欢迎来到易发表网!

关于我们 期刊咨询 科普杂志

化学论文优选九篇

时间:2022-06-02 03:11:27

引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇化学论文范例。如需获取更多原创内容,可随时联系我们的客服老师。

化学论文

第1篇

教学研究以提高教学效果和人才培养质量、实现人才培养目标为根本目的,其研究内容涉及教学的各个方面和各个环节(参见表1)。教学研究既然是“研究”,必然带有研究的属性,且在研究方法上与科学研究并无二致:都需要以问题为导向、以目标为导向,并注重先进性、创新性、实证性、示范性和发展性;当然目的性和系统性也是高水平研究的必然要求。进行科学研究,我们必须首先通过观察自然和社会、文献调研、实验研究等发现问题,继而提出解决问题的思路和方法,再进行实验研究或者验证,通过分析实验事实和数据,归纳、推理、提升以得出规律,再用规律进行预测,不断修正和发展规律使之成为理论和成型的方法。教学研究也严格遵循这个程序。研究者首先应当了解和分析世界、我国、地方、高校、课程直至某个内容在教学方面还存在哪些需要解决的问题(问题导向和目的性),通过文献调研了解国内外对该问题开展研究的最新进展,确定哪些作法和结果可资借鉴,哪些还需进一步改进(先进性),进而提出解决这些问题的新见解和新方法(创新性),而后设计系统(系统性)、具体的措施,通过对照实验、平行实验、案例分析等方法得出有意义且可靠的数据(实证性),而后对结果进行统计、分析、归纳,得出结论,形成可资他人借鉴的一般规律(示范性),而后对结果进行评价和反思并指出未来持续改进的方向(发展性)。找不出问题,抓不住关键,泛泛而谈,难以深入,写成流水账式的工作总结,是很多教学研究论文的通病,是对教学研究的研究属性认识不足导致的。或者只满足于自己一点粗浅和零星的探索和经验,不了解、不关心国内外进展,不进行深入的思考和系统的设计,论文自然先进性不强,并容易失之肤浅。同样,片面强调独特性而不考虑一般性,就会缺乏示范和推广价值,这无疑会使研究的意义大打折扣。

2当前教学研究的重点

当前,我国的高等化学教育正在进入一个转型升级的关键期,这为我国大学化学教学研究提供了难得的历史机遇。可以预见,未来的5~10年是我国高等化学教学改革不断深入、成果大量涌现的黄金时期。现将当前教学研究比较关注的领域及其对应的《大学化学》栏目归纳于表1中,并列举部分优秀论文作为示例。表1所列研究内容既有宏观、战略性层面的,也有微观、具体的,相关研究只是问题面向不同,并无高低之分,无论哪个领域都可以产生高水平的研究成果。但由于实证性和示范性等的限制,在指明研究者之外的人员虽然可以开展相关研究,但其研究的权威性、指导性往往不足。从1999年以来的大规模扩招及与之相伴的高校合并、校区扩建、专科升本科、单科变综合等大规模调整和高速发展,导致我国高等教育定位困难,人才培养定位和目标不明确,人才培养与社会需求不相适应,毕业生素质能力和就业面向趋同,人才培养出现结构性问题,加剧了毕业生的就业问题。2012年之后,我国的高等教育开始进入控制规模、内涵发展、质量发展、特色发展的新阶段。如何明确学校和专业的办学定位,坚持分类发展、特色发展,明确培养国际竞争人才、基础研究人才、应用研究人才、应用人才甚至技能人才的培养目标,实现培养规格的具体化、特色化,突出学科特色、地域特色、行业特色[3],建立与培养目标相适应的培养模式,将具体明确的毕业要求落实到培养方案的整体设计、每一门课程和每一堂课的每个环节,并建立相应的质量标准和质量监控保障机制,切实保障人才培养目标的落实,造就适应国家、地区、行业、学科发展需要的多样化人才,是今后教学改革必须优先解决的关键性、根本性问题,值得所有高校认真思考和探索,形成各具特色的做法和经验[5-9]。新办专业评估为合格评估,主要着眼于基本办学条件和办学投入是否符合人才培养的最低需要。合格专业的评估则为审核评估,主要致力于建设自我质量监督保障机制和持续改进机制,以确保培养目标的实现。在明确人才培养目标、培养规格和培养模式的前提下,如何通过培养方案、课程体系、教学内容和教学方法的设计来实现人才培养目标,需要制订各个环节的质量标准并建立有效的监督、反馈和改进机制。这种理念和做法在我国高校化学类专业教学中尚未得到具体落实,是学校和院系今后必须着力解决的重大问题。教师是教学内容、教学方法、教学效果评价等研究的主体。就当前而言,改变教学理念,将教学从“以教师为中心”(teacher-centeredteaching)转向“以学生为中心”(student-centeredteaching),将教学评价从“基于投入”(input-basedevaluation)转向“基于产出”(OBE),积极探索和采用新理念、新方法、新技术开展高效教学,是我国化学教学改革的重点也是难点。从教学方法看,除了老师熟知、在目前的教学研究论文中涉及较多的基于问题的教学(problem-basedlearning,PBL)、案例教学(case-basedteach-ing)、探究式教学(inquiryteaching)之外,新的高效教学方法还包括团队学习(team-basedlearning)、混合式学习(blendedlearning)、翻转课堂(flippedclass)、基于课堂互动系统的教学[12,15]、真实环境教学(realworldlearning)[13]、基于游戏的教学[27]等。另外,应该积极开展课堂教学目标和教学过程设计和考核,例如采用BOPPPS课堂设计模式,采用三明治教学法[28]等。采用这些方法并结合OBE理念的指导,选择多个产出指标进行效益评价,就容易形成高水平的研究成果,并指导我们的教学向更高水平、更高效益转变。

3《大学化学》论文撰写及投稿注意事项

3.1《大学化学》栏目介绍《大学化学》刊载的研究内容大致分为4类[29]:(1)当前化学及相关学科前沿领域的国内外研究现状、最新进展以及发展趋势,主要发表在“今日化学”、“知识介绍”栏目。要求内容新颖、深入浅出、可读性强,既可用来丰富课堂教学内容,又便于学生及时了解当今化学科学发展的情况,激发学生学习化学的兴趣。编辑部每隔一段时间会将优秀论文结集,由北京大学出版社和高等教育出版社出版,供教师和学生作为教学和学习的参考。迄今已于1996年、2001年、2006年和2012年先后出版4集。(2)教育教学改革的方针政策、指导思想、培养目标、培养模式、课程设置、教学方案等,主要发表在“教学研究与改革”栏目。内容既包括改革思考与宏观设计,也包括具体做法和成功经验,具有重要的指导和借鉴意义,是各院(系)基层领导最关心的栏目之一。(3)有关教学内容、教学方法、学习方法、效果评价等改革的研究心得、教学和学习体会、问题讨论等,主要发表在“师生笔谈”、“自学之友”等栏目。(4)对现有实验内容的改进、新实验的设计、实验室管理的新做法、新经验等,主要发表在“化学实验”栏目。随着化学教育教学改革的深入发展,《大学化学》也会与时俱进,灵活调整栏目设置,及时刊登具有重要导向性和借鉴意义的其他成果,以满足广大教师交流和学习的需要。

3.2《大学化学》论文撰写注意事项在撰写教学研究论文时,应首先明确所要解决的问题,通过引用重要文献介绍国内外相关研究的进展及其不足(应特别关注《大学化学》之前发表的相关研究),阐明相关研究的目的和意义。论证过程中一定要突出问题、把握关键,避免面面俱到、内容空泛,切忌写成流水账式的工作总结。在撰写“化学实验”栏目稿件时,需要注意两点:如果是对经典实验的改进,要首先明确改进后是否更加有利于对学生的培养,而不仅仅追求操作更方便,实验步骤更简单等;如果是推荐新教学实验,则必须经过2个学期以上学生实际操作的验证,保证实验方案的可靠性和可行性,并详细说明实验目的、实验原理、实验仪器及药品、实验步骤、结果与讨论、实验效果等。此外,还应特别关注实际操作中的安全性问题。此外,还要注意以下几点:(1)重视文献引用。按要求注明出处,尊重他人知识产权。在评述前人工作时应全面、客观、公正,不应贬低或者全面否定前人的做法。(2)以严谨认真的态度撰写论文。应熟读《大学化学》来稿须知。注意做到条理清晰、语言凝练、数据准确、图表规范;正确使用量和单位的标准化形式;参考文献的著录应格式统一并符合期刊要求。(3)英文题目及摘要的撰写要规范。要做到用词准确,避免语法错误。可请教英文水平高的同事帮助。

3.3投稿注意事项论文完成后,可登录《大学化学》网站,点击“在线投稿”,完成“作者注册”后即可进入作者工作界面,选择“向导式投稿”模式,认真阅读注意事项后按照提示即可完成投稿。

4小结

第2篇

1.1选课学生的学习状态及存在问题分析

精细化学品化学是我校应化学生在大四第一学期开设的课程。在开课之前我们做过调查,提出三个问题让学生回答:一是,你为什么要选这门课?二是,你了解精细化学品吗?三是,你选这门课主要是想了解那些问题?学生在思考后,对于第一个问题,大部分同学的主要目的是为了拿学分,有的同学直接就说没有其他的科目可选而只能选该课,而对后两个问题回答的非常模糊,说不出所以然,只有个别同学表示虽然不能讲清精细化学品的概念,隐约认为和我们的生活非常相关,想通过精细化学品的学习来掌握一些配方技术。通过这几个问题的回答,可以看出虽然是学生自己选的课但是大部分学生学习目的不是十分明确,这就需要教师加以正确的引导。开课过程中,首先在绪论中主要讲授了精细化学品的定义,特点,作用,主要内容,发展趋势,通过这几方面问题的阐述,主要使同学解决了调查中的前两个疑惑。绪论讲授过程中引用大量的例子和数据,如涉及到洗涤剂、化妆品等日用化学品及一些前沿技术的应用如DNA测序用到的染料、液晶染料、防火涂料、变色龙涂料等功能性染料和涂料时,学生反响很大,表现出极大的兴趣。而随着课程的进行,具体到每一章节需要掌握理论性非常强的枯燥知识,如解释高性能颜料化合物结构和性能之间的联系时,学生的情绪明显的低落下来。我们又做了一次调查,就是让大家谈一下上课的感受,主要是指授课内容方面,很多同学表示理论的东西太枯燥,仅靠授课教师的叙述引不起很大的兴趣;另外,存在着个别学生请假或逃课的现象。我们分析造成这种现象的原因,一是大四的学生面临考研和就业的压力,有些同学认为逃课无关紧要,只要最后能拿到学分就行;二是,以教师为中心的注入式教学模式很难提起学生的学习热情。老师辛辛苦苦查资料、备课,学生没有接受多少。这就促使我们对课程上课的形式和内容作出适当调整。

1.2课程设置时间探索

由于精细化工产品的范围十分广泛,目前很难明确专业的学科领域,但从它们的研制、生产、应用三个方面来考虑,精细化工的基础是应用化学,其内容主要涉及无机化学、有机化学、分析化学以及物理化学的基本知识。而这四大化学我校应化专业学生在三年级的上半年已经全部开完。鉴于大四学生面临着考研的压力以及考研时方向的选择,可考虑将精细化学品课程安调整在大三第二学期开课开课。提前一个学期的开课为同学考研方向的选择提供了一定的参考;避免了就业压力的干扰,使学生可以安心学习,增加专业知识,以便就业时为自己提供就业便利。

1.3课程设置内容探索

精细化学品这门课涉及的内容非常之多,既包括染(颜)料、涂料、农药、表面活性剂、日用化学品、食品添加剂、饲料添加剂、水处理剂、塑料助剂、皮革化学品、纸用化学品等传统的精细化工产品,又包括电子化学品、医疗用化学品、IT行业用化学品等新型的精细化学品。高级“应用型”地方性人才是我校应用化学专业的人才培养目标。因此,学生基本理论、基本技能的培养是最重要,也是最基本的一个原则。精细化工课程做为应用化学专业的一门选修课,在教学的过程中就应该把握这一基本原则,把重点放在提高和加强学生的基本理论、基本知识及基本能力的培养上,着眼于学科发展来认识与理解精细化学品,这是我们的基本出发点,并以此来指导精细化学品化学课程内容的筛选,彰显课程的时代感、凸现课程的作用与地位。因此,在教学过程中我们从制定大纲开始,全面、准确的把握好知识结构和内容,认真备课,多了解精细化工行业的一些最新资讯。力求做到既全面涵盖,又突出重点;既有必要的基本理论,又有丰富的实用技能。针对精细化工课程内容多,知识涵盖面广,而学时少的特点,我们决定采取:

