时间:2022-10-16 06:49:41
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇影像设备论文范例。如需获取更多原创内容,可随时联系我们的客服老师。
1相关技术
1.1FPGA技术
FPGA采用基于查表技术和SRAM工艺的逻辑块编程技术。同CPLD相比,逻辑块密度更高,触发器更多,设计更灵活,多用于大规模电路的设计,尤其更适合做复杂的时序逻辑。由于FPGA采用SRAM工艺,断电后数据丢失,实际应用时还须外挂一个ERPROM或FlashMemory来存储编程数据。典型的器件如Altera公司的FLEX、ACEX、APEX、Cyclone和Stratix系列,Xilinx公司的Spartan和Virtex系列等。本设计考虑到速率和带宽的问题采用Altera公司的CycloneⅡ系列芯片。
1.2物理隔离技术
随着信息时代的到来,计算机技术在通信领域的广泛应用和多方融合,传统的通信方式也不断被跨越时间和空间的网络通信所代替。网络通信拓展了通信的业务范围,使通信变得更加高效、便捷。由于人们对计算机通信网络的依赖程度越来越高,网络传输的精准性、保密性问题日益凸显。物理隔离技术可确保隔离有害攻击,在可信网络之外和保证可信网络内部信息不外泄的前提下,完成网间数据的安全交换。现今世界,每个人都需要各种来源的信息,尤其在其决策性的业务中更需要依赖于这些信息的准确性和可靠性。人们在行业部门和关键业务中都大量地采用计算系统和网络技术,从而带来了新的威胁和风险。因此,计算机通信网络安全已不再是军方和政府部门的一种特殊需求。实际上,所有领域都对网络安全提出了更高的要求。
1.3千兆以太网技术
千兆以太网技术不仅继承了以太网技术的很多优点,同时又具有许多新特性,例如传输介质包括双绞线、光纤和同轴电缆,编解码方案采用8B/10B的编码技术,采用载波扩展和分组突发技术等。正是因为千兆以太网的这些优秀的新特性,它目前已经成为局域网的主流解决方案。千兆以太网的技术规范包括CSMA/CD协议、以太网帧结构、全双工模式、流量控制以及IEEE802.3标准中所定义的管理对象。千兆以太网的关键技术是MAC层和千兆以太网接口的设计与实现。
2数字气象应急通信设备的系统组成及原理
2.1应用拓扑结构
本通信系统由便携式气象应急通信设备、指挥中心端设备以及传输系统组成。中心端设备由以太网交换模块、视频解码模块、电话网关模块、视频客户端软件等组成。本设计在通信系统中的应用体系结构。
2.2硬件设计工作原理及信号流程
数字气象应急通信设备由网络视频模块、电话网关模块、以太网交换模块、传输模块以及电源供电模块等组成(图2)。(1)以太网交换模块。内置高性能交换引擎,采用存储转发方式,实现以太网数据的交换转发。交换引擎支持8个以太网接口,可划分WLAN,支持多种优先级设置,以实现视频、电话及以太网数据等业务的隔离传输,满足各种业务对带宽和实时性的要求。动态共享缓存实现对数据包的存储。(2)网络视频模块。网络视频模块实现数字音视频在以太网进行实时传输(图3)。视频及音频信号分别经模/数转换后,进入视频音频处理器,进行压缩编码。编码后的音频和视频数据流经网络处理器处理成以太网数据包,在网络中进行传输[3-4]。视频压缩编码采用H.264,可以以较低的码率实现视频的高质量的传输,较MPEG-2/MPEG-4等各式可节省网络带宽。音频压缩编码采用MP3格式。(3)电话网关。电话网关模块实现数字电话在以太网进行实时传输。二线电话信号先经2/4转换,进入编解码电路,进行压缩编码和解码。网络处理器完成对编、解码的音频信号的打包和解包处理,其中包括一些协议处理。打包后的音频流在以太网上进行传输。本系统音频编解码采用G.729,码率为8kb/s。(4)传输模块。本设备目前仅支持光纤传输,将来可考虑802.11g以及802.11n等无线桥接传输方式,以及3G无线传输。光纤传输时,以太网交换模块的第8口工作在100BASE-FX模式。(5)电源供电模块。本设备采用220V交流供电,也可采用12V(9~18V)直流供电(可采用外挂电池盒供电)。
3以太网交换模块的实现
MAC模块处理是用FPGA来实现的,由于传输速率高,并串变换后8B/10B是由Altera公司的CPLD内核来实现的。以太网交换模块的实现包括以太网控制器MAC模块的FPGA设计和MAC子层的编程,物理层PHY的器件选择和硬件电路的设计以及MⅡ/GMⅡ接口和吉比特模式下支持的RGMⅡ接口的设计。Altera公司的CycloneⅡ系列器件可以集成完整的千兆以太网硬核,硬核包括网络控制器(MAC模块)以及可选择的物理层PCS模块和PMA模块,其中MAC模块支持10/100/1000Mb/s。Altera公司自主开发的SOPCBuilder工具可以提供快速搭建SOPC系统的能力,这种架构可以包含1个或多个中央处理器(CPU),提供存储器接口,设备和系统互连逻辑的复杂系统。
3.1整体信号流程
在发送数据的时候,MAC模块过来的数据送到PHY,对PHY来说,没有帧的概念,都是数据而不管什么地址,数据还是CRC。在此把并行数据转化为串行流数据,将8位数据比特编码为一个10位传输序列。在传输前,将串行链路中要发送的8位数据比特被转换成一个10比特代码组,其中2比特“特殊字符”表示的信令和控制功能有表示数据帧的开始,数据帧的结束和链路结构。传输代码中额外增加比特位的根本目的是为了提高串行链路的传输特性,以确保有足够的位级传输出现,接收机可以从数据流中恢复“时钟”。再按照物理层的编码规则(10BASE-T的NRZ编码或100BASE-T的曼彻斯特编码,1000BASE-T的4D-PAM5编码)把数据编码,编码后的数据再变为模拟信号通过光收发器把数据送出去。收数据的流程与之相反[5-6]。
3.2IP核的支持
Altera的FPGA器件提供了参数可设置的千兆以太网大型处理器,可在Altera的cycloneⅡ或ArriaGX等多种器件中实现,选择配置与其相应的接口标准。其IP核的参数如下:①支持IEEE802.3标准;②多通道MAC,支持最多24端口;③10/100/1000Mb支持全双工工作模式;④以太网物理层编码子层1000BASE-X/SGMⅡ标准的自协商。
3.3MAC的FPGA设计
本以太网控制器MAC的总体结构框图如图3所示,整个系统分为MAC模块,主机接口模块和管理数据输入输出模块。其中,MAC模块主要执行在全双工模式下的流量控制,MAC帧实现发送和接收功能,其主要操作有MAC帧的打包与解包以及纠错检测,并且提供了到外部物理层器(PHY)器件的并行数据接口,物理层处理直接利用商用千兆PHY器件,主要开发集中在MAC控制器的设计中。管理应用模块连接以太网的物理层和链路层,提供了数据输入和输出,并且提供了标准的IEEE802.3媒体介质独立接口。主机接口模块则提供以太网控制器与上层协议(如TCP/IP协议)之间的接口,并且用于数据的发送、接收以及完成控制器内各种寄存器的设置。
3.4接口的设计
