欢迎来到易发表网,期刊咨询:400-808-1701 订阅咨询:400-808-1721

关于我们 期刊咨询 科普杂志

三相异步电动机论文优选九篇

时间:2022-06-28 04:37:41

引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇三相异步电动机论文范例。如需获取更多原创内容,可随时联系我们的客服老师。

三相异步电动机论文

第1篇

1.由于电机本身密封不良,加之环境跑冒滴漏,使电机内部进水或进入其它带有腐蚀性液体或气体,电机绕组绝缘受到浸蚀,最严重部位或绝缘最薄弱点发生一点对地、相间短路或匝间短路现象,从而导致电机绕组局部烧坏。

相应对策:①尽量消除工艺和机械设备的跑冒滴漏现象;②检修时注意搞好电机的每个部位的密封,例如在各法兰涂少量704密封胶,在螺栓上涂抹油脂,必要时在接线盒等处加装防滴溅盒,如电机暴漏在易侵入液体和污物的地方应作保护罩;③对在此环境中运行的电机要缩短小修和中修周期,严重时要及时进行中修。

2.由于轴承损坏,轴弯曲等原因致使定、转子磨擦(俗称扫膛)引起铁心温度急剧上升,烧毁槽绝缘、匝间绝缘,从面造成绕组匝间短路或对地“放炮”。严重时会使定子铁心倒槽、错位、转轴磨损、端盖报废等。轴承损坏一般由下列原因造成:①轴承装配不当,如冷装时不均匀敲击轴承内圈使轴受到磨损,导致轴承内圈与轴承配合失去过盈量或过盈量变小,出现跑内圈现象,装电机端盖时不均匀敲击导致端盖轴承室与轴承外圈配合过松出现跑外圈现象。无论跑内圈还是跑外圈均会引起轴承运行温升急剧上升以致烧毁,特别是跑内圈故障会造成转轴严重磨损和弯曲。但间断性跑外圈一般情况下不会造成轴承温度急剧上升,只要轴承完好,允许间断性跑外圈现象存在。②轴承腔内未清洗干净或所加油脂不干净。例如轴承保持架内的微小刚性物质未彻底清理干净,运行时轴承滚道受损引起温升过高烧毁轴承。③轴承重新更换加工,电机端盖嵌套后过盈量大或椭圆度超标引起轴承滚珠游隙过小或不均匀导致轴承运行时磨擦力增加,温度急剧上升直至烧毁。④由于定、转子铁心轴向错位或重新对转轴机加工后精度不够,致使轴承内、外圈不在一个切面上而引起轴承运行“吃别劲”后温升高直至烧毁。⑤由于电机本体运行温升过高,且轴承补充加油脂不及时造成轴承缺油甚至烧毁。⑥由于不同型号油脂混用造成轴承损坏。⑦轴承本身存在制造质量问题,例如滚道锈斑、转动不灵活、游隙超标、保持架变形等。⑧备机长期不运行,油脂变质,轴承生锈而又未进行中修。

相应对策:①卸装轴承时,一般要对轴承加热至80℃~100℃,如采用轴承加热器,变压器油煮等,只有这样,才能保证轴承的装配质量。②安装轴承前必须对其进行认真仔细的清洗,轴承腔内不能留有任何杂质,填加油脂时必须保证洁净。③尽量避免不必要的转轴机加工及电机端盖嵌套工作。④组装电机时一定要保证定、转子铁心对中,不得错位。⑤电机外壳洁净见本色,通风必须有保证,冷却装置不能有积垢,风叶要保持完好。⑥禁止多种油脂混用。⑦安装轴承前先要对轴承进行全面仔细的完好性检查。⑧对于长期不用的电机,使用前必须进行必要的解体检查,更新轴承油脂。

3.由于绕组端部较长或局部受到损伤与端盖或其它附件相磨擦,导致绕组局部烧坏。

相应对策:电机在更新绕组时,必须按原数据嵌线。检修电机时任何刚性物体不准碰及绕组,电机转子抽芯时必须将转子抬起,杜绝定、转子铁芯相互磨擦。动用明火时必须将绕组与明火隔离并保证有一定距离。电机回装前要对绕组的完好性进行认真仔细的检查确诊。

4.由于长时间过载或过热运行,绕组绝缘老化加速,绝缘最薄弱点碳化引起匝间短路、相间短路或对地短路等现象使绕组局部烧毁。

相应对策:①尽量避免电动机过载运行。②保证电动机洁净并通风散热良好。③避免电动机频繁启动,必要时需对电机转子做动平衡试验。

5.电机绕组绝缘受机械振动(如启动时大电流冲击,所拖动设备振动,电机转子不平衡等)作用,使绕组出现匝间松驰、绝缘裂纹等不良现象,破坏效应不断积累,热胀冷缩使绕组受到磨擦,从而加速了绝缘老化,最终导致最先碳化的绝缘破坏直至烧毁绕组。

相应对策:①尽可能避免频繁启动,特别是高压电机。②保证被拖动设备和电机的振动值在规定范围内。

二、三相异步电动机一相或两相绕组烧毁(或过热)的原因及对策

如果出现电动机一相或两相绕组烧坏(或过热),一般都是因为缺相运行所致。在这里不作深刻的理论分析,仅作简要说明。

当电机不论何种原因缺相后,电动机虽然尚能继续运行,但转速下降,滑差变大,其中B、C两相变为串联关系后与A相并联,在负荷不变的情况下,A相电流过大,长时间运行,该相绕组必然过热而烧毁。

三相异步电动机绕组为Y接法的情况:电源缺相后,电动机尚可继续运行,但同样转速明显下降,转差变大,磁场切割导体的速率加大,这时B相绕组被开路,A、C两相绕组变为串联关系且通过电流过大,长时间运行,将导致两相绕组同时烧坏。

这里需要特别指出,如果停止的电动机缺一相电源合闸时,一般只会发生嗡嗡声而不能启动,这是因为电动机通入对称的三相交流电会在定子铁心中产生圆形旋转磁场,但当缺一相电源后,定子铁心中产生的是单相脉动磁场,它不能使电动机产生启动转矩。因此,电源缺相时电动机不能启动。但在运行中,电动机气隙中产生的是三相谐波成分较高的椭圆形旋转磁场,所以,正在运行中的电动机缺相后仍能运转,只是磁场发生畸变,有害电流成分急剧增大,最终导致绕组烧坏。

相应对策:无论电动机是在静态还是动态,缺相运行带来的直接危害就是电机一相或两相绕组过热甚至烧坏。与此同时,由于动力电缆的过流运行加速了绝缘老化。特别是在静态时,缺相会在电机绕组中产生几倍于额定电流的堵转电流。其绕组烧坏的速度比运行中突然缺相更快更严重。所以在我们对电机进行日常维护和检修的同时,必须对电机相应的MCC功能单元进行全面的检修和试验。尤其是要认真检查负荷开关、动力线路、静动触点的可靠性。杜绝缺相运行。

第2篇

关键词:变频技术变频器三相异步电机电动机工作原理

电机控制系统 谐波

中图分类号: TN773 文献标识码: A 文章编号:

变频器最初用途是速度控制。随着技术发展和社会对能源运用效率要求的日益提高,逐渐被用于节能领域。该技术尤其在风机、水泵的节能方面得到了广泛应用。以前,在工业生产的流程中,风机、水泵的调速通常使用的是用滑差调速电动机、耦合器等进行调速,以满足工艺生产的需要。根据各单位的实际需要,通常使用的是用耦合器对风机、泵进行20%-80%调速,或加装风门、阀门对风量、流量进行调节。但电机在工频状态下运行,多余的动能通过耦合器转化成热能让冷却水带走或损失在风门和阀门上。这样从能源使用上和生产维护上都不经济,结合现在变频器的技术在风机泵类设备中的应用,为节能降耗工作提供了很好的解决办法。采用变频调节控制技术,取消原来的耦合器及相应的冷却水泵、冷却水和风门、阀门等装置,降低生产中的能源及资源消耗。做好清洁生产、节能降耗。在变频节能技术应用的同时,要降低变频器产生谐波对电网产生的危害。

一、变频技术和变频器

变频技术以其显著的节能效果广泛的应用于工业设备和家用电器。变频技术是改变电源频率的技术,在实际应用中通过变频器来实现改变电源频率。变频器的应用,须结合三相异步电动机的特性,因为变频器与三相异步电动机有着密切的联系。

二、三相异步电动机的作用和特性:

1. 三相异步电动机的作用: 通过三相异步电动机运转(正转或反转)来带动其它设备做各种各样的机械运动。

2. 三相异步电动机的特性:

1) 运转方式:靠旋转磁场来带动电动机转子额定电流为约等于其功率的二倍额定电流为约等于其功率的二倍V/F控制变频器力矩力电机力力转。

2) 接线方式:有星形(Y形)和三角形(形)两种,Y形接线时,电动机的电流小,但力矩也小,三角形(形)接线时电动机的电流大,但力矩大;

3) 变 速:n=60f (1-K)/p

n―电动机转速 60―常数 p―极对数

f ―电源频率 k―滑差系数

公式说明:只要改变电源频率“f”或极对数“p”,就可以改变电动机转速。

三相异步电动机有2极、4极、6极、8极……,工业用的三相异步电动机一般极数不会超过8极,极数越多,转速越慢,但力矩就越大,极数越少,转速就越快,但力矩就越小;每种极数所对应的转速如下:

a) 2极──2950转/分(理想3000转/分,即同步转速)

b) 4极──1450转/分(理想1500转/分,即同步转速)

c) 6极──950转/分(理想1000转/分,即同步转速)

d) 8极──700转/分(理想750转/分,即同步转速)

三、 变频器的作用:

变频器具有:调速的作用:三相异步电动机,变频控制后可以实现调速功能,由输出频率控制电机转速,三相异步电动机由静态至最高速线性加速。通常变频器的频率调节范围是:0-650HZ。启动时电机由0转速线性加速,对机械设备运转没有危害。

四、 变频器的工作原理

变频器将三相380V(220V)/50HZ交流电通过整流桥整流变成脉动直流电,通过电解电容滤波后变成平滑的直流电,控制板对IPM、IGBT或模块的控制后将平滑的直流电变成三相频率可变的交流电,通过线路传输给电动机,实现电动机变频运行。

五、实际应用案例:以某单位一台40MW锅炉鼓风机、引风机变频技术应用改造为例

现场设备介绍:

40MW锅炉于1989年建成投运,鼓风机用于为锅炉燃烧送风,引风机用于排烟,两台风机未改造前风管上均装有风门调节装置,用以调节风量,以满足锅炉运行工艺要求,鼓、引风电均用自耦降压启动方式。现场设备鼓风机的电机参数如下表1所示,引风机的电机参数如下表2所示。

表1

表2

2、变频改造前后优缺点比较

原系统采用风门调节风量,电机工频运行,其能耗大、效率低、调节精度低,维护工作量很大。改造后变频调速是通过改变电动机定子供电频率来改变旋转磁场同步转速进行调速的,是无附加转差损耗的高效调速方式。优点是调速效率高,启动能耗低,调速范围广,可实现无极调速,动态响应速度快,调速精度高,操作简便,且易于实现生产工艺的控制自动化。

3、效益分析

改造前平均鼓、引风机运行电流:70.8 A;负载率:60.3 %,改造后平均运行电流:26.2A;负载率:33.3%,通过一个运行期的性能考核分析:改造后节能:60.3%-33.3%=27%,27%×185kW=50kW・h;一年按运行100天计算,可节约电量:50×24×100=12万度。通过以上案例分析,由此可见,在满足生产要求的条件下,采用变频调速节能效果明显著,延长了设备使用寿命、降低了故障率。

4、变频技术在风机泵类设备中应用的主要特点

1、低频力矩大、输出平稳

2、高性能矢量控制

3、转矩动态响应快、稳速精度高

4、减速停车速度快

六:降低变频器谐波危害,提高电能质量

变频其产生的高次谐波对电网产生的危害日益严重。通常采用变频器隔离、接地或采用无源滤波器、有源滤波器、架设无功补偿器装置以及绿色变频器等方法,将变频器产生的谐波控制在最小范围之内以抑制电网污染、提高电能质量,这些值得研究推广。

电网谐波产生的危害主要有:

1)、谐波使电网中的元件产生附加的谐波损耗,降低发电、输电及用电设备的效率。同时大量的3次谐波流过中性线会使线路过热甚至发生火灾。

2)、谐波影响各种电器设备的正常工作,使电机发生机械振动、噪声和过热,使变压器局部严重过热,使电容器、电缆等设备过热,造成设备的绝缘老化、寿命缩短以至损坏。

3)、 谐波会引起电网中局部的并联谐振和串联谐振,从而使谐波放大,引起严重事故。

4)、谐波会对邻近的通讯系统产生干扰,轻者产生噪声,降低通讯质量,重者导致信息丢失,使通讯系统无法正常工作。

5)、谐波会导致继电保护和自动装置的误动作,并使电器测量以表计量不准确。

目前谐波的治理方法:

1)、将变频器的隔离、屏蔽、接地;

2)、加装交流电抗器和直流电抗器;

3)、加装无源滤波器;

4)、加装有源滤波器;

5)、加装无功功率静止型无功补偿装置;

6)、线路分开;

7)、电路的多重化、多元化;

8)、变频器控制方式的完善;

9)、使用理想化的无谐波污染的绿色变频器。

第3篇

【论文摘要】文章主要介绍了电力电子器件的发展、交流调速系统的发展及针对电动葫芦型起重机专用的变频控制系统的硬件设计、电路参数计算及软件设计、仿真等。

一般性能的节能调速在过去大量的所谓不变速交流传动中,风机、水泵等机械总容量几乎占工业电气传动总容量的一半,其中不少场合并不是不需要调速,只是因为过去交流电机本身不调速,不得不依赖挡板和阀门来调节送风和供水的流量,许多电能因而白白的被浪费掉了。如果换成交流调速系统,把消耗再挡板和阀门上的能量节省下来,每台风机、水泵平均约可节能 20%,效果是很可观的。

高性能交流调速系统许多在工艺上就需要调速的生产机械,过去多用直流传动,鉴于交流电机比直流电机结构简单、成本低廉、工作可靠、维护方便、转动惯量小、效率高,如果改成交流调速,显然能够带来不少的效益。但是,由于交流电机原理上的原因,其电磁转矩难以像直流电机那样直接通过电流实行灵活的即时控制。70年代初发明了矢量控制技术,通过坐标变换,把交流电机的定子电流分解成励磁分量和转矩分量,用来分别控制磁通和转矩,就可以获得和直流电机相媲美的高动态性能,从而使交流电机的调速技术取得了突破性的进展。