1.3.1在选用有关教材时,仍继续保留染料、颜料、荧光增白剂、涂料、香料、化妆品和农药等传统章节,光谱增感染料和彩色显影成色剂暂时舍去不讲。在教学过程中,对相关产品的分类、结构性质、合成方法、应用、发展现状及趋势等,都必须作尽可能全面、细致的讲授。

1.3.2对于研究性较强的高新技术知识,如感光材料;纳米材料;功能高分子材料;防水、防污、防火等功能性涂料。这些知识虽然专业性、前沿性较强,但针对我们的培养目标和地方特色,作为了解性知识较为适宜。在教学手段和方法上,由于存在着教材滞后问题。要想使学生真正达到学以致用的目的,了解精细化学品化学的前沿和发展方向,让学生参与课堂内容的讲授和进行课堂讨论,如讲到功能性染料和功能性涂料时,我们将以往由教师查新后再整理讲授的方式,改为让学生自己选题查新写论文上台讲课,然后当场解答老师和其他同学提出的相关问题,最后由老师点评小结。论文作业的成绩是根据学生的论文、讲课和回答问题的质量来综合评定。一开始同学不是很适应,主动站到讲台上的很少而且很紧张,在授课教师的一再启发和鼓励下,同学们积极踊跃发言,由于是“同学讲,同学听”充分调动了学生的积极性。在答辩时,气氛活跃,课堂效果生动。大多数同学都欢迎这种讲课作业,认为不仅掌握了最新专业知识,而且对自己的表达能力、论文写作能力、知识的运用能力的提高颇有好处。如,很多同学之前根本不知道文献引用的顺序以及如何在适当的位置标注文献出处,经过这次亲自整理论文才把这些问题一一搞清楚。

1.3.3对于与专业基础课无机、有机、分析的有关内容,如光与色的关系,偶氮类染料制备中的重氮化和偶合反应等。这些是理解和掌握染料知识的基础,又都是学生学过的课程,教学过程中,可采用“信手拈来”的方式,同时也给学生“温故知新”的效果。

1.3.4对于那些和重点知识密切相关,同学较熟悉且又十分容易掌握的内容,如涂料的分类、用途、基本组成等,在经过染料、荧光增白剂、有机颜料的示范和讲授的基础上,给同学提纲采取让学生去图书馆查阅相关资料,学生自学和思考。下次课时,将这些问题作为课堂讨论的话题,学生分组交换意见后,各组可派一位同学上台论述。这种互动方法既可以提高学生的自学能力,又可以让学生在学习的过程中学会团队合作,增加自信心,提高综合素质。

1.4改变课程考试方式,培养学生综合素质

传统考试以闭卷为主,主要考查学生对课程基本知识的记忆和理解。而精细化学品的学习要求除了一些基本知识的掌握外,还有对一些学科前沿的理解。既然课程改革要兼顾知识传授和能力素质培养,那么成绩的考核就不能只看闭卷考试的卷面成绩,而应有多种形式的考核。因此,我们的做法是平时成绩占20%,期末闭卷考试成绩占40%,论文成绩占40%。考试方式的调整,克服了闭卷考试的某些局限,使学生不仅仅为考试而被动学习,能够在主动愉快的氛围中学好这门课程。

2结束语

第3篇

化学教育论文2400字(一):绿色化学教育理念在高中化学实验教学中的渗透分析论文

摘要:现如今,随着科学技术的快速发展,人们的生活水平得到改善,环境问题也随之而来,因此,近些年,我国对绿色化学的关注度越来越高。在教育层面,化学学科属于科学性学科,其化学实验教学的绿色、无污染,对于保护自然环境具有重要意义。基于此,本文从绿色化学的教育理念出发,致力于将该理念完全渗透在整个化学教学过程中,尤其在实验环节,实现真正意义上的绿色教学。

关键词:绿色化学;高中化学;实验教学;渗透研究

在现代社会背景下,提高化学教学质量,对于推动教育事业的发展具有重要意义。我们都知道化学科目包含两个部分,一部分理论,一部分实验,相比较而言,实验部分才是该学科的主要部分,同时也是教学中的重、难点部分,而化学试剂、设备、实验过程的无污染操作,对于学生的身体健康和环境都是一种保护,因此,将绿色化学的教学理念渗透在实验教学中的各个环节,是很有必要的。

1立足教材内容,挖掘绿色化学资源,增强绿色化学观念

对于課本内容,大多是以化工实验为例,因此,对于绿色化学的理念也可从这些方面入手。例如:

1.1节省资源:我们都知道氨气在我们的生活中很常见,尤其存在于厕所中的每个角落,因此,在氨气的制取和使用过程中,可以通过这方面的循环操作,来达到节省资源的效果;

2.1尾气处理:实验过程中最让人头疼的便是对尾气的处理了,无论是钢铁的冶炼还是化学气体的制取,都需要对实验尾部进行处理,因此,对这方面内容可以在实验后期,安装一个吸收装置,对物品进行集中处理,将绿色化学理念践行到底。

2在化学实验教学过程中进行绿色化学教育

2.1改进实验方案和装置,优化实验效果

在条件允许的情况下,对实验装置和方案进行改进,能够取得意想不到的教学效果,同时能够减少反应物质对环境的污染。

例如,《SO2的性质》。对于这部分内容,课本上所讲述的、关于该气体的制取方法是通过亚硫酸钠固体与浓硫酸反应得到的。在实际操作过程中,可能会因为实验人员较多,造成气体制取过量的情况发生,且这类气体在流入空气中后,会对环境造成污染。同时,简陋的实验设备和过程,也不利于实验现象的观察,因此,对该实验装置或方案进行改进是很有必要的。在此基础上,对于实验方案的改进,先让学生了解SO2的制取并不只有该章节介绍的一种,其通过硫磺与氧气的燃烧反应,也能得到SO2气体,这样就能够有效解决气体产生过量的情况发生了。其次,对于实验过程的改进,可以通过在封闭处进行实验的方法,减少SO2气体在空气中的排放,达到绿色化学的效果。

2.2化学实验微型化处理

“微型化”的重点在于“微”,所谓的“微”,就是将实验所用到的仪器、设备、剂量减少或减小,但不改变实验的原理、步骤以及过程,以此来达到微型效果。同时,经过微反应后,产生的反应物质也会减少,污染也就随之减少了。

例如,《乙炔的制取和性质》。对于这部分内容来说,无论是借助多媒体进行演示,还是直接进入实验室实验,都具有一定的不足。主要包括三方面的不足:1.对反应物的处理不当;2.实验过程不严谨,耗时较长,反应物被污染;3.尾部处理工作未做好,造成环境污染。对于第一个问题,我们都知道CaS、Ca3P2、Ca3As2等物质,在遇到水后,就会产生异味气体,对于实验者来说,无疑是一种身心上的折磨,因此,当对该类试剂处理不当时,就会产生一定的环境污染;对于第二个问题,乙炔的实验过程并不是在全封闭状态下进行的,而且对于实验试剂的用量也没有一个准确的限制,时常更无法控制,因此,会很容易造成反应物的污染;对于第三个问题,也是实验中常遇到的问题。在实验结束后,学生们通常会将实验物质随意丢进垃圾桶,而不是集中或分类处理,这就很容易造成水体污染或空气污染。

而在进行微型化处理后,不仅减少了试剂的使用量,还采用了饱和的硫酸铜洗气,这在减少成本输出的同时,还达到了绿色化学的标准,减少了环境污染,且微型化实验处理,也使得实验的效果更加直观、清晰。

2.3通过多媒体进行实验教学

对于实验环节来说,难免会产生一些有毒气体或者物质,因此,利用多媒体进行辅助教学是很有必要的,它能规避一些不必要的麻烦,同时降低实验操作的危险系数。尤其对于一些理论知识掌握不牢固和操作能力不强的学生来说。此外,高中化学科目中所包含的内容也包括一些靠课本内容理解不透彻的知识点,对于这部分内容,必须借助多媒体,通过动态演示才能够加深理解。

例如,《离子键的形成》。对于这部分内容,如果光靠课本上的讲解,是不能够完全掌握其变化的规律和原则的,因此它需要借助多媒体进行演示。实验中,在不脱离课本内容的基础上,以“钠在氯气中燃烧”的实验过程为例,对离子键的形成做主要讲述。通过演示,我们能够观察到该反应的过程十分剧烈,还会释放出有毒气体——氯气。且在此实验过程中,如果减少试剂的使用,则无法进行正常实验;而如果使用过量的试剂,则又会导致有毒气体的释放量增加,污染空气。因此,借助多媒体进行演示教学,是很有必要的,这也正符合绿色化学的教学理念,是提高教学效果的不二之选。

3结语

化学学科作为高中阶段的必修科目之一,对于学生的成长发育有着重要影响。因此,将绿色化学的教学理念渗透在化学实验教学过程中,不仅能够培养学生的绿色意识,还能引导他们更加规范、合理的使用化学试剂,这在保证他们人身安全的同时,也保护了我们赖以生存的环境。然而,绿色化学理念的渗透过程并不是一蹴而就的,需要长久的耐心和时间来完成,因此,作为一名合格的化学老师,要具备“上下而求索”的决心。

化学教育毕业论文范文模板(二):基于高中化学教育困境进行的教育研究论文

摘要:现如今,教育体制改革的逐渐深入推动,使得高中教育制度有了质的飞跃,对于传统教育而言,其发展的固有思维使得教育内容体系过于单一,教学设备与实践的缺乏让高中化学教育面临着更多的困境。为了让高中学生的学习跟得上教学改革发展的步伐,它要求每一位教育工作者应学会自检自查,提升自我教学方式、教学质量水平,追根溯源,找准定位并制定有效的解决方案去提升整体的高中化学教学水平。如何创新现代高中化学的教学方式,将理论与实践知识具体结合,让学生学有所用,解决高中化学教育存在的问题,是当前教育工作者需亟待解决的。本文旨在从高中化学教学困境入手,结合笔者自身经验,提出自己的见解。

关键词:高中化学;教育困境;研究建议

一、国内高中化学教育面临的挑战

(一)教育形式的书面化

国内素质教育发展较晚,在父母与教育工作者眼中,学生的分数起关键作用,这也促成了如今高中化学教学模式的书面形式化。教师这些年在培养学生的化学知识上依旧停留在书面教学中,对很多化学理论并未实践过,因此在教学模式上缺乏创新意识,学生在学习过程中未被化学这门课程所吸引,很难通过兴趣去主动学习化学。高中化学教学模式发展至今,依然注重传统知识点的学习灌输,忽视了学生作为学习的主体,其书面化的片面教学模式使得学生极不情愿的去学习新的知识点,很多难以理解的化学内容,学生苦于无条件、无时间去动手实践,只能死记硬背。除了部分客观因素存在之外,像一些化学试剂的腐蚀性较强,危险性较高,如若操作有誤,后果不堪设想,是不提倡实验的,其他一些轻实验还是可以操作的。目前化学教学是重形式,轻实践,这种现象很难在短时间去消除,这就需要教学工作者不断的调整自身的思想。

(二)基础教学设施的缺乏

化学学科的实验性很强,在学习上需要配备相应的教学设备,好的辅助器材会直接影响到教师的上课情况,这关乎到整个高中化学教学的水平程度,更是学生迅速掌握化学知识的有效手段。但就目前国内的教学环境而言,化学实验教学的地位较低,实验过程较为复杂,对于精准仪器的使用需要花费大笔的资金,资金仅用于教学与实际不符,使得学校化学教学设备普遍是缺乏的。设备短缺就直接造成了许多化学实验无法进行,学生不能亲自动手进行实验操作,对许多化学知识也就无法深入理解,像化学教师在讲解方程式的时候,一些反应是较为微观的,但结果却是很复杂的,如若不能通过仪器去操作,很多步骤都无法完成,但这种精密仪器价格昂贵,实验室没有条件能够配备,学生对这些知识的掌握就只能通过化学教师的口头讲解和书本的文字介绍来学习。