整个系统模块间连接如图4所示。其中,PCS模块代表物理层的物理编码子层,PMA模块代表物理介质接入层。吉比特模式下支持RGMⅡ接口。GMⅡ接口为MAC模块与以太网物理层(PHY)设备提供了无缝连接;可选择的管理数据输入/输出模块为以太网物理层(PHY)提供管理信息;为用户提供基于Aalon-ST的8bit/32bit接口;可选择的集成物理介质介入模块。
3.5千兆以太网IP核的设计
利用Altera公司的FPGA芯片通过QuartusⅡ设计平台可以开发出以太网MAC控制器IP核,它可实现单条或多条吉比特以太网链路,并通过路由器或交换机可与任意以太网端口相连。整个配置过程是将IP核进行参数设置并配置为所需模式,利用FPGA内部提供的FI-FO模块并设置FIFO存储器的类型及存储器的数据长度。将IP核设置为千兆以太网MAC模块,并配置MAC模块的功能。由PHY器件提供可选的PCS模块。表1中描述了接口信号和MAC以太网端GMⅡ模块信号等,GMⅡ模块的接收信号一般直接连到PHY器件上,负责与PHY器件的数据交互,其信号与PHY器件接口一一对应(表1)。相应的接口信号包括:控制接口信号,复位信号,MAC系统端信号(包括接收接口信号和发送接口信号),MAC以太网端信号(包括GMⅡ模块信号和PHY管理接口信号)。
3.6物理层(PHY)的设计
Altera公司的千兆以太网MAC核默认支持的物理层器件有支持10/100/1000Mb/s的Marveil88E1145,NationalDP83865以及支持双物理层和10/100/l000Mb/s的Marvell88E1111。在此,选择Marveil88E1111为PHY器件。吉比特PHY芯片通过GMⅡ接口与MAC模块的连接如图5所示。Marveil88E1111是AlaskaUltraMarrell公司的吉比特以太网物理层收发器,它合并了Marrell的虚拟电缆特点,应用反射技术可以远程识别潜在的电缆失灵。支持10BASE-T,100BASE-TX和1000BASE-T以太网协议,支持GMⅡ,TBI和简化的吉比特媒体独立接口RGMⅡ。完整的1.5GHz的1000BASE-X串并光纤收发应用。4个时间选择模式的RGMⅡ接口。超低功耗,只有0.75W。内部只要2种电源(2.5V和1.2V),I/O接口为3.3V。
3.7开发环境
关键词:数码扩印,网络数码扩印系统,影像传输
1 引言
随着数码技术的发展和数码产品快速普及的增长,对数码扩印的需求日益上升。但数码扩印机价格昂贵,一些传统冲扩店无力引进数码扩印机开展数码扩印业务。另一方面,拥有数码扩印设备的冲扩店为了加快资金回报,不使设备闲置,需要有大量的生产量。因此引入网络数码扩印系统来实现不同地域数码资源的共享。
该系统以网络为工具,采用“中心店+加盟店”的连锁模式开展数码影像服务。其目标是:通过Internet,实现加盟店影像文件安全﹑可靠﹑及时地传递到拥有扩印设备的中心店以供冲印,为跨地域客户提供一体化﹑多元化的服务;同时满足中心店对加盟店营业情况查询﹑统计的需求,为中心店决策提供支持。
论文将详细介绍系统的结构﹑功能框架以及开发过程中所用到的关键技术及实现方法。
2 系统结构
2.1 业务描述
系统主要分为四部分:中心店服务器﹑加盟店﹑前台和影像工作站。加盟店通过广域网与服务器相连,前台则通过局域网分别与服务器和影像工作站连接。其业务模型如图1所示。
中心店服务器带有数据库,保存着加盟店注册信息,加盟店及影像工作站的扩印信息,如扩印尺寸﹑数量﹑营业额等。主要功能包括:①处理加盟店发来的事务请求(如注册﹑传送﹑查询),作出相应回答;②接收﹑保存远程加盟店传送的图像和扩印单,并根据扩印信息更新数据库。。
加盟店主要功能包括三方面:①收集需要扩印的信息,生成扩印信息文件,并将扩印信息添加到本地数据库,供本地查询和更新;②向服务器发出传送﹑查询等请求,并接受服务器的申请处理结果;③向服务器传送待扩印的影像文件和扩印信息文件。
前台为中心店的扩印业务管理平台,它的主要功能是:①处理影像工作站发来的请求(传送﹑查询);
②接收各影像工作站发送的扩印信息文件,将信息更新到服务器数据库;③负责扩印单管理,如收费﹑标注﹑打印﹑查询,为管理人员提供业务查询﹑统计等功能。
影像工作站一方面负责向前台发送本地扩印信息文件;另一方面向前台查询扩印单完成情况,并接受前台发回的应答信息。
2.2 功能框架
世界名牌大学的办学理念中培养终身学习的能力是其主要内容之一,如哈佛大学教育理念包含有:“学校致力于创造培养学生自我依靠和终身学习习惯的平台”。剑桥大学的办学理念也含有“注重培养学生终身学习能力”。医学教育国际标准,即“全球医学教育最基本要求[2]”同样注重培养学生终身学习的能力。继续医学教育(continuingmedicaleducation,CME)是医学终身教育的重要组成部分,是为适应现代医学飞速发展,为技术人员从业后获取新理论、新知识、新技术和新方法所建立的终身教育制度[3]。
1医学影像学现状与发展趋势
经过100多年的发展,放射学发展为诊断和治疗兼备的医学影像学,包括普通X线诊断学、X线计算机体层摄影(computedtomography,CT)、磁共振成像(magneticresonanceimaging,MRI)、数字减影血管造影(digitalsubtractionangiography,DSA)、X线计算机成像(computerradiography,CR)、数字X线成像(digitalradiography,DR)、超声学、发射体层成像(emissioncomputedtomography,ECT)、正电子发射计算机断层扫描(positronemissioncomputedtomography,PET)、单光子发射计算机断层扫描(singlephotonemissioncomputedtomography,SPECT)以及两种影像技术的融合如PET/CT、PET/MRI、SPECT/CT、DSA/CT等一次检查获得多种影像信息的成像技术和介入影像学,包括介入放射学和介入超声学等。传统X线摄片已逐步被CR、DR取代。CT不断更新换代,如螺旋CT(SCT)、多层CT,现已发展到128层CT等。MRI发展趋向于高场强、实时成像、功能MRI(fMRI)、显微结构成像、波谱分析(MRS)以及同质同性抑制技术等。CT、MRI成像速度和分辨率均明显提高,灌注、弥散、仿真技术的应用范围越来越广。超声向超声造影、三维超声成像和介入超声学发展。核医学主流发展方向是分子核医学。
影像学诊断由大体形态学为主的阶段向生理、功能、代谢和分子/基因成像过渡,出现了分子影像学和功能影像学。图像分析由定性向定量发展。诊断模式由胶片采集图像和阅读逐步向数字采像和电子传输方向发展。信息科学的进展,促进了医学影像存档及传输系统(picturearchivingandcommunicationsystem,PACS)和远程放射学(teleradiology)的发展,网络影像学(networkimaging)以及计算机辅助诊断(computeraideddiagnosis,CAD)将成为可能[4]。介入放射学的迅速发展和临床应用,介入治疗及其与内镜、微创治疗、外科的融合发展改变了影像学实践和服务方式,影像诊治手段日益先进,影像诊治水平明显提高,使医学影像学在医疗服务体系中占有更加重要的地位。