特大容量及高转速的交流调速直流电机换向器的换向能力限制了它的容量和转速,其极限容量与转速的乘积约为 10 KW·r/min,超过这个数值时,直流电机的设计与制造就非常困难了。交流电机则不受这个限制,因此,特大容量的传动,如厚板札机、矿井卷扬机等,和极高转速的传动,如高速磨头、离心机等,都以采用交流调速为宜。

一、起重机发展趋势

物料搬运成为人类生产活动的重要组成部分,距今已有五千多年的发展历史。随着生产规模的扩大,自动化程度的提高,作为物料搬运重要设备的起重机在现代化生产过程中应用越来越广,作用愈来愈大,对起重机的要求也越来越高。起重机正经历着一场巨大的变革。发展趋势:大型化和专用化、轻型化和多样化、自动化和智能化、成套化和系统化、新型化和实用化。

二、电动葫芦

电动葫芦,简称电葫芦。由电动机、传动机构和卷筒或链轮组成,分钢丝绳电动葫芦和环链电动葫芦两种。通常用自带制动器的鼠笼型锥形转子电动机(本次设计既是选用此种电机)(或另配电磁制动器的圆柱形转子电动机)驱动,起重量一般为 0.1~80t,起升高度为 3~30m。多数电动葫芦由人用按钮在地面跟随操纵,也可在司机室内操纵或采用有线(无线)远距离控制。电动葫芦除可单独使用外,还可同手动、链动或电动小车装配在一起,悬挂在建筑物的顶棚或起重机的梁上使用。

三、三相异步电动机及工作原理简介

三相异步电动机由定子和转子两大部分组成,定子和转子之间是空气隙。三相异步电动机具有结构简单、性能优良、制造成本低、维修费用省、坚固耐用等优点,在工农业生产中得到了广泛应用。正常情况下,定子旋转磁场的转速n 和转子转速 n 不同步,这是因为如果同步,转子与旋转磁场之间不再有相对运动,导体不再切割磁场,就没有感应电动势产生,也就没有了转子电流和电磁转矩,无法维持电动机继续运行。

三相异步电动机有一个很重要的参数:转差率——用 s 表示,其定义式为

在很多情况下,用 s 表示电动机的转速比直接用转速 n 方便得多,使很多运算大为简化。一般异步电动机的转差率在 0.02~0.05 之间。大部分厂家生产的异步电动机的铭牌上标有下列数据:

1.额定功率P:电动机额定运行时轴端输出的机械功率,单位一般为 kw

2.额定电压U:电动机额定运行时定子加的线电压,单位为 v 或kv

3.额定电流I:定子加额定电压、轴端输出额定功率时的定子线电流,单位为 A

4.额定频率 f:我国工频为 50Hz

5.额定转速n:电动机额定运行转子的转速,单位为 r/min

四、笼形转子异步电动机的特点

笼形转子异步电动机具有转子结构坚实、效率高、价格低、控制设备简单和维护使用方便等优点,因此在各种应用领域中使用最广泛。但这种电机的启动性能较差,即启动转矩低而启动电流很大。因此在选择使用时应考虑启动问题,即:1.启动转矩Tk应大于负载静转矩Tl;2.启动电流在供电电网上造成的瞬间电压降不能超过容许值;3.在启动过程中电动机的能量损失要小。

本次设计用电机为锥形转子三相异步电动机。常用的电动葫芦用锥形转子制动三相异步电动机型号有:YEZS、YREZ、YBFZ 和 YBEZX等几种。该类型电机的主要特点是利用其锥形转子的特殊结构在通电时产生磁拉力,打开制动机构,使电机正常运转。

该类电动机的定额是断续周期工作制S ,负载持续率不低于 25%,每小时等效起动次数不低于 120 次。电源频率为50Hz,同步转速为 1500r/min。4.5KW及以下的额定转速为1380r/min。7.5KW以上的额定转速为 1400r/min。允许最大转速为 3750 r/min,

【参考文献】

[1]孙涵芳.INTEL16位单片机[M].北京航空航天大学出版社,2002.

第4篇

关键词:高效永磁同步电动机 现场方案 试验研究 结果分析

中图分类号:TM341 文献标识码:A 文章编号:1003-9082(2015)09-0273-02

引言

在工业、建筑以及公用设施领域中电动机是重要的原动力设备,也是电能消耗的最大用户,和节电潜力的最大用户。2012年我国各类电动机总装机容量约为5亿千瓦,其中异步电动机的装机容量占全国电动机装机容量的90%,约占全国用电量的60%,占工业用量的75%,系统用电效率比国外先进水平低5%-15%,相当于每年浪费电能约1500亿千瓦时。

目前工业领域中采用的高压中、大功率异步电动机普遍存在效率偏低、功率因数差等浪费电能现象。而高效永磁同步电动机能否达到高效节能目标,现场应用前景如何,已经引起国内各大企业关注。2013年工业和信息化部印发(2013年工业节能与绿色发展专项行动实施方案)提出,选择电机在能效提升和绿色发展方面要取得突破。本文将通过在张家口发电厂首次应用和现场试验进行分析。为企业应用永磁同步电动机提供参考。

一、高压永磁同步电动机概述

1.高压永磁同步电动机的发展历程

电机属于电磁装置,其工作原理是通过磁场实现电能与机械能间的不断转换。在电机的工作过程中,气息磁场是必不可少的。获得磁场的方法有两种,其中一种是通过电流得到。该种电机叫做电励磁电机,这种电机需要具备专门用来产生电流磁场的绕组,同时,为了保证电流的正常流动还需要为电机提供不间断的能量供应。另一种方法是通过永磁体来获得磁场,这可以大大简化电机的结构,同时,因为永磁体一旦磁化(充磁)之后就永久具有磁性,不再需要外界供给能量,这也大大的减少了能量的损耗。

高压永磁同步电动机就是通过永磁体获得磁场的电动机,永磁体材料的发展促进了此种电动机的发展。稀土钴和钕铁硼永磁分别在20世纪60年代和80年代出现,这两种永磁材料的出现极大的促进的电动机的发展,因为这两种材料具有特别适用于电机装置的特性,包括高剩磁密度、高矫顽力、线性退磁曲线以及高磁能积。

我国专家学者自主开发的高效高压永磁同步电动机,采用实心转子磁极铁芯和启动笼复合结构,消弱了齿谐波,减少了转子表面损耗,提高了电机效率。同时,非均匀气隙和优化通风散热,有效的控制了电机温升。该种电机同异步电机相比各项指标显著提供,额定负载效率大于96%,功率因数大于0.98,综合节电率在8%-15%。

2.高压永磁同步电动机的优点

2.1高效率

使用永磁材料产生磁场,代替了原有的电流装置,一定程度上减少了定子电流及其电阻损耗。此外,当电机正常工作时,工作效率因为没有了转子的电阻损耗和磁滞损耗而得到提高。当电机额定工作时,电机的效率在96%以上,低负载工作时,该电机仍然具有相对较高的工作效率,宽幅的高效运行区为负载在不同负荷段运行提供了良好的节电效果。

2.2高功率因数

该种新型永磁电机的转子使用的是永磁材料,不需要感应电流来产生磁场,定子绕组具有阻性负载的特点,这使得该种电机的功率因数在1附近。此外,当电机在20%~120%额定负载范围工作时,电机的功率因数和工作效率都会处于一种相对较高的水平。具体说来,当电机负载较小,即轻载工作时,该种新型电机可以大大的节约能量消耗,而当电机在额定负载工作时,其功率因数是大于0.98的。