(三)注重教学理论,偏离实际

高中化学这门学科一直是高中生的必修课,但教学形式过于单一,其学习内容还只是停留在理论层面,在实践成果的领域探索不多,且教师对于教学知识的讲解依旧偏离学生的主体地位,未结合学生的兴趣与需求发展状况,使得学生在学习化学课程上较为吃力。现今教学背景下仍旧将高考置于重中之重,这就使得高中化学教师偏离教学初衷,一味的灌输知识理论,而忽视了化学学科的实践性,学生对于化学知识的繁琐复杂进而产生厌学的心态。高考时间争分夺秒,对于繁杂的化学式子,高中生不得不采用死记硬背的方式,这无疑更是加重学生学习的负担,也不利于化学教学。如何打破这种旧有的传统理念,改进化学教学内容趋于形式化,优化化学教学体系,让化学课程的学习更接近生活,并将学到的知识运用到生活中,是教学工作者需不断思考的方向。

二、应对高中化学教育困境的策略

(一)理论结合实践

实践对于高中化学教育而言是极为重要的,通过亲身参与实践活动,让学生更加感受到化学知识的魅力,同时,这种贴近生活的经历,让学生有更多的探索精神与思考能力。化学课相对于其他课程而言显得更复杂无味,在教学过程中,化学教师需要激起学生学习的兴趣,将生活现象融入课堂上,通过创新教学方式,引导学生的求知欲望,并主动探索学习。例如在学习关于碳及氧化物方面的知识时,教师在课堂上可以通过一张图片打开问题,抓住学生的好奇心,引导学生思考,为什么古代建筑时会将柱子一端烧黑埋入土里,是地区差异还是个人爱好,还是其他原因呢,通过此步步深入学习重心,让学生更加容易的掌握知识。当然,若只是为了应试而学理论,只能死学,毫无意义,理论与实践的结合,无疑于开拓了学生的思维能力,增强了学生的学习积极性,使得他们对于化学这门课由最初的被动转为主动学习。

第4篇

论文摘要玉米田化学除草可根据玉米的生长期分为3个阶段:玉米播后苗前进行封闭处理、玉米苗后早期进行茎叶处理、玉米中期封行以前定向处理,根据田间杂草分布、栽培技术及天气情况,选择合适的除草剂品种是解决玉米田杂草危害的关键。

近些年来,随着除草剂品种的增多及化学防除技术在农业生产中的推广应用,化学除草已广泛应用于玉米生长的各个时期。而根据田间杂草分布、栽培技术及天气情况,选择合适的除草剂品种是解决玉米田杂草危害的关键,不但会降低农户的劳动强度与时间,而且会降低耕种成本,达到增产的目的。玉米田化学除草可根据玉米的生长期分为3个阶段。

1玉米播后苗前进行封闭处理

在这一阶段主要是小麦收割后或地表进行整理完毕,杂草出土较少或未出土,已经进行玉米播种后可采用封闭处理。应用的除草剂以酰胺类、均三氮苯类除草剂为主,比如乙草胺、异丙草胺与阿特拉津的混剂。目前市场上表现较好的除草剂有惜玉、棒米笑等,其作用机理是通过地表喷雾,让药液在地表表面形成1层厚1cm的药土层,在杂草出土时碰到药土层,经幼芽或幼茎吸收,达到杀死杂草的目的。因此,应用以上产品进行杂草防除时要求在较长一段时间内不要破坏地表,喷药时应倒退行走,做到喷洒均匀;否则可能影响药效。

玉米田苗前除草受天气、土质、地表情况、使用技术及用量等因素影响较大,经常药效表现不稳定。但是玉米做封闭处理对于玉米的生长起关键作用,作物前期与杂草争肥争水的能力弱,需要一个相对良好的环境才能得到有效成长,同时更大程度上限制了杂草的出土,为后期杂草防除效果提供有力保障。但有些杂草在玉米播后苗前已有小部分出土,此时可以配合天闪(200g/L水剂)进行综合除草(即封杀结合),可以控制出土和未出土的杂草,但需要注意的是天闪应在玉米播种后立即使用。

2玉米苗后早期进行茎叶处理

如果由于农时或天气原因等影响了前期用药,或者因为天气、麦茬等原因造成封闭不好,在玉米苗后早期出土的一些杂草,也能够进行化学防除,从而控制早期的田间杂草,比如烟嘧磺隆系列产品。具体品种有玉农乐、金玉老、玉米见草杀、玉之盾等,同时根据田间杂草情况也可与盾隆(氯氟吡氧乙酸)等产品混用扩大杂草谱,防治阔叶杂草。

由于玉米田间杂草品种的不同,以及各品种的农药针对的标靶杂草不同,所以需要选择合适的除草剂品种。

如烟嘧磺隆对香附子与禾本科杂草效果理想,而对阔叶杂草效果较差;盾隆对阔叶杂草效果好,对禾本科杂草效果差,要根据田间杂草情况选择合适产品来进行杂草防除。

在玉米苗后茎叶处理全田喷雾时,首先要注意的是用药安全。进行苗后用药因用药不当会出现药害现象,如白化、矮化、卷心等症状出现(首先需分辨是否是因病虫害引起的)。发生药害的原因一般有以下几点:一是增大用药量;二是在高湿、高温环境下用药;三是与其他产品混用;四是用药时间不对或玉米品种受限制。以烟嘧磺隆为例,施用时期为玉米苗后二至七叶期,不能用于甜玉米、制种田玉米等,不能与有机磷类农药混用,用药前后7d内不能使用有机磷类农药等,所以在使用玉米苗后产品时,在向经销商询问的同时,应用时更需要阅读产品标签的内容,以确保能正确用药。相对苗前封闭性除草来说,苗后用药受环境影响较小,是未来玉米田除草的方向。

在农业生产实践中,苗后除草剂的使用可以采用顺垄喷雾,这是一个比较成熟的使用技术。在国内很多地方都有比较成功的范例。主要的好处有以下几点:首先玉米田苗后顺垄喷雾能最大限度地降低除草剂对较为幼嫩的玉米叶片的伤害;其次除草靶标是生长在田间的杂草,田间漫喷,玉米的着药面积更大,不仅浪费药液,更重要的可能会降低防除效果,顺垄施药能够解决这个问题,从而提升除草效果。

3玉米中期封行以前定向处理

因前期用药不理想或雨水过多新生杂草又产生危害,此时仍可以使用天闪或玉米见草杀、金玉老等产品进行定向喷雾,这时玉米已经较高(60~80cm高),采用行间定向喷雾,既可保护作物,又能除掉所有杂草,天闪(200g/L水剂)属灭生性除草剂,在应用中需注意不要将产品喷到作物上,在使用时应加喷雾防除罩。影响天闪药效的主要原因是产品在配制时用水的清洁度问题。为了提高药效需要用纯净的水配药,不要使用河水、井水等含杂质较多的水,应使用自来水,在阳光充足的条件下,天闪见效迅速,几个小时即可看到杂草死亡。

4参考文献

第5篇

一、论文页面格式:

 

1、页面设置:A4。

2、论文要有页码。

二、论文内容格式:

1.题目:论文题目为黑体三号字,字数不得超过36个汉字,可分成1或2行居中打印。

2.题目下空一行为专业、姓名、指导教师,字体为黑体四号。如:专业:工商管理姓名:马雷指导教师:马某某

3.专业、姓名、指导教师下空一行打印:“摘要”二字,字体为黑体四号。

4.“摘要”二字后下空两字打印摘要内容,字体为楷体四号,每段开头空两格。

5.摘要内容后空一行打印“关键词”三字(黑体四号),其后空两字打印关键词(楷体四号),关键词数量为4--6个,每一个关键词之间用逗号分开,最后一个关键词后不点标点符号。

6.正文:关键词下空一行为正文,字体为宋体4号,每段开头空两格,标点符号占一格。

7.参考文献:正文后空一行打印参考文献四字(黑体小四号)。

8.“参考文献”四字转行打印内容,字体为宋体小四号。(1)参考文献按论文中参考文献出现的先后顺序用阿拉伯数字连续编号,将序号置于方括号内。正文中注释序号用上角标。(2)参考文献中每条项目应齐全。作者姓名之间用逗号分开,作者不超过三位时全部列出,超过三位时,只列前三位,后面加“等”字。参考文献中著录格式示例:

①期刊:序号作者《题名》载《刊名》,刊名,出版年份,卷号(期号),起止页码(第…~…页)

②专著:序号作者载《书名》,版本(第1版不标注),出版地:出版社,出版年,起止页码(第…~…页)

③论文集:序号作者《题名》,见(英文用In)主编,《论文集名》,出版地:出版社,出版年,起止页码(第…~…页)

④学位论文:序号作者《题名》,[学位论文](英文用[Dissertation]),保存地点,保存单位,年份

⑤专利:序号专利申请者《题名》,国别,专利文献种类,专利号,出版日期

⑥技术标准:序号起草责任者,标准代号,标准顺序号-年,标准名称,出版地,出版者,出版年度

如:[1]张三《关于…的研究》,载《中国高等教育》2001年第10期,第1~4页。

[2]张三《关于…的研究》,兰州:甘肃人民出版社,2000年,第1~5页

医用化学论文范例欣赏:关于医用化学渗透现象的讲解探讨

摘要:化学渗透(或称化学渗透偶联)是离子经过半透膜扩散的现象,跟渗透差不多。它们由较多离子的区域渗入较少离子区域,直到内外浓度平衡为止。化学渗透(或称化学渗透偶联)是离子经过半透膜扩散的现象,跟渗透差不多。

关键词:医用化学渗透现象讲解探讨

中图分类号:R-3文献标识码:A文章编号:1003-9082(2014)05-0127-01

渗透现象对于医学学生的学习很重要,对于后续医学课程的学习很有帮助,所以对于只有初中毕业生的中专生来讲,如何让理解渗透现象显得很有必要。

根据初中物理中,U型管的学习原理如图所示:

在U型管的底部用档板隔开,两侧分别为NaCI溶液和纯水。

现分两种情况考虑:

一、将档板撤开,将发生何种情况

氯化钠是一种电解质补充药物。钠和氯是机体重要的电解质,主要存在于细胞外液,对维持正常的血液和细胞外液的容量和渗透压起着非常重要的作用。

NaCI溶液中的NaCI分子发生扩散运动,从左侧向右侧扩散,最终两侧溶体充分混合后,变为均匀的NaCI溶液(浓度降低),但U型管两侧的液面将会等高。

总结:1、从溶液角度看:浓溶液向稀溶液扩散。

2、从溶质角度看:NaCI分子向纯净水一侧运动。

二、将档板换为半透膜时,将发生何种情况

如图

半透膜为一种特殊性质的半透膜,它只允许较小的溶剂水分子自由通过,而溶质分子很难通过。

根据同学们的现有程度,可以理解为只有H2O分子可以自由通过半透膜。

U型管左侧的H2O分子多于右侧溶液中的H2O分子数。因为半透膜通过水分子是自由的,所以从左侧渗入右侧的H2O分子的速度V1高于从右侧渗入左侧的H2O分子的速度V2,U型管内左侧液面逐渐增高,而右侧逐渐降低。

左侧液面增高,对U型管底部的压强增大,右侧液面降低,对U型管底部的压强减小。在此压强作用下,V1渐小,V2渐大。当V1=V2时,通过半透膜的H2O分子数相等。此时U型管两侧的液面高度差h保持衡定,此状态为渗透平衡状态。h段液柱产生的压强为渗透压。

由于可见,渗透现象的实质是H2O分子通过半透膜由纯水向溶液或由稀溶液向浓溶液方向扩散的过程。产生渗透现象必须具有两个条件:

1.有半透膜存在

透膜是一种只允许某些物质透过,而不允许另一些物质透过的薄膜。半透膜(英语:semipermeablemembrane)是一种只给某种分子或离子扩散进出的薄膜,对不同粒子的通过具有选择性的薄膜。例如细胞膜、膀胱膜、羊皮纸以及人工制的胶棉薄膜等。现代半透膜还用于多孔性壁(如无釉陶瓷)并使适当的化合物(如铁氰化铜)沉淀于其孔隙中制成。半透膜用于渗透溶胶和测定渗透压强等。生物吸取养分也是通过半透膜进行的。是用高分子材料经过特殊工艺制成的半透膜,它只允许水分子透过,而不允许溶质通过。

2.半透膜两侧溶液有浓度差

半透膜实现两侧的溶液的渗透的前提条件是这两侧的溶液存在浓度差。通常状态下溶液的扩散运动是指溶质分子的扩散,而渗透压现象是溶剂分子的扩散。扩散是浓溶液向稀溶液,而渗透是稀溶液向浓溶液。

参考文献

[1]徐伟刚.关于医用化学教材中渗透现象发生条件的探讨[J].井冈山医专学报,2002,05:23-24.