东南大学医学影像学学科创建于1935年的国立中央大学医学院附设医院放射科。在70余年的发展过程中,随着科技的进步,紧跟学科发展,经过几代人的艰辛努力,创建了医学影像学科技创新团队,通过学科建设、医学领军人才、承担国家及省部级重大项目和发表高质量学术论文等措施,将“医学影像学与介入放射学”学科建设为江苏省135工程医学重点学科(2001年),放射科建设为江苏省临床重点专科(2002年),“医学影像学科”获准为江苏省医学影像学科质量控制中心(2004年),“影像医学与核医学”创建为江苏省重点学科(2006年)。东南大学医学影像学专业创建于1990年,当年开始培养医学影像学专业五年制本科生。经采用特色专业建设、课程体系改革、精品课程建设、教材建设、课件建设、重点实验室建设和教学名师培养等一系列教学改革措施,现已创建为江苏省普通高校特色专业(2006年)和江苏省高校成人教育特色专业建设点(2007年),分子影像与功能影像实验室获准成为江苏省重点实验室(2007年)。本专业1984年开始招收医学影像学硕士研究生,2003年成为江苏省唯一影像医学与核医学博士研究生学位授予单位。
2医学继续教育的范畴与其在重点学科建设中的重要意义随着科技的发展,尤其是医学影像学正以前所未有的速度发展,新设备、新技术、新方法、新知识和新理论不断涌现,医学知识的更新周期越来越短,社会对从医人员的知识结构和医疗水平要求也越来越高,仅从医学院校教育获得的知识和技能已远远不能适应当前医学工作的要求。在知识经济时代到来的今天,人才培养和学科队伍建设是关键。为了使医学影像学专业医技人员在整个职业生涯中保持高尚的医德医风,不断提高自己的理论知识和工作能力,跟上医学科学发展脚步,为社会提供更好的服务[5],我们在继续医学教育工作方面采取了以下措施:
(1)借鉴医学教育国际标准,即“全球医学教育最基本要求”,结合国情让全体教师和职工树立终身教育、自主学习的理念,即“活到老、学到老”。其特点决定了在高校从事教学、医疗和科研的教师和职工要通过不断的学习来充实自我,把终身学习作为自我提高的一种方式。
(2)配合继续教育学院进行脱产、非脱产形式的成人学历教育,对象涉及本院医护人员与全国成人教育考生。
(3)配合研究生院进行在职职工研究生学历教育,对象涉及本院职工与江苏省乃至全国考生。
(4)与国外著名大学、学术团体保持密切合作,每年不定期邀请国外知名专家来院进行学术讲座和交流2~3次,对象涉及本院相关医护人员和研究生、本科生。
(5)学科学术地位决定了继续医学教育发展的规模和速度。申报和开展国家级继续医学教育项目就要求本学科及学术水平在本专业领域中处于国际或国内领先水平,在同行中具有领先地位,这样才能吸引众多的医技人员来院学习或进修。我们利用“中华医学会实用介入技术推广培训中心”基地,每年认真组织申报并开展继续医学教育项目2次以上,对象涉及本院医技人员和全国需要参加培训的各层次医技人员。在实施继续医学教育工作中,继续医学教育项目的申报和开展是学科学术地位和水平的具体体现,也是展示推广学科成果、宣传自我、扩大影响、构建学科品牌的优势,同时也是提高专业技术人员学术水平的主要体现,其社会效益和经济效益良好。
(6)常年接受国内各单位进修生来院学习、工作,积极鼓励、支持青年教师和职工到国内外著名大学或医院进行短期进修、考察或进一步深造。
(7)切实加强青年教师岗前培训,执行“先培训,后上岗”制度和年轻医师五年住院医师轮转培训制度。科室每月组织一次青年医师读书报告会,以督促年轻人好学、向上。
(8)参加学术会议、撰写学术论文是继续医学教育的重要组成部分。积极鼓励并支持教师参加国际性和中华医学会组织的高质量学术年会或专题学术会议以及省市年会,并制定了《参加学术会议及差旅费使用的规定和的奖励办法》。凡在放射学全国年会上进行大会发言的论文第一作者、在省市年会进行专题讲座或被评为大会优秀论文者,科室承担参加会议的所有费用,包括差旅费、住宿费、会务费和资料费。每年根据北京大学版“医学中文核心期刊要目”,凡在目录内期刊上所发表的论文及SCI上所发表的论文,在单位奖励的基础上,科室根据影响因子再进行不同幅度的奖励,以此鼓励教师、职工多撰写、发表高质量的学术论文。
3加强师资队伍建设,提升学科科研、教学质量人才资源是第一资源,人才规模决定着学科和专业的发展规模,人才结构决定学科和专业的发展层次,人才梯队决定学科和专业的发展后劲,故师资队伍的建设和创新型人才的培养直接影响着学科、专业的发展和教学质量。学科建设中,师资队伍是前提,学科带头人是核心,人才队伍建设是学科建设的根本[6]。承担国家及省部级重大、重点攻关项目,既是学科水平的体现,又是学科进一步发展的契机,同时也是人才培养、梯队建设、国内外学术交流和取得高水平科技成果、确立学术地位的基础[7]。
坚持推进科技创新与培养、聚集创新人才相结合,造就拔尖创新人才与建设科技创新团队相结合。把科技创新作为提高教师创新能力的根本途径和提高人才培养质量的关键环节,将人才资源作为提高学科自主创新能力的最大优势,形成科技创新与教师队伍建设及人才培养密切结合、互相促进的良性机制。多年来,我们本着“用好现有人才,培养青年人才,引进优秀人才,储备未来人才”的原则,把师资队伍建设作为促进学科发展的根本大计来抓,并采取主动培养、积极引进、大胆使用、热情关怀等多种行之有效的措施,全面提高教师队伍的质量。
东南大学医学影像学学科具有一支政治思想素质好,学科力量雄厚,学术造诣较深,结构合理,集教学、科研和医疗为一体的专业队伍。教师队伍职称、学历、年龄结构合理,素质优良,发展趋势好,形成了具有团队意识、创新意识和奉献精神的科技创新团队。35人中正副教授/主任医师18人,博士生导师2人,硕士研究生导师11人,博士10人,硕士22人。近5年在研课题包括国家自然科学基金12项,其中国家自然科学基金重点项目1项,国际合作1项,省部级以上课题20项。获《中华医学科技进步二等奖》等科技成果奖14项;发表科研论文250余篇,其中SCI收录16篇、中华级期刊46篇;出版教材和专著16部,卫生部视听教材2部。东南大学医学影像学专业一贯注重于教学改革的研究,近5年来,主持教学改革课题14项,获教学成果奖15项。其中《面向21世纪医学影像学专业课程体系和教学内容改革的研究》和《创建特色专业,培养医学影像学创新人才》分别于2001年和2005年获江苏省高等教育教学成果一等奖。在国内核心期刊发表教改论文20余篇。
1.1超声诊疗对人员素质的依赖性大
近年来,我国经济虽然取得飞速发展,但人民群众总体生活水平仍有待提高,加之受现有医疗卫生体制的影响,诊疗费用仍是患者选择医疗服务时的重要参考因素。与其他影像检查(CT、MRI等)相比,超声诊断的损伤性小、电离辐射轻、性能价格比最优,得到大多数患者的青睐,在临床疾病诊疗和预防保健工作中被广泛使用。然而,由于价格相对低廉,程序相对简便,使得超声诊断过度医疗的现象普遍存在。同时,与CT和MRI等技术有所不同,超声影像诊断由人工控制检查速度,即使仪器成像速度再高,单位时间内的工作效率也仍由医务人员的技术水平决定n;准确无误的诊断涉及到多方面的医学知识,要求医务人员对多学科信息综合分析,从多角度集思广益、开拓思路,得出正确结论。因此,超声影像诊断对人员素质、人员数量的依赖性极大。为有效应对超声科室不断增大的工作量,除了添置和引进先进的超声诊断设备外,培养更多的高素质超声诊断医务人员已成为必然选择和当务之急。
