欢迎来到易发表网!

关于我们 期刊咨询 科普杂志

铁路统计论文优选九篇

时间:2022-01-30 17:24:59

引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇铁路统计论文范例。如需获取更多原创内容,可随时联系我们的客服老师。

铁路统计论文

第1篇

城际铁路通信系统承载的主要业务,有电路域数据话音业务和分组域数据业务。具体如表1所示。电路域数据话音业务对实时性要求较高,又要十分准确地传递信息,具有最高或者较高的优先级;分组域数据业务对实时性要求较低(与电路域业务相比),突发性强,有一定的数据量。本文将跨层设计应用于城际铁路无线通信系统中,根据业务类型的不同,在物理层和链路层进行AMC-HARQ跨层优化设计。AMC-HARQ跨层自适应传输的系统模型如图1所示。

物理层釆用自适应调制编码技术,根据业务类型分类,制定M种调制方式和编码方式。首先,接收端通过信道测量技术,估计出信道质量信息,并通过反馈信道,将信道质量信息反馈给发送端;然后,发送端根据接收到的信道质量,选择下次传输要使用的调制编码阶数。MAC层采用同步并行停等协议即HARQ协议。首先对各数据帧分别进行CRC编码,级联构成数据帧进入物理层。物理层使用FEC编码对整个数据帧进行编码,然后存入缓存用以进行重传。接收端经过译码、CRC校验后,回送确认帧。确认帧包含了帧确认号和重传比特向量。

帧确认号表示链路层上一个按序接收的帧的序号,重传比特向量比接收窗口长度(W)小1的比特向量,即长度为W-1。比特向量表示当前接收窗口的所有帧接收情况,如“1”表示需要重传,“0”表示接收成功。由于重传比特向量是接收窗口的历史移位记录,即使当前的确认帧因信道变化而丢失,确认帧也不应重发,因为后续的确认帧包含历史的接收记录。确认帧格式如图2所示。收发双方的链路层都缓存W个数据帧。发方维护发送缓存和重传列表,发送缓存中保存着当前发送窗口中未确认的帧,重传列表中保存了待重传的帧序号。收方的接收缓存保存当前接收窗口中乱序的数据帧,当接收到的帧有序后,链路层向。

2AMC-HARQ跨层自适应传输性能分析

本文使用Matlab仿真工具对基于AMC-HARQ跨层自适应传输系统进行仿真分析,模拟信道使用瑞利衰落信道模型,每个数据包中含信息位500bit,通过1/3码率的卷积码,仿真包数目每次1000个,结果取6次平均值,同时假设CRC能正确校验。在物理层,提供不调制、BPSK、QPSK、8PSK等4种传输模式,系统可以根据AMC中每种传输模式的瞬时误包率(PER)和接收到的SNR在各种物理层传输模式之间的关系,自适应地选择合适的调制编码方式。在链路层,要综合考虑时延、误包率和吞吐量,真正满足城际铁路不同业务的QoS要求。设置最大重传次数为N=0、1、2,测试在不同干扰条件下,不同的业务类型的成功率,见图3,图4,图5。可见,通过AMC-HARQ跨层自适应传输方案,当链路层重传1次,可以在5%干扰情况下实现95%的接收成功率;链路层重传2次,可以在5%干扰情况下实现99%的接收成功率,在10%干扰情况下实现94%以上的接收成功率。

第2篇

1.1PDH光纤通信在铁路通信系统中的应用

光纤通信技术之所以在铁路通信系统里发挥重要作用,是因为当前对光纤通信技术的划分十分精细,在各个铁路通信系统里都会使用相应的光纤通信技术,达到最理想的通信效果。PDH光纤通信作为十分重要和关键的方面,能有效清除铁路通信系统里存在的隐患以及漏洞,确保铁路通信系统的正常与稳定。但PDH存在标准不一、复用结构过于复杂以及网络管理功能较弱的问题,所以其难以得到长远、有效的发展。

1.2SDH光纤通信在铁路通信系统中的应用

SDH光纤通信在铁路通信系统里的使用解决了PDH光纤通信使用存在的问题,并在此基础上有所突破,让铁路通信系统更加稳定和流畅。借助SDH设备构成的具备自愈保护作用的环网形式,能在传输媒体主要信号中断的时候自动利用自愈网及时恢复正常的通信状态。相较于与PDH技术,SDH技术有四个显著优点:一是网络管理能力更强;二是比特率和接口标准均统一,让各个厂家设备间的互联成为了可能;三是提出“自愈网”这一新理论,能在传输媒体主要信号中断时及时恢复正常;四是运用字节复接技术,简化网络各个支路信号。鉴于SDH光纤通信技术有诸多优点,所以在铁路通信网发展规划里,已经明确提出了要着重发展基于同步数字系列(SDH)基础上的传送网。就以xx铁路为例,该铁路基于新敷设20芯光缆里的其中4芯光纤基础上,开设SDH2.5Gb/s(1+1)光同步传输系统为长途传输网,在铁路的相应经过点均设置了SDH2.5Gb/sADM设备,并借助622Mb/s光口同接入层传输设备相连,发挥上联和保护作用。此外,还借助2芯光纤开设了SDH622Mb/s(1+0)光同步传输系统,将其作为当地的中继网,并在铁路相应经过点以及新开设的各个中间站和线路新设置了SDH622Mb/s设备。