2.3启动转矩大

该种永磁电机的转子采用的是一种实心的永磁材料,这使得该种电机的启动转矩明显增大,达到了3.5~4.3范围内,而相同功率的一般电机的启动转矩仅为1.8~2.2倍。

2.4体积小,重量轻

和相同功率的一般电机相比,该种电机的体积约是一般电机的60%,体积明显减少,重量约是一般电机的83%,减轻了约16%。

2.5永磁电动机还具有如下特征:

2.5.1运行时间明显增加;

2.5.2工作过程中的维护费用降低;

2.5.3磁场强度很稳定,不会出现显而易见的退磁现象;

2.5.4电机振动小;

综上所述,新型的永磁电动机较异步电动机相比具有容量大、功率因数高、工作效率高等特点。

二、高压永磁同步电动机的应用分析

1.应用原理

高效高压永磁同步电动机启动时依靠定子旋转磁场与笼型转子相互作用产生的异步转矩实现启动;运行时由转子内嵌的永磁体提供磁场结合定子旋转来维持电动机同步运行。

大唐国际张家口发电厂共有8台30万千瓦机组,装机容量240万千瓦,电厂自用电量占发电量的5%左右,其中电动机是电厂用电的主要设备。通过首次使用山西北方机械制造有限责任公司生产的高效永磁同步电动机,有必要对其经济性、可靠性进行验证。

该公司生产的高效永磁同步电动机,通过了理论分析、实验室试验和国家权威机构检测。但该产品在生产现场应用中缺乏大量的实践数据支持,针对发电企业没有进行试验应用案列,对现场系统、设备没有建立直观理论和实际体系,无法通过试验和监测手段对高效永磁同步电动机进行经济效益分析。

本次现场试验,是TYC4002-6型高效永磁同步电动机首次在生产现场进行运行经济性、安全性、可靠性试验,并和原异步电动机进行比较鉴定。

2.试验方案研究与分析

通过设备筛选和系统可靠性分析,决定在排浆泵的驱动电机进行试用,并成立课题小组进行跟踪、试验、分析,以验证其节电、环保性能指标,为节能技术改造奠定基础。原排浆泵驱动电机为JS148-6三相异步电动机,更换电机为山西北方机械制造有限责任公司生产的TYC4003-6(6kV315kW)高效高压永磁同步电动机。

2.1电机试验方案确定

电机安装地点确定后,我们对现场系统和设备进行规划和调整:

2.1.1确认了用缓冲水箱容积变化来计量系统出力的精确测试方案;

2.1.2将原排浆泵出口阻力不匹配的并列管道进行改进,对排桨泵叶轮、轴封、调整门进行检查更换,对电机地基进行检查,对电测仪表(电压、电流、功率因数、总功率、有功功率、无功功率、有功用电量、无功用电量)进行检验;

2.1.3对S148-6三相异步电动机和TYC4003-6高效永磁同步电动机的技术指标、参数、特性做分析对比;对排浆泵系统、电测系统、轴封水系统、补水系统、水箱结构、监测表计等进行分析评价。

2.2设备主要技术参数

二单元3组一级排桨泵驱动原电机是兰州电机厂生产的JS148-6三相异步电动机额定,代替的高效永磁同步电动机是采用TYC4003-6,在不改变工况和电机控制系统的情况下,进行试验(试用),其电机的主要参数对比如下:

2.3参数收集及试验系统:

试验中电机电压、电流、有功功率、功率因数、有功用电量、无功用电量的数据,均取自配电控制柜电测仪表记录的实际数值。流量是通过标尺测量缓冲水箱水位的变化。

3.应用情况

3.1 TYC4003-6高效高压永磁同步电动机与JS148-6三相异步电动机试验比较发现,在输出有功功率满足现场使用条件下,电机输入功率得到减低,功率因数得到了大幅度的提高达到0.997,永磁同步电动机电流降低了13.65%,无功功率降低了82.89%,节电效果明显。

3.2在同等工况下,高压永磁同步电动机带动的排浆泵比三相异步电动机带动的排浆泵出力明显上升,流量多出18%,即多做功。

3.3电机通过气隙、风道和轴流风扇的优化设计,提高了通风散热效果,有效降低了电机温升。

3.4采用实心磁极和启动笼的复合转子结构,提高了电动机的启动性能。同时因转子表面损耗和杂散损耗的减少,提高了电动机效率。

3.5由于大量无功损耗的降低,使得系统电压稳定,电压质量提高,能够降低变压器的负载率,提高供电系统的经济运行水平,为企业产生间接的经济效益。同时,电机转速升高,对泵或风机的效率产生影响,因出力增加通过对系统调整节电效果显著。

3.6永磁电机绕组温度低比异步电机偏低10多度,前、后轴承温度正常。

3.7永磁电机运行振动小、噪音低,运行平稳。

四、永磁同步电动机应用的方向和前景

将永磁同步电动机在大范围内替换现有的异步电动机还是有诸多困难:

1.永磁同步电动机是一种技术节能新产品,而现有的工艺系统已经很成熟;

2.该新型电动机的价格远高于异步电动机的价格,用户需要投入大量的资金,而获得收益的时间则较长;

3.怎样处理更换下的异步电动机也是一个有待于解决的问题。但是,根据永磁同步电动机的实际运行和对运行数据的计算结果来看,新型的永磁电动机可以减少能量损耗,同时还可以提高功率因数,进而减少无功功率,尤其在降低无功损耗的领域有着广泛的应用前景,可以大大减少企业的运营成本,减低供电系统的安全隐患。永磁同步电动机在电力行业目前已经应用在磨煤机、氧化风机上,结合该电机的特点,认为在负荷调整范围较大的磨煤机和送风机上应用效果会更理想。

五、结束语

与传统的异步电动机相比,高压大功率永磁同步电动机减少了能量损耗,节电效果良好。高压永磁电动机的广泛应用将会使其在电机行业占据重要重要位置,因此,研究高压永磁电动机是很有必要也是非常重要的。高效高压永磁同步电动机创新性强,产品节能效果显著,符合国家节能减排政策,能有效提降低设备能耗,提高企业经济效益,具有推广和应用价值。

参考文献

[1]黄明星.新型永磁电机的设计、分析与应用研究[D].博士学位论文:浙江大学,2008.

[2]赵清.中型高效永磁同步电动机设计关键技术研究[D].博士学位论文:沈阳工业大学,2006.