1.2新型超声诊疗技术层出不穷,应用难度加大
经过长期的实践和发展,现代超声诊断技术的难易度已出现明显的二极化态势。部分较为容易掌握的常规或传统诊疗超声技术由一般超声技术人员完成。部分已经成熟或标准化的超声脱机分析和图像重建工作,如造影增强时相分析、三维重建等新工作,可由经过专门培训的技师完成。现代科学技术日新月异,新型超声诊疗技术与日俱进。部分技术处于不断完善的阶段,显得比较繁琐、复杂和耗时,但在疑难疾病的诊断与鉴别诊断中将起到关键性作用,推动超声医学不断向前发展。这对超声影像专业人才的学习能力、研究能力和实践能力、协作能力都提出了更高的要求。
2我国超声影像专业队伍培养现状
目前,我国超声影像专业人员队伍主要由近年来逐渐增多的高等院校医科毕业生和早期培养的超声影像技术人员组成,前者具有扎实的专业理论知识,后者经过多年的实践对传统的超声影像设备和诊断驾轻就熟。与国外医师和技师互相配合不同,我国医院单独设立超声科室,由医师或技师独自操作和诊断。这样,病例采集与诊断之间衔接紧密,医师可及时获取信息,调整诊断思路,效率较高,短期内可完成大量工作。然而,超声影像人员虽然熟悉操作和基本诊断,但对某一类疾病的了解不及临床专业医师。超声科室的诊断性与技术性工作分工不突出,对超声影像人才的综合素质和实际操作能力都提出了很高要求,知识和技能兼备的超声影像人员仍较为缺乏。
2.1“学院型人才”实践能力培养不足
卫生部《关于医技人员出具相关检查诊断报告的批复》规定“出具影像、病理、超声、心电图等诊断性报告的,必须是经执业注册的执业医师”,超声诊断专业队伍正在朝着纯医师化方向转型。我国超声专业医师的培养,已形成了本科(临床医疗/医学影像专业)——硕士——博士研究生规范化教育体制。影像专业的本科生进入工作岗位后,虽会有短期实习,但多数毕业生缺乏临床操作经验,且没有执业医师资格、大型医疗器械上岗证等资质证明,一般需要2年的培养周期才能完全胜任日常的临床工作。而目前的研究生教育学制一般为3年,培养计划大多是一年的基础课程学习加2年的专业临床学习,在此期间还需开展一定的科学研究工作,并完成毕业论文。在较有限的时间内,硕士研究生同时面临着继续深造、从事科研和就业的压力。大部分硕士研究生把主要精力放在考试、实验、以及上,毕业后无法在实际岗位上看病问诊,对疾病的认识多止于书本之上。这样的教育模式虽然在一定程度上培养了科研能力,但远不能保证其临床水平。
2.2部分在职人员知识基础较为薄弱
目前在岗的经验丰富的超声影像医务人员大多并未接受过专业相关的高等教育。这部分人员具有大量实践操作经验,在“学院型”超声诊断人才初入岗位之时起到了十分重要的指导和扶持作用,但就全国范围来说,其学历构成水平仍以专科为主。虽然部分人员在工作中接受了更高水平的进修、函授教育,因在岗学习时间有限、系统性不强,部分医院或医务人员自身甚至报着完成任务的心态而敷衍了事,难以弥补其较为薄弱的综合素质。如今很多大型医院引进了先进的影像设备,由于操作技术人员的专业素质原因,许多检查功能并不能得到很好的应用,甚至闲置;据有关资料显示,高尖端的设备只发挥50%的效能,有些甚至不能达到50%嘲。
3超声影像专业人才培养策略
3.1丰富教学形式,重视实践能力培养
超声影像涉及多门学科,知识量大,理论教学较为单调,学生易产生倦怠感。临床知识丰富、专业理论扎实的教师在超声影像人才培养中起到至关重要的作用。教师应充分利用多媒体教学,采用互动式讲座、PBL教学法,调动学生的学习积极性。在确保高质量课堂教学的同时,可定期开展与住院医师的交流活动,尤其是各专科医师的定期讲座将极大丰富超声影像专业学生的临床见闻,各医学院校应充分利用优势资源,建立和维护与医疗机构间的良好合作关系,为本科生提供校外实践平台,通过医院内的观摩、考察、讨论以及实际操作锻炼学生的实践能力。加强与优秀校友和资深医师之间的联系,建立和完善校外导师制;根据研究生的研究方向和就业意向,实施阶段性的院内实习,合理安排医院见习时间,要求掌握各种型号超声仪器的操作和特点,掌握常见多发疾病的超声诊疗技术,熟悉各种检查方法及先进的超声诊疗技术,同时协助医院开展科学研究工作,并完成论文。
论文摘要:本文主要论迷了现代医学影像技术的迅猛发展时医院影像学科管理模式变革的决定性意义和作用,大型综合性医院通过组建医学影像中心在专业化、标准化、综合性基础上充分发挥全院医学影像科室的整体优势。
医院的医学技术装备建设是医疗、教学、科研的物质基础,也是提高医疗质量和服务质量、提升医院整体经济技术实力的重要前提和基本条件。医学影像学科体系是现代医院的一个重要组成部分。在医院中,医学图像信息量占医疗信息总量的70%左右,医院影像科室的组织结构、管理模式、设备配置、学术交流、人才培养以及与临床的分工协作问题对全院影像技术功能的发挥、医疗质量和服务质量的提高、科技实力的增强以及经济效益与社会效益的提高具有重要的作用。结构决定功能,效益取决于管理。对大型综合性医院来说,通过组建疗影像中心,从人才、设备、技术标准和管理效能等方面加强医学影像科室建设,在专业化、标准化、综合化的基础上充分发挥整体优势,逐渐成为主流趋势。
1.成立影像中心是现代医学影像技术飞速发展对影像科室管理模式的必然要求
技术决定战术,现代医学影像技术的迅猛发展对影像科室的管理模式发挥着决定性的作用。
近二十年来,伴随着影像技术的数字化、计算机化、网络化趋势和介人医学的兴起,医学影像学已经由传统的形态学检查发展成为组织、器官代谢和功能诊断及治疗为一体的,包括超声、放射性核素影像、常规X线机、PEI,一CI’, CT, MRI, DSA,CR, DR以及PACS、电子内镜等多种技术组成的现代影像学科体系,成为与外科手术、内科药物治疗并列的现代医学第三大治疗手段。医学影像学科已经是现代化医院的支柱之一,影像学设备占医院固定资产三分之一以上。医学影像技术的革命性变化必将改变医院对影像科室的管理模式,促进影像学科的发展。
1.1影像学科医技人员的专业化和临床实践的标准化将得到进一步的重视和加强,成为学科发展的立足之本。随着数字化、计算机化、网络化技术的广泛应用,在技术和设备进步的新形势下,影像学科的发展需要理、工、医的紧密结合,影像科医技人员按系统分专业将进一步强化,并且逐步向纵深专科领域扩展,影像科人员的工作模式也必须随之改变,向着人员专业化和临床实践标准化方向不断发展、完善、提高。这种专业化、标准化构成了医院医疗质量控制与管理的基础,也是影像学科发展的出发点和落脚点。