1.3DWDM光纤通信在铁路通信系统中的应用

DWDM光纤通信技术是借助单模光纤宽带与损耗低的特点,由多个波长构成载波,许可各个载波信道能同时在同一条光纤里传输,如此一来,在给定信息传输容量的情况西夏,就能降低所需光纤的总量。使用DWDM技术,单根光纤能传输的最大数据流量可以高达400Gb/s。DWDM技术最显著的优点就是其协议与传输速度是没有关联的,以DWDM技术为基础的网络可以使用IP协议、以太网协议、ATM等进行数据传输,每秒处理数据流量在100Mb~2.5Gb之间。也就是说,以DWDM技术为基础的网络能在同一个激光信道上以各种传输速度传输各种类型的数据流量。当前,在国内铁路通信网里DWDM技术得到了广泛应用,其中沪杭-浙赣铁路干线就是国内第一条使用DWDM光纤传输系统的铁路。此外,京九、武广等铁路的DWDM光纤传输系统也在建设与使用中。就拿京九铁路来说,京九铁路线使用的是具有开放性的DWDM系统和设备,能兼容各种工作波长以及厂商的SDH设备。波道数量为16,波道速率基础为每秒2.5Gb,借助京九线20芯光缆里的2芯G.652单模光纤,使用单纤单向传输的方式,也就是说相同波长在两个方向上都能多次使用,光接口满足ITU-TG.692协议的标准。

2结语

第3篇

当前的铁路计算机网络已经形成了铁路总公司、铁路局、基层站的三位一体的网络体系,基本上已经覆盖了整个的铁路网络。并且随着多个的管理信息系统的应用,也让铁路运输系统得到了有效的提升。现代物流的不断发展,对于铁路计算机内部的系统也提出了更高的要求,并且铁路的系统网络在运行的时候已经将互联网运用到铁路系统的运行中。但是随着多个管理系统以及互联网应用到铁路的管理系统中,随之而来的也伴有非常多的安全问题,给铁路计算机的网络安全带来了新的安全威胁。况且,铁路的计算机网络虽然比较健全,但是抵御危险的系统还不够完善。基于此种情况,就有必要对铁路计算机机的网络结构进行改善,让现在的铁路计算机网络系统能够克服传统的铁路系统所不能克服的危险,加强网络防御系统的构建,保证铁路计算机网络的安全。

2铁路计算机网络安全系统的应用

随着信息化社会的不断发展,铁路的运输以及市场营销和物流行业的发展,铁路计算机网络安全也在不断的提升网络安全程度,保证铁路信息网络的最大化安全。铁路计算机的网络安全,需要建立行业证书安全系统、访问控制系统、病毒防护系统等方面的安全系统,这样才能够有效的保证铁路计算机系统的安全性,让铁路计算机的网络系统发挥最大化的作用。通过完善铁路计算机网络安全,可以有效保证铁路计算机在最大化的安全下运行。

3铁路计算机网络安全的建设途径

3.1三网隔离

为了保证生产网、内部服务网、外部服务网的安全,实现三网互相物理隔离,不得进行三网直接连接。尤其生产网、内部服务网的运行计算机严禁上INTERNET。

3.2建立良好的铁路行业数字证书系统

证书的管理系统有利于保证网络和信息安全。铁路行业的数字证书系统能够有效的提高铁路信息系统的安全,让铁路信息系统在一个安全的环境下运行。证书系统加强了客户身份的认证机制,加强了访问者的信息安全,并且发生了不安全的问题还有可以追查的可能。行业数字证书在铁路信息系统中有效的防止了非法人员篡改铁路信息的不良行为,并且对访问者提供了强大的保护手段。

3.3建立安全的访问控制系统

控制系统可以针对不同的资源建立不同的访问控制系统,建立多层次的访问控制系统。控制访问系统构成了铁路计算机网络的必经之路,并且可以将不良的信息进行有效的隔离与阻断,确保铁路网络信息的安全性。建立有效的访问控制系统,可以保证网络访问的安全性和数据传输的安全性,最大限度的保障铁路计算机的信息安全。

3.4建立有效的病毒防护系统

有效的病毒防护系统就相当于杀毒软件存在于电脑中的作用一样,可以有效的防止病毒的入侵,控制进出铁路信息网的信息,保证信息的安全性。病毒的防护系统可以将进出铁路信息系统的信息进行检查,保证了铁路客户端的安全。病毒防护系统防止了不法人员企图通过病毒来入侵铁路信息网络系统,让铁路信息网络系统能够在安全的环境下运行,保证了信息的最大化安全性。定期的病毒查杀,可以保证铁路网络信息系统的安全,让铁路信息网络系统得到有效的控制,保证客户的资料不被侵犯,保证铁路计算机网络的正常运行。

3.5加强人才培养和培训的力度

第4篇

数据网、通信网和计算机网络基础平台共同组成了通信网络基础平台,其中涉及多种通信业务,一方面可以发挥传送外部业务系统信息的作用,另一方面还能够提供IP数据互联服务,这类服务在实效性较差的特点,但可以保障专业通道服务的安全性能。

铁路客运专线的通信网络基础平台中的通信网能够为实现汇聚层的高效连接,不会对接入、宽带共享进行限制,应用环形拓扑设计原理,使铁路两旁光纤形成环形,进一步增强网络的安全性;而数据网又可以划分为接入层、汇聚层及骨干层三个部分,接入层及汇聚层的路由器分别设置在铁路通信站、车站站房或枢纽位置,具有接入远端用户数据业务的及汇聚数据等功能[2]。