第5篇

关键词:电动机 降压启动 比较分析

中图分类号:TM343 文献标志码:A 文章编号:1672-3791(2014)01(b)-0128-01

电动机作为一种被广泛使用的设备,在任何工厂或者发电厂中都必须配置电动机,特别是在工厂中,一旦自备的电动机发生了相关故障,则非常可能致使整个工厂都停电,给工程带来巨大的经济损失。在电动机进行启动时可能会整个电力系统造成巨大的启动电压压降,同时也给整个系统的电能质量造成巨大的影响。因此,为了减少电动机对整个电力系统电压的影响,必须合理选择电动机的起动方式,确保电动机的安全启动。本文对电动机的降压启动方式进行比较分析。

1 电动机突然而剧烈的启动造成的危害

通常情况下,在异步电动机中,其全压启动电流与额定电流有一个数量关系,即全压启动电流为额定电流的4~7倍,如果启动电流过大,则将对电动机的寿命进行降低,导致变压器的二次电压出现大幅度的降低,这就减少了电动机的启动转矩,甚至有可能导致电动机出现根本无法启动的局面。异步电动机还会对同一个网络中的其他供电设备造成影响,如果交流电动机突然出现了剧烈的启动现象,则其可能造成大量的损失,如下几点。

(1)进行Y-v启动会造成启动电流或电压发生瞬变,导致相关电气故障的发生,同时还可能造成电压发生剧烈的变化,造成整个电网中其他电气设备出现故障。

(2)造成运行故障。电动机突然启动将造成管路系统产生巨大的压力振动,其会对所带的货物产生严重的损坏。

(3)对经济效益造成严重的影响。电动机的一旦发生了故障,都会造成停运和维修的故障损失,致使电动机的运营成本造成严重的增加。

2 电动机的起动方式分析

2.1 全压直接起动方式分析

作为电动机最为简单的启动方式之一,电动机的全压直接启动就是将其定子绕组上直接加额定电压,然后直接进行启动。电动机的全压直接起动主要适用于负载和电网容量允许的条件下。

电动机全压启动的优点是其起动的转矩较大,且起动的时间较短,所使用的起动设备较为简单,易于操作和维护,启动设备的故障率较低。在对电动机进行全压起动时,由于起动电流很大,如对于鼠笼型电动机其起动电流一般为额定电流的6~8倍,如果此时电动机功率较大,则过大的电动机起动电流将造成配电网电压的降低,直接影响其直接连接的其他电气设备的正常工作。

2.2 Y-起动方式分析

Y-的起动方式就是将连接的电动机,在其起动时接成Y 型,当电动机完成起动后其速度将接近运行。利用这种方式对电动机进行起动时,定子绕组的电压实际上为整个电源电压的50%,而起动电流也较小,仅为直接启动方式的30%,这样就保证了其起动的转矩也较小,整个电动机的起动对电网的冲击力也较小,允许较多次数的起动。利用Y-起动方式进行起动时还无需增加其他设备即可实现对电动机的起动,因此这种起动方式适用于频繁起动的小型电机。

Y-的起动方式主要优点是结构较为简单,且投资较小。当电动机所带负载较低时,可以采用Y-的起动方式,其额定转矩可以与相关的负载进行匹配,这样就能够提高电动机的负载率。

2.3 自耦变压器起动分析

利用自藕变压器的降压起动也可以实现电动机的起动。利用自藕变压器起动能够有效实现带负载起动,这种起动方式在大容量的电动机上经常使用。利用这种起动方式能够有效实现大转矩的起动,并可利用抽头有效实现对转矩的调节。通常自藕变压器可以通过接触器有效实现自动控制,通过自藕变压器起动可实现低成本的起动,其性价比较高,在电机起动中应用较为广泛。

3 电动机的几种降压启动分析

通常在10 kW及以下的小型电机中,其都是可以进行直接启动的,而对于10 kW及以上的电动机中则通常采用降压启动的启动方式。为了对启动转矩进行减小,以防止其对相关机械设备所产生的冲击,如果电动机允许进行全压启动,则其也可采用其他启动方式,即降压启动。

在三相异步电动机中,通常所采用的降压启动方法有以下几种:利用定子串进行降压启动,进行Y-方式的降压启动,进行软启动器的降压启动。利用这些方法都可以有效实现启动电流的降低,对线路的电压降落进行减小,确保电气设备的有效运行。

3.1 串电阻降压启动方式

通常在定子电路中采用串电阻的方式来对定子的绕组上的电压进行有效的降低,在电动机降压启动的过程中,一旦电动机的转速达到额定值时,就应该采用切电阻的方式来有效的限制启动电流,确保电动机能够在全压的方式下进行有效的运行。在对定子串的降压启动的过程中,其电动机启动电流将随定子的电压成正比,而其启动转矩则与电压的平方成正相关。

串电阻降压启动的缺点是其将消耗大量的电能,且串电阻降压启动的成本较高,这种启动方式在启动不频繁的电动机中经常使用。

3.2 自耦变压器降压启动方式

通常将自耦变压器视为启动补偿器,在自耦变压器中其电源和初级是相连的,而自耦变压器的次级是与电动机直接相连的。在自耦变压器中其次级是具有3个及以上的抽头的,因此利用自藕变压器方式可以实现3个不同大小的电压。

使用自耦变压器的方式进行启动时其可以灵活选择启动转矩,并有效选择启动电流。在电动进行启动时,在定子绕组进行启动时其所得到的启动电压将是二次侧的电压,如果启动完毕,则可将自耦变压器进行切除。这样电动机就能过直接连接到相关的电源,即连接至一次侧。在变压器降压启动的过程中,其启动的转矩与电流通常都是按平方值进行降低的,即获得同样的转矩,则其所获得的电流将比降压启动的电流小的多,因此通常将自耦变压器视为启动的补偿器。

采用自耦变压器的启动方式通常在大容量的电动机中进行使用。这种方法的主要缺点是其价格较为昂贵,且结构比较复杂,相对体积较大,不能够进行频繁的操作。

4 结论

上述电动机的启动方式中分析比较中,其具有控制电路简单的共同特点。但由于电动机启动过程中的启动转矩是不可调的,因此在整个启动的过程中将产生巨大的冲击电流,这样就会导致电动机将产生堵转的现象。在对电动机进行软启动时虽然没有冲击电流,但恒流启动过程中会导致电网的继电保护特性具有选择性,因此,当电动机在直接启动不能满足要求时,首先考虑的是软启动降压启动器。

参考文献

[1] 赵建文,翟文利.三相异步电动机起动方式的分析与选择[J].安阳钢铁公司,2006,3:46-48.

第6篇

热继电器利用负载电流流过经校准的电阻元件,使双金属热元件加热后产生弯曲,从而使继电器的触点在电动机绕组烧坏以前动作。其动作特性与电动机绕组的允许过载特性接近。热继电器虽则动作时间准确性一般,但对电动机可以实现有效的过载保护。随着结构设计的不断完善和改进,除有温度补偿外,它还具有断相保护及负载不平衡保护功能等。例如从ABB公司引进的T系列双金属片式热过载继电器;从西门子引进的3UA5、3UA6系列双金属片式热过载继电器;JR20型、JR36型热过载继电器,其中Jn36型为二次开发产品,可取代淘汰产品JRl6型。

带有热-磁脱扣的电动机保护用断路器热式作过载保护用,结构及动作原理同热继电器,其双金属热元件弯曲后有的直接顶脱扣装置,有的使触点接通,最后导致断路器断开。电磁铁的整定值较高,仅在短路时动作。其结构简单、体积小、价格低、动作特性符合现行标准、保护可靠,故日前仍被大量采用。特别是小容量断路器尤为显著。例如从ABB公司引进的M611型电动机保护用断路器,国产DWl5低压万能断路器(200-630A)、S系列塑壳断路器(100、200、400入)。

电子式过电流继电器通过内部各相电流互感器检测故障电流信号,经电子电路处理后执行相应的动作。电子电路变化灵活,动作功能多样,能广泛满足各种类型的电动机的保护。其特点是:

①多种保护功能。主要有三种:过载保护,过载保护十断相保护,过载保护十断相保护+反相保护。

②动作时间可选择(符合GBl4048.4-93标准)。

标准型(10级):7.2In(In为电动机额定电流),4-1Os动作,用于标准电动机过载保护,速动型(10A级):7.2In时,2-1Os动作,用于潜水电动机或压缩电动机过载保护。慢动型(30级):7.2In时,9-30s动作,用于如鼓风机电机等起动时间长的电动机过载保护。