1.2随着影像学科医技人员的专业化进程,影像学科的亚专业与各临床学科之间的联系也更加紧密,临床与影像学科之间的互相渗透使彼此界限逐渐模糊,工作配合得更好,效率更高,使由于设立临床、影像科室和划分不同专业而引起彼此工作和知识脱节的问题得到解决。一方面影像学科医生的临床专业知识更加深人,另一方面临床学科医生对医学影像学知识的了解更好,或一人具有两个学科的行医资格,可以身兼两职。同时,影像学科亚专业各科在理论与实践上出现了许多交汇点,在诊断与治疗上相互借鉴、互相支持、密切配合,在一个新的、高层次上协作共进。
1.3数字化成像、存储、传输的实现,PADS系统的建立,使各种影像技术手段得以优势互补、扬长避短、资源共享,使诊断综合化的目标得以实现。
PACS,医学影像存储与通讯系统(Picture archiving and communication system, PALS)是医学影像技术与数字化图像技术、计算机技术和网络通讯技术相结合的产物,它是通过计算机和网络通讯设备对医学影像资料进行采集、存储、处理、传输和管理的综合性系统。它使得影像设备不再是孤立的一台设备,而是PACS网上的一个节点。科室间数据流的屏障被解除,以实现资源共享和医院内数据流的无缝连接。
诊断的综合化是影像学料发展的一个方向,即在诊断台上比较多种诊断设备的图像,发挥各种设备的综合优势,进而可以用工作站将不同检查设备的图像进行“图像融合”,大幅度提高诊断准确率。随着诊断综合化的实现,在影像学科内部管理模式上,必将改变目前以诊断设备为主的“分工”分组,转向以人体器官/系统为主的专业化分组,充分发挥影像技术人员和装备的系统性、整体性优势,进一步提高技术一经济效益。 与技术进步相适应,在管理模式上影像科室的发展也经历了三个阶段:专科化发展阶段~专科协作发展阶段~系统专业化发展阶段。
当前,国内外医院PACS的规模有四种类型:
1.4成立医学影像中心是优化医院诊疗工作流程,提高效率,实现“以病人为中心”的根本保证。在传统的影像科室管理模式下,医学影像信息在医院各影像输出科室之间以及影像输出与输人科室之间传输、存储、使用过程中,存在着流程环节多、周期长、通道狭窄、手工作业化程度高,经常发生诊疗工作的延误和堵塞,影像信息的丢失和误差率也居高不下(有关资料表明:即使一个管理制度十分完善的医院,由于借出、会诊等,X光片丢失率也会在10%一20%之间)。通过对全院医学影像(输出)科室的服务与管理模式调整与改革,组建全院医学影像中心后,就可以通过PACS网络改造和优化医院诊疗工作的作业流程,简化医学影像流通环节、提高效率,为临床一线提供快捷、优良的医学影像信息服务,可以有效地缩短平均住院日、手术待诊时间、提高住院病人的三日确诊率,降低病人的诊疗费用,“把时间还给医生、护士,把医生、护士还给病人”成为现实,力争实现以病人为中心、努力争取最佳诊疗效果、提高医疗质量和服务质量的目标。以先进的技术包装陈旧的医院影像科室管理模式是行不通的。
1.5组建医学影像中心可以大幅度提升医院的学术水平和整体实力,通过组建全院医学影像中心,实现“强强联合”,使医院影像学科体系更加完备、科学、合理,影像学科体系和影像技术装备体系良性互动、相得益彰,人才培养、科研实力和学术水平有大幅度的提升。医院医学影像(输出)学科实力的增强也将带动全院学科建设的发展,从整体上提高医院的医、教、研能力。
2医院组建医学影像中心要总体规划、分布实施、掌握标准、注重实效
随着信息时代的到来,数字化、标准化、网络化作业已经进入医学影像界,并以奔腾之势迅猛发展,伴随着一些全新的数字化影像技术陆续应用于临床,如CT、MRI、数字减影血管造影(digitalsubtractionangiography,DSA)、正电子体层成像(positiveelectrontomography,PET)、计算机放射摄影(computedradiography,CR)及数字放射摄影(digitalradiography,DR)等,医学影像诊断设备的网络化已逐步成为影像科室的必然发展趋势,同时在客观上要求医学影像诊断报告书写的计算机化、标准化、规范化。医学影像存档与通讯系统(picturearchivingandcommunicationsystems,PACS)和医学影像诊断报告系统应运而生并得到了快速发展,使整个放射科发生着巨大变化,提高了影像学科在临床医学中的地位和作用。
概述
PACS是近年来随着数字成像技术、计算机技术和网络技术的进步而迅速发展起来的、旨在全面解决医学图像的获取、显示、存贮、传送和管理的综合系统[1-4]。PACS分为医学图像获取、大容量数据存贮、图像显示和处理、数据库管理及用于传输影像的局域或广域网络等5个单元[2,4]。
PACS是一个传输医学图像的计算机网络,协议是信息传送的先决条件。医学数字影像传输(DICOM)标准是第一个广为接受的全球性医学数字成像和通信标准,它利用标准的TCP/IP(transfercontrolprotocol/internetprotocol)网络环境来实现医学影像设备之间直接联网[3]。因此,PACS是数字化医学影像系统的核心构架,DICOM3.0标准则是保证PACS成为全开放式系统的重要的网络标准和协议。
1998年我院放射科与航卫通用电气医疗系统有限公司(GEHangweiMedicalSystems,简称GEHW)合作建成医学影像诊断设备网络系统,它以DICOM服务器为中心服务器,按照DICOM3.0标准将数字化影像设备联网,进行医学数字化影像采集、传输、处理、中心存储和管理。
材料与方法
一、系统环境
(一)硬件配置
1.DICOM服务器:戴尔(Dell)PowerEdge2300服务器(奔腾Ⅱ400MHzCPU,128MB动态内存,9.0GB热插拔SICI硬盘×2,NEC24×SCSICD-ROM,Yamaha6×4×2CD-RW×2,EtherExpressPRO/100+网卡;500W不间断电源(UPS)。
2.数字化医学图像采集设备:螺旋CT:GEHiSpeedCT/i,DICOM3.0接口;磁共振:GESignaHorizonLXMRI,DICOM3.0接口。
3.医学图像显示处理工作站:SunAdvantageWindows(简称AW)2.0,128MB静态内存,20in(1in=2.54cm)彩显,1280×1024显示分辨率,DICOM3.0接口。
4.激光胶片打印机:3M怡敏信(Imation)969HQDualPrinter。
5.医学图像浏览终端:7台,奔腾Ⅱ350~400MHz/奔腾Ⅲ450MHzCPU,64~128MB内存,8MB显存,6GB~8.4GB硬盘,15in~17in显示器,10Mbps以太网(Ethernet)网卡,Ethernet接口。
6.医学影像诊断报告打印服务器:2台图像浏览终端兼作打印服务器。
7.激光打印机:惠普(HP)LASERJET6LGOLD×2。kr~e6w=,N!''''#X_Ow+bafe~nNw法律论文b&mWw;\+?=u(tAvzA€\J?~^v=
8.集线器(HUB):D-LINKDE809TC,10MBPS。
9.传输介质:细缆(THINNET);5类无屏蔽双绞线(UTP);光纤电缆。
10.网络结构:星形总线拓扑(STARBUSTOPOLOGY)结构。
(二)软件
1.操作系统:螺旋CT、MRI、AW工作站:UNIX;DICOM服务器:WINDOWSNT4.0SERVER(英文版);图像浏览及诊断报告书写终端:WINDOWSNT4.0WORKSTATION(中文版)。
