对水的作用特别敏感。土的含水量的增加不但增大土的自重,更为主要的是会降低土的抗剪强度和土钉与土体之间的界面粘结强度。后者是土钉能够起到加固和锚固作用的基础。
7.2基坑施工监测和动态设计对土钉墙支护结构非常重要。本工程南侧基坑水平位移在雨季发生较大变化后,根据实际情况及时对设计作出必要的修改,取得了很好的效果,避免了倒塌事故。
参考文献:
关键词:基坑支护;复合土钉;安全监测;经济技术分析
随着城市建设的不断发展,城市用地日趋紧张,充分开发和利用地下空间是解决问题的重要方向之一。其中基坑工程就是一个利用地下空间的大分支,目前深基坑支护的方法比较多,而土钉墙支护是其中之一。但是纯土钉墙不适用于松软土层也不宜用于淤泥质土或饱和软土中,这主要是由于软弱土层的抗剪抗拉强度较低,且成孔困难,不能为土钉提供有效的抗拔力。为了解决这些问题,扩大土钉支护应用的范围,复合土钉支护应运而生。
1 花式锚管复合土钉墙支护的优点
2 工程实例
2.1 工程地质条件
2.3 方案选择
在反复研究该工程的地质、水文条件、环境因素的基础上,在确保基坑及周边建筑物的稳定性、安全性的前提下确定该基坑采取土钉+花管+放坡复合支护。
3 基坑支护方案设计
3.1 土钉杆体的选择
3.2 土钉间距的确定
根据本工程的勘察报告,在基坑开挖土层中以粉质粘土和粉土为主。综合考虑,决定采取土钉的水平间距为相对较小值,故取土钉水平间距SH=1.5m。土由于中间采取花管代替土钉,因此顶层土钉垂直间距与水平间距相同即取1.5m,顶层以下应适当加大尺寸故取1.6m。
3.3 土钉长度确定
3.4 土钉与水平面夹角的确定
考虑到本基坑的土层条件,决定土钉的入射角度为α=10°
3.5 锚固体直径的确定
本工程采用钻孔注浆型土钉方案,钻孔直径一般为100~200mm,综合考虑各种因素及经验,决定选为钻孔直径d0=110mm。
4 本工程中花式锚管的施工
4.1 花管构造
4.2 花管注浆施工
花管注浆是将注浆管通过钻孔入地层,分段注浆,使浆液在压力条件下,均匀地进入地层,以达到浆液在地层中分段可控、均匀扩散的目的。注浆时设置注浆外管,注浆外管将永久留在土体中。注浆外管每隔一定间距预留出浆孔,在出浆孔处加截止阀,注浆时,将带封堵装置的注浆内管置入注浆外管内,形成上图所示的倒刺。
4.3 钢筋混凝土面层施工
5 施工监测与结果
在整个基坑施工过程中,设置4个监测基准点,均设置在基坑边线35m以外;基坑坡顶位移监测点沿基坑上口线布置,每隔20m布置一个;基坑底沿开挖底线每隔20m布置一个变形观测点以观测坑底变形。通过实测结果表明坡顶水平位移和垂直位移及基坑周围地表沉降均没有超出允许的范围。
6 结论
土钉+花管+放坡联合使用,使土钉墙的工作性能发生了很大变化,对地基承载力的要求较低,大大减低了结构地基处理的费用。特别是在城区狭窄地带,还可节省现场施工场地,减少基坑放坡开挖的土方量,与传统的支护方式相比造价较低,施工简便,易于掌握,且缩减工期,是一种很好的基坑支护形式。
参考文献:
[1] 钟昌云.土钉墙技术及其发展前景.重庆工业高等专科学校学报,2005.
关键词:深基坑,支护,设计,施工
0.前言
深基坑支护设计与施工是目前城市高层建筑施工的重点,不少建筑工程由于深基坑支护的失误,导致重大经济损失并延误工期。因此,在经济合理的前提下,确保深基坑支护工程的安全可靠是高层施工中的一项重要课题。
土钉墙支护造价经济,工期短,在10m左右的深基坑中大量的应用。集团公司综合楼深基坑采用部分土钉墙支护,通过设计、施工以及在正常使用和雨季中的监控、处理,确保了基坑的安全。
1.工程概况
综合楼总建筑面积9.5万m2,钢筋混凝土框架抗震墙结构,主楼21层,设有二层地下室,基础东西长99m,南北宽87m,筏基础,基底标高-8.300m。地面标高为-0.60m,基坑开挖深度为9.0m。
根据地质勘探报告揭示场地内基坑支护影响范围内岩土层主要为①填土层0.5~2.5m;②粉土7.3~9.5m;③粘土0.3~2.75m;④粉细沙22.4~25.5m;⑤粉土6.5~11.5m;⑥粘土2.3~8.7m ;⑦粉砂0.5~5.0M;⑧粘土 未钻穿,
场区内实测二层地下水,第一层上层滞水水位埋深2.5~13.00m,第二层潜水水位埋深15.00m。
基坑西、南侧临城市主干道,基坑东侧为住宅小区(6F),北侧为一营业宾馆(6F)。
2.基坑支护设计方案
根据现场实际情况,综合考虑安全、经济、场地条件、周边环境及施工工期等因素,采用土钉支护支护和护壁桩两种方案。地质勘探报告揭示场地地下水位较高,实际开挖中自然地面下3.0m左右见水。
2.1基坑降水
考虑到保证地下室干燥施工作业,采用大口径管井抽水的降水方案,降水井布置在离开挖线1.0m处。基坑最深处底面标高为-11.66m,考虑将地下水降至基底下1.0m以下。沿基坑四周布管井83口,井距8.0m左右,在基坑内部局部集水坑处布置渗井。
降水井深度约13~16m;降水井孔径为φ600,全孔下入水泥砾石(砂)滤水管,管底封死,管外填滤料。滤料的规格2~4mm,滤料填至孔口以下2m,上部回填粘土封至孔口。
2.2土钉支护
出于地下结构施工操作空间的需要,基坑侧壁与地下结构外墙之间的水槽为0.8m。
土钉墙高度11.5m,坡度1:0.3,布置7排土钉,采用Ф20HRB335钢筋,水平间距为1.5m,土钉长5m~9m,孔径110mm,排距1.5m。其中第二排采用7-Φ5预应力锚杆,长度14m。
土钉墙边坡面层挂Φ6.5@250×250钢筋网和1Ф16@1500横向压筋。
3.土钉支护施工
工艺流程如下:基坑降水施工→土方开挖至土钉标高下50cm→土钉成孔→杆体支放→注浆→坡面修正→铺设钢筋网→喷射混凝土→重复工序至基坑底→基底排水沟,基底施工。
土钉墙施工随土方开挖进行,基坑边坡原则上分段分层开挖,采用“中心岛”开挖方式,即先沿基坑边线开挖出10m宽条形护坡作业面。
土方开挖至土钉设计标高下0.5m后, 采用机械成孔,孔径110mm,并对孔深、孔径、倾角进行控制。成孔后及时插放钢筋,并注浆。土钉杆体采用水灰比为0.5,P.O32.5普通硅酸盐水泥浆注浆,在一次注浆完成2.0h内进行二次补浆,并将孔口封堵。
喷射砼施工采用分段进行,同一分段内喷射顺序按照自下而上施工。面层喷射100mm厚C20细石混凝土,混凝土配合比为水泥:砂:石=1:2:2。
4.桩锚支护方案
护坡桩布置在基坑东侧和北侧,采用机械成孔桩和锚杆支护,桩径Φ900mm,桩长17.8m,桩芯砼强度等级为C25,桩间桩为2000mm,单排。桩施工各技术参数允许偏差为:桩径偏差:±5mm,垂直度:0.5%,主筋间距:±10mm。使整排护坡桩为一体,设置一道桩顶圈梁,尺寸为500×900(h×b),砼标号为C25,桩主筋入圈梁450,为增加其抗滑动力矩,设置两道腰梁并铺设预应力锚杆。论文参考网。