[2]余先纯.高职院校医用化学教学改革探讨[J].卫生职业教育,2009,09:50-52.

第6篇

“头脑风暴法”(Brainstorming)又称集体思考法或智力激荡法,“头脑风暴法(Brainstorming)”,又称智力激励法、BS法。是由美国创造学家阿历克斯·奥斯本于1939年首次提出、1953年正式发表的一种集体开发创造性思维的方法。“头脑风暴法”原指精神病患者头脑中短时间出现的思维紊乱现象,病人会产生大量的胡思乱想。奥斯本借用这个概念来比喻思维高度活跃,打破常规的思维方式而产生大量创造性设想的状况。

头脑风暴的特点是让参与者敞开思想,集体讨论,相互启发、思维互补、相互激励、相互弥补知识缺陷,引起创造性设想的连锁反应,产生尽可能多的设想,使各种设想在相互碰撞中激起脑海的创造性“风暴”。最后对提出的设想逐一客观、连续的分析,找出解决问题的“黄金”方案。

二“头脑风暴法”理论依据

“头脑风暴法”最初用于广告设计,后来在大型企业的信息分析决策中被广泛地应用。其理论依据是模仿了人类大脑神经元发散型的结构,把我们的思维形成一个思维地图。构成我们大脑神经的神经元,就好像是一棵大树,分出无数的枝杈,这些枝杈就是神经元的树突,树突越多,就越容易和其他神经元相连,人也就越聪明。“头脑风暴法”符合我们自然的记忆模式,同时它也强调逻辑性,可以帮助我们记忆信息、激发灵感。这种方法运用于课堂教学中,可以锻炼学生的发散思维能力和概括归纳能力。

三“头脑风暴法”需要坚持以下原则

1.创设一种自由的气氛,参加者不应该受任何条条框框限制,放松思想,让思维自由驰骋。从不同角度、不同层次、不同方位,大胆地展开想象,尽可能地标新立异,与众不同,提出独创性的想法,甚至是荒诞的想法。

2.在现阶段量有价值,而不是质。提出的建议越多越好,发言量越大,意见越多种多样,所论问题越广越深,出现有价值设想的概率就越大。

3.延迟评判。一切评价和判断都要延迟到头脑风暴结束以后才能进行。这样做一方面是为了防止评判约束与会者的积极思维,破坏自由畅谈的有利气氛;另一方面是为了集中精力先开发设想,避免把应该在后阶段做的工作提前进行,影响创造性设想的大量产生。4.禁止批评。绝对禁止批评是头脑风暴应该遵循的一个重要原则。参加头脑风暴会议的每个人都不得对别人的设想提出批评意见,因为批评对创造性思维无疑会产生抑制作用。同时,发言人的自我批评也在禁止之列。有些人习惯于用一些自谦之词,这些自我批评性质的说法同样会破坏会场气氛,影响自由畅想。

5.取长补短,鼓励参加者对他人已经提出的设想进行补充、改进和综合。

目前,这种方法在企业培训方面运用的比较多,但很少用到教育教学过程中来。笔者遵循“头脑风暴法”的规则,尝试在化学教学中进行了应用,并且有诸多收获。

四“头脑风暴法”与初中化学课堂教学

《化学课程标准》要求教学活动要以学生为主体,通过开展自主学习和探究性学习,使学生在掌握扎实的基础知识和基本技能的同时,还要培养学生的创新能力和实践能力。每个学生的知识背景、思维习惯、观察问题的角度和方法不一样,运用“头脑风暴法”可以让学生互相启发,互相帮助,共同提高;确保大部分甚至是所有学生的思维在学习过程中始终处于积极、主动的状态;使课堂教学成为一系列由学生主体活动的展开和整合的过程。

“授人以鱼,不如授人以渔。”化学是一门以实验为基础的学科,教师要以学生的发展为宗旨,以培养学生的自主学习能力和实践创新能力为重点。特别是我们这些农村中学的化学教师,在课堂教学中运用“头脑风暴法”能够更充分地激发学生学习化学的兴趣,使语言学习的过程转化成为学生形成积极的情感态度、主动思维、大胆实践的过程。

五“头脑风暴法”教学的实施

1、确定议题

一个好的“头脑风暴法”需要从对问题的准确阐明开始。因此,老师必须在头脑风暴前确定一个目标,使学生明确通过这次讨论解决什么问题,同时不要限制可能的解决方案的范围。一般而言,比较具体的议题能使学生较快的产生设想;比较抽象和宏观的议题引发设想的时间较长,但设想的创造性也可能较强。对于我选择的教学片段,主要的议题是“信息具有哪些特征”。

2、准备阶段

在准备阶段,可以将全班学生分成若干小组并任命组长,并且设置一定的时间限制。这样学生在讨论发言时可以形成一种竞争的氛围,进一步促使学生踊跃参与、活跃思维。针对教学内容实际,我在教学中把全班学生分成六个小组,讨论时间限制在十分钟。

3、实施“头脑风暴法”教学

依据“头脑风暴法”的特点、原则,当一群人围绕一个特定的兴趣领域产生新观点的时候,这种情景就叫做“头脑风暴”。老师简明介绍讨论问题的内容,扼要介绍各种系统的设想和方案,然后激发学生踊跃发言,一些有价值的设想,往往可以经过“思维共振”的“头脑风暴”来产生。在相互启迪之下,学生的思维更加活跃,思路更加开阔,这种发散性思维和“头脑风暴法”的训练方式能够促进学生灵活地思考,激发学生创造的欲望,达到思维的互补

下面以二氧化碳的性质的研究说明“头脑风暴法”的使用过程:创设情景,提出问题:

教师播放flas“死狗洞”——在意大利那不勒斯城附近有一个“死狗洞”,狗、猫等动物一走进去,挣扎几分钟就死了,人却可以安然无恙地通过这个洞。迷信的人因此说,洞里面有“屠狗妖”。

教师提出问题:为什么会有如此奇异的现象呢?原来与二氧化碳的物理性质有关,那么,二氧化碳有怎样的物理性质?可以通过哪些方法研究二氧化碳的物理性质?

分组讨论

交流设计:教师采用“头脑风暴法”,有学生讨论需研究二氧化碳的哪些物理性质?交流后进行分组,分为密度组、溶解性组、能不能供给呼吸组。交流结束后,教师作实验前的提示:合作;记录;需要仪器与教师联系。

分组实验

自主探究:学生按设想完成实验。(1)密度组:收集一瓶空气和一瓶二氧化碳均为(250ml),放在天平上称量。(2)溶解性组:取15ml注射器一个,抽取10ml二氧化碳,将注射器竖浸入5ml水中,观察注射器中剩余气体情况。(3)呼吸组:两个小白老鼠,两个250ml的烧杯,一瓶CO2气体。

小组汇报-----全班交流:

密度组:天平指针偏向二氧化碳,说明二氧化碳密度大于空气。

溶解性组:注射器中剩余气体为5ml,证明二氧化碳可以溶于水中。

呼吸组:在倒有半瓶CO2的烧杯中小白老鼠8分钟内死亡,另一个则安然无恙。

教师引思:有没有其他方法也可证明二氧化碳的密度和溶解性等物理性质。

教师演示:在一只250mL的烧杯中,放一高一低两支燃着的蜡烛(如图所示),用一个100mL的集气瓶收集一瓶二氧化碳,倒入烧杯中,观察有何现象发生?

解释与结论二氧化碳的物理性质:无色、无味的气体,密度大于空气,可溶水。

化学性质:不能燃烧也不支持燃烧;不能供给呼吸等。

学生在实验中,积极、认真、投入、合作;实验后意犹未尽,他们感到还有很多其他方法可以研究二氧化碳的性质,思路宽了,方法多了。课堂中学生真正动了起来,体现出学生的聪明才智和巨大的潜力。

4“头脑风暴法”教学评价

老师在综合大家的意见后,进而提出最终解决问题的可行性方案。在对“信息具有哪些特征”进行头脑风暴的过程中,学生提出了传递性、传播性、共享性、价值性、时效性、可处理性、可存储性、可转换性、真伪性、事实性、相对性、可依附性、滞后性、可触摸性、载体性、不完全性、可再生性、等级性、主导性、表现性、实用性、不确定性等二十几种特征,尽管这些特征有些是不确切的甚至是错误的,但这些都是学生智慧的火花在闪现。头脑风暴完成之后,我又对这些特征进行了分析、综合,在这个过程中使学生掌握了信息的基本特征。

通过实际运用,我们发现“头脑风暴法”适合大多数的复习课或概念性不强的新授课。这种方法能够激发学生的发散思维能力以及清晰、准确地表达个人观点的能力;同时,它还能帮助学生将大家零散的、不成逻辑的思想火花,汇集整理成完整的和有价值的思想、方案、行动计划或解决问题的方法。

六运用“头脑风暴法”教学应注意的问题

首先,教师为了提高教学效果,在运用“头脑风暴法”时要遵循一定的原则:禁止批评、自由畅谈、追求数量、取长补短。此方法的目的是获得尽可能多的设想,所以要让学生大胆地展开想象,尽可能地提出独创性的想法。尤其要鼓励平时比较内向或不爱发言的学生多发表意见,提醒学生可以利用别人的思维火花来点燃自己的灵感和智慧。但切不可随便打断学生的发言,不可随意批评学生的设想。

其次,教师在教学的各个环节根据不同的教学目标都可以实施此方法。可以让学生在限定的时间内就一个主题自由畅谈自己的意见和观点,教师不发表任何评价,但当学生有困难时要适时启发、引导和鼓励。活动结束后还可以作个小结,纠正明显不妥的表达。

再次,教师要做个有心人,注意观察周围的事物,从平时的生活中汲取灵感,在课堂创设真实或仿真的情境。教师在教学过程中,要把握课堂教学拓展的宽度与广度,善于发现学生学习的兴奋点,并满足学生需求。唯有如此,学生才可能变被动的学习、无奈的学习为主动的学习、愉快的学习。

总之,“头脑风暴法”是一种技能,一种艺术。在教学过程中,教师应该以学生的发展为宗旨,以培养学生的创新精神和实践能力为重点,发挥学生的主观能动性,鼓励学生大胆想象,积极思考,主动探索。“头脑风暴”让每一个学生都能展示自己的优势与实力,感受到参与和成功的愉悦。

参考文献:

第7篇

进入初三年级,我们会接触一门新的学科即化学,它是以实验为基础,研究物质的组成、结构、性质及其变化规律的自然科学。在学习化学知识中,许多知识如化学概念、基本原理、元素化合物性质等,都是通过化学实验而获得的。因此,在化学学习中必须学会对实验进行正确的观察,并在观察的基础上根据实验现象得出结论,从而掌握化学知识。同时学习化学还要和我们的实际生活联系在一起,因为很多化学物质就是我们生活中所接触到的。比如在初三化学中将学到的氧气与水等物质都是人们日常生活中所离不开的,所以在学到这些内容的时候都要实际联系起来,这样就有利于化学知识的学习与记忆。有的学生刚一接触化学总感觉内容繁多,元素符号和化学方程式难写等诸多问题。因此就片面的认为化学难学,不想去学。其实每一学科都有它自身的特点,只要我们能够掌握方法,对症下药,就能够达到事半功倍的效果。学习方法是否恰当对化学的学习是非常重要的,本人根据化学科本身的特点和本人多年的化学教学经验,总结出了以下几种学习方法,仅供大家参考。