2.网络传输协议:标准TCP/IP。
3.网络浏览器:NETSCAPECOMMUNICATOR4.6。
4.数据库管理系统:INTERBASESERVER/CLIENT5.1.1。
5.医学图像浏览及影像诊断报告系统开发软件:BORLANDC++BUILDER4.2。
论文医学影像存档与通讯系统的开发与初步应用来自免费
6.医学图像浏览终端:GEHWADVANTAGEVIEWERSERVER/CLIENT1.01。
7.医学影像诊断报告系统:GEHW医疗诊断报告1.0。
8.刻录机驱动软件:GEAR4.2。
(三)系统结构
螺旋CT、MRI和AW工作站按照DICOM3.0标准通过细缆连接到主干电缆(细缆)上形成总线拓扑结构的DICOM网络;DICOM服务器与各图像浏览及诊断报告书写终端通过双绞线以集线器(HUB)为中心连接成星形拓扑结构的ETHERNET网络;二者再通过集线器连接成星形总线拓扑结构的PACS。螺旋CT、MRI、AW工作站各自通过光纤电缆与激光胶片打印机相连,进行共享打印。本PACS由如下各子系统构成:
CT/I:GEHISPEEDCT/I;AW2.0:SUNADVANTAGEWINDOWS2.0;MRI:GESIGNAHORIZONLXMRI;DICOM:DIGITALIMAGINGANDCOMMUNICATIONSINMEDICINE;ETHERNET网络:以太网络;T-BNC:同轴电缆接插件T型连接器;TERMINATOR:终结器;TRANSCEIVER:收发器;UTP:无屏蔽双绞线;THINNETCOAXIALCABLE:细同轴电缆
1.数字化图像采集子系统:从螺旋CT、MRI等数字化影像设备直接产生和输出高分辨率数字化原始图像至DICOM服务器,供中心存储、打印、浏览及后处理。
2.数字化图像回传子系统:将中心存储的图像数据回传给螺旋CT、MRI等数字影像设备,供打印、对比参考及后处理(三维重建等)。
3.医学图像处理子系统:在AW工作站及各图像浏览及诊断报告书写终端上进行调节窗宽/窗位、单幅/多幅显示、局域/全图放大、定量测量(CT值、距离、角度、面积)、连续播放和各种图像标注等。
4.医学影像诊断报告书写子系统:书写规范、标准的医学影像诊断报告。
5.图像中心存储子系统:图像短期内(5~7天)保存在DICOM服务器的硬盘中,当图像数据累积到一定数量(650MB)时,将其刻录到CD-R(COMPACTDISK-RECORDABLE,刻录盘)盘片上作为长期存储。
二、医学图像浏览及影像诊断报告系统
医学图像浏览及影像诊断报告系统使用的软件包是由航卫通用电气医疗系统有限公司(简称GEHW)提供的ADVANTAGEVIEWERSERVER/CLIENT1.01。该软件以WINDOWSNTSERVER/WORKSTATION4.0为操作平台,分为服务器端和客户端两部分:服务器端软件负责完成医学图像的传输、中心存储、数据库管理等任务;客户端软件具有医学图像浏览和影像诊断报告书写功能。
服务器端软件包括图像浏览、图像管理、光盘数据库和系统设置4个模块。(1)图像浏览模块具有简单的图像浏览功能;(2)图像管理模块包括存储、删除、图像输出等子模块,在这些子模块中通过以患者姓名、年龄、性别、CT号、检查序号、检查类型、检查日期等为关键词在DICOM服务器硬盘、光盘上查询所需图像并进行相关处理;(3)光盘数据库模块储存有每张光盘图像检索信息以备查询;(4)系统设置模块管理各输入输出设备的IP地址等。
医学图像浏览软件具有强大的图像处理功能,可以通过网络从DICOM服务器硬盘、光盘上调阅所需图像,并进行图像浏览和后处理。它包括窗宽窗位、图像、几何、网络、显示格式、连续播放等功能模块:(1)窗宽窗位模块通过预定义、用户自定义及精确设定窗宽窗位,使图像得到最佳显示,另外还可以通过鼠标左键进行调节;(2)图像功能模块可以对图像进行放缩(1~300倍)、滤波、对比度(-100~100)、旋转(0~360°)、三原色(RGB)色彩处理;(3)几何功能模块可以将图像垂直或水平翻转、加网格、负片处理、定量测量(CT值、距离、面积、角度)及标注等。经过后处理的图像可以直接输出至诊断报告系统或以不同文件格式存盘以供制作幻灯片
医学影像诊断报告系统软件镶嵌于医学图像浏览软件内,可以在浏览图像后直接书写诊断报告。医疗诊断报告主窗体上的输入项如姓名、性别、年龄、CT号、检查序号及检查日期可直接从数据库获取,报告日期由系统自动生成,科别、报告模板等项通过下拉菜单选择。检查所见、印象两项可直接从诊断支持库提取正常或常见病、多发病的检查所见、印象,直接或经局部修改后形成诊断报告主体。程序提供了撤消、剪切、复制、粘贴、清除、全选、字体等编辑功能。该软件可输出4种格式的诊断报告,其中可包含1~2幅典型图例。用户可通过1个或多个关键字段检索和调阅诊断报告。
结果
在上述PACS的硬件设备安装、组网完成后,在基础网络连接(TCP/IP)和DICOM水平传输这2个层次上,对PACS进行整体调试,成功地实现了数字化图像在PACS内的传送、中心存储、易机图像处理、不同操作系统(UNIX和WindowsNT)不同格式图像(Adv和Dic)在DICOM3.0标准水平的相互兼容和影像交流,以及PACS内影像诊断报告的书写、共享、打印等功能。1999年初PACS正式用于我科的CT及MRI室,显著提高了科室的工作效率及管理水平。
讨论
数字技术、计算机技术和网络技术的飞速发展带动了医学影像技术的突飞猛进的发展,同时也推动了医生工作模式的变革:要求医生逐渐习惯于在显示器的荧光屏上观看医学图像;通过计算机检索和调阅医学图像,并且调节窗宽窗位;通过计算机网络随时获取所需的医学图像及诊断报告等相关信息。
一、传统的医学图像处理方式存在的问题
(1)保存胶片需要很大的存放空间。(2)在显影、定影、冲洗、烘干、归档等环节上要耗费大量的人力和财力。(3)胶片库手工管理效率低,查询慢且容易把胶片归错档。(4)数年后由于胶片的老化使其上的图像变得模糊不清,给再次查阅和科研工作带来极大的不便。(5)把CT、MRI等图像硬拷贝到胶片上,固定的窗宽、窗位已经丢失了大部分原始信息,保留的只是操作医师认为有用的信息,图像无法后处理,丢失了对病人复诊和其他医师认为是有用的诊断信息。
二、PACS在影像学科中的应用价值
(1)利用PACS网络技术,在CT、MRI等影像科室之间能快速传送图像及相关资料,做到资源共享,方便医师调用、会诊以及进行影像学对比研究,更有利于患者得到最高的诊断治疗效益。(2)PACS采用了大容量可记录光盘(CD-R)存储技术,实现了部分无胶片化,减少了胶片使用量和管理,减少了激光相机和洗片机的磨损,降低了显定影液的消耗,节省了胶片存放所需的空间,降低了经营成本。(3)避免了照片的借调手续和照片的丢失与错放,完善了医学图像资料的管理,提高了工作效率。(4)可在不同地方同时调阅不同时期和不同成像手段的多幅图像,并可进行图像的再处理,以便于对照和比较,为从事医学影像学工作的医务人员和科研人员提供方便的工作、科研和学习的条件。(5)有利于计算机辅助教学,进一步提高教学质量。运用PACS可无损失地储存图像资料,待日后调阅发现有价值且符合教学内容要求的图像,标上中英文注释,利用PowerPoint软件制作成教学幻灯片,采用大屏幕多媒体投影仪示教。