桩锚支护总体施工程序为:首先进行机械成孔桩施工,接着施工桩顶圈梁,然后随着基坑挖土的同时完成腰梁和预应力钢筋的施工。
5.施工监测
坑支护工程监测内容为:土钉墙顶部水平位移观测;基坑周边沉降观测;地下水位监测
5.1地下水位监测
5月10日项目开工,到6月22日降水井施工完毕连续抽水后,水位基本维持在10m左右,能满足施工的要求。
5.2基坑位移监测
土方开挖前测定基坑坡顶水平位移、沉降位移初始值;坡顶水平位移、沉降监测点沿基坑坡顶边线设置,间距约30m;土方开挖过程中,每日监测一次。沉降观测的基准点设置在基坑开挖影响范围之外市政道路上。
水平位移的观测采用视准线法,以南侧基坑水平位移监测为例,在要进行位移观察的基坑槽壁上设一条视准线,并在该视准线两端基坑影响范围之外设置两个工作基点A、B,分别作为主站点及后视点,然后沿着该视准线在槽壁上分设若干观测点,直接在读数尺读出测点的位移。
开挖到设计深度,通过对水平位移监测数据分析, 11m深的基坑最大水平位移接近30mm,基坑顶部的侧向位移与开挖深度之比小于3‰,满足设计提出的监测值控制标准要求坡顶位移的警戒值30mm。以南侧基坑水平位移监测为例,变形发展为正常位移变形曲线。
6.雨季中出现的危机情况和处理措施
7~8月聊城地区进入雨季,夏季雨水天气给施工带来了不便和影响,随着几场暴雨的来临,危及边坡支护
安全的险情不断出现。
6.1危机情况
基坑边坡锚钉和面层喷射混凝土已施工完,在坑壁局部出现了出水点和悬挂水。基坑西侧边坡坑壁出水点水量逐步加大并有形成涌水和涌砂现象,西侧1~15轴到A~E轴土体局部变形较大,个别观测点水平位移75mm,最大沉降位移90mm。基坑东、北两侧场地条件较好,全部进行了硬化处理。从观测数据分析,开挖到设计深度,基坑坡顶水平位移在雨季中变形稳定。
6.2危机处理
对于坑壁局部渗水,在基槽四壁增加泄水孔,孔深0.6m,高度距槽底0.8m,间距2m。在护壁中插入周边带孔眼的包网塑料排水管,把局部渗水通过暗埋在土钉坡面内的塑料排水管引入基坑周边排水沟及集水坑中,利用水泵及时抽排,加快边坡粉土层排水固结。
基坑西侧1~A轴到1~E轴采取分级支护,首先把高2.5m,宽4.0m的土卸除,在-7.0m位置增加一排7-Φ5预应力锚杆,长度16m。
基坑南侧观测点变形最大的位置之间近100m范围内边坡角堆土卸荷(堆土3.0m高,3.0m宽,在基坑南侧-3.0m位置增加一排7-Φ5预应力锚杆,长度16m。
按上述措施进行施工和危机加固处理后,对整个基坑及邻近建筑物的位移进行了跟踪监测,各观测点均处于稳定状态。论文参考网。同时对基坑开挖后,地面裂缝的开展情况进行了跟踪监测,各观测点的裂缝均处于稳定状态。
6.3原因分析
6.3.1经过现场复查,基坑西侧柳园路离基坑水平距离6.5m,埋深2.5m,分布一条污水管道,从南往北走向,将土体在垂直方向切成两段。论文参考网。路内雨水排入污水管道,污水管道不畅通,雨水渗入土体,致使西侧部分基坑失稳,土体下滑。对本工程基坑周围地下管线埋设情况掌握不准确,场外来水影响了基坑的稳定。
6.3.2基坑南侧东昌路绿化带,坡顶距现状围墙2.0m。实测场地高差:场内比场外低0.5m。雨水渗入土体,基坑深度范围内的粉土地层,加上中间粘土隔水层,影响半径小和渗透系数小,降水难度大,影响了基坑的稳定。
7.结论
7.1实践证明[2]:土钉墙支护结构对水的作用特别敏感。土的含水量的增加不但增大土的自重,更为主要的是会降低土的抗剪强度和土钉与土体之间的界面粘结强度。后者是土钉能够起到加固和锚固作用的基础。
7.2基坑施工监测和动态设计对土钉墙支护结构非常重要。本工程西侧基坑水平位移在雨季发生较大变化后,根据实际情况及时对设计作出必要的修改,取得了很好的效果,避免了倒塌事故。
参考文献:
[1] 建筑基坑支护技术规程.JGJ120-99.
[2] 建筑地基基础设计规范.GBJ50007-2002.
[3] 建筑桩基技术规范.JGJ94-94.
[4] 土层锚杆设计规范.CECS22:90.
[5] 建筑边坡工程技术规范.GB50330-2002.
关键词:土钉墙;建筑工程;深基坑支护
目前,随着我国建筑工程技术的越来越完善,作为深基坑工程施工过程中的主要应用技术,基坑支护技术也取得了显著地成效,我国的基坑支护结构方式主要分为:钉墙支护、地下连续墙支护、锚杆支护、搅拌桩支护。在建筑过程中,对深基坑进行科学的设计和选择,同时采用适宜的支护技术,能够大大降低基坑深挖施工过程中对邻近结构物的影响,及降低施工过程中的风险。所以,建筑施工质量提升必须有深基坑支护技术的支持。本文根据深基坑施工特点和实际操作,对比较多的深基坑支护施工技术―土钉墙施工技术进行了深入的研究和探索。通过该技术的应用,可全面提升工程建设的整体质量。
1 土钉墙支护深基坑的作用
1、应力传递与扩散作用
当荷载增大到一定程度后,边坡表面和内部裂缝己发展到一定宽度,此时坡脚应力最大。这时下层土钉伸入到滑裂域外稳定土体中的部分仍能提供较大的抗力,土钉通过其应力传递作用,将滑裂面内部应力传递到后部的稳定土体中,并分散在较大范围的土体内,降低应力集中程度。在相同的荷载作用下,经过检验:被土钉锁加固的土体在内部的应变水平比其他素土边坡土体内的应变水平要降低了很多,这种情况带来的优势就是对开裂区域的形成与发展产生了明显的阻碍效果。
2、箍束骨架作用
土钉与同作用,土钉自身的刚度和强度以及它在土体内的分布空间所决定的,它具有制约土体变形的作用,使得复合土体构成一个整体结构。
3、坡面变形的约束作用
在坡面上设置的与土钉连成一体的钢筋混凝土面板是发挥土钉有效作用的重要组成部分。面板提供的约束取决土钉表面与土的摩阻力,当复合土体开裂扩大并连成片时,只有开裂区域后面的稳定复合土体产生摩阻力。
4、分担作用
在复合土体内,土钉有较高的抗拉、抗剪强度和抗弯强度,当土体进入塑性状态后,应力逐渐向土钉转移。当土体开裂时,土钉分担作用更为明显。土钉内产生相应的弯剪、拉剪等复合应力,于是就会导致土钉体外裹浆体碎裂、钢筋屈服的结果。
2 土钉墙施工技术在建筑工程深基坑支护中的应用
1、钻设钉孔。选用土钉成孔的方式进行基坑支护作业,其成孔工具为洛阳钻机,将其孔径设置为80毫米,深度应确保其超过土钉长度100毫米,成孔倾角为15度。每钻进1米,并进行倾角地测量,避免偏向等情况的出现。
2、土钉安装。与本工程基坑土钉墙支护设计需求相结合,进行土钉的制作,确保其长度在设计长度以上。每隔1.5米进行一组土钉的设置,选用搭焊连接的方式进行土钉连接,焊缝高度控制在6毫米,把土钉在成孔作业后设置在孔内。
3、注浆。选用孔底注浆法进行土钉墙基坑支护注浆作业,其作业流程为在孔底插入注浆管,确保管口与孔底之间距离200毫米,注浆管应同时进行注浆与拔出作业,确保注浆管底能够在浆面以下,确保注浆过程中可以顺利从孔口流出,并将止浆阀设置在孔口,选用压力注浆的方式进行施工,确保水泥浆强度为M20,注浆压力控制在1到2Mpa之间。