(一)注意观察实验。由于化学是以实验为基础的学科,学习化学当然就离不开实验,因此如何观察实验对于我们学习化学是非常重要的。首先,应明确实验目的,确定实验观察的重点。课本设置实验的目的在与实现某一学习目的,实验目的决定了实验观察的重点。只有明确重点观察的内容,抓住本质的现象,才能有效地观察,有效地学习。如在初中化学〈序言〉课的实验,所设置的几个实验都是为学生顺利理解和掌握物理变化和化学变化而设置的。因此,观察的重点应放在反应前后物质是否发生质的变化,从而确定该变化属于物理变化还是化学变化。如镁带的燃烧实验,观察的重点是镁在燃烧后的产物的性质和镁带有何本质的不同,确定反应是否新物质生成,从而判断该反应是否属于化学变化。而不能仅仅注意实验过程中的“发出耀眼的强光,放出大量的热”这一非本质的现象。只有这样,才能实现实验的目的——掌握物理变化和化学变化的实质。

其次,明确观察的要素和程序,全面、有序地进行实验的观察对于实验,特别是一些过于复杂的实验,往往存在多个实验观察的要素,实验过程中必须全面、有序地进行观察,才能实现实验教学的目的,从而深入、全面地掌握化学知识。那么,如何有序地、全面地观察化学实验呢?第一阶段(实验前)——观察要素为:1、反应物的物理性质(如反应物的颜色、状态、气味等);2、反应条件(如是否加热、光照、通电等);3、反应装置(使用哪种实验仪器、该装置有何特点等);4、操作顺序(如何组装实验装置、添加药品先后顺序如何等);5、其他(如药品的用量、实验注意事项等)。第二阶段(实验中)——观察要素:反应过程中的主要现象(如是否有颜色变化、是否有气体生成、是否有沉淀析出、是否发光、放热等)第三阶段(实验后)——观察要素:1、是否有新物质生成?2、新物质的颜色、状态、气味、溶解性等;3、仪器拆分顺序;4、仪器整理等。

再次协调多种感觉器官。实验现象的观察,往往不仅仅依靠眼睛观察来完成。在很多实验中,还需要借助手、鼻等感官。如第一章关于硫燃烧的实验中,除用眼观察之外,还需借助鼻闻(二氧化硫的刺激性气味)、用手摸(摸集气瓶感觉热现象)等。只要这样,才能全面获得感性的材料。

(二)积极动手实验。教学大纲明确规定化学是一门以实验为基础的学科,因此自己动手实验对于学生学习化学起到至关重要的作用。常言到“百闻不如一见,百看不如一验”,亲自动手实验不仅能培养自己的动手能力,而且能加深我们对所学知识的认识、理解和巩固,激发我们学习化学的兴趣,转变以前的要我们学习为现在的我们要学习,由被动变为主动,从而可以成倍提高学习效率,达到事半功倍的效果。例如,实验室制氢气的原理和操作步骤,动手实验比只凭看老师做和自己硬记要掌握得快且牢得多。因此,我们可以在老师的安排下积极动手实验,努力达到各次实验的目的。

(三)勤于记忆。每门课程都有其专业词汇,化学也不例外。与数学、物理相比较,“记忆”对化学显得尤为重要,它是学化学的最基本方法,离开了“记忆”谈其他就成为一句空话。这是因为:第一化学本身有着独特“语言系统”──化学用语。如:元素符号、化学式、化学方程式等,对这些化学用语的熟练掌握是化学入门的首要任务,而其中绝大多数都是必须记忆的;第二一些物质的性质、制备、用途等也必须记忆的,只有这样才能掌握它们的规律。怎样去记呢?本人认为:首先要根据不同的学习内容,找出不同的记忆方法。对于元素符号、化合价和一些物质俗名及某些特性则要进行死记硬背;对于概念、定律、性质等要认真听老师讲,仔细观察老师演示实验,在理解的基础上进行记忆;其次要不断的寻找适合自己特点的记忆方式,善于总结规律,这样才能花时少,效果好。

第8篇

不管是新授课的学习还是复习课,学生都会产生这样或那样的问题、困惑,甚至错误的认识。这时,教师不要急于批评指正,而是要“留白”。让学生有时间有机会去审视、反思,从而认识错误、改正错误。这对学生来说是个很好的自主学习、自我总结提高、促进自身发展的过程,教师千万不要直接灌输。要知道“老师讲来总觉浅,绝知此事要躬行”啊!这种在教学设计中充分地“备学生”,针对有可能的学习障碍有意识地“留白”,让学生有“生成性问题”。能有效地促进学生问题意识的形成,帮助学生发现并提出有探究价值的问题,促进学生形成敢于质疑、勤于思索的习惯。伴随着交流频繁化的同时,老师将在课堂上面对更多的提问,更广泛的反馈信息。纠错、纠偏将会蔚然成风!道理就会越辩越明、越说越清!教学效果将会“桃李不言,下自成蹊”。

二、多采用具体、形象的方式强化基础知识的学习

具体、形象的比喻、谐音记忆、音符、朗朗上口的口诀等能辅助学生的学习,也能加强学习的趣味性,让学生更容易掌握、并记牢,从而达到巧学的境界。1.化合价的口诀:一价氢氯钾钠银;二价氧钙钡镁锌;三铝四硅五价磷;二三铁,二四碳;二四六硫都齐全;铜汞二价最常见;条件不同价不同;单质为零永不变。2.梳理氧化还原反应关系时就可以谐音帮助记忆。

三、图像巧解化学题

1.四个基本反应与氧化还原反应之间的关系,可以借助形象的图帮助理解、记忆。图可以画成熊猫或猪仔或青蛙,越形象越能加深学生的印象。2.使用托盘天平称量的时候,会有将药品和砝码放置放反的情况,会导致称量出来的结果偏差。简易的图示,能很快说明问题。例:称量20.5g(游码刻度0.5g),m(药品)+0.5=20,m(药品)=19.5g。将会称少了,一来一去相差两倍的游码刻度。3.使用量筒量取溶液,不管是读取量筒中液体的体积,还是量取规定体积的溶液,都涉及仰俯视读数的问题;配制一定物质的量浓度溶液实验中也会涉及仰俯视读数,从而导致误差的问题。利用图像,即能直观地解决。从图像可以知道,俯视读出的数据肯定比实际值高;仰视读出的数据肯定比实际值低。4.2L0.2mol/L的AlCl3溶液中加入一定量NaOH溶液,产生Al(OH)3沉淀,NaOH过量后沉淀会慢慢溶解,求相关量。这种题目,如果能精确地画出坐标图,再利用数学的相似比例关系,基本就能从图中将问题解决了。

四、场景模拟再现

第9篇

关键词:锆石;年代学;地球化学特征;地质应用

随着能够显示矿物内部复杂化学分区的成像技术和高分辨率的微区原位测试技术的发展和广泛应用,研究颗粒锆石等副矿物微区的化学成分、年龄、同位素组成及其地质应用等已成为国际地质学界研究的热点[1]。锆石U2Pb法是目前应用最广泛的同位素地质年代学方法,锆石的化学成分、Hf和O同位素组成广泛应用于岩石成因、壳幔相互作用、区域地壳演化的研究等,对地球上古老锆石的化学成分和同位素的研究是追朔地球早期历史的有效工具。笔者着重综述锆石的化学成分、同位素组成特征及其在地质学中的应用。

1微区原位测试技术

锆石等副矿物在地质学中的广泛应用与近年来原位分析测试技术的快速发展密不可分。论文目前已广泛应用的微区原位测试技术主要有离子探针、激光探针和电子探针等。

1.1离子探针

离子探针(sensitivehighresolutionionmicro-probe,简称SHRIMP)可用于矿物稀土元素、同位素的微区原位测试。在目前所有的微区原位测试技术中,SHRIMP的灵敏度、空间分辨率最高(对U、Th含量较高的锆石测年,束斑直径可达到8μm),且对样品破坏小(束斑直径10~50μm,剥蚀深度<5μm)[2-3],是最先进、精确度最高的微区原位测年方法。其不足之处是仪器成本高,测试费用昂贵,测试时间较长(每测点约需20min)。

2000年,CamecaNanoSIMS50二次离子质谱开始用于对颗粒大小为1~2μm的副矿物进行U-Th-Pb年代学研究。毕业论文NanoSIMS对粒度极细小的副矿物进行定年要以降低精度为代价,且用于U-Th-Pb定年还没有进行试验,还未完全估算出其准确度和分析精度,有可能在西澳大利亚大学获得初步的成功[2,4]。

1.2激光探针

激光剥蚀微探针2感应耦合等离子体质谱仪(la-serablationmicro2probe2inductivelycoupledplas-mamassspectrometry,简称LAM2ICPMS),即激光探针技术可实现对固体样品微区点常量元素、微量元素和同位素成分的原位测定[5]。近年研制成功的多接收等离子质谱(MC-ICPMS)可同时测定同位素比值,该仪器现今已经成为Hf同位素测定的常规仪器[6]。近年来激光探针技术在原位测定含U和含Th副矿物的U-Pb、Pb-Pb年龄或Th-Pb年龄方面进展极快,在一定的条件下可获得与SHRIMP技术相媲美的准确度和精确度,且经济、快速(每个测点费时<4min,可以直接在电子探针片内进行分析[5,7-8]);但与SHRIMP相比,激光探针要求样品数量较大,对样品破坏大(分析束斑大小一般为30~60μm,剥蚀深度为10~20μm),其空间分辨率和分析精度一般低于SIMS、SHRIMP[1,9210]。

1.3电子探针、质子探针、X射线荧光探针

电子探针(electronprobeX-raymicroanalysis,简称EPMA)、质子探针(protoninducedX-rayemissionmicro-probe,简称PIXE)和X射线荧光探针(X-rayfluorescenceprobe,简称XRF)均属微区化学测年技术。其优点是可以直接在岩石探针片上进行测定,不破坏样品,保留了岩石的原始结构,样品制备方便,便于实现原地原位分析,与同位素定年相比,价格低廉,分析快速;其缺点是不能估计平行的U-Pb衰变体系的谐和性[1,11],且由于化学定年不需进行普通铅的校正,容易导致过高估计年轻独居石、锆石等矿物的年龄[12]。

电子探针测定锆石的Th-U-全Pb化学等时线年龄方法(chemicalTh2U2totalPbisochronmeth-od,简称CHIME)的优点是空间分辨率高达1~5μm,可进行年龄填图[5,8],可进行锆石和独居石、磷钇矿、斜锆石等富U或富Th副矿物年龄的测定[11,13215];缺点是因对Pb的检出限较低而导致测年精度偏低,不能用于年龄小于100Ma的独居石等矿物的定年。

质子探针是继电子探针之后发展起来的、一种新的微束分析技术,能有效地进行微区微量元素、痕量元素的分析,近年来用于测定独居石的U-Th-Pb年龄,其分析原理与电子探针相似。对EPMA无能为力的、小于100Ma的独居石年龄的测定,PIXE具有明显的优势[5,8]。

此外,近年逐步改进的X射线荧光探针在测定年轻独居石年龄方面具有较大的优势。在分析束斑为40~60μm、使用单频X射线的条件下,Pb的检出限可达10×10-6,对于年龄为数十百万年甚至是15Ma的年轻独居石,可获得与ICP-MS同位素定年相近的结果,XRF化学定年的精度和分辨率大大高于EMPA,但在相同空间分辨率的情况下,XRF化学年龄与同位素年龄测定的比较有待进一步研究。其另一优势是仪器成本较低,装置简单,易于组建和操作。但由于XRF的空间分辨率较低,因此不适于分析内部具有不均一年龄分区的、粒度小的独居石[12,16]。

尽管微区原位测试技术给出了重要的、空间上可分辨的年龄信息,但在精确度、准确度方面仍无法与传统的同位素稀释热电质谱技术(ID-TIMS)相比。硕士论文在副矿物不存在继承性(如对幔源岩石、陨石等中的锆石进行定年)的情况下,ID-TIMS仍得到广泛使用。

2锆石U-Th-Pb同位素年代学

2.1锆石U-Th-Pb同位素体系特征及定年进展

由于锆石具有物理、化学性质稳定,普通铅含量低,富含U、Th[w(U)、w(Th)可高达1%以上],离子扩散速率很低[17],封闭温度高等特点,因此锆石已成为U-Pb法定年的最理想对象[1]。