这些功能都以业务接入网的汇聚及专线透传性能为基础;域名、局域网、广域网及IP地址设计是计算机网络设计的关键要素,其中在铁路工作站通过综合布线方式构建的局域网,可以共享通信链路及网络,广域网可以实现客运专线调度所同铁路客运沿线基层站链路的连接。

二、铁路客运专线通信网络基础平台的通道要求与接口设计

在铁路客运专线中应用通信技术,在构建的通信网络平台基础上,可以将广域连接交换变为现实,使得低速数据传输的稳定性大大增强,同时还可以进行相应的视频监控和管理,加强多种业务之间的联系,使信息交换平台、网络互联更加高效化和安全化[4]。

针对网络系统中的可变宽业务、固定带宽业务,前者可以在基于SDH的多业务传送平台中借助传输通道完成,而后者需要将MSTP设备在原有基础上进一步增强调度及承载性能,GSM-R移动通信平台承载多种铁路业务应用系统,为运输调度指挥、设备维护及安全管理提供移动语音通信、短消息、电路域及分组域数据传输业务[5]。铁路客运专线通信网络基础平台的通道要求详见表1。

三、结语

第5篇

摘要:随着铁路列车向高速化与准高速化方向的迈进,为保证有效的人机控制和提高运输效率,要求建立一个功能完善的、技术构成先进的铁路通信网。主要介绍了在现实的铁路通信工程建设中,我们应该注意的问题。

一、铁路传输技术

1.1SDH传输技术

SDH是取代PDH的新数字传输网体制,主要针对光纤传输,是在SONET的标准基础上形成的。它把信号固定在帧结构中,复用后以一定的速率在光纤上传送。SDH是在电路层上对信号进行复用和上下。论文百事通当带着信号的光纤通ODF(光纤分配架)进入ADM时,信号必须通过O/E转换和设备上的支路卡才能下成2Mb/s的基本电信号,并经过通信电缆和DDF(数字配线架)接到用户接口或基站BTS(基站收发信机)。

1.2ATM网络传输技术

ATM是一种基于信元的交换和复用技术,即一种转换模式,在这一模式中信息被组织成信元。它采用固定长度的信元传输声音、数据和视频信号。每个信元有53个字节,开头的五个字节为信头,用以传输信元的地址和其他一些控制信息,后面的48个字节用以传输信息。利用标准长度的这种数据包,通过硬件实现数据转换,这比软件更快速、经济、便宜。同时,ATM工作速度有很大的伸缩性,在光缆上可以超过2.5Gbps。

在网络传输中,为了使多个用户共享高速线路,通常采用时分复用方式。时分复用方式又可分为同步传输模式和异步传输模式。在数字通信中通常采用同步传输模式,这种传输模式把时间划分为一个个相等的片段,成为时隙,一定量的时隙组成一个帧,一个信道在一个帧里占用一个时隙,一个用户占用一个或多个信道。而在异步传输模式中,各终端之间不存在共同的时间参考,各个时隙没有固定的占用者。在ATM中时隙有固定的长度而且比较短,一个时隙传输一个信元,每一个信元相当一个分组。各信道根据业务量的大小和排列规则来占用时隙,信息量大的信道占用的时隙多。

1.3MSTP传输技术

MSTP依托于SDH平台,可基于SDH多种线路速率实现,包括l55Mb/s、622Mb/S、2.5Gb/s和10Gb/s等。一方面,MSTP保留了SDH固有的交叉能力和传统的PDH业务接口与低速SDH业务接口,继续满足TDM业务的需求;另一方面,MSTP提供ATM处理、以太网透传、以太网二层交换、RPR处理、MPLS处理等功能来满足对数据业务的汇聚、梳理和整合的需求。

1.4RTKGPS网络传输技术

随着GPS无验潮测深技术应用的不断深入,传统电台数据链的传输模式已不能满足长距离RTK作业的需要。而网络RTK技术则是利用网络来取代UHF电台进行数据传输,它传输距离远,信号稳定,抗干扰性强,已成为数据链传输的新宠。

通用分组无线业务GPRS,是在GSM系统上发展出来的一种新的分组数据承载业务,GSM是一种使用拨号方式连接的电路交换数据传送方式。GPRS利用现有通信网的设备,通过在GSM网络上增加一些硬件和软件升级,形成一个新的网络逻辑实体。

1.5WDM传输技术

WDM(或DWDM)是在光纤上同时传输不同波长信号的技术。其主要过程是将各种波长的信号用光发射机发送后,复用在一根光纤上,在节点处再对耦合的信号进行解复用。WDM(或DWDM)系统在信号的上下上既可以使用ADM、DXC,也可以使用全光的OADM和0XC,WDM(或DWDM)是基于光层上的复用,它和SDH在电层上的复用有着很大的区别。同时,通过OADM进行光信号的直接上下,无需经过O/E转换,而拥有EDFA的WDM(或DWDM)可以进行较长距离的光传输而不需要光中继。

二、接入网技术

随着通信技术的快速发展,人们对铁路通信技术提出了更高的要求,铁路部门必须采用先进的、现代化的有线和无线通信的传输和接入方式,实现铁路通信网的升级,发挥铁路通信网在国民经济中的社会效益和经济效益。