4、挂钢筋网并与土钉尾部焊牢。选用钢筋网进行土钉墙面施工,将其间距定为200毫米,在坡面上通过人工的方式进行绑扎钢筋的作业;搭接坡面钢筋的长度需在300毫米左右,随后顺着土钉长度方向在土钉端部两侧进行短段钢筋的焊接作业,同时在面层内将相近土钉端部通长加强筋进行连接及焊牢。
5、安装泄水管。土钉墙基坑支护的泄水管制作应选用用PVC管作为主要材料,泄水管长度必须在450毫米以上,并在管附近进行钻孔作业,孔数应控制在5到8个,随后在管外侧进行尼龙网布的包裹作业。泄水孔纵横距离定为2米,布置形状为梅花型并确保安装的牢固性。
6、复喷表层混凝土至设计厚度。选用喷射混凝土方式进行土钉墙施工,其设计强度必须在C20左右,其厚度应控制在80毫米。第一,选用干拌方式,混合料搅拌时必须遵循相应的配合比进行施工,混凝土喷射施工过程中根据实际情况,可以将水泥重量为5%喷射砼速凝剂掺加到里面。在开挖土方、修坡施工后,及时完成土钉锚固作业,结束焊接钢筋网施工后,必须及时进行喷射混凝土作业。选用分层喷射的方式,由下到上的方式进行喷射混凝土作业。第一层喷射厚度应控制在4厘米到5厘米之间,确保其不出现掉浆现象后,进行第二层混凝土再喷射作业,直至其厚度符合设计规定。
3 土钉墙施工技术的质量控制
在建筑工程中,土钉墙深基坑支护施工技术作为一个重要组成部分,在我国高层建筑中的应用依然不够成熟。今后施工单位还需要加大技术水平的提升,使高层建筑的安全性和稳定性得到有力保障。
1、护筒中心和桩中心的偏差不能超过5cm,埋深不能低于1m,泥浆的比重最好控制在1.1~1.2,孔底沉渣的厚度不能超过15cm;钢筋笼安放位置准确,钢筋连接满足规范要求;水下浇筑混凝土施工需要连续作业,保证导管埋入混凝土内深度不小于2米,速度适宜,避免堵管或钢筋笼上浮,同时桩头超灌1米。灌注桩混凝土养护完成后,按照相关规范和设计要求进行质量检测,确保质量合格。
2、土层锚杆在开挖的深基坑墙面或者尚未开挖的基坑立壁土层钻孔,在达到要求的深度后再次扩大孔的端部,一般形成柱状。实施锚杆支护技术施工,主要将钢筋、钢索或者其它类型的抗拉材料放入孔内,然后灌注浆液材料,令其和土层结合成为抗拉力强的锚杆。这样的支护技术能够让支撑体系承受很大的拉力,有利于保护其结构稳定,防止出现变形,同时还具有节省材料、人力,加快施工进度。
3、在深基坑支护完成后的施工期间,无坑壁坍塌问题出现,通过仪器对周围建筑物进行监测,无明显的变形现象出现。混凝土灌注桩和锚杆支护能够保证该工程的顺利进行,并且保障周围的建筑物的安全,因此实施深基坑支护施工方案是可行的。
4 结束语
综上所述,近年来,我国国民经济得到不断提升,不断加快的城市化步伐推动了建筑工程行业的快速发展。在建筑工程行业中,随着城市高层建筑规模的不断扩大,人们越来越重视开发利用地下空间,而深基坑施工作为建筑工程的基础性工程,它施工质量的好坏对高层结构的稳定性造成一定波动,对高层结构地下室的使用效率产生严重影响,当前,在深基坑支护施工在我国高层建筑结构中仍存在许多问题。本文主要围绕深基坑支护施工技术在高层建筑工程中的重要性,重点分析探讨了技术目前存在的不足和相关建议,希望能够给今后的高层建筑工程提供技术参考。
参考文献
[1]胡浩;王路;胡小猛;;高层建筑深基坑支护土钉墙技术应用研究[J];科技信息;2011年13期
[2]闫君;王继勤;崔剑;;土钉墙支护技术在青岛中惠商住楼深基坑中的应用[A];探矿工程(岩土钻掘工程)技术与可持续发展研讨会论文集[C];2013年
[3]兰云才;虞利军;欧阳涛坚;;软土地区深基坑支护工程实例[A];第十三届全国探矿工程(岩土钻掘工程)学术研讨会论文专辑[C];2015年
【关键词】超大深基坑工程关键施工技术研究
中图分类号:TU74 文献标识码:A 文章编号:
一、关键施工技术
1、施工顺序
本基坑工程总体施工顺序为:测放基坑线开挖地槽、桩机就位复测桩位施工支护桩、旋喷桩钻进钻孔、喷射水泥浆二次挖地槽凿钻孔桩桩头降水井施工、降水施工圈梁开挖土方、施工土钉基坑监测。
2、桩间土钉施工技术
采用中800@1200mm钻孔灌注桩+桩间中140x3.smm@:1200mm钢管土钉复合结构作为支护方案,如图3所示。钻孔灌注桩支护桩间采用中800@1200mm二重管高压旋喷桩止水,坑内采用管井降低地下水位,坑外布设一定数量观测井(回灌井)。为了增强基坑支护桩的刚度,提高整体支护体系的稳定性,要在支护桩上的顶圈梁混凝土强度达到设计要求后,才能进行下一步支护桩的钢管±钉施工。钢管土钉与桩间的连接节点构造如图4所示。土钉的施工方案采用项管工艺法,顶进的长度根据设计要求确定。待施工结束后进行抗拉试验,测承载力,并评估设计方案。如果此方案切实可行,再进行后续推广使用。
3、旋喷桩施工技术
这里以二重管喷射为例。它是一种浆、气喷射,浆液灌注搅拌混合的方法,即用二重喷射管使高压水泥浆和空气同时横向喷射,并切割地基土体,借助空气的上升力把破碎的土由地表排除:与此同时,使水泥与土达到止水及加固目的。本次设计桩径≥800mm,桩间lEEl200、1300和1500mm。旋喷桩机在施工中的提升速度按设计要求严格控制在0.1m/min,钻机垂直度偏差不得超过0.3%,枕木应垫实,以保证钻机的平稳与垂直。旋喷桩选用普通硅酸盐32.5级水泥,旋喷桩主要是止水作用,水泥进场后要注意防潮和防雨。设计要求水泥用量不少于40%,其水灰比为l:1。确保单桩喷浆量是桩体质量的基本保证。根据喷射工
艺,设计要求喷浆压力20MPa,提升速度8~10crn/min。浆液的可喷性与其稠度有较大关系,浆液稠度过大,可喷性差,往往会使喷嘴及输浆管堵塞,同时易磨损高压泵,使喷射难以进行。本工程水泥浆的水灰比为1.0。施工前3根桩必须在监理监管下进行,以确定实
际水泥投放量、浆液水灰比、浆液输送时间、桩长及垂直度控制要求,确保旋喷桩止水效果,保证桩体质量。
4、挂网喷浆放坡支护技术
(1)施工流程
放边坡线修整坡面钢筋土钉、分布筋施工喷射混凝土。根据设计要求,边坡为两级放坡,中间设2m宽的马道(见图5)。
(2)施工工艺、材料、技术参数
锤击土钉采用中1 8@l 000mn饵l 000mm,L=l000mm,钢筋(平面梅花形布置)网片为中6@200ram×200mm;土钉墙面层厚80mm,分两次喷射;细石混凝土强度等级为C20,3天强度不低于10MPa,碎石最大粒径应小于l0mm,喷射压力为0.3~0.5MPa;喷射作业分段进行,同一段顺序自下而上。
5、高压线杆处支护桩顶圈梁施工技术
一期工程的基坑支护桩施工,在南侧围墙内约1.8m及围墙外侧2.3m有两根高压线杆,~根为铁塔式,另一根为水泥杆,上挂l0kV的6根高压线,且高压线距钻井架最高处约lm。根据基坑支护的设计要求,通过南侧圈梁的施工,将高压线杆的固定转换至圈梁上,用圈梁来固定高压线杆,并加强电线杆和变电箱的稳定性。详见图6、图7。