虽然锆石通常能较好地保持同位素体系的封闭,但在某些变质作用或无明显地质作用过程中亦可能丢失放射性成因铅,使得其t(206Pb/238U)和t(207Pb/235U)两组年龄不一致。造成锆石中铅丢失的一个最主要原因是锆石的蜕晶化作用;此外,部分重结晶作用也是导致锆石年龄不一致的又一原因[18-19]。

锆石内部经常出现复杂的分区,每一区域可能都记录了锆石所经历的结晶、变质、热液蚀变等复杂的历史过程[20-21]。因此,在微区分析前,详细研究锆石的形貌和内部结构对解释锆石的U2Pb年龄、微区化学成分和同位素组成的成因至关重要。只有对同一样品直接进行结构和年龄的同步研究,才能得到有地质意义的年龄。利用HF酸蚀刻图像、阴极发光图像(cathodoluminescence,简称CL)和背散射电子图像(back2scatteredelectronimage,简称BSE)技术可观察锆石内部复杂的结构[20]。

近年来,锆石年代学研究实现了对同一锆石颗粒内部不同成因的锆石域进行微区原位年龄分析,提供了矿物内部不同区域的形成时间,使人们能够获得一致的、清楚的、容易解释的地质年龄,目前已经能够对那些记录在锆石内部的岩浆结晶作用、变质作用、热液交代和退变质作用等多期地质事件进行年龄测定,从而建立起地质过程的精细年龄框架。

例如,变质岩中锆石的结构通常非常复杂,对具有复杂结构锆石的定年可以得到锆石不同结构区域的多组年龄,这些年龄可能分别对应于锆石寄主岩石的原岩时代、变质事件时间(一期或多期)及源区残留锆石的年龄等。对这些样品中锆石的多组年龄如何进行合理的地质解释,是目前锆石U-Pb年代学研究的重点和难点[21],而明确不同成因域的锆石与特定p-T条件下生长的、不同世代矿物组合的产状关系是合理解释的关键。吴元保等[21]的研究表明,锆石的显微结构、微量元素特征和矿物包裹体成分等可以对锆石的形成环境进行限定,从而为锆石U-Pb年龄的合理解释提供有效的制约。目前对变质岩中锆石、独居石等矿物定年的主要方法是先从岩石中分选出测年用的单矿物,然后用环氧树脂固定并抛光制成靶,再进行微形貌观察和年龄的原位测定。但这样往往破坏了待测矿物与特定地质事件的原始结构关系。为此,陈能松等[8]提出了原地原位测年的工作思路,即利用各种微区原位测试技术直接测定岩石薄片中与特定温压条件下生长的不同世代矿物组合、产状关系明确的锆石和独居石等富U-Th-Pb的副矿物在不同成因域的年龄,从而将精确的年龄结果与特定的变质事件或变质反应联系起来。

2.2锆石微区定年的示踪作用

火成岩中耐熔的继承锆石可以保持U-Pb同位素体系和稀土元素(REE)的封闭,从而包含了关于深部地壳和花岗岩源区的重要信息[22-23],可用于花岗岩物源和基底组成的示踪。职称论文笔者在研究江西九岭花岗岩中的锆石时,发现部分锆石边部发育典型的岩浆成因的环带,其中心具有熔融残余核(图1)。SHRIMP分析表明,这2部分的年龄组成有明显的差别,环带部分的年龄约为830Ma,而核部的年龄集中在1400~1900Ma,核部年龄可能代表花岗岩源岩的锆石组成年龄。

deleRosa等[23]通过研究葡萄牙境内欧洲Variscan造山带缝合线两侧的花岗闪长岩、星云岩中继承锆石的稀土元素和U2Pb同位素特征,发现这2组锆石无论是在年龄谱上还是在REE组成上,均存在明显差异,说明它们来源不同,即这2个地区深部地壳的物质组成(基底)不同。

近年来,随着LA-ICP-MS技术的发展,沉积岩中碎屑锆石的年龄谱分析广泛应用于沉积岩源区物质成分组成和地壳演化的研究[24-27]。通过对比盆地沉积物中锆石的U-Pb年龄谱和盆地毗邻山脉出露岩体的年龄,可以了解某一沉积时期沉积物源区的多样性及盆地不同时期物源性质的变化特征。该方法同时还可估算地层的最大沉积年龄。3锆石化学成分特征及其在岩石成因中的应用

通常,在组成锆石的总氧化物中,w(ZrO2)占67.2%、w(SiO2)占32.8%,w(HfO2)占0.5%~2.0%,P、Th、U、Y、REE常以微量组分的形式出现。由于Y、Th、U、Nb、Ta等离子半径大、价态高,留学生论文使得它们不能包含在许多硅酸盐造岩矿物中,趋向于在残余熔体中富集,而锆石的晶体结构可广泛容纳不同比例的稀土元素,因此锆石成为岩石中U、Th、Hf、REE的主要寄主矿物[1,28231]。稀土元素和一些微量元素是限定源岩性质和形成过程最重要的指示剂之一,锆石中的离子扩散慢,因此锆石中的稀土元素分析结果可为它们的形成过程提供重要的地球化学信息。

3.1锆石中的w(Th)、w(U)及w(Th)/w(U)比值

大量的研究[21,28]表明,不同成因的锆石有不同的w(Th)、w(U)及w(Th)/w(U)比值:岩浆锆石的w(Th)、w(U)较高,w(Th)/w(U)比值较大(一般大于014);变质锆石的w(Th)、w(U)低,w(Th)/w(U)比值小(一般小于011)。但也有例外情况,有些岩浆锆石就具有较低的w(Th)/w(U)比值(可以小于0.1),部分碳酸岩样品中的岩浆锆石则具有异常高的w(Th)/w(U)比值(可以高达10000)[21,28],所以,仅凭锆石的w(Th)/w(U)比值有时并不能有效地鉴别岩浆锆石和变质锆石。

3.2锆石微量元素、稀土元素特征及其应用

锆石的稀土元素特征研究主要用于判断其寄主岩石的成因类型,但岩浆锆石的微量元素特征是否能判断寄主岩石的类型目前还存在较大的争议[21]。而一些变质岩(如麻粒岩)中的变质锆石可以具有较高的w(Th)/w(U)比值[21]。

Hoskin等[29-30]认为,虽然幔源岩石中的锆石与壳源岩石中的锆石在REE含量及稀土配分模式上具有明显差别,但并未发现不同成因的壳源岩石中锆石的REE特征存在系统差异,它们具有非常类似的REE含量和稀土配分模式,目前对壳源锆石REE组成如此相似的原因并不清楚。

Belousova等[28,31]的研究结果表明,锆石中的稀土元素丰度对源岩的类型和结晶条件很敏感。从超基性岩基性岩花岗岩,锆石中的稀土元素丰度总体升高。锆石的w(REE)在金伯利岩中一般低于50×10-6,在碳酸盐岩和煌斑岩中可达600×10-6~700×10-6,在基性岩中可达2000×10-6,英语论文而在花岗质岩石和伟晶岩中可高达百分之几。这种趋势反映了岩浆的分异程度。

正长岩中锆石具有正Ce异常、负Eu异常和中等富集重稀土元素(HREE);花岗质岩石中锆石明显负Eu异常、无Ce异常,无明显HREE富集;碳酸岩中锆石无明显的Ce、Eu异常,轻、重稀土元素分异程度变化较大;镁铁质火山岩中锆石的轻、重稀土元素分异明显;金伯利岩中锆石无明显的Eu、Ce异常,轻、重稀土元素分异程度不明显[28,31](图2)。大部分地球岩石中锆石的HREE比LREE相对富集,显示明显的正Ce异常、小的负Eu异常;而陨石、月岩等地外岩石中锆石则具强的Eu亏损、无Ce异常[28]。Belousova等[28]建立了通过锆石的微量元素对变化图解和微量元素的质量分数来判别不同类型的岩浆锆石的统计分析树形图解。

与岩浆锆石相比,变质锆石HREE的富集程度相对LREE的变化较大。岩浆锆石具有明显的负Eu异常,形成于有熔体出现的变质锆石具有与岩浆锆石类似的特征:富U、Y、Hf、P,REE配分模式陡,正Ce异常、负Eu异常。但变质锆石的w(Th)/w(U)比值低(<0.1),这是区别于岩浆锆石的惟一的化学特征。在变质过程中,锆石是否发生了重结晶以及结晶过程中是否有流体或熔体的参与,都会显著影响锆石稀土元素组分的变化[32]。

变质增生锆石的稀土元素特征除与各个稀土元素进入锆石晶格的能力大小有关外,还与锆石同时形成的矿物种类有关(如石榴石、长石、金红石等),这些矿物的存在与否对变质作用的条件(如榴辉岩相、麻粒岩相和角闪岩相等)有重要的指示意义,锆石的REE组成可反映锆石母岩的变化,至少在某些情况下反映了锆石与其他矿物如石榴石(稀土元素总量低、亏损HREE)[32-35]或长石(负Eu异常)[32,36-37]、金红石[34]的共生情况。

变质增生锆石的微量元素特征不仅受与锆石同时形成的矿物种类的影响,而且还与其形成时环境是否封闭有关。在“封闭”的榴辉岩相的体系中,REE的供应有限,由于石榴石是榴辉岩中富集HREE的矿物,固相线下石榴石的形成会使熔体亏损HREE;而在开放环境中,石榴石的形成并不能引起局部环境HREE质量分数的改变,这种条件下与石榴石共生的锆石就不会出现HREE的相对亏损。因此,HREE的相对亏损与否并不能直接用来判别变质锆石是否与富集HREE的石榴石同时形成[21]。

锆石微区的稀土元素分析与微区定年、锆石中的包裹体研究相结合能够较好地限定锆石的形成环境,可以将锆石的形成与变质条件联系起来,从而将变质过程中的p-T-t有效地联系在一起,在造山带研究中用于追溯超高压变质岩的形成过程[21,36-38]。4锆石同位素的地质应用

4.1锆石的Lu2Hf同位素

Lu与Hf均为难熔的中等2强不相容性亲石元素,这与Sm-Nd体系类似,因此Hf同位素示踪的基本原理与Nd同位素相同。

Hf与Zr呈类质同象存在于锆石的矿物晶格中,相对其他矿物,锆石中w(Hf)高[w(HfO2)≈1%],这为获取高精度的Hf同位素比值数据提供了保障;同时其w(Lu)/w(Hf)值极低[w(176Lu)/w(177Hf)n0.01][39-40],由176Lu衰变形成的176Hf比例非常低,对锆石形成后的Hf同位素组成的影响甚微,这样锆石的Hf同位素组成基本上代表了锆石结晶时的初始Hf同位素组成。加上锆石化学性质稳定,具有很高的Hf同位素封闭温度,即使经历了麻粒岩相等高级变质作用也能很好地保留初始Hf同位素组成,因此锆石中的Hf非常适合于岩石成因的Hf同位素研究[41-42]。Lu-Hf同位素体系本身所具有的高于Sm-Nd同位素体系的封闭温度及锆石特有的抗风化能力,使得锆石成为研究太古宙早期地壳的理想研究对象。

近年来,一些作者应用锆石的Hf同位素原位测试成功地解决了太古宙早期是否存在超亏损地幔的问题。在太古宙的Sm-Nd同位素研究中,部分太古宙早期岩石(年龄约为3.8Ga)具有较高的ε(Nd)值[ε(Nd)≈+4][43-44],似乎显示当时地球发生过极大规模的壳幔分异作用,并出现地幔的极度亏损。通过锆石Lu2Hf研究发现,高ε(Nd)t值的样品并未显示高的ε(Hf)t值,同一时期不同地质单元的太古宙岩石中的锆石具有十分相近的ε(Hf)t值,这表明由Nd同位素确定的极度亏损地幔,是由于Sm-Nd同位素体系开放造成的假象[45-48]。