接入网技术是铁路通信中一项关键技术,由于原有用户铜缆接入的普遍性和现在光纤技术的发展,接入网建设就必须考虑通信网络的现状与发展,这就决定了接入网技术的多样化。接入网从接入方式上可分为有线接入和无线接入。

2.1有线接入技术

(1)高速率数字用户环路技术。

通过2-3对双绞线双向对称传送基群数字速率信号,传送距离为3km-5km,上行速率与下行速率相等。通过回波抵消技术实现在一对双绞线上全双工传输,通过特定的编码和调制方式提高传输质量,用多线对并行传输,以降低每对双绞线上的传输速率,增加无中继传输距离。

(2)非对称数字用户环路技术。

它的上行速率和下行速率不相等,下行速率可高达(9-10)Mbit/s,上行速率只有数十或数百kbit/s,此技术适用于视频点播VOD系统;其高速下行信道可向家庭用户提供多路的数字图像信号及低速语音信号,而上行信道用于传送用户控制信号。ADSL的优势在于它几乎不需要对现有的对1双绞线作任何改动就可获得高传输速率。

(3)混合光纤同轴电缆接入技术。

它是基于有线电视系统CATV发展起来的。在有线电视中心与地区中心、地区中心与光节点之间采用光纤连接,光节点与用户设备之间采用同轴电缆连接。其主要是使用副载波调制,将CATV原有的单向传输系统改造成双向传输系统。HFC可以充分利用现有的CATV网络,进行少量投资,就可形成一个支持多种业务的宽带综合业务网。

(4)光纤用户环路技术。

以光纤为主要传输媒介,根据光纤向用户延伸的距离,可以分为FTTC(光纤到路边),FTTB(光纤到大楼),FTTH(光纤到家)等。FTTB是用户接入信息高速公路的最终理想目标,但根据现有通信发展的实际,FTTC、FTTB与铜缆相结合的用户接入,虽然是有过渡性质的折衷方案,但价格相对经济,并且在时机成熟时易扩展到FTTH,所以是现实并且可行的。

2.2无线接入技术

无线接入网是在接入网中部分或全部引人无线传输媒介,为用户提供固定终端业务和移动终端业务。无线接入可分为固定接入和移动接入两大类。其基本结构由控制器、基站和用户终端设备构成。应用技术主要包括微波1点多址技术、蜂窝技术和微蜂窝技术等。无线接人由于其灵活方便易于建设,目前已得到极大的重视。

集群通信系统是一种功能强大的专用移动通信系统,是通信与微处理机技术、程控交换技术、计算机网络技术紧密结合的产物。它集交换、控制、通信于一体,通过无线拨号的方式把一组信道自动最优地动态分配给系统内部用户,最大限度地利用系统资源和频率资源,降低系统内呼损,提高服务质量。由于它具有群呼、组呼、强插、强拆等功能,特别适合于调度指挥以及应急、抢险等场合,并较好地解决了通信频率合理分配的问题,因而倍受专业运营管理部门的青睐,被确定为现行铁路移动通信方式的首选类型。

三、结语

铁路通信网是保证行车安全、提高运输效率的有力工具,我国铁路引入现代通信技术还不久,对铁路通信工程建设还需要一段时间对其了解、分析和试验,对其中所要注意的问题,特别是技术问题要认真对待,只有这样才能为铁路通信现代化作出贡献。

参考文献:

[1]梁培超.浅析铁路通信工程应用接入网技术[J].科技资讯,2008.

第6篇

1.1数字无线电台应用

目前,铁路常用的数字无线电台主要有450MHz、400MHz数字无线电台。450MHz数字无线电台主要用于普速铁路列车无线调度通信、调度命令和无线车次号校核信息传送,400MHz数字无线电台主要用于站场常规无线通信。国家规定给铁路的450MHz、400MHz频点有限,需要各铁路局申请额外频点才能满足站场无线对讲业务需求。铁路总公司铁运函[2014]31号要求,货车列尾装置可采用GSM-R/400MHz双模列尾装置,在非GSM-R铁路区段,列尾无线通信使用400MHz频率;站场无线调车继续使用铁路专用的400MHz频段频率。在编组站,规划分配的400MHz专用频率资源不足,无法满足运用需求时,由各铁路局无线电主管部门负责向属地省级无线电管理部门申请400MHz额外的频率。对于当前使用450~470MHz频段频率用于铁路养护维修、生产组织、监控监测、公安保卫、应急保障等各类区域性普通无线电对讲通信业务,应结合更新改造退出450~470MHz频率。需要继续使用的业务,由铁路局统一向属地省级无线管理部门申请400MHz、150MHz、160MHz的频率。铁路总公司规定,对涉及车地人员之间相互通信的业务,为简化终端设备的配置,宜优先规划申请400MHz频率,以便与总公司规划的跨局通信业务频率工作在同一频段。站场所有业务采用无线电台通信,则会造成无线设备设置分散、数量多、无法集中维护和管理。而且,无线电台通信不适应高速率、高带宽的车地数据信息业务传送,不能满足未来站场的自动化、智能化、高带宽业务发展需求。