规范的医学影像诊断报告书写功能,可打印出图文并茂的影像诊断报告。
三、诊断报告规范化、计算机化
(1)基本项目要求规范化。诊断报告中反映病情的一般项目齐全,备查项目比较完整。(2)报告的专业术语规范化。内容表述清楚,主次分明,先描述阳性征象,后描述阴性征象,先描述主要病变,后描述次要病变,描述部分与结论一致。(3)基本格式规范化。先一般项目,再描述图像情况,然后作结论表述,最后还有做其他进一步检查的建议。
此次大会参会代表超过3000人,是迄今为止参会人数最多的一次。参会代表来自全国31个省、自治区、直辖市,港澳特区和台湾地区,同时美国、德国、澳大利亚、新加坡和印度等多个国家的专家学者出会并发言。
阵容豪华
作为国内医学影像领域最具权威、规模最大的学术会议,本次大会的参会嘉宾阵容堪称豪华。四川省卫生厅厅长沈骥,中华医学会党委书记饶克勤,中华医学会副会长戴建平,中华医学会放射学分会(以下简称“放射学分会”)主任委员、复旦大学副校长冯晓源,中国医科大学副校长兼盛京医院院长郭启勇,放射学分会候任主任委员、中国医科大学附属第一医院院长徐克等出会。
出会的港澳台及海外专家还包括中华台北放射线分会理事长周宜宏、香港放射科医学院创院及前院长梁冯令仪、美国放射学会前任主席Joseph K.T. Lee、印度放射与影像学会候任主席Rajesh Kapur、《Radiology》主编Herbert Y. Kressel等。
本届放射学分会新任主任委员冯晓源在开幕词中首先对参会嘉宾表示欢迎,他说:“回顾影像学的发展历程,从普通的X线平片,到最新的后64排CT,从低场磁共振到超高场磁共振,影像设备不断改进和完善,检查技术和方法也不断创新,放射诊断也从单一依靠形态变化进行诊断,发展成为集形态、功能、代谢、改变为一体的综合诊断系统,我们每上一个台阶,都不仅仅是技术的进步,更是观念的更新。”
四川省卫生厅厅长沈骥在发言中表示,希望中国的医院和专家多多支持国产医疗设备的研发、生产和推广普及,希望中国的医疗设备制造业像电器、汽车行业一样,早日打一个翻身仗。
放射学分会前任主任委员、盛京医院院长郭启勇代表学会,为美国南加州大学医学院前神经放射科主任、美国神经放射学会主席徐志诚教授颁发“中华医学会放射学分会荣誉会员”证书,以表彰他多年来对中美学术交流和中国放射学人才培养方面所做的杰出贡献。
影像医学应参与整个医疗过程
大会主席冯晓源做了第一个主题发言,题目为《影像医学的发展和思考》。在演讲中,冯晓源首先回顾了医学影像学的发展历程。
冯晓源说:“我预测十年以后的影像医学的发展会以预测和预防为先导,以早期诊断为重点,为预防医学、临床医学和康复医学提供一切与健康有关的,以影像为基础的生物学信息。它必须参与各种治疗计划的制订,是各种治疗计划制订的不可或缺的基础。是预防治疗和康复效果监测的重要手段。”
他同时还强调,目前影像医学只是参与治疗中的诊断这很小的一部分,事实上它应该参与整个治疗过程。只有这样,“我们的学科才会壮大,才会真正成为整个临床治疗过程中不可或缺的基石。”冯晓源说。
他最后总结:影像医学应更加贴近临床的需要,将影像医学的发展融入整个医疗过程;通过智能技术、图像融合、移动通讯技术、绿色环保技术等技术创新提高效率、降低成本;改变组织架构,将安全放在重要的地位,建立以人为中心的诊疗组织;重视人才的全面发展,改革本学科医生的培训方式。
大会活动丰富多样
2012中国医学影像融合战略研究高峰论坛、医疗器械产业创新与科技金融论坛等五个论坛与大会同期举行。除了学术活动以外,本次大会还开展了多种多样的比赛。
为对北美放射学会中稿论文作者进行鼓励,大会开设了“青年放射医师北美放射学会中稿论文英文演讲比赛”,上海交通大学附属上海第六人民医院放射科的张佳胤博士获得特等奖。
2015年8月7日至9日,第14届全国泌尿外科尿路结石专题会议在北京会议中心召开,千余名泌尿外科领域医师共同出席会议,深入探讨尿路结石预防、治疗最新进展及复杂结石综合治疗等内容。
“通过B超和CT进行融合影像,不仅是数据间的简单复合,而强调信息优化,以突出有用信息,消除或抑制无关信息,改善目标识别的影像环境,从而增强解译的可靠性,减少模糊性、多义性、不确定性和误差。”北京清华长庚医院泌尿外科主任李建兴指出。
李建兴强调,通过融合影像在经皮肾手术中的应用研究发现,通过B超和CT进行影像融合,可精准确立肾结石经皮肾镜手术的通道,达到结合治疗个体设计手术方案的最终目的。
目前医学界新潮流――3D打印,已被广泛应用在整形外科、骨科、口腔科、眼科领域的临床工作中。清华长庚泌尿外科住院医师刘宇保指出,医务人员可根据患者增强CT的原始数据,通过软件和设备打印出1:1的结石肾脏模型。实现肾脏模型的透明化,可帮助医生清晰分辨内部血管、集合系统及结石的关系毗邻结构,从而提供穿刺点个体化生理解剖学依据,避免因通道误区造成的反复进针对肾实质的损害,为术前穿刺提供更合适的路径。
“3D打印制作的是患者‘自己’的模型。在术前与家属谈话过程中,医务人员可利用模型的直观效果对家属进行讲解,使术前谈话更逼真和充分,让患者对目前情况、手术预计效果产生直观了解,对解除病患及家属对手术取石的迷惑和顾虑有良好的效果。”刘宇保说,“我们的研究结果补充了3D打印技术在经皮肾手术中的应用,对精准设计合理的手术模式、安全施行手术具有重要的临床意义,也促进数字化医学在肾脏疾病中的应用发展。”
对此,美国加州大学旧金山分校医学院教授马歇尔・斯托勒评价,临床中存在太多的无效沟通,这不仅造成医生和患者关系的疏离,也增加了医疗纠纷的可能性。可以说,医疗纠纷很大程度上是医患沟通不良造成的,而融合影像及3D打印技术可为此类问题的解决做出探索实践。
针对特殊疑难病例,参会专家探讨了复杂结石的多路径综合治疗方案,以及促进个体化诊疗的最佳化等话题。会议期间,北京清华长庚医院、上海第二军医大学附属长海医院、广州医学院第一附属医院的医生在会议现场进行了10场疑难复杂泌尿结石手术演示。美国加州大学旧金山分校医学院教授托马斯・卡提出,在研究肾结石发病机制过程中,高级影像技术、果蝇结石模型等技术应用前景广阔。