沉积岩中碎屑锆石的REE特征及其原位的U-Pb年龄、Hf同位素组成测定已被作为研究沉积物母岩以及地壳演化的强有力工具[25,42,49]。

在岩石由多种组分构成、而其Nd同位素数据只有一个的情况下,可以通过多组锆石的Hf同位素来认识其演化过程。

锆石微区年龄、稀土元素的测定与Hf同位素研究相结合,是示踪壳幔相互作用、研究区域大陆地壳增长的有力工具[50-51]。如郑建平等[51]对玄武岩中麻粒岩捕虏体的锆石进行了年龄、REE、Hf同位素分析,探讨了早元古代华北克拉通的形成和壳幔相互作用。

由于性质不同的岩石的Hf同位素组成可能存在一定的差别,物理条件或结晶途径也可能改变矿物的化学成分,但不会影响Hf同位素组成。如果锆石在生长过程中不仅存在化学成分和晶体形貌上的变化,而且还伴随了Hf同位素组成的变化,则说明有来源明显不同的岩浆发生了化学混合。这为研究岩浆作用过程中不同组分的混入提供了重要途径。工作总结对于一个由多种组分构成的岩石样品,岩浆岩中形态不同的锆石晶体及同一锆石内部不同环带均记录了不同组分的岩浆相互作用的过程,因此通过多组锆石和同一锆石颗粒内不同环带的Hf同位素研究,可追踪岩体的结晶历史,获得岩浆演化的信息。

Griffin等[52]通过对华南平潭和桐庐I型花岗岩体中锆石的Hf同位素研究,发现不同生长阶段的锆石的Hf同位素组成不同,且它们的微量元素组成也存在差异[53],揭示这2个I型花岗岩体在形成过程中有多于2种不同来源的岩浆发生了混染。虽然化学混合(mixing)使岩体中不同类型的岩石具有类似的Sr、Nd同位素组成,但锆石却像“录音机”一样记录了不同岩浆产生和相互作用的细节。

汪相等[54]利用锆石中的Hf同位素探讨了幔源岩浆对过铝花岗岩成因的制约。华南过铝花岗岩在岩相学和岩石化学上充分显示了壳源的基本特征,且在这些花岗岩体中很少见到地幔岩浆侵入形成的淬冷包体或基性岩脉,故它们的成因无法与地幔活动联系起来。锆石颗粒内部的多阶段生长的环带,记录了岩浆形成和冷凝过程中的物理化学信息。因此对颗粒内部不同环带的同位素原位分析可以直接揭示中下地壳花岗质岩浆形成过程的复杂性和岩浆性质的演化,这些现象很难在野外观察到,通过全岩同位素分析也难以检测出来,而锆石中的Hf同位素特征却可以有效地揭示幔源岩浆对花岗岩形成的贡献。

由于锆石中的Hf很难与岩石外部的Hf发生交换,因此,除Hf同位素组成本身可以作为地球化学的示踪剂外,还可通过对锆石Hf同位素的研究来解译导致锆石U2Pb年龄不一致的原因。对于重结晶的锆石,如果体系在锆石结晶前后在成分上未发生明显变化,则其锆石的同位素组成符合单体系的线性演化规律;但如果有外来Hf的加入,则会形成年轻的、Hf同位素组成明显不同的增生锆石。基于同样的原因,锆石的Hf同位素组成能够指示锆石的U-Pb体系是否、何时发生了重置,因而在解释下地壳、地幔来源的高级变质岩的锆石年龄时帮助很大[55]。

4.2锆石的氧同位素

由于地壳物质与地幔物质的氧同位素组成存在差异,因此氧同位素可以很好地示踪壳幔的相互作用。此外,氧同位素是一种敏感的、示踪地壳中的流体和固体相互作用的、依赖于温度的示踪剂,岩浆岩的氧同位素比值对那些经历了低温水2岩反应的物质混染尤其敏感,这些物质可能曾经与大气水、沉积物及与那些曾经和大气水发生蚀变的岩石发生了相互作用,因此氧同位素是示踪岩浆来源的最有效的工具之一[56]。

高温下锆石和岩浆的同位素分馏很小,锆石的氧同位素组成基本上反映了锆石形成时岩浆的氧同位素特征[57]。研究表明锆石中的氧同位素扩散很慢,氧扩散的有效封闭温度≥700°C[58-59],其氧同位素组成不像其他矿物那样易受高温变质、热液蚀变的影响而发生变化[59-60],即使岩石经历了麻粒岩相的变质作用,岩浆锆石也能在干的岩石中保留岩浆氧同位素的初始比值[57]。

正常地幔的δ(18O)约为5‰,源于地幔的岩石表现出接近该值的、均一的氧同位素比值(该值被认为是正常地幔火成岩的比值)。在高温条件下锆石与正常地幔岩石达到平衡时的δ(18O)=5.3‰±0.3‰[61]。幔源岩浆分异出的火成岩结晶的锆石δ(18O)接近正常地幔的δ(18O)[61262]。研究表明,锆石的δ(18O)是岩浆物质来源的良好示踪剂。通过锆石氧同位素分析,可以判断结晶出锆石的岩浆是直接来自地幔还是来自经过地壳循环的物质[56,60-63]。

如果岩浆的氧同位素比值低于正常地幔值,通常认为岩浆的产生是与发生了热液蚀变的地壳岩石有关,这些岩石可能是洋壳岩石与高温海水或者陆壳岩石与大气降水发生了高温热液蚀变的结果[64-66]。但如果岩浆锆石的δ(18O)明显高于正常值,则说明岩浆来源于曾经历低温水2岩交换的岩石的部分熔融或岩浆在形成过程中有表壳物质的加入[56,67-68]。

锆石的氧同位素分析为研究花岗质岩石的成因和岩浆系统的演化提供了新的方法[60-61,69]。在岩浆演化过程中,如果体系是封闭的,且同位素分馏达到平衡(此假设在大多数情况下都成立),那么从基性-酸性的岩浆结晶的锆石的δ(18O)应该相同;但如果发生了同化混染,则锆石从内到外的生长区往往记录了岩浆成分的变化。分析各组锆石或同一锆石颗粒不同区域的氧同位素,可为岩浆的同化混染、不同来源的岩浆混合的定量化研究提供信息,也有助于深入认识岩浆的期次问题。

如能对锆石的U-Pb年龄和氧同位素组成以及REE进行同步测定,就有可能把氧同位素组成特征与某阶段年龄相联系,对具有复杂地质历史的岩石的成因环境进行限定。将锆石的氧同位素与U-Pb年龄(必要时进行REE分析)原位测定相结合是锆石的氧同位素研究的发展趋势。

近年来,一些学者对澳洲JackHills地区的古老碎屑锆石进行了微区离子探针U2Pb年龄和氧同位素组成的研究,获得了目前已知的最古老的锆石单颗粒年龄(4.4Ga),其δ(18O)为7.4‰~5.0‰,比地幔值高,暗示着岩浆混染和高δ(18O)物质的重熔,这些高δ(18O)的物质可能是沉积物或低温水2岩反应的热液蚀变岩石,表明有上地壳物质参与的岩浆过程最早可追溯到4.4Ga前。这些锆石的氧同位素组成表明,地球在4.4Ga前就可能存在水圈,地球的表面温度在地核和月球形成后不到100Ma的时间里就已冷却到允许液体水存在的温度[56,67,69]。

陈道公等[65]、郑永飞等[66]分别对大别2苏鲁超高压变质岩中的锆石进行了U-Pb和氧同位素微区原位分析,发现即使在榴辉岩相高级变质作用中,锆石仍基本保存了原岩中锆石的氧同位素特征,其中原岩年龄为0.7~0.8Ga的变质岩中锆石的δ(18O)明显低于地幔平均值,表明其形成时岩浆源区明显有大气降水的加入,这可能与新元古代华南Rodinia超大陆的裂解和全球的雪球事件有关。

5结语

锆石的结构和成分记录了岩石所经历的复杂地质过程。对内部结构复杂的锆石进行同位素和化学成分的微区原位分析,必须在对其内部结构进行详细研究的基础上进行。

由于幔源锆石和壳源岩浆锆石的化学组成存在较明显的区别,因而容易区分,但利用壳源岩浆锆石的微量元素、稀土元素特征识别其寄主岩石的类型还有待于成因明确的锆石微区原位测试数据的积累,因为目前用于建立“判别树”的数据比较有限,且有些数据的来源不太明确。此外,在原始成因产状不清楚的情况下(如碎屑锆石),变质锆石和岩浆锆石的区分除利用w(Th)/w(U)比值外,能否通过其他的微量元素、稀土元素的比值或图解来有效区分,这方面的研究目前报道较少。

分别对锆石颗粒中的不同区域进行年代学、化学组成、Hf或O同位素进行原位分析,可以提供有关岩石成因的丰富信息,而这些信息的提取依赖于分析仪器和分析技术的进步。虽然现在的测试技术已实现了矿物的微区原位测试,但分析仪器的空间分辨率不够高(目前锆石REE、O、Hf同位素微区测定的束斑直径一般为20~40μm),且锆石颗粒一般较小,尤其是变质岩中变质增生或变质重结晶部分的锆石,或者是记录了几个期次岩浆活动的岩浆锆石,每一次地质作用形成的生长区域可能较小(<10μm),致使很多重要的信息无法提取。随着原位测试技术的进一步发展,对锆石内部不同结构域地球化学特征的研究将提供更多、更详细、有关岩石成因的重要信息。参考文献:

[1]PoitrassonF,HancharJM,SchalteggerU.TheCurrentStateofAccessoryMineralResearch[J].ChemicalGeology,2002,191:3-24.

[2]DavisDW,WilliamsIS,KroghTE.HistoricalDevelopmentofZirconGeochronology[J].ReviewsinMineralogy&Geochem-istry,2003,53:145-173.

[3]IrelandTR,WilliamsIS.ConsiderationsinZirconGeochronol-ogybySIMS[J].ReviewsinMineralogy&Geochemistry,2003,53:215-227.

[4]RasmussenB.RadiometricDatingofSedimentaryRocks:TheApplicationofDiageneticXenotimeGeochronology[J].Earth-ScienceReviews,2005,68:197-243.

[5]王勤燕,陈能松,刘嵘.U2Th2Pb副矿物的原地原位测年微束分析方法比较与微区晶体化学研究[J].地质科技情报,2005,24(1):7-13.

[6]李献华,梁细荣,韦刚健,等.锆石Hf同位素组成的LAM-MC-ICPMS精确测定[J].地球化学,2003,32(1):86-90.

[7]梁细荣,李献华,刘永康.激光探针等离子体质谱法(LAM-ICPMS)用于年轻锆石U2Pb定年[J].地球化学,2000,29(1):1-5.

[8]陈能松,孙敏,王勤燕,等.原地原位定年技术工作思路探讨———中深变质岩区精细变质年代学格架的建立[J].地质科

技情报,2003,22(2):1-5.

[9]HornI,RudnickRL,McDonoughWF.PreciseElementalandIsotopeRatioMeasurementbySimultaneousSolutionNebu-lisationandLaserAblation-ICP-MS:ApplicationtoU-PbGeo-chronology[J].ChemicalGeology,2000,164:281-301.

[10]Kos∨lerJ,SylvesterPJ.PresentTrendsandtheFutureofZir-coninGeochronology:LaserAblationICPMS[J].ReviewsinMineralogy&Geochemistry,2003,53:243-275.

[11]CatlosEJ,GilleyLD,HarrisonTM.InterpretationofMona-ziteAgesObtainedviainSituAnalysis[J].ChemicalGeology,2002,188:193-215.

[12]ScherrerNC,EngiM,BergerA,etal.NondestructiveChemi-calDatingofYoungMonaziteUsingXRF-:ContextSensitiveMicroanalysisandComparisonwithTh-PbLaser-AblationMassSpectrometricData[J].ChemicalGeology2002,191:243-255.

[13]GeislerT,SchleicherH.ImprovedU2Th2TotalPbDatingofZirconsbyElectronMicroprobeUsingaSimpleNewBack-groundModelingProcedureandCaasaChemicalCriterionofFluid-in-DucedU-Th-PbDiscordanceinZircon[J].ChemicalGeology,2000,163:269-285.

[14]FrenchJE,HeamanLM,ChackoT.FeasibilityofChemicalU-Th-TotalPbBaddeleyiteDatingbyElectronMicroprobe[J].ChemicalGeology,2002,188:85-104.