为了确保南侧支护桩施工过程中的安全,采取了以下措施:
(1)将支护桩施工场地约7m宽的土取走1.5m深,使钻井机架整体下降1.5m,以保证钻井机架与高压线有足够的安全距离。
(2)在围墙外侧,沿高压线杆靠近施工面这一侧,分别搭设两座毛竹防护架,毛竹防护架的平面形状为2.3m×1.7m的矩形,四角设立杆,并设横杆扫地杆,间距为1.8m。四面均设置斜撑,靠近围墙一侧用12号铅丝将毛竹防护架与围墙拉结绑扎,确保毛竹防护架
的整体刚度和稳定性,搭设高度略比机架高l00mm,靠近机架增设小横杆,从而确保支护桩在电线杆一侧施工时的安全可靠。
6、土方开挖施工技术
基坑开挖中充分考虑时空效应规则,遵循分区、分块、分层、对称、平衡、合理卸载的原则。本工程将基坑开挖平面分成4个区域,如图8所示。先进行I区范围内的土方开挖,沿整个西侧支护桩的位置整体由西往东进行,水平方向开挖宽度约30m左右,含放坡尺寸。垂直方向从自然地坪开挖至各层土钉墙位置往下lm左右,最后挖至比设计基坑底面标高高出lm左右,以防止扰动基层。在开挖的同时,南侧预留放坡,按照设计要求配合在东侧、北侧做
好二级放坡的开挖施工。一级坡比1:1;马道宽2m,位于一5.3m处;二级坡比1:1.2。开挖深度较深时,采用阶梯式的开挖方法进行开挖。II区土方开挖时,按照设计要求配合在北侧、东侧做好二级放坡的开挖施工,II区地下室负2层项板施工完成后才能进行III区的土方开挖;III区的地下室负2层顶板施工完成后,才能进行Ⅳ区的土方开挖。
7、降水施工技术
(1)降水井设计
根据基坑开挖深度,设计井深为20m,井口高于自然地面0.5m;井管采用钢筋混凝土预制管,外径360mm,内径300mm,端部预埋钢圈,井管之间焊接连接。滤管,即在井管预留滤水孔的基础上外包两层60目滤网,并绑扎牢固。滤料含泥量小于5%,且粒径1~3nun,从孔口投入井管周边。
(2)降水运行
施工完一口井即投入试运行一口,试运行抽水时间控制在3天,并做好出水质量和出水量检查。正式降水运行14天后进行土方开挖。
(3)降水井封井
随着工程的进展,土方开挖前施工的降水井逐步退出使用。为了确保降水井在封堵后不渗漏,降水井的封堵工作尤为重要。降水井的封堵必须在后浇带施工完毕,根据设计及规范要求,征得设计同意后,逐一进行。
二、深基坑工程监测
1、基坑工程除进行安全可靠的围护体系设计、施工外,尚应进行现场监测,做到信息化施工,基坑围护体系随着开挖深度增加必然会产生侧向变位,关键是侧向变位的发展趋势与控制。通常围护体系的破坏是有预兆的,因此进行严密的基坑监测是非常重要的,通过专业基坑监测单位的监测情况可及时了解围护体系的受力状况,可以达到及时校正、修正施工方案和指导现场施工的目的,使基坑处于安全可控状态。
2、该工程基坑的监测,由专业人员对深层土移、地下水位、围护桩、立柱桩的竖向位移、支撑杆件的轴力进行严密监测,土方开挖至基础施工阶段以每天1 至2 次的监测频率测试,除对以上基坑本身监测外还应对周围建筑物(基坑深度的2 倍范围)及地下管线进行监测并及时将观测资料反馈给建设、施工、监理、设计等单位以便及时分析处理。通过日常观测及专业单位的监测来确保基坑施工及周边环境的安全。以免给人民群众的生命、财产造成损失。
总结
我国的深基坑工程施工难度在不断的增加,这对深基坑的施工技术提出更高的要求,一个安全合理的施工技术是既要确保基础安全,顺利地施工,又要考虑方便施工,经济合理。在具体分析工程地质水文,工程特点状况下,对施工技术提出合理方案,针对不同土质的工程性质及具体工程实践,这样才可以做好建筑深基坑施工。
【参考文献】
[1]王玉芹,高秀丽. 论述建筑工程中基坑开挖与支护施工技术[J].科技与企业, 2012,(02)
[2]邹腾辉 超大深基坑单边采用六级放坡挖土的施工实践[期刊论文]-建筑施工2010,32(3)
[3]王文光 广州地铁三号线客村站深基坑施工技术[期刊论文]-广州建筑2004(z1)
[4]李万玉.吴立基坑放坡安全开挖的设计与施工[期刊论文]-安全与环境工程2004,11(4)
关键词:深基坑工程;工程支护;施工技术;复合土钉支护
随着现代化经济的飞快发展,城市建设的规模也越来越大,尤其高层和超高层建筑不断增加。为了解决城市用地有限和人口密集的矛盾,也为了满足规划和建筑物本身的功能与结构要求,开发地下空间已成为重要课题,高层或超高层建筑的基础设计越来越深。与此同时,深基础施工技术也跟着不断发展。基坑支护结构工程的施工技术措施,是施工企业在施工组织设计中的重要内容之一。科学、合理地组织基坑支护工程施工,是施工企业提高施工功效,保证工程质量及施工进度的重要举措。本论文作者以某工程为例介绍深基坑支护工程施工技术在工程实际中的应用,并总结了施工过程中的切身体会。
1概述
复合土钉墙是20 世纪90 年代研究开发成功的一项深基坑支护新技术。它是由普通土钉墙与一种或若干种单项轻型支护技术(如预应力锚杆、竖向钢管、微型桩等)或截水技术(深层搅拌桩、旋喷桩等)有机组合成的支护截水体系,分为加强型土钉墙,截水型土钉墙,截水加强型土钉墙三大类。复合土钉墙具有支护能力强,适用范围广,可作超前支护,并兼备支护、截水等性能,是一项技术先进,施工简便,经济合理,综合性能突出的深基坑支护新技术。
1.1土钉支护的原理
土钉支护是以土钉作为主要受力构件的边坡支护技术,它通过浆体与土体外界面上的粘结力,沿土钉全长为基坑边壁土体提供连续支护抗力,不仅将欲滑移土体的侧向压力传递给稳定土体,同时也对滑移土体进行内加固,从而给土体以约束并使其稳定,最大限度地利用边壁土体的自承能力。
1.2支护施工技术指标
复合土钉墙目前尚无技术标准,其主要组成要素普通土钉墙、预应力锚杆、深层搅拌桩、旋喷桩等应符合国家行业标准《建筑基坑支护技术规程》JGJ120-99 等技术标准的要求。另外,微型桩一般桩径Φ250~Φ300,间距0.5~2.0m,骨架可采用钢筋笼或型钢,端头伸入坑底以下2.0~4.0m。竖向钢管一般Φ48~Φ60,壁厚3~5mm。复合土钉墙在水位以下和软土中,采用Φ48、厚3.5mm 钢花管土钉,直接用机械打入土中,并从管中高压注浆压入土体。
1.3支护施工技术适用范围
复合土钉墙可用于回填土、淤泥质土、粘性土、砂土、粉土等常见土层;可在不降水条件下采用,解决了在城市建设中因环境限制不宜人工降水的难题;在无环境限制时,可垂直开挖与支护,易于在场地狭小的条件下方便施工;在工程规模上,深度20m 以内的深基坑均可根据具体条件,灵活、合理地推广使用。
1.4土钉支护工艺流程
土钉支护工艺流程如图1所示。
图1土钉支护工艺流程图
2深基坑工程支护施工技术的应用
2.1工程概况
某新建综合楼距邻近建筑物外墙1.5m。本工程南北长100m,东西宽30m,地下二层,基底标高为-15.0m,施工现场场地狭小。