1.2数字集群无线通信技术应用

集群通信,即无线专用调度通信系统,早期,集群通信从“一对一”的对讲机形式、同频单工组网形式、异频双工组网形式以及进一步带选呼的系统,发展到多信道用户共享的调度系统,并在政府部门、警务、铁路、地铁、电力、民航等各行各业的指挥调度中发挥了重要作用。国际上数字集群调度系统主要有TETRA、iDEN和FHMA3种较为先进的技术体制,由于这3种技术体制构成的无线通信系统互通性不太理想,主要用于地铁、航空、公安等专网应用,未在铁路领域获得推广应用。近年来,随着数字移动无线电标准(DMR)制定,我国无线设备供货商根据数字移动无线电标准(DMR)为各企业用户提供DMR数字集群系统设备。DMR标准是完全公开的标准,国内拥有众多供应商支持,国内设备厂家生产的400MHz的DMR数字集群系统已在部分铁路站场获得应用。铁路使用的400MHz的DMR数字集群系统主要采用403~470MHz频段的专用频点,通过数字通道实现基站与IP控制服务器间的连接,控制台、运用服务器与IP控制服务器连接,构成站场无线通信平台,可提供同频单工或异频双工方式,根据站场业务特性要求进行业务与频点绑定,也可以各业务采用公共频点通信。400MHz的DMR数字集群无线通信系统主要功能是实现移动人员间点对点对讲功能,以及移动终端与固定终端或移动终端与移动终端间的点对点低速率数据信息传送。站场所有业务采用400MHz集群无线通信,其无线设备可以集中设置、减少设备数量、并能集中维护和管理,最适用于解决站场平面调车业务和无线对讲业务,以及综合自动化SAM系统车地信息传送。但是,不适应高速率、高带宽的车地数据信息业务传送,频点也受限于国家规定给铁路的400MHz频点,系统能提供的业务容量有限。

1.3GSM-R移动通信技术应用

GSM-R数字移动通信技术作为中国铁路列车无线通信主要采用的技术,铁路总公司已建立了一整套相关标准和规定。在中国高速铁路、客运专线、重载铁路、城际铁路或部分普速铁路均选择GSM-R数字移动通信技术构建铁路无线通信系统,主要用于列车无线调度语音通信,以及调度命令、车次号校核、列控信息、机车同步操控等数据信息传送。GSM-R系统包括移动交换子系统(SSS)、移动智能网子系统(IN)、通用分组无线业务子系统(GPRS)、无线子系统(BSS)、无线终端、运营与支撑子系统(OSS)等部分。其中,移动智能网子系统(IN)由铁路总公司统一设置2套,互为冗余,作为全路GSM-R系统共用。在铁路总公司各铁路局设置移动交换子系统(SSS)、通用分组无线业务子系统(GPRS)、运营与支撑子系统(OSS)各1套设备,根据用户需求在铁路沿线、车站、枢纽设置无线子系统(BSS),配置相应的无线终端设备。虽然,GSM-R数字移动通信系统可以实现铁路沿线和车站统一的综合无线通信系统平台,提供列车无线调度通信、站场常规无线通信语音和低速数据信息传送,设备能集中维护和管理。但是,由于GSM-R数字移动通信系统的频点有限,站场所有业务采用GSM-R的系统实现会造成信道占用很大,现有的频点不够使用,当站场靠近正线铁路或通过正线列车时,会对列车调度指挥系统产生影响。因此,GSM-R数字移动通信系统未被全面应用于站场常规无线通信业务。目前,只能适用于解决站场部分语音业务,以及低速率、时延要求不高的数据信息传送。

1.4WLAN无线局域网技术应用

WLAN无线局域网是指利用无线通信技术在一定的局部范围内建立的网络,属于计算机网络与无线通信技术相结合的产物。WLAN无线局域网技术使用户摆脱各种线路的束缚,可以随时随地接入网络。WLAN(Wi-Fi)无线通信可采用2.4GHz或者5.8GHz通信频段。在铁路领域,WLAN无线局域网技术主要应用在编组站综合自动化车地数据信息无线传送。采用2.4GHz频段和IEEE802.11g、IEEE802.11n标准的设备进行组网,实现综合自动化CIPS调机业务等信息传送需求。综合自动化WLAN无线局域网系统主要由WLAN终端设备、接入点设备(AP)、接入控制点设备(AC)、PORTAL服务器、RADIUS认证服务器、用户认证信息数据库、业务运营支撑系统等组成。由于WLAN无线局域网频点是公众频点,将会受到外界终端设备的干扰,列车遮挡物影响,以及缺乏站场无线对讲业务、无线调车等业务的终端设备支持。因此,WLAN无线局域网不适用于涉及行车安全的铁路调车业务,不适应未来站场业务发展需求。