③电流整定范围广。其最大值与最小值之比一般可达3-4倍,甚至更大倍数(热继电器为1.56倍),特别适用于电动机容量经常变动的场合(例如矿井等)。

④有故障显示。由发光二极管显示故障类别,便于检修。

固态继电器它是一种从完成继电器功能的简单电子式装置发展到具有各种功能的微处理器装置。其成本和价格随功能而异,最复杂的继电器实际上只能用于较大型、较昂贵的电动机或重要场合。它监视、测量和保护的主要功能有:最大的起动冲击电流和时间;热记忆;大惯性负载的长时间加速;断相或不平衡相电流;相序;欠电压或过电压;过电流(过载)运行;堵转;失载(机轴断裂,传送带断开或泵空吸造成工作电流下跌);电动机绕组温度和负载的轴承温度;超速或失速。

上述每一种信息均可编程输入微处理器,主要是加上需要的时限,以确保在电动机起动或运转过程中产生损坏之前,将电源切断。还可用发光二极管或数字显示故障类别和原因,也可以对外向计算机输出数据。

软起动器软起动器的主电路采用晶闸管,控制其分断或接通的保护装置一般做成故障检测模块,用来完成对电动机起动前后的异常故障检测,如断相、过热、短路、漏电和不平衡负载等故障,并发出相应的动作指令。其特点是系统结构简单,采用单片机即可完成,适用于工业控制。

2温度检测型保护装置

双金属片温度继电器它直接埋入电动机绕组中。当电动机过载使绕组温度升高至接近极限值时,带有一触头的双金属片受热产生弯曲,使触点断开而切断电路。产品如JW2温度继电器。

热保护器它是装在电动机本体上使用的热动式过载保护继电器。与温度继电器不同的是带2个触头的碗形双金属片作为触桥串在电动机回路,既有流过的过载电流使其发热,又有电动机温度使其升温,达到一定值时,双金属片瞬间反跳动作,触点断开,分断电动机电流。它可作小型三相电动机的温度、过载和断相保护。产品如sPB、DRB型热保护器。

检测线圈测温电动机定子每相绕组中埋入1-2个检测线圈,由自动平衡式温度计来监视绕组温度。

热敏电阻温度继电器它直接埋入电动机绕组中,一旦超过规定温度,其电阻值急剧增大10-1000倍。使用时,配以电子电路检测,然后使继电器动作。产品如JW9系列船用电子温度继电器。

保护装置与三相交流异步异步电动机的协调配合

为了确保异步电动机的正常运行及对其进行有效的保护,必须考虑异步电动机与保护装置之间的协调配合。特别是大容量电网中使用小容量异步电动机时,保护的协调配合更为突出。

a.过载保护装置与电动机的协调配合

过载保护装置的动作时间应比电动机起动时间略长一点。由附图可见,电动机过载保护装置的特性只有躲开电动机起动电流的特性,才能确保其正常运转;但其动作时间又不能太长,其特性只能在电动机热特性之下才能起到过载保护作用。

过载保护装置瞬时动作电流应比电动机起动冲击电流略大一点。如有的保护装置带过载瞬时动作功能,则其动作电流应比起动电流的峰值大一些,才能使电动机正常起动。

过载保护装置的动作时间应比导线热特性小一点,才能起到供电线路后备保护的功能。

b.过载保护装置与短路保护装置的协调配合一般过载保护装置不具有分断短路电流的能力。一旦在运行中发生短路,需要由串联在主电路中的短路保护装置(如断路器或熔断器等)来切断电路。若故障电流较小,属于过载范围,则仍应由过载保护装置切断电路。故两者的动作之间应有选择性。短路保护装置特性是以熔断器作代表说明的,与过载保护特性曲线的交点电流为Ij,若考虑熔断器特性的分散性,则交点电流有Is及IB两个,此时就要求Is及以下的过电流应由过载保护装置来切断电路,Ib及以上直到允许的极限短路电流则由短路保护装置来切断电路,以满足选择性要求。显然,在Is-IB范围内就很难确保有选择性.因此要求该范围应尽量小。

结语

第7篇

关键词:功率因数;影响因素;补偿方法;容量确定

许多用电设备均是根据电磁感应原理工作的,如配电变压器、电动机等,它们都是依靠建立交变磁场才能进行能量的转换和传递。为建立交变磁场和感应磁通而需要的电功率称为无功功率,因此,所谓的"无功"并不是"无用"的电功率,只不过它的功率并不转化为机械能、热能

1.影响功率因数的主要因素

1.1电感性设备和电力变压器是耗用无功功率的主要设备

大量的电感性设备,如异步电动机、感应电炉、交流电焊机等设备是无功功率的主要消耗者。根据前段时间数据统计分析,我矿所消耗的全部无功功率中,异步电动机的无功消耗占了60%~70%;而在异步电动机空载时所消耗的无功又占到电动机总无功消耗的60%~70%。所以要改善异步电动机的功率因数就要防止电动机的空载运行并尽可能提高负载率。电力变压器消耗的无功功率一般约为其额定容量的10%~15%,它的空载无功功率约为满载时的1/3。因此,为了改善电力系统和矿山的功率因数,变压器不应空载运行或长期处于低负载运行状态。

1.2供电电压超出规定范围也会对功率因数造成很大影响

当供电电压高于额定值的10%时,由于磁路饱和的影响,无功功率将增长得很快,根据有关资料统计,当供电电压为额定值的110%时,一般无功将增加35%左右。当供电电压低于额定值时,无功功率也相应减少而使它们的功率因数有所提高。但供电电压降低会影响电气设备的正常工作。所以,应当采取措施使电力系统的供电电压尽可能保持稳定。

1.3电网频率的波动也会对异步电动机和变压器的磁化无功功率造成一定的影响

1.4无功补偿原理

当电网电压的波形为正弦波,且电压与电流同相位时,电阻性电气设备如白炽灯、电热器等从电网上获得的功率P等于电压U和电流I的乘积,即:P=U×I。

电感性电气设备如电动机和变压器等由于在运行时需要建立磁场,此时所消耗的能量不能转化为有功功率,故被称为无功功率Q。此时电流滞后电压一个角度f。在选择变配电设备时所根据的是视在功率S,即有功功率和无功功率的几何和:

2.采用适当措施,设法提高系统自然功率因数

提高自然功率因数是不需要任何补偿设备投资,仅采取各种管理上或技术上的手段来减少各种用电设备所消耗的无功功率,这是一种最经济的提高功率因数的方法。下面将对提高自然功率因数的措施做一些简要的介绍。

2.1合理选用电动机

合理选择电动机,使其尽可能在高负荷率状态下运行。在选择电动机时,既要注意它们的机械特性,又要考虑它们的电气指标。举例说,三相异步电动机(100KW)在空载时功率因数仅为0.11,1/2负载时约为0.72,而满负载时可达0.86。所以核算负荷小于40%的感应电动机,应换以较小容量的电动机,并合理安排和调整工艺流程,改善运行方式,限制空载运转。故从节约电能和提高功率因数的观点出发,必须正确合理的选择电动机的;

2.2提高异步电动机的检修质量

实验表明,异步电动机定子绕组匝数变动和电动机定、转子间的气隙变动是对异步电动机无功功率的大小有很大影响。因此检修时要特别注意不使电动机的气隙增大,以免使功率因数降低。