根据岩土工程勘察报告提供的地质资料,场区地质情况大致为:第①层为粘质粉土和粉质粘土素填土;第②层为粉质粘土;第③层为砂质粉土、粘质粉土;第④层为粉细砂;第⑤层为粘质粉土、砂质粉土;第⑥层为粉细砂;第⑦层为圆砾层;第⑧层为粘质粉土;第⑨层为卵石层;持力层为第⑥、⑦层。水文情况是:上层滞水埋深为2.3m~5.2m,潜水埋深为19.6m。本文着重介绍该工程深基坑垂直外模复合土钉支护的施工方法。
2.2支护方案选择
通过对该工程实际情况的考查,发现现场狭小,地下管线复杂,对基坑开挖支护限制较大,主要有三方面的制约:
一是施工现场范围内无放坡的可能,且无大型施工设备的工作空间,外墙只能采取单侧支模施工,要求边坡必须垂直及平整,能够兼作外墙外模板;
二是周围建筑物的地下电力、电信等管线复杂、重要,边坡位移变形不能超过允许的限值,防止直接或单位破坏地下管线;
三是基坑西侧紧邻城市主干道,东侧紧靠施工道路,人员密集,施工环保要求高,基础施工处于雨季,支护方案必须安全可靠,并减少扰民。
结合周边工程采取的支护方案,鉴于《建筑基坑支护技术规范》JCJ120-99第3.3.1条规定土钉支护基坑深度要求“不宜超过12m”,且工程条件所限,经论证提出采用15m深“垂直外模微型桩―――土钉支护”施工方案对深基坑进行护坡施工(见图2)。
图2 垂直外模复合微型桩――土钉支护示意图
“垂直外模复合微型桩――土钉支护”是一种符合现场条件且具有安全稳定性好、节省投资的方案,由土钉、锚杆、钢管微型桩、喷射混凝土面层及预应力共同形成的一种新的支护体系。微型桩―土钉支护就是在坡面中增设钢管微型桩,微型钢管桩在计算中不作考虑,仅作为安全储备的作用,其作用是提高护坡面的表面刚度,使整个边坡形成一个整体,它对控制坡面位移、地面沉降、防止土方开挖过程中局部出现坍塌以及控制每层开挖到支护前这段时期内的位移、抗倾覆方面都有重要的作用,对周围建筑物的保护和使护坡面作用结构的外模提供可靠的保证。
由于基坑东侧是现场唯一的施工道路,材料码放及重车通行,局部增加锚杆的作用是考虑动荷载及塔吊对基坑的影响,将边坡位移控制在设计要求之内。监测在基坑施工中是非常重要的,为此我们在基坑工程施工过程中形成了一套完整的监测体系,针对本工程,在基坑的周围设有多组水平位移观察点,来监测开挖对周围环境的影响,根据监测的数据可判定基坑的安全稳定状态,进而确定是否需要进行反馈设计,让基坑的整个施工过程都在受控状态。
2.3垂直外模复合土钉支护设计与施工
2.3.1土钉工程
垂直外模复合土钉支护中的土钉布置,土钉在施工的注浆流程中,要采用加压注浆,使土钉周围土体中的空隙充满水泥浆体,占满空隙,挤走滞水,改善土性,对土体有加固作用。喷射混凝土面层作用主要是限制土钉之间土体的变形,将土体侧向压力有效地传递给土钉,并调整相邻土钉的受力状态,同时将土中的地下水很好地封堵在土中,不至于造成地下水的流失及影响基坑其它工序的施工。土钉设计原则为:在先期土钉施工经验的基础上大致确定土钉的长度,采用理正深基坑支护结构设计软件FSPW-4进行复核,据此对初始值进行修正。考虑施工过程中施工车辆的行走问题及施工用材料的少量堆载情况,选取地面荷载为20kN/m2。土钉主要采用φ20mm的钢筋,置于φ80mm钻孔中,采用强度等级M10的水泥浆或者水泥砂浆注入孔中,水泥浆水灰比为0.5,水泥砂浆配合比为1:1.2。
深基坑支护是一个综合性岩土工程问题,既涉及土力学中典型的强度与稳定问题,又包含了变形问题,同时还涉及到土与支护结构相互作用问题,这些问题又受到工程现场的地质、水文、环境、荷载、天气等诸多因素的影响。因此,本工程采用动态设计与信息施工技术,由施工过程中的监测工序来掌握边坡的安全稳定状态,当通过监测手段边坡的位移变化速率超过警戒值时,分析基坑边壁位移时程曲线,确定其对基坑边壁稳定的影响程度,以便采用限制边壁位移的应急预案。针对本工程的措施有:对已施工过的土层,根据情况追加土钉,并且要加长;对于下面的土层,土钉要缩小间距,钉体要加长,增加注浆压力,并且施以预应力锚杆加以约束。
2.3.2垂直外模面层喷射混凝土
土钉支护的外模面层的作用主要是限制土钉之间土体的变形,将土体侧向压力有效地传递给土钉,并调整相邻土钉的受力状态,同时作为外墙侧模板。根据全长注浆土钉的受力分析,锚头和面层受力较小,面层厚度不必太厚。由于土钉支护面层作为结构外墙的外模板,须保持较高的表面精度,同时预留边坡位移量以保证主体结构尺寸,根据基坑不同位置及不同深度设置了不同的预留位移。四周边坡预留位移3cm;基底以上5m范围内预留位移减少1cm,距阴角5m范围内预留位移减少1cm。
支护的面层参数为:单层钢筋网为φ6.5@200×200;加强钢筋为φ18@1500×1500(@1200×1200);喷射混凝土厚度为10cm,强度C20;喷射混凝土配比为:水泥:水:砂:石=1:0.6:2:2;可视具体情况添加速凝剂3%~5%;水泥为P.O32.5,石头为碎石,砂为中砂。
2.3.3微型钢管桩及帽梁
微型钢管桩在计算中不作考虑,仅作为安全储备的作用,主要是提高护坡面的表面刚度,它对控制坡面位移、地面沉降、防止土方开挖过程中局部出现坍塌以及控制每层开挖到支护前这段时间内的位移、抗倾覆方面都有重要的作用。帽梁主要使整个边坡及微型钢管桩形成一个整体。
在基坑东、西侧设计微型钢管桩,其参数为:孔径130mm;桩间距1.5m;桩长约15m,桩底标高为-16.0m(地面去掉1m杂填土后施工);中心线位置在面层外侧175mm。钢管直径为φ70(δ=3.8,东侧),φ108(δ=3.5,西侧);采用P.O32.5普通硅酸盐水泥拌制水泥浆,水灰比为0.60;管底注浆,注浆完成后持续1min后停止灌浆,视浆面下降情况随时补浆。微型钢管钻孔采用套管钻机成孔,成孔后采用管底注浆法注浆至-5.0m左右,然后拔出套管,下放钢管,注浆至管顶。
在基坑周围设置帽梁一道,增强面层的整体稳定性,起到协调基坑边坡变形的作用。由于帽梁内侧与土钉的外模面层平齐,因此帽梁内侧的平整度尤为重要。帽梁参数确定为:宽×高:400mm×400mm;主筋8φ18,箍筋φ8@200;混凝土强度等级C20。微型钢管桩进入帽梁300mm,面层压筋与帽梁主筋通过预埋钢筋连接。
2.3.4锚杆
基坑东部设计锚杆一道,以满足基坑东部交通运输的需要并消除塔吊基础对基坑边坡的影响,控制基坑边坡变形在设计范围以内。
锚杆参数:锚杆直径为100mm,标高为-4.5m;水平间距1.5m;自由段5m;锚固段14m;倾角为5°;钢绞线为2φ15.24;腰梁为2120a;锁定荷载150kN。锚杆用水泥浆液的抗压强度M15,水灰比为0.46,水泥为P.O32.5普通硅酸盐水泥。注浆压力不小于0.5MPa。注浆完成后持续1min后停止灌浆,视浆面下降情况及时补浆。
2.4降水工程