[15]AsamiM,SuzukiK,GrewES.ChemicalTh-U-TotalPbDat-ingbyElectronMicroprobeAnalysisofMonazite,XenotimeandZirconfromtheArcheanNapierComplex,EastAntarcti-

ca:EvidenceforUltra-High-TemperatureMetamorphismat2400Ma[J].PrecambrianResearch,2002,114:249-275.

[16]EngiM,CheburkinAK,K¨oppelV.NondestructiveChemicalDatingofYoungMonaziteUsingXRF1:DesignofaMini-Probe,AgeDataforSamplesfromtheCentralAlps,andCom-

parisontoU-Pb(TIMS)Data[J].ChemicalGeology2002,191:225-241.

[17]CherniakDJ,WatsonEB.DiffusioninZircon[J].ReviewsinMineralogy&Geochemistry,2003,53:112-139.

[18]MezgerK,KrogstadEJ.InterpretationofDiscordantU-PbZir-conAges:AnElevation[J].J.Metamorph.Geol.,1997,15:127-140.

[19]陈道公,李彬贤,夏群科,等1变质岩中锆石U2Pb计时问题评述———兼论大别造山带锆石定年[J].岩石学报,2001,17(1):129-138.

[20]CorfuF,HancharJM,HoskinPWO,etal.AtlasofZirconTextures[J].ReviewsinMineralogy&Geochemistry,2003,

53:469-495.

[21]吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,2004,49(16):1589-1604.

[22]KeayS,SteeleD,CompstonW.IdentifyingGraniteSourcesbySHRIMPU-PbZirconGeochronology:AnApplicationtotheLachlanFoldbelt[J].Contrib.Mineral.Petrol.,1999,137:323-341.

[23]delaRosaJD,JennerGA,CartroA.AStudyofInheritedZir-consinGranitoidRocksfromtheSouthPortugueseandOssa-MorenaZones,IberianMassif:SupportfortheExoticOriginoftheSouthPortugueseZone[J].Tectonophysics,2002,353:245-256.

[24]BruguierO,LanceletJR.U-PbDatingonSingleDetritalZir-conGrainsfromtheTriassicSongpan-GanzeFlysch(CentralChina):ProvenanceandTectonicCorrelations[J].EPSL,

1997,152:217-231.

[25]KnudsenTL,GriffinWL,HartzEH,etal.In2situHafniumandLeadIsotopeAnalysesofDetritalZirconsfromtheDevoni-anSedimentaryBasinofNEGreenland:ARecordofRepeatedCrustalReworking[J].Contrib.Mineral.Petrol.,2001,141:83-94.

[26]FedoCM,SircombeKN,RainbirdRH.DetritalZirconAnaly-sisoftheSedimentaryRecord[J].ReviewsinMineralogy&Geochemistry,2003,53:277-298.

[27]李任伟,万渝生,陈振宇,等.根据碎屑锆石SHRIMPU-Pb测年恢复早侏罗世大别造山带源区特征[J].中国科学:D辑,2004,34(4):320-328.

[28]BelousovaEA,GriffinWL,O’ReillySY,etal.IgneousZir-con:TraceElementCompositionasanIndicatorofSourceRockType[J].Contrib.Mineral.Petrol.,2002,143:602-622.

[29]HoskinPWO,IrelandTR.RareEarthElementChemistryofZirconanditSavesasaProvenanceIndicator[J].Geology,2000,28:627-630.

[30]HoskinPWO,SchalteggerU.TheCompositionofZirconandIgneousandMetamorphicPetrogenesis[J].ReviewsinMiner-alogy&Geochemistry,2003,53:27-62.

[31]BelousovaEA,GriffinWL,PearsonNJ.TraceElementCom-positionandCatholuminescencePropertiesofSouthernAfRicanKimberliticZircons[J].Mineral.Mag.,1998,62:355-366.

[32]RubattoD.ZirconTraceElementGeochemistry:PartitioningwithGarnetandtheLinkBetweenU-PbAgesandMetamor-phism[J].ChemicalGeology,2002,184:123-138.

[33]SchalteggerU,FanningCM,GüntherD,etal.Growth,Annea-lingandRecrystallizationofZirconandPreservationofMona-ziteinHigh-GradeMetamorphism:ConventionalandIn-situU-PbIsotope,CathodoluminescenceandMicrochemicalEvidence[J].ContributionstoMineralogyandPetrology,1999,134:186-201.

[34]吴元保,陈道公,夏群科,等.大别山黄镇榴辉岩锆石的微区微量元素分析:榴辉岩相变质锆石的微量元素特征[J].科学通报,2002,47(11):859-863.

[35]吴元保,陈道公,夏群科,等.大别山黄土岭麻粒岩中锆石LAM-ICP-MS微区微量元素分析和Pb-Pb定年[J].中国科学:D辑,2003,33(1):20-28.

[36]LiatiA,GebauerD.ConstrainingtheProgradeandRetrogradep-T-tofEoceneHPRocksbySHRIMPDatingofDifferentZirconDomains:InferredRatesofHeating,Burial,Coolingand

ExhumationforCentralRhodope,NorthernGreece[J].Contri-butionstoMineralogyandPetrology,1999,135:340-354.

[37]RubattoD,WilliamsIS,BuickIS.ZirconandMonaziteRe-sponsetoProgradeMetamorphismintheReynoldsRange,CentralAustralia[J].ContributionstoMineralogyandPetrol-ogy,2001,140:458-468.

[38]HermannJ,RubatttoD,KorsakovA.MultipleZirconGrowthDuringFastExhumationofDiamondiferous,DeeplySubductedContinentalCrust(KokchetavMassif,Kazakhstan)[J].Contri-butionstoMineralogyandPetrology,2001,141:66-82.

[39]凌文黎,程建萍.Lu2Hf同位素体系对若干基础地质问题的新制约(之一)———地球早期演化[J].地质科技情报,1999,18(1):79-84.

[40]李献华,梁细荣,韦刚健,等.锆石Hf同位素组成的LAM-MC-ICPMS精确测定[J].地球化学,2003,32(1):86-90.

[41]AndersenT,GriffinWL,PearsonNJ.CrustalEvolutionintheSWPartoftheBalticShield:TheHfIsotopeEvidence[J].JournalofPetrology,2002,43(9):1725-1747.

[42]GriffinWL,BelousovaEA,SheeSR,etal.ArcheanCrustalEvolutionintheNorthernYilgarnCraton:U2PbandHfIso-topeEvidencefromDetrialZircons[J].PrecambrianResearch,2004,131:231-282.

[43]BennetVC,NutmanmAP,McCullochMT.NdIsotopicEvi-denceforTransient,HighlyDepletedMantleReservoirsintheEarlyHistoryoftheEarth[J].EarthPlanet.Sci.Lett.,1993,119:299-317.

[44]McCullochMT,BennetVC.ProgressiveGrowthoftheEarth’sContinentalCrustandDepletedMantle:GeochemicalCon-straints[J].Geochim.Cosmochim.Acta,1994,58:4717-4738.

[45]VervoortJD,PatchettPJ,GehrelsGE,etal.ConstraintsontheEarlyEarthDifferentiationfromHafniumandNeodymiumIsotopes[J].Nature,1996,379:624-627.

[46]VervoortJD,Blichert-ToftJ.EvolutionoftheDepletedMan-tle:HfIsotopeEvidencefromJuvenileRocksThroughTime[J].Geochim.Cosmochim.Acta,1999,63:533-556.

[47]AmelinY,LeeDC,HallidayAN,etal.NatureoftheEarth’sEarliestCrustfromHafniumIsotopesinSingleDetrialZircons[J].Nature,1999,399:252-255.

[48]AmelinY,LeeDC,HallidayAN.Early2MiddleArchenCrustalEvolutionDeducedfromLu-HfandU2PbIsotopicStudiesofSingleZirconGrains[J].Geochim.Cosmochim.Acta,2000,64:4205-4225.

[49]BodetF,Sch¨arerU.EvolutionoftheSE2AsianContinentfromU-PbandHfIsotopesinSingleGrainsofZirconandBaddeley-itefromLargeRivers[J].Geochim.Cosmochim.Acta,2000,64:2067-2091.

[50]GriffinWL,PearsonNJ,BelousovaE,etal.TheHfIsotopeCompositionofCratonicMantle:LAM2MC2ICPMSAnalysisofZirconMegacrystsinKimberlites[J].Geochim.Cosmochim.Acta,2000,64:133-147.

[51]郑建平,路凤香,余淳梅,等.汉诺坝玄武岩中麻粒岩捕虏体锆石Hf同位素、U2Pb定年和微量元素研究:华北下地壳早期演化的记录[J].科学通报,2004,49(4):375-383.

[52]GriffinWL,WangX,JacksonSE,etal.ZirconChemistryandMagmaMixing,SEChina:In-situAnalysisofHfIsotopes,TongluandPingtanIgneousComplexes[J].Lithos,2002,61:237-269.

[53]WangX,O’ReillySY,GriffinWL,etal.MorphologyandGeo-chemistryofZirconsfromLateMesozoicIgneousComplexes,SEChina[J].Mineral.Mag.,2002,66:235-251.

[54]汪相,GriffinWL,王志成,等.湖南丫江桥花岗岩中锆石的Hf同位素地球化学[J].科学通报,2003,48(4):379-382.

[55]KinnyPD,MaasR.Lu2HfandSm-NdIsotopeSystemsinZir-con[J].ReviewsinMineralogy&Geochemistry,2003,53:327-341.

[56]PeckWH,ValleyJW,WildeSA,etal.OxygenIsotopeRatiosandRareEarthElementsin3.3to4.4GaZircons:IonMicro-probeEvidenceforHignδ(18O)ContinentalCrustandOceansintheEarlyArchean[J].Geochem.Cosmochim.Acta,2001,65:4215-4229.

[57]KingEM,BarrieCT,ValleyJW.HydrothermalAlterationofOxygenIsotopeRatiosinQuartzPhenocrysts,KiddCreekMine,Ontario:MagmaticValuesarePreservedinZircons[J].

Geology,1997,23:1079-1082.

[58]ValleyJW,ChiarenelliJR,McLellandJM.OxygenIsotopeGeochemistryofZircon[J].EarthPlanet.Sci.Lett.,1994,126:187-206.

[59]WatsonEB,CherniakDJ.OxygenDiffusioninZircon[J].EarthPlanet.Sci.Lett.,1997,148,527-544.

[60]MonaniS,ValleyJE.OxygenIsotopeRatiosofZircon:MagmaGenesisofLowδ(18O)GranitesfromtheBritishTertiaryIg-neousProvince,WesternScotland[J].EarthPlanet.Sci.

Lett.,2001,184:377-392.

[61]ValleyJW,KinnyPD,SchulzeDJ,etal.ZirconMegacrystsFromKimbelites:OxygenIsotopeVariabilityAmongMantleMelts[J].ContributionstoMinerallogyandPetrology.,1998,133:1-11.

[62]KingEM,ValleyJW,DavisDW,etal.OxygenIsotopeRatiosinArcheanPlutonicZirconsfromGranite-GreenstoneBeltsoftheSuperiorProvince:IndicatorofMagmaticSource[J].Pre-cambrianResearch.,1998,92:365-387.

[63]BindemanIN,ValleyJW.FormationofLow2δ(18O)RhyolitesAfterCalderaCollapseatYellowstone,Wyoming,USA[J].Ge-ology,2000,28:719-722.

[64]GilliamCE,ValleyJW.Lowδ(18O)Magma,IsleofSkye,Scotland:EvidencefromZircons[J].Geochem.Cosmochim.Ac-ta,1997,61:4975-4981.

[65]陈道公,DelouleE,程昊,等.大别-苏鲁变质锆石微区氧同位素特征初探:离子探针原位分析[J].科学通报,2003,48(16):1732-1739.

[66]郑永飞,陈福坤,龚冰,等.大别-苏鲁造山带超高压变质岩原岩性质:锆石氧同位素和U-Pb年龄证据[J].科学通报,2003,48(16):110-119.

[67]MonjzsisST,HarrisonTM,PidgenRT.Oxegen-IsotopeEvi-dencefromAncientZirconsforLiquidWaterattheEarth’sSurface4300MyrAgo[J].Nature,2001,409:178-181.

相关文章
相关期刊