2.3采用同步电动机或异步电动机同步运行补偿

由电机原理可知,同步电动机消耗的有功功率取决于电动机上所带机械负荷的大小,而无功取决于转子中的励磁电流大小,在欠激状态时,定子绕组向电网“吸取”无功,在过激状态时,定子绕组向电网“送出”无功。因此,只要调节电机的励磁电流,使其处于过激状态,就可以使同步电机向电网“送出”无功功率,减少电网输送给我矿的无功功率,从而提高了我矿的功率因数。异步电动机同步运行就是将异步电动机三相转子绕组适当连接并通入直流励磁电流,使其呈同步电动机运行状态,这就是“异步电动机同步化”。因而只要调节电机的直流励磁电流,使其呈过激状态,即可以向电网输出无功,从而达到提高低压网功率因数的目的。

2.4正确选择变压器容量提高运行效益

对于负载率比较低的变压器,一般采取“撤、换、并、停”等方法,使其负载率提高到最佳值,从而改善本企业电网的自然功率因数。如:对平均负荷小于30%的变压器宜从电网上断开,通过联络线提高负荷率。

通过以上一些提高加权平均功率因数和自然功率因数的叙述,或许我们已经对“功率因数”这个简单的电力术语有了更深的了解和认识。知道了功率因数的提高对电力企业的深远影响,下面我们将简单介绍对用电设备进行人工补偿的方式和对补偿容量的确定方法。

3.设计总结

以上是我浅谈功率因数对我矿供电A电网的影响以及提高功率因数所带来的经济效益和企业效益,介绍了影响功率因数的主要因素以及提高功率因数的一般方法,还阐述了如何确定无功功率的补偿容量及无功功率的三种人工补偿的具体方式,集中探讨了无功补偿技术对我矿的高、低压配电网的影响以及提高功率因数所带来的经济效益和企业效益,介绍了影响功率因数的主要因素和提高功率因数的方法,确保补偿技术经济、合理、安全可靠,达到节约电能的目的,为保证降低电网中的无功功率,提高功率因数,保证有功功率的充分利用,提高系统的供电效率和电压质量,减少线路损耗,降低配电线路的成本,节约电能,通常在高、低压供配电系统中装设电容器无功补偿装置。

4.设计心得体会

通过这次毕业设计论文让我重新对影响大红山供电的因数有了全新的认识,这也是我第一次独立从找资料到写论文,经历了不少艰辛,但收获同样巨大。通过这次设计培养了我独立工作与学习合理安排相互调节的能力,树立了对自己工作能力的信心,相信会对今后的工作生活有巨大而重要的影响。

参考文献:

[1]主编:孟祥忠.《现代供电技术》.清华大学出版社,2006年第一版,1-303页。

[2]王兆安,杨君,刘进军,王跃.《谐波控制和无功功率补偿》,机械工业出版社,2006年第二版,1-444页。

第8篇

教学目标 以往的教材都注重对电机的理论分析。而本课程教学则会从学校实际出发,以培养应用型人才为宗旨,着重从应用角度出发,分析直流电机、变压器、异步电机和微特电机等的基本结构、工作原理、电磁关系和运行特性,重点掌握各种电机的外特性,为掌握本专业和学习后续课程打下基础。

在专业课程体系中的定位 《电机应用技术》是浙江大学城市学院自动化专业的专业方向课程,该课程的学习将为后续《电气控制与PLC应用》《交直流调速技术》和毕业设计等课程环节建立必要的基础,是自动化专业承上启下的重要专业课程。

在专业能力培养中的定位 该课程定位于让学生树立以交直流电机为控制对象的完整的自动控制系统的概念,结合已学过的电路原理、数字电子技术基础、模拟电子技术基础、单片机、电力电子技术等课程,搭建以电机为控制对象的闭环控制系统,并完成对电机性能的调试和控制。

与核心课程群中其他课程在知识体系与能力培养上的整体设计 《电机应用技术》与自动化专业的其他核心课程之间的关系,如下图所示。在一个完整的闭环控制系统中,《计算机控制》《单片机》《PLC》是控制手段,《电力电子技术》《数电》《模电》提供电机的驱动电路,《电机应用技术》构成系统的控制对象,《运动控制技术》和《控制系统设计》提供系统的理论概念和分析方法,《自动控制理论》《系统建模与仿真》《智能控制》偏重原理性地介绍和理论的分析,主要定位培养学生的系统概念和理论分析能力。

基础知识要求 要求掌握直流电机的结构和基本工作原理、直流电动机的电力拖动、变压器基本工作原理和变压器组别判断、交流电机的结构和基本工作原理、三相异步电动机的电力拖动、同步电机、微特电机以及电动机的容量选择等。知识点:电力拖动系统的运动方程式;直流电机的工作原理、内部结构、用途、运行特性以及他励直流电机的起动、调速和制动;变压器的结构和工作原理、变压器空载运行和负载运行特性、变压器的接线组别判断;三相异步电动机的工作原理、内部结构、用途、工作特性、参数的测定、运行特性、三相异步电动机的起动、制动和调速问题;了解伺服电机、步进电机、测速发电机、无刷直流电动机的结构和基本工作原理。

能力培养要求 培养学生了解直流电机、变压器、交流电机的运行特性分析,同时结合已经学习过的电路原理、数字电子技术基础、模拟电子技术基础、单片机、电力电子技术等课程,搭建以电机为控制对象的闭环系统,树立闭环反馈系统的整体概念,完成对电机的性能分析和控制。技能点:能够搭建以电机为控制对象的闭环控制系统,并对电机性能进行分析,同时借助单片机等控制手段完成对电机的智能控制,能够独立完成闭环系统硬件搭建和调试,掌握PID等经典控制算法在实际系统中的应用。

实践教学要求 利用课外时间以三四人的小组为单位,搭建直流电机的闭环控制系统,要求完成硬件系统搭建、软件程序编写与调试以及报告的撰写。通过本次设计,增加学生对电机理论知识的感性认识,完成理论到实践的转换。

作业要求 随堂课后作业、课外引导性项目实践设计、网上在线测试。随堂与课堂讲授知识点匹配的作业要求跟随进度完成;课外引导性项目实践设计分6周完成,完成硬件系统搭建、软件程序编写与调试以及报告的撰写,实施分组进行。

考核要求 在理论考试中,加强基础、强调应用、注重引导、形式多样。充分利用试题的设计与收集,合理设计试题,着重考查学生对基本概念的理解掌握及应用所学知识的能力,淡化理论的推导和复杂的数学计算,着重考察学生综合应用电机及拖动知识的能力。调动学生积极性,结合教学互动,让学生参与到理论教学中来。开学初让学生组成学习小组,人数限定在2人或3人,指定组长,上一节课会将下节重要内容布置下去,每节课都预留部分时间,让学生对本节重点内容进行讲解。评价比例为:期末考试成绩占40%,平时成绩占60%,其中平时作业加到课率15%、课堂情况10%、平时测试15%、综合性设计(注重学生的个性化发展)20%。

第9篇

【关键词】节能;软启动;交流异步电机;轻载

1.引言

目前的电机节能技术主要是通过改进起动控制方式和运行中节能两部分进行节能,传统的起动方式主要有以下两种:(1)直接起动方式,也叫全压起动。起动时通过一些直接起动设备,将全部电源电压直接加到电动机的定子绕组,使电动机在额定电压下进行起动。直接起动的起动线路是最简单的,然而对于需要频繁起动的电动机,过大的起动电流将造成电动机的发热,影响电动机的寿命;同时电动机绕组在电动力的作用下,会发生变形,可能引起短路,进而烧毁电动机;另外过大的起动电流,会使线路压降增大,造成电网电压的显著下降,从而影响同一电网的其他设备的正常工作,有时甚至使它们停下来或无法带负载起动。(2)传统减压起动方式。减压起动是在起动时先降低定子绕组上的电压,起动后,再把电压恢复到额定值。常见的减压启动有以下四种:①星形-三角形(Y-)起动;②串电抗起动;③自耦变压器起动;④延边三角形起动。减压起动虽然可以减小起动电流,但是起动转矩也会同时减小。因此,减压起动方法一般只适用于轻载或空载情况下起动。