1.5LTE移动通信技术应用

LTE移动通信技术是铁路下一代宽带无线通信技术发展方向,比较适用于宽带数据信息无线传输。LTE有TD-LTE与FD-LTE两种不同的制式,虽然总体上都满足大带宽的数据通信需求,但也存在很多不同。FD-LTE是在分离的两个对称频率信道上进行接收和发送,依靠频率来区分上下行链路。TD-LTE是用时间来分离接收和发送信道,接收和发送使用同一频率载波的不同时隙作为信道的承载,可以根据上下行的数据大小动态进行分配,对于频率信道的利用率更好。未来铁路移动通信采用TD-LTE的概率较大。目前,在朔黄铁路已引入TD-LTE集群技术应用于列车同步操控、列车无线调度通信系统构成;在部分铁路局站引入TD-LTE集群技术应用于站场货检、车号等无线对讲和作业信息传送;在郑州地铁引入TD-LTE集群技术用于车地间PIS信息和视频监控图像传送。工信部根据《中华人民共和国无线电频率划分规定》及我国频谱使用情况,确定使用1447~1467MHz频段建设时分双工(TDD)工作方式的宽带数字集群专网系统。而1785~1805MHz频段,则主要用于本地公众网接入,对确有需要的本地专网也可用于无线接入,具体频率指配和无线电台站管理工作,由各省、自治区、直辖市无线电管理机构负责。在同一地区给一具有无线接入业务经营权的公众网运营商或专网单位指配的频率宽带一般不超过5MHz。未来,在铁路领域,可以考虑申请使用1785~1805MHz频段的5MHz带宽用于站场无线通信业务。TD-LTE支持1.8G/1.4G/400M专用频段,覆盖增强算法、高增益定向天线、高终端发射功率,多方式天线组网。TD-LTE移动通信系统移动性好,支持350km/h,具有完善的QoS业务保障,可二次开发定制终端、调度台、无线通信模块等;可提供调度通信语音业务、低速率或高速率数据信息传送业务,是一个比较完善的综合无线通信系统解决方案。LTE移动通信技术在铁路调度通信业务中的应用正在研究开发阶段,在站场或编组站中的无线调车、无线对讲、综合自动化信息无线传送系统中尚未被应用开发。

2未来站场综合无线通信系统技术选择

站场或编组站作业范围比较独立,技术作业业务较多,综合上述几种无线通信技术应用介绍,以及应用于站场多种业务情况下的可适用性进行分析,结合无线通信技术发展,选择TD-LTE移动通信技术作为未来站场综合无线通信技术。TD-LTE移动通信技术已在铁路和地铁领域获得应用,具有技术实用性和先进性,系统安全可靠,具备集中监测和维护管理,能满足站场各类业务综合承载能力和未来各业务信息化、智能化发展需求。铁路局可以申请使用1785~1805MHz频段的5MHz带宽合法频点用于站场无线通信业务。站场无线通信使用TD-LTE数字集群系统,可将公网MME、HSS、S-GW以及P-GW等多个网元合并为一个网元eCN,使其小型化,降低核心网成本,可以有效的节约近期工程投资,为将来铁路正线引入LTE移动通信系统应用预留互联互通条件。TD-LTE数字集群通信系统主要由核心网节点、无线子系统和无线终端组成。其中,核心网节点设置TD-LTE核心网设备,核心网设备通过交换机等设备与各种业务应用服务器相连;无线子系统根据站场覆盖和业务需求在铁路站场内设置,无线子系统设备包括LTE基站设备BBU(BasebandUnit)和RRU(RadioRemoteUnit)设备;根据需要配置相应的无线终端。

3结束语

第7篇

某运站处于国家铁路运输网和城市运输网的枢纽位置,决定着该城市交通业的发展,是经济发展最迅速的区域。因此,该客运站的存在使得这一城市成为了经济发达、城市化水平高的国际化大都市,这便又反过来促进了运输业的发展。但这一现状的存在,也使得城市用地十分紧张,并且环境污染也比较严重。这便需要我们发展绿色、环保、占地面积小、运输效率高的铁路干线。

2客运专线通信技术介绍

现今,应用范围较广的数据通信网技术包括纯IP技术、IP/ATMoverSDH技术、纯ATM技术等。2.1纯ATM技术这一技术发展的基础是光纤网络的成熟,在光纤基础上设立的ATM数据网可以承载多项业务,并且能促进QOS的发展,在我国发展的也比较成熟。可是,这一技术的协议存在很大的缺点,比如IP传输效率过低、成本高、推广性差等。2.2纯IP技术这一技术是在前兆以太网路由器的基础上发展起来的,所建成的纯IP数据网,有着端口容量大、传输方便、协议便捷等多方面的优势,不过它所产生的QOS不够严谨,很多协议也不够科学,所以安全性低、管理难度也很高。2.3IP/ATMoverSDH技术这一技术是在MSTP的基础上发展进步的,借助光纤产生数据传输平台后,再制造出IP/ATM接口,并将其联系起来组成数据网,以完成数据的传输工作。IP/ATMoverSDH技术现今已经十分完善和健全,并且可调动性很强,管理水平也比较高,发展前景良好。

3客运专线通信技术的应用方案

3.1传输网的架构

在设立传输组网时,要将工作分为三层逐步开展,这三层是汇聚层、骨干层和接入层。这三者中的重点是骨干层,其中的多个传输核心节点主要是为了进行多业务处理以及大颗粒业务的调度工作,骨干层对于安全性和稳定性的要求是很高的,通常用10Gb/s的网络来完成传输工作。传输设施中存在很多核心节点和汇聚节点,它们可以完成业务的疏导以及聚集工作。接入层中的各个网络可以通过汇聚节点来聚集到一处,这样便能够使接入节点有运输通道。汇聚层必须具有很强的汇聚性能和处理交叉业务的功能,并且需要有很好的扩展性,通常将622Mb/s的网络作为传输设施。接入层包括多个业务节点,因此接入方式也十分多样,可以处理好多种业务,必须在接入层安装多种多样的接口。现今,网络传输业务的发展趋势是由语音传输转变为数字传输,因此,要结合数字传输的各项要求要对整体网络结构进行完善,并结合业务的流向以及流量来开展组织工作,不断提高传输水平。最重要的是,要增加大颗粒组织管理的比重,实现高速度下的通道连接工作。需跨环的业务多或者是调度大时,通常选择多光口的SDH设施作为节点。