由于上层滞水的存在会对基坑支护产生较大的影响,因此基坑开挖前应及时进行降水。综合性价考虑,设计采用自渗井降水。在基坑四周设置四口观测井进行水位观测。自渗井是通过钻孔在原位土体中形成过水通道,将上层滞水通过该通道引渗至下层透水层(圆砾层)中。
自渗井中心线距基坑上口1.5m,直径为400mm;深16m(进入圆砾层1m);间距6m;滤料为碎石屑。观测井直径为150mm;深18m;井管为φ50钢管(下部1.5m为花管);滤料为碎石屑。钻孔按照设计方案钻至设计标高,进入圆砾层,以便形成过水通道,成孔后立即填滤料,该层为中砂填充,在钻进至设计标高后可能出现局部坍塌的现象,需要立即填放滤料。
若基坑壁存在残留水,采用导流管引出。
3深基坑工程支护施工技术的监测及效果
3.1基坑变形监测
本工程在基坑开挖阶段要进行持续的基坑变形监测,采用视准线法测定基坑水平位移量。在基坑边沿纵横方向上埋设控制点和位移观测点,控制点至少埋设3个,控制点之间的距离及观测点与相邻的控制点间的距离要大于30m,点位的标志要牢固、明显。每次观测前,先对所使用的控制点进行复核检查,以防止其自身变化。观测选在成像清晰、稳定时进行,以保证测量的精度和准确性。及时整理分析观测数据,绘制基坑位移曲线图,以便直观地反映基坑变形情况。
3.2施工效果及监测结果
垂直复合土钉支护方案在工程实际的施工生产中完全达到了预期的效果。基坑边坡安全在经过雨季得到很好的检验,最大水平位移控制在1‰~2‰左右,小于预期的3‰~4‰,平整度完全满足作施工外模的技术要求。
根据基坑边坡位移监测结果,在位移点折线图的基础上分别采用线形法、对数法、多项式法、移动平均法对数据进行整理,进行回归分析,并分别与实际变形比较。由于位移数据为时间序列资料,因此平滑预测技术可以将数据采集过程中的随机因素加以过滤,消除波动,取得边坡变形的主要趋势。
数据分析结果:水平位移因开挖顺序及支扩结构的不同有明显差异,说明边坡的水平位移与土体的应力释放过程及受力结构有很大关系;边坡位移随基坑开挖深度增加逐步加大,属于土体内应力释放过程;开挖至基底后一定时期内(本工程为15d左右)水平位移依然增加,属于土体内应力重新分配;基坑边坡位移稳定在一个定值附近,定值取决于护坡方案的可靠程度。
4结语
关键词:深基坑;土钉墙喷锚;支护;监控测量
中图分类号:TU74 文献标识码:A
1 工程概况
该项目拟建建筑物为中医院病房楼、门诊综合楼及地下车库,工程四周为耕地,其南侧距离最近的围墙大于20.0 m,大于2倍的基坑深度范围内无建筑物和管线,距市政管网较远,对周围建筑及其管网无影响。
2 水文地质条件
根据地质勘察报告显示,场地开挖的岩土上部表层为少量耕土,其下为第四系更新世冲洪积土层,根据其岩性及物理力学性质,自上而下主要分为6层,分别为①含少量姜石的可塑~硬塑状新近沉积粉质粘土层;②粉土;③细砂,主要矿物成分以石英、长石为主、含少量云母;④粉土;⑤含小姜石硬塑状粉质粘土层;⑥含小姜石硬塑状粉质粘土层。施工区域内在勘探深度范围内未见地下水因此不用考虑降水施工。
3 基坑支护方案
根据现场条件和结构设计文件要求,基坑实际深度为8.4 m,病房楼因地基处理需要,设置了0.2 m 厚褥垫层,故病房楼处基坑深为8.6 m。该深度范围内土的工程特性指标如表1所示。
表1土的工程特性指标
土层名称 γ(KN/m3) c(kPa) Ф(°)
①新近沉积粉质粘土 19.9 23.9 15.6
②粉土 19.7 7.1 19.0
该工程为深基坑支护工程,基坑安全等级为二级,基坑周边允许超载为15kPa,为防止边坡塌方,保证安全作业,特对基坑边坡进行支护,在经济合理的基础上,采用土钉墙喷锚支护方案进行支护。
基坑支护设计参数为土钉横向间距与竖向间距均为1.5m,倾角为15°,孔径110mm,土钉钢筋为C20HRB400,土钉共设4排,长度分别为7.0,6.5,5.5,6.0m,喷锚网选用A8@150×150钢筋网。病房楼段、门诊楼及地下车库段基坑支护设计参数见表2。
表2 病房楼段、门诊楼及地下车库段基坑支护参数一览表
土钉道数 水平
间距
(m) 竖向
间距
(m) 入射角
(deg) 孔深(m) 孔径
(mm) 钢筋
(Ⅲ级) 钢筋长度(m) 钢筋直径(mm)
病房楼段 门诊楼及地下车库段 病房
楼段 门诊楼及地下车库段
1 1.5 1.5 15 8.7 8.7 110 HRB400 8.5 8.5 20
2 1.5 1.5 15 7.9 7.7 110 HRB400 7.7 7.5 20
3 1.5 1.5 15 8.0 7.9 110 HRB400 7.8 7.7 20
4 1.5 1.5 15 8.2 8.2 110 HRB400 8.0 8.0 20
5 1.5 1.5 15 9.7 10.7 110 HRB400 9.5 10.5 20
4 施工工艺流程
土钉主筋、网片制作钻孔位置测量及布设成孔土钉主筋就位绑扎、加固钢筋网第一次压浆二次补浆喷射混凝土面层覆盖养护
5 施工技术要求
1) 开挖修坡:基坑作业用挖掘机,开挖后人工对边坡进行修整,清除坡面虚土,保证基坑坡面平整度,并严格按设计坡度放坡。
按施工方案要求,分层分段开挖修坡,开挖深度必须符合设计要求,每段开挖长度不大于50 m,每层开挖深度不得大于2 m,具体每层开挖深度,根据各剖面土每层锚杆孔标高而定,严禁超挖。基坑一次开挖深度,需土方施工队伍与护坡施工配合,视边坡允许变形范围、自稳时间和施工流程相互衔接情况而定,地质条件好、含水量小、施工速度快,深度可大些,反之要小些。
2) 锚杆成孔:采用洛阳铲人工成孔,孔径为110 ㎜,竖向间距1.5 m,水平间距1.5 m,倾角为15°。成孔前根据设计要求,在坡面定出孔位,允许误差±10 cm。成孔后进行检验和测量。孔径允许误差±5 mm;孔深允许误差±5 mm;孔倾角允许误差±1°;孔内碎土、杂质及泥浆清除干净;成孔后用编织物等将孔口临时堵塞。
3) 置筋:插入锚杆钢筋前要进行清孔检查,若孔中出现局部渗水或掉落松土立即处理。土钉钢筋置入前,要先在钢筋上安装对中定位支架,以保证钢筋处于孔位中心且注浆后其保护层不小于25 mm。支架沿钉长的间距为1.5 m。安装完毕后,随即检查孔内是否有碎石堵孔,若有立即清除。
4) 钢筋连接:钢筋网用细绑丝绑扎,锚杆钢筋和横向连接筋采用电焊机焊接。
5) 注浆:采用注浆泵常压孔底注浆,浆液采用纯水泥浆,水灰比为0.45~0.5,见浆液流出孔外后再注下一个孔。注浆前要清除孔内杂物,注浆管随着注浆慢慢拔出,同时保证注浆管端头始终在注浆液内,注浆要连续进行,要饱满。随浆液慢慢渗入土层,孔口会出现缺浆现象,及时补浆,补浆在2小时后进行,补浆次数不少于2次。浆液要搅拌均匀并立即使用,对未注满孔,用1:1(重量比)水泥砂浆抹平。
6) 挂网喷面:坡面挂A8@150×150钢筋网,面层喷射细石混凝土,混凝土强度等级C20,厚度不小于100 mm。喷面前要清理面层,埋好控制面层厚度的标志,喷面层分段分片依次进行,同一段内自下而上进行,段片之间,层与层之间做成45° 的斜面。