由於科技日新月异,印刷已由传统印刷走向数位印刷。在数位化的过程中,影像的资料一直有档案过大的问题,占用记忆体过多,使资料在传输上、处理上都相当的费时,现今个人拥有TrueColor的视讯卡、24-bit的全彩印表机与扫描器已不再是天方夜谭了,而使用者对影像图形的要求,不仅要色彩繁多、真实自然,更要搭配多媒体或动画。但是相对的高画质视觉享受,所要付出的代价是大量的储存空间,使用者往往只能眼睁睁地看着体积庞大的图档占掉硬碟、磁带和光碟片的空间;美丽的图档在亲朋好友之间互通有无,是天经地义的事,但是用网路传个640X480TrueColor图形得花3分多钟,常使人哈欠连连,大家不禁心生疑虑,难道图档不能压缩得更小些吗?如此报业在传版时也可更快速。所以一种好的压缩格式是不可或缺的,可以使影像所占的记忆体更小、更容易处理。但是目前市场上所用的压缩模式,在压缩的比率上并不理想,失去压缩的意义。不然就是压缩比例过大而造成影像失真,即使数学家与资讯理论学者日以继夜,卯尽全力地为lossless编码法找出更快速、更精彩的演算法,都无可避免一个尴尬的事实:压缩率还是不够好。再说用来印刷的话就造成影像模糊不清,或是影像出现锯齿状的现象。皆会造成印刷输出的问题。影像压缩技术是否真的穷途末路?请相信人类解决难题的潜力是无限的。既然旧有编码法不够管用,山不转路转,科学家便将注意力移转到WAVELET转换法,结果不但发现了满意的解答,还开拓出一条光明的坦途。小波分析是近几年来才发展出来的数学理论。小波分析,无论是作为数学理论的连续小波变换,还是作为分析工具和方法的离散小波变换,仍有许多可被研究的地方,它是近几年来在工具及方法上的重大突破。小波分析是傅利叶(Fourier)分析的重要发展,他保留了傅氏理论的优点,又能克服其不足之处。可达到完全不失真,压缩的比率也令人可以接受。由於其数学理论早在1960年代中叶就有人提出了,而到现在才有人将其应用於实际上,其理论仍有相当大的发展空间,而其实际运用也属刚起步,其後续发展可说是不可限量。故研究的动机便由此而生。
贰、WAVELET的历史起源
WAVELET源起於JosephFourier的热力学公式。傅利叶方程式在十九世纪初期由JosephFourier(1768-1830)所提出,为现代信号分析奠定了基础。在十九到二十世纪的基础数学研究领域也占了极重要的地位。Fourier提出了任一方程式,甚至是画出不连续图形的方程式,都可以有一单纯的分析式来表示。小波分析是近几年来才发展出来的数学理论为傅利叶方程式的延伸。
小波分析方法的提出可追溯到1910年Haar提出的小波规范正交基。其後1984年,法国地球物理学J.Morlet在分析地震波的局部性质时,发现传统的傅利叶转换,难以达到其要求,因此引进小波概念於信号分析中,对信号进行分解。随後理论物理学家A.Grossman对Morlet的这种信号根据一个确定函数的伸缩,平移系{a-1/2Ψ[(x-b)/a];a,b?R,a≠0}展开的可行性进行了研究,为小波分析的形成开了先河。
1986年,Y.Meyer建构出具有一定衰减性的光滑函数Ψj,k(x),其二进制伸缩与平移系{Ψj,k(x)=√2jΨ(2jx-k);j,k?Z}构成L2(R)的规范正交基。1987年,Mallat巧妙的将多分辨分析的思想引入到小波分析中,建构了小波函数的构造及信号按小波转换的分解及重构。1988年Daubechies建构了具有正交性(Orthonormal)及紧支集(CompactlySupported);及只有在一有限区域中是非零的小波,如此,小波分析的系统理论得到了初步建立。
三、WAVELET影像压缩简介及基础理论介绍
一、WAVELET的压缩概念
WAVELET架在三个主要的基础理论之上,分别是阶层式边码(pyramidcoding)、滤波器组理论(filterbanktheory)、以及次旁带编码(subbandcoding),可以说wavelettransform统合了此三项技术。小波转换能将各种交织在一起的不同频率组成的信号,分解成不相同频率的信号,因此能有效的应用於编码、解码、检测边缘、压缩数据,及将非线性问题线性化。良好的分析局部的时间区域与频率区域的信号,弥补傅利叶转换中的缺失,也因此小波转换被誉为数学显微镜WAVELET并不会保留所有的原始资料,而是选择性的保留了必要的部份,以便经由数学公式推算出其原始资料,可能不是非常完整,但是可以非常接近原始资料。至於影像中什度要保留,什麽要舍弃,端看能量的大小储存(跟波长与频率有关)。以较少的资料代替原来的资料,达到压缩资料的目的,这种经由取舍资料而达到压缩目地的作法,是近代数位影像编码技术的一项突破。即是WAVELET的概念引入编码技术中。
WAVELET转换在数位影像转换技术上算是新秀,然而在太空科技早已行之有年,像探测卫星和哈柏望远镜传输影像回地球,和医学上的光纤影像,早就开始用WAVELET的原理压缩/还原影像资料,而且有压缩率极佳与原影重现的效果。
以往lossless的编码法只着重压缩演算法的表现,将数位化的影像资料一丝不漏的送去压缩,所以还原回来的资料和原始资料分毫无差,但是此种压缩法的压缩率不佳。将数位化的影像资料转换成利於编码的资料型态,控制解码後影像的品质,选择适当的编码法,而且还在撷取图形资料时,先帮资料「减肥。如此才是WAVELET编码法主要的观念。
二、影像压缩过程
原始图形资料色彩模式转换DCT转换量化器编码器编码结束
三、编码的基本要素有三点
(一)一种压缩/还原的转换可表现在影像上的。
(二)其转换的系数是可以量化的。
(三)其量化的系数是可以用函数编码的。
四、现有WAVELET影像压缩工具主要的部份
(一)WaveletTransform(WAVELET转换):将图形均衡的分割成任何大小,最少压缩二分之一。
(二)Filters(滤镜):这部份包含WaveletTransform,和一些着名的压缩方法。
(三)Quantizers(量化器):包含两种格式的量化,一种是平均量化,一种是内插量化,对编码的架构有一定的影响。
(四)EntropyCoding(熵编码器):有两种格式,一种是使其减少,一种本论文由整理提供
为内插。
(五)ArithmeticCoder(数学公式):这是建立在AlistairMoffatslineartimecodinghistogram的基础上。
(六)BitAllocation(资料分布):这个过程是用整除法有效率的分配任何一种量化。
肆、WAVELET影像压缩未来的发展趋势
一、在其结构上加强完备性。
二、修改程式,使其可以处理不同模式比率的影像。
三、支援更多的色彩。可以处理RGB的色彩,像是YIQ、HUV的色彩定义都可以分别的处理。
四、加强运算的能力,使其可支援更多的影像格式。
五、使用WAVELET转换藉由消除高频率资料增加速率。
六、增加多种的WAVELET。如:离散、零元树等。
七、修改其数学编码器,使资料能在数学公式和电脑的位元之间转换。
八、增加8X8格的DCT模式,使其能做JPEG的压缩。
九、增加8X8格的DCT模式,使其能重叠。
十、增加trelliscoding。
十一、增加零元树。
现今已有由中研院委托国内学术单位研究,也有不少的研究所的硕士。国外更是如火如荼的展开研究。相信实际应用於实务上的日子指日可待。
伍、影像压缩研究的方向
1.输入装置如何捕捉真实的影像而将其数位化。
2.如何将数位化的影像资料转换成利於编码的资料型态。
3.如何控制解码影像的品质。
4.如何选择适当的编码法。
5.人的视觉系统对影像的反应机制。
小波分析,无论是作为数学理论的连续小波变换,还是作为分析工具和方法的离散小波变换,仍有许多可被研究的地方,它是近几年来在工具及方法上的重大突破。小波分析是傅利叶(Fourier)分析的重要发展,他保留了傅氏理论的优点,又能克服其不足之处。
陆、在印刷输出的应用
WAVELET影像压