3.2汇聚层的组网设计

顾名思义,汇聚层的组成就是汇聚节点,它主要是梳理、聚集该范围中的各种业务,以增强业务的调度能力,并且该层次能够避免接入点直接引入核心层而产生的主干光纤消耗、跨度增大等问题。建设汇聚层的网络是多采取分波工艺、RPR以及MSTP工艺,尤其是MSTP工艺的应用,能够促进TDM性能的发挥,并且使数据业务传输的效率提高,保证宽带良好的工作性能。借助MSTP的汇聚以及交换性能,能够减少汇聚节点的数量,降低建设成本。今后铁路的发展进步中,将广泛地应用TDM业务,为了顺应这一发展趋势,我们便会将MSTP作为重要工作传输工艺。在处理IP数据业务时,便会应用到RPR技术,这样能够使数据业务的传输效率显著提高,并且能够产生不同级别的业务类型,能够更好地满足用户的多样化要求。

3.3骨干层的组网设计

骨干层网络的组成为核心节点,它的功能是联系铁路枢纽区域以及容量较大的中继电路,所以要求其工作时有很高的稳定性,并且对于安全等级的要求也很高。在建设骨干层时我们大多使用MSTP或者是波分工艺,但是核心设施的节点不多时,它的收敛度便会增强,这时便可应用40G设施来完成10G大颗粒业务的传输。我国的SDH设施起步较早,在这一前提下,MSTP的建设成本也大大减小,并且有着很完善的网络宽带和网络保护功能,可承载POS端口、IP端口和传统的SDH端口。若地区的业务量很多,则使用波分技术建设骨干层较为适宜。这种技术能够把传输层的骨干层和组网IP宽带聚集到一个波分物理平台内,然后借助这个平台内的波长完成MSTP业务、SDH业务、IP宽带业务的承载工作。这样的工作方式不仅能够最大化地利用资源,还能提升宽带的效率。另外,波分技术能够产生一个具有保护作用的波长通道,并借助QOS来完成业务的传输,保证IP网络的安全工作。使用波分技术构件的骨干层可以保证以后物理平台进化工作的顺利进行,避免各种融合问题的产生。骨干层网络的分布式控制方式,可以使用OXC技术完成组网的工作。但这一业务还不够完善,所以要不断提高其工作质量。结合该客运站的运行状况,分别在A、B、C三个区域各设置一套10G传输设备,共同构成两个STM-641+1自愈性链性传输系统。在建设骨干层的传输系统时要用到OPtixOSN7500设施,它不仅有着MSTP技术的优势,还能够和之前的MSTP、SDH网络很好地融合,所以在现今的工作过程中应用广泛。

3.4接入层的组网设计

建设接入层时使用的传输设施是OPTIXOSN2000,这一设施属于较先进的传输设施,有着噪音小、耗能小、环境友好等许多优势,能够为PDH、SDH、Ethernet等设施的工作提供保障,且该设施具备5Gbit/s的低阶交叉能力、10Gbit/s的高阶交叉能力以及4Gbit/s(26*26VC-4)的接入能力。在本客运系统的牵引变电所、通信基站、AT所、分区所、信号中继站等节点均安装了健全的622Mb/s的传输设备,组成了18个STM-4环形传输系统,且相邻信号中继站及站间奇数基站都设立了STM-4复用段保护环,在牵引变电所、AT所、分区所和偶数基站之间建立了STM-4复用段保护环。

4结语

第8篇

本文作者:贺伟工作单位:中铁电气化局集团第三工程有限公司

施工技术要点的把握是工程管理人员开展相关质量控制工作、体现出质量控制工作的系统性的前提。而就铁路通信工程而言,铁路通信工程的施工要点主要就集中在光缆线路和电缆线路两类线路之间。光缆线路和电缆线路的施工是贯通着整个铁路通信工程一项重要工作,也是整个铁路通信系统的最主要安全保障。如何更好地控制电缆线路和光缆线路的施工,已经成为了现今每一个铁路通信工程工程管理人员都应考虑的一个问题了。

光缆线路埋设方式的选择光缆线路的埋设工作是整个光缆线路施工的最主要工作,同时,由于光缆线路贯通着整个铁路通信工程的,所以其埋设的方式的选择往往也会影响到整个工程的正常开展。因此,施工人员在进行线路埋设的过程中应该尽量避免线路的重叠,充分保证整个工程开展的合理搭配。这就要求施工设计书的设计人员在对光缆线路进行设计的过程中,必须有一个全局的掌控能力和相关的施工经验,并召集施工过程中各环节各工种的负责人开展相关的施工座谈会,对光缆线路的埋设施工过程中所可能影响到的施工问题进行全方位地解析,并根据各施工负责人的施工建议进行整合,充分保证整个施工项目的顺利开展。

严格控制线路埋设施工在埋设方式确定、相应设计书出台后,施工人员则应严格按照相应设计书进行施工,在读通读懂设计书的前提下对施工各个环节的要点进行全方位的控制。从根本上规范化施工过程,让施工设计落到实处,避免因为施工的不当而造成预计之外的施工事故发生。