本文设计的节电器采用软起动的方式,弥补了传统起动方式的不足。本文采用六只晶闸管,两两反向并联,串联到电动机的三相电源线路上,系统发出起动指令后,起动器微机控制系统就会进行数据据运算,使得输出晶闸管发出触发信号,控制晶闸管的导通角,按照设定的模式,调节输出的电压,达到控制电动机起动的目的。由于在起动前设定了一个不对电网产生影响的起动电流,电流是缓慢增大至设定电流,故无冲击电流,所以对电网的影响很小小,并且降低了起动力矩的冲击。在节能的同时,增加电动机保护电路,在出现缺相、过载、短路等故障时可以及时切断电源,保护电动机。

2.系统整体结构

本设计的电路包括负载跟踪电路,故障检测电路,欠压补偿电路,电机控制电路和为各电路提供工作电源的直流电源电路等,如图1所示。

直流电源电路如图2所示,12V直流供电电路由变压器T1、二极管D1―D4组成的整流桥、12V稳压管DW1和滤波电解电容C1组成,变压器T1的两个输入端与交流输入电压两端连接,变压器T1的两个输出端连接整流桥的两个输入端,12V稳压管DW1连接在整流桥的两个输出端,滤波电解电容C1并联在12V稳压管DW1的两端。5V直流供电电路是在12V直流供电电路基础上采用三端稳压器SWDZ1产生。12V电源接三端稳压器SWDZ1输入端,滤波电解电容C2、C8接在三端稳压器SWDZ1和地之间。直流电源电路为后续电路提供低电压工作电源。

负载跟踪电路如图3所示,负载跟踪电路主要由单片机PIC12F675,电流互感器TL1,高频抑制电容C3,运算放大器LM358,微调电阻R46,节能指示灯LED1,设置指示灯LED2以及整流二极管D5,滤波电解电容C12组成。电流互感器T1初级的两个输入端连接在电机工作电流上,次级与运算放大器LM358的同相端、反相端分别连接,运算放大器LM358的输出放大的交流电压信号端连接整流二极管D5,在整流二极管D5的输出端连接滤波电解电容C3。电阻R46将放大后的直流电流转换成直流电压;运算放大器LM358被接成反相放大器,当电机开始工作时,感应的交流电压信号输入LM358进行放大,运算放大器LM358输出放大的交流电压信号,通过二极管D5整流,C3滤波将交流电压信号平均为直流电平信号,连接单片机PIC12F675的GP4端采样端口部分。在设置时,调节R46直至指示灯LED2亮,表示调整到理想位置;单片机采样判断若电机为轻载,则调节电机电压进行节能,此时节能指示灯LED1亮。

故障检测电路如图4所示,故障检测电路由单片机PIC12F675,电流互感器TL2、TL3、TL4,电压取样电阻R28、R29、R30,整流二极管D8、D9、D11,滤波电容C4、C6、C7和故障报警指示灯等组成。单片机PIC12F675的VCC端连接在5V三端稳压器SWDZ1的输出端,单片机PIC12F675的GP1、GP2、GP4端为电机三相交流电的感应直流电平信号采样输入端,该单片机使用内置的4M晶振,R43、C22串联接单片机GP3的上电复位端口,D13为故障报警指示灯,当电机正常运转时指示灯熄灭,出现缺相、过流等故障时指示灯亮。

欠压补偿电路如图5所示,电压互感器T2初级的两个输入端连接在电机工作电流上,次级与运算放大器UA741的同相端、反相端分别连接,运算放大器UA741输出放大的交流电压信号端连接整流二极管D10,在整流二极管D10的输出端连接滤波电解电容C5,然后连接到单片机PIC12F675的GP4端采样端口部分,当单片机经过采样、运算、判断之后发现电机电压低,欠压指示灯亮,同时控制进行电压补偿。电阻R36为释放电阻,用于放出电容C5中的电能。

电机控制电路如图6所示,电机控制电路由光电耦合器JP1―JP9,晶闸管Q1―Q3,满载指示灯D12,三极管Q4、Q5、Q6,延时电容C9、C13、C14,压敏电阻R8、R23、R24,限流电阻R31、R32、R2以及滤波电容C10、C15、C16等组成。光电耦合器信号单向传输,输入端与输出端完全实现了电气隔离,输出信号对输入端无影响,抗干扰能力强,工作稳定;晶闸管可以进行可控整流,当负载跟踪电路监测到电机负载发生变化时通过控制三极管Q4的通或断控制晶闸管,就可以改变电机电流。同样,故障检测电路检测到故障发生则断开三极管Q6,晶闸管停止工作,保证电机安全;欠压补偿电路发现电路欠压时,通过控制三极管Q5的通或断进行调节和补偿。电机轻载启动时,通过电容C9、C13、C14延时供电,光耦JP1、JP2不工作,晶闸管的导通角较小,电机降压启动;满载启动时,光耦JP1工作,不进行延时,电机全压启动。压敏电阻R8、R23、R24耐压值为470V,当电压过高时自动短路,具有抗浪涌的功能,有效保护晶闸管和电机。

3.系统软件流程

本文中系统对传统电动机控制方式的主要改进在于软启动和与之对应的软停机,同时在运行过程中实时监控电机负载状况,负载较小时降压运行,节省电能,负载较大时恢复全压运行。当有故障出现时,进行显示和系统自检,若检测到故障较严重即断电停机,保护电动机。系统由3片单片机配合工作,其整体软件流程图如图7所示。

4.系统测试

通过在10KW交流异步电动机上的实际调试和参数调整,此系统软硬件结合很好,软起动效果良好,能够有效跟踪电机负载状况并及时调整电压,保证电动机工作在最经济的状态下,同时,系统可以有效判断缺相、过载、短路等故障,出现故障时可以及时切断电源,保护电动机。

5.结语

本文中设计的交流异步电动机节电器采用六只晶闸管,两两反向并联,串联到电动机的三相电源线路上,通过软起动方式起动电动机,降低对电网的拖动和冲击,在电动机运行过程中实时跟踪负载状况并调整电压,实现经济运行,节省电能,并可以在电动机出现故障时保护电动机,延长电动机寿命,对使用交流异步电动机较多的工矿企业有实际意义。

参考文献

[1]梅玉伟,江胜利.三相异步电机的节能探讨[J].黑龙江科技信息.2012(26):29-30.

[2]唐小强,皇金锋,董锋斌.基于DSP的单相斩控式交流调压器的设计[J].电气技术,2011(3):10-12.

[3]段向军,兴志.异步电动机轻载节能控制系统开发[J].制造技术与机床,2011(1):134-137.

[4]刘建业,安曙明,付占稳,等.三相异步电动机智能化节能器控制策略与控制算法[J].电工技术杂志,2004(2):34-37.

[5]刘宏科.交流异步电机运行过程中的节能研究[D].河北科技大学硕士学位论文,2011.

相关文章