7) 该基坑工程工期正值雨季,雨期施工的原则:防排结合、以排为主、不积水、不倒灌,确保基坑、边坡稳定,主要采取了坑壁滞水处理和基坑排水措施。
坑壁滞水处理措施为在基坑上口四周600 cm宽砼硬化的同时,用塑料布压入在砼中,塑料布向基坑下铺设,覆盖整个基坑壁。基坑排水措施如下:沿基坑四周,在肥槽内开挖宽深均300 cm的排水沟,排水沟用水泥砂浆底并用卵石填充,排水沟内设置集水井,集水井直径1.0 m,深1.5 m,周边用混凝土实心砖围砌,内置直径0.3~0.4m无砂滤管,四周用碎石填充,内置Ø75的污水泵,每个集水井设一台水泵,一旦有积水,及时使用污水泵将其抽出到坑外,保证坑底没有积水。
6 基坑监测
1) 监测内容:围护体的位移及沉降;地表开裂状态及周围环境变形; 基坑底部土体有无隆起,围护外侧土体有无下沉。
2) 监测点的设置
基坑边坡顶部的水平位移和竖向位移监测点在基坑周边布置;基坑周边中部、阳角处布置监测点;在土钉墙坡面上设置监测点;水平方向监测点间距不大于20m,每边监测点数目不少于3个,竖向监测点布置在基坑的顶部,即地面下1.0 m处。
监测点、后视点、水准基点设置在基坑施工影响范围外。
沉降和位移监测点设在基坑边壁和基坑底部。
3)监测次数及方法
在基坑开挖期间,每天监测一次,当位移出现发展趋势或接近预警值(水平位移监测预警值为水平位移累计绝对值超过60 mm 或变化速率超过15 mm/d 或连续3d 的变化速率大于10 mm/d;竖向位移监测预警值为竖向位移累计绝对值超过60 mm或变化速率超过8 mm/d 或连续3 d的变化速率大于6 mm/d)时,加大监测的频率。地下室底板完工后减少监测次数,地下室侧墙完工后停止监测。
位移观测用Et-02电子经纬仪,沉降观测用精密水准仪,精度为标准二等水准,采用闭合或附合路线观测方法。
7 结语
目前,基坑工程已经完工且进行了土方回填,从整个施工过程监测显示,施工结束后一个星期内最大水平位移量为15mm,最大竖向位移为12mm,远低于位移预警值,之后边坡趋于稳定,经过雨季连续的雨水洗刷,没有继续位移,使基础施工顺利进行,达到了支护的预期效果,同时为相同或类似地质情况的工程支护提供了参考。
参考文献:
[1] 葛雪华,毛怀东. 某高层公寓项目基坑支护技术[J]. 施工技术,2012,41(363):61-63
本论文依托于北京市海淀区八家南北线道路及市政配套工程,本工程桥梁7轴均在清河南侧堤岸上,内侧为现况跨清河毛纺桥,由于在实际施工中发现现场地质情况与地质勘探报告有较大出入,使得已制定好的施工方案无法实施,经多次调整,最终形成一套完整、可行的深基坑开挖施工方案。
关键词:深基坑、毛纺桥、方案优化
中图分类号:TV551.4 文献标识码:A 文章编号:
1.工程概况
北京市海淀区八家南北线道路及市政配套工程(跨河桥、人行天桥、道路及雨污水)南起八家东西线,向北经北五环路、清河河道、规划清河北侧路、清河镇南一路、清河镇南路后,终点位于清河镇南路路口往北约40m处,与现况安宁庄东路顺接,道路全长1443.66m。
本工程桥梁新建主桥一座,新建人行天桥一座。其中主桥桥梁长444m,宽17.5m,桥梁面积7595㎡;人行天桥主桥宽3.5m,坡道宽4.2m,桥梁面积1138.4㎡。
其中,7轴共有4颗桩基、2座承台,结构型式为6.5*2.5*2.15m,均在清河堤岸上,内侧为现况跨清河毛纺桥,东侧基坑开挖最深,为6.75m。 (见图一、图二、图三)
图一:7轴承台与现况毛纺桥位置关系
图二:7轴东侧承台与现况毛纺桥位置关系
图三:7轴西侧承台与现况毛纺桥位置关系
2.支护结构比选以及设计参数
2.1几种支护结构的比选
2.1.1土钉墙加微型桩
基坑靠堤岸一侧、东侧基坑靠东侧、西侧基坑靠西侧按1:0.3放坡,设置土钉墙;基坑靠毛纺桥一侧放直坡,设置土钉墙,并施工微型桩;基坑靠河道一侧按1:0.5天然放坡。
但基坑靠毛纺桥一侧边缘吃进毛纺桥桥头搭板过多(见图四),无法施工微型桩,不能保证毛纺桥安全。
2.1.2对拉土钉墙
在其他三侧基坑支护方式不变的基础上,基坑靠毛纺桥一侧设置对拉土钉支护,然后进行桩基施工。在桩基施工完成后,继续开挖,并做对拉土钉至设计标高。
桩基施工完成准备继续开挖时,发现下部土质情况与地质勘探报告出入较大,砂土较多,下挖50cm左右即出现土体塌落现象,无法分层开挖设置土钉墙。
2.1.3设置竖向预支护系统,注浆后继续开挖
基坑靠毛纺桥一侧在开挖前设置竖向预支护系统,采用低压力注浆,注浆后再分层开挖,此方法可保证开挖时不出现土体塌落等现象。
图四:基坑侧壁吃进毛纺桥桥头搭板过多
2.2支护结构设计参数
在研究讨论深基坑开挖在实际施工中出现的问题后,最后确定在基坑靠毛纺桥一侧先采用对拉土钉支护,开挖桩基工作平台,桩基施工完成后采用竖向预支护系统继续开挖至设计标高的施工方案,具体如下:
基坑靠堤岸一侧、东侧基坑靠东侧、西侧基坑靠西侧按1:0.3放坡,土钉从坑顶向下1.5m处开始布置,横纵向间距均为1.5m,梅花形布置,布置四层,入土角度15°(见图五)。
图五:基坑按1:0.3放坡布置图
基坑靠河道一侧按1:0.5天然放坡(见图六)。
图六:基坑按天然放坡剖面图
基坑靠毛纺桥一侧放直坡,设置对拉土钉,横纵向间距同上,分3层开挖,每层1m,每开挖一层设置一道对拉土钉,开挖完成后进行桩基施工(见图七、图八)。
图七:基坑放直坡土钉布置图
图八:对拉土钉平面布置图
打完土钉后,设置φ6@200×200网片,喷射C25混凝土,厚度10cm。
桩基施工完成后,准备继续开挖,施工承台,东侧基坑需再次开挖2.3m,西侧基坑需再次开挖2m。在开挖前先设置竖向预支护系统,采用Ф48花管,长度2.5m,间距0.3m,入土角度75°,采用低压力注浆,注浆后再分层开挖。
开挖前先对已破坏的首次喷锚基坑壁进行二次喷锚,宽度约30cm,养生一天后进行第一层基坑开挖,深度1.2m,保证首次压入花管埋深不小于1m,严禁超挖,按之前的开挖方式设置土钉,长5m,并布置φ6@200×200mm钢筋网片,喷射C25混凝土,厚度10cm。
另外,由于已经开始出现少量浅层地下水,需分别在基坑东西两侧设置直径1.5m,深3m的降水井,并进行抽水降水。
图九为基坑开挖至设计标高后的现场照片,基坑侧壁完好,没有出现裂纹、土体塌落等现象。
图九:基坑顺利开挖至设计标高
3.结语
在深基坑边开挖边支护中,经常会出现地质报告不全、突况较多等现象,本工程深基坑开挖经过初步设计的微型桩施工,到二次设计的分层开挖设置土钉,再到最终的设置竖向预支护系统。此三种基坑支护方案均在市政工程中广泛应用,但在实际施工中,经过综合考虑多种不利因素,优化比选出最行之有效的一套方案,使得基坑得以安全开挖,对现况构造物进行了有效保护,形成了一套完整、有效地深基坑开挖方案,为以后在类似不利的环境下施工,提供了宝贵资料。