实际化线路开挖回填工作对于光缆线路的开挖和回填,应尽量依照相关的施工设计要求进行开挖回填,但在这过程中,施工人员也应对施工现场的地质环境进行评估,并对设计书所要求的开挖回填工作进行客观合理的可行性分析,如发现不可行,则应立即上报,确保整个施工更具实效。选择合适工艺通信光缆接续及引入光缆纤芯接续可采用自动熔接机进行电弧熔接工艺,光纤接头处用加强热缩管保护,外护套接续采用光缆接头盒接续,光缆接续必须认真执行操作工艺的要求。接续环境的控制光纤接续的环境必须整洁,接续作业过程中应特别注意防尘、防潮和防震。光缆各连接部位及工具、材料应保持清洁,确保接续质量和密封效果;15)进行光纤接续时,应进行双向监测,双向平均接续衰耗值合格后,才允许按工艺要求收容于接头盒内,接头盒安装完毕后,应进行双向复测,无变化后,才能按要求放置保护。

第9篇

本文作者:周剑工作单位:河北沙蔚铁路有限责任公司

雷电浪涌破坏雷电浪涌是目前我国信号设备遭受的雷电灾害中最为常见也是最为主要的一种雷电破坏形式,它是由于信号设备中的微电子设备因遭受到雷电侵扰而产生的通讯线路和电源中电流浪涌的不断应用。冲击波破坏冲击波破坏主要指的是雷电产生的冲击波侵入到信号设备的高压线、供电系统、变压器等设备所造成的设备损害。由于雷电冲击波的电压非常大,远远超出信号系统设备的承受极限,因此它对信号设备的破坏也是十分彻底和致命的。

在实际的铁路信号设备的防雷施工操作中,管理作业人员可以通过采取以下几个方面的措施,来加强信号设备的系统防雷性能和水平,从而确保信号系统的正常运行。室外信号设备的防雷控制对铁路室外信号设备的防雷控制措施,主要包括以下几个方面:安装避雷装置铁路信号管理作业人员要在室外信号系统的设备密集区域根据实际需要安装避雷装置(如避雷针、避雷网、避雷线等),以防止信号设备、轨道、电缆等遭受到雷电的直接打击。在安装避雷装置时,一定要选择合适、恰当的位置,其地线的设置一定要同站场内的电缆、钢轨保持一定的安全距离,通常不能小于20m,以避免避雷装置引雷后引发的雷电连锁感应现象。选用屏蔽电缆在连接室外信号系统设备时,要采用屏蔽电缆进行连接。同时,在施工作业时要保证电缆屏蔽接地的良好性。保证接地良好在进行铁路室外信号系统的设备安装时,通常将其设备放置在与大地连接的金属(最好是铁质)盒、箱中,同时保证金属盒、箱的接地须良好,以避免室外信号系统设备遭受到雷电电磁脉冲的屏蔽破坏。室内信号设备的防雷控制铁路室内信号设备的防雷控制主要指的是对建筑物内部的弱电设备进行过电压的防护。其措施主要包括合理布线、保护隔离、屏蔽、等电位连接、设置过电压的保护装置等等。具体的操作措施如下:(1)室内的数据传输线采用光纤电缆作为连接各终端供电系统的电路介质,以确保测控技术和数据通信的接口电路流、灵敏、安全。(2)等电位连接。在发生雷击时,雷电的强大电流会通过接地体和引下线泄入大地,并在其附近形成放射状的电位分布,引起入侵电压对附近连接电子设备的高压电位反击破坏。这就需要设置等电位连接来彻底消除雷电引起的电位差。等电位连接的主要范围包括对信号线、电源线、接地线和金属管道等的过压保护。在进行各个局部的等电位连接设置时,其连接棒必须保持各分棒之间的相互连接,以及与主连接棒的相连。同时,还要确保电位的均衡连接,使雷电的电流通过低阻抗通道快速、直接的泄入大地,减轻放射电位对附近信号设备造成的影响。(3)屏蔽干扰。由于造成信号系统产生浪涌电压的主要原因是感应雷对信号设备的静电干扰、电磁干扰、电干扰、无线电干扰,因此要对铁路信号系统的设备进行防干扰屏蔽措施。通常情况下,是在在信号线路的入口处安装电流保护装置,并且其在安装的方式是串联连接,从而对信号系统的浪涌电压所产生的过电流起到有效的抑制作用,进而防止铁路信号系统中的微电子设备因过电流、过电压而产生的设备损坏。(4)设置电压保护器。由于雷电侵害的路线大都是通过弱电设备的电源线路入侵的,因此,铁路信号相关管理人员可以在室内电子核心机柜的电源入口处以及其他信号设备的电源线路的入口处安装过电压的保护装置,来抑制因浪涌电压而造成的信号系统中微电子设备的损坏。(5)设置高压避雷装置。铁路信号系统的相关管理人员要在高压电力传输信号相关线路上设置专门的高压避雷装置,以保证其高压信号输电线路系统的安全、稳定传输。

在新时期的社会发展背景下,随着我国国民经济和现代科技水平的高速进步,铁路行业信号系统设备的电子化、信息化程度也在大幅度的提升,这跟信号系统设备的防雷工作提出了新的更高程度的要求和挑战。铁路相关管理负责人要全面的了解和掌握铁路信号系统中雷电灾害的形式,通过各种方法提高信号设备的防雷水平和能力,从而确保铁路信号系统运行的准确、高效、安全、可靠

相关文章
相关期刊