参考文献
[1]《建筑地基基础设计规范》(GB50007-2011)
[2]《锚杆喷射混凝土支护技术规范》(GB50086-2001)
[3]《工程测量规范》(GB50026-2007)
[4]《北京市城市桥梁工程施工技术规程》(DBJ01-46-2001)
论文摘要:文章以具体基坑工程为例,简要介绍了如何通过基坑开挖检测反馈的信息进行动态设计的全过程;阐明基坑开挖工程实施信息化施工的重要性,提出了基坑支护设计中需要注意的若干问题。
基坑支护动态设计法是在计算参数难以准确确定、设计理论和方法带有经验性和类比性时,根据施工中反馈的信息和监控资料不断完善原设计方案的一种设计方法。基坑支护动态设计也就是全面实行信息化施工,通过建立完善的监控系统,不断地将现场施工信息、地下水及地质变化情况反馈到设计单位,调整完善设计,有利于控制施工安全。这一设计方法客观求实、准确安全,适合于基坑开挖支护、边坡治理等岩土工程施工。现以郑州市某基坑设计为例,简要地介绍动态设计的内容及方法。
l工程概况
拟建某工程场地位于郑州市政七街与纬五路交叉东北角。地下2层,呈矩形,总占地面积340om,基坑开挖深度8.9m,基坑周边建筑物及管线密集,其中南、西、北三侧通信电缆管线距基坑约1.5m;西侧上水管道距基坑约0.3m,山河宾馆配楼距基坑约7.0m;南侧污水管道距基坑约5.0m,北侧办公楼踏步距基坑约1.5m(图1)。
2场区工程地质条件
拟建场地原为拆迁场地,地形相对平坦,所在地貌单元为黄河冲积泛滥平原。场地内深度0.7~1.8m以内为杂填土;约14m以内为第四系晚更新统(冲积形成的)地层,以粉土、粉质粘土为主。与支护有关的各土层计算参数取值见表1。
场地地下水属潜水,水位埋深在地表下3.0m左右。近3~5年来地下水位最高2.0m,历史最高水位为1.0m,主要受大气降水补给。
3原基坑支护结构设计
根据场区工程地质情况、开挖深度及基坑周边环境特点,基坑采用喷锚支护形式,考虑到局部土层粘粒含量大、含水量高,先打一排48花管并注浆后再开挖,典型(基坑西坡)剖面见图2。
基坑支护结构的整体稳定性采用《建筑基坑支护技术规程》(JGJ120—99)及《基坑土钉支护技术规程》(CECS96:97)中规定的方法综合计算分析,其中地面荷载为15kPa。支护断面整体稳定性计算结果在1.321~1.803(安全系数)间,满足规范的要求。
4施工期监测
基坑周边管线、建筑物密集,所以在基坑开挖施工过程中,必须严格控制位移,避免支护结构和被支护土体的过大位移影响周边管道及建筑物的正常状态。针对该基坑工程的上述实际情况,监测在基坑周边及临近建筑物共设34个沉降观测点,并沿基坑周边均匀设置12个水平位移测点(见图1)。基坑支护于2006年11月13日开工,2007年1月16日支护完工,工程于2007年9月10日竣工通过验收。开挖施工过程中,基坑周边位移测点的水平位移量为5.0~82.4mm,基坑坡顶的累计沉降量为28.7~118.5mm(表2);周边建筑物的沉降均不大,最大值为24.1mm。
根据监测结果,西坡的B5点和东坡的BIO点位移较大,分别为82.4nln和41.9mm。基坑东侧B10点位移过大主要是基坑开挖过程中从东坡过土方清运重车,基坑开挖快结束时,挖掘机也从此处来回通行,对此点沉降及位移影响均较大,所以测量结果也有些失真;基坑西坡B5点(曲线见图3)较真实地反应了施工工况:2006年11月23日,基坑开挖至4.0m左右,与南侧城市污水主管道连通的西侧废弃管道被冲开,大量水灌入基坑,浸泡西侧边坡,B5点位移由7mm增至35mm,沉降量由10mm增至40mm;在西坡开挖第五层土及施工第五排锚杆时,由于出现不明管道漏水,使该侧土层含水量迅速增大,开挖面出现了蠕变、侧鼓现象,B5测点的水平位移由37mm突增至80mm,沉降量由40mm增至110mm,均超过最大预警值。
5动态设计过程
根据基坑周边环境及场地土质情况,按照《建筑地基基础工程施工质量验收规范》(GB50202—2002)的规定,本基坑位移的最大预警值为5em。为确保基坑施工的安全和开挖顺利进行,在整个施工过程中进行全过程监测,并根据监测反馈的信息进行动态设计,实施信息化施工。下面仅以该工程西坡支护设计为例,详细介绍根据监测结果及施工信息进行动态设计的全过程:
(I)施工开始时,西坡原计划拆除的上水管道无法拆除。设计根据现场情况,将原边坡斜率由1:0.2调整为1:0.15,48注浆花管间距由1m调整为0.8m,第一、二排土钉长度由7m调整为9m。
(2)2006年11月23日出现灌水情况后,及时停止了西侧施工,抽排坑内明水,待基坑基本晾干后再进行开挖。
(3)基坑开挖至第五层设计接收到监测预警后,立即修改原支护设计,要求在开挖面分别直立和45。斜插补打两排长4.5m的48注浆花管做超前支护,并在第三四排、四五排间分别补打一排长12m的土钉,以控制该区域基坑边坡水平位移;开挖第六层时,含水量还较大,为避免出现侧鼓,设计要求每次开挖深度减半,增加一排土钉。至地下室底板浇筑完成,该测点的水平位移量仅增加2.4mm,沉降增加6.6mm,设计采用注浆花管超前支护及增设锚杆控制位移是及时的、准确的,这两项措施成功地控制住了开挖引起的边坡水平位移。
(4)基坑开挖到第五层土后,现场反映西侧实际地质条件比地质报告中所描述的要差,需要对该区进行加固,即在开挖面处垂直和45。角向下打两排48注浆花管,长度为4.5m。动态设计在整个施工期中根据实际情况不断地调整原设计剖面,施工完成的西坡支护剖面详见图4。
6基坑支护结构设计注意事项
通过全面参与基坑设计、施工、监测工作,认为基坑支护结构设计必须注意如下事项:
(1)详细调查了解基坑周边环境,包括基坑周边管线及建筑物。近年来我国经济发展迅速,城市建设水平普遍提高,许多新建建筑物都设有地下室,在基坑设计时必须考虑采用支护结构对邻近管线及
建筑物的影响。比如,基坑支护采用锚杆,锚杆可能会打到邻近地下室侧壁,必须根据实际情况调整锚杆角度及长度。另外基坑原场地遗留的混凝土结构也可能对施工造成影响。
(2)主体结构施工场地布置,如出土及运输线路、材料堆场设置及塔吊位置等,这些均造成基坑局部地面荷载较大,支护设计时需要对相应位置进行局部加强,控制该处地面沉降、顶部水平位移。
(3)基坑支护土层中含水量较大时,开挖过程中有可能出现坡壁侧鼓现象,且锚杆不易成孔,设计可以采用注浆花管进行临时开挖支护。注浆花管加固可以是水平、倾斜或竖直的。
(4)采用喷锚支护,当基坑局部水平位移较大时,可以垂直向下补打注浆花管,并在上部已护好的坡壁上补打锚杆,以控制在随后的开挖过程中水平位移的急剧发展。
(5)基坑采用喷锚支护结构时,基坑顶水平位移量一般不易控制,在对位移有严格要求的区域可以采用桩锚相结合的支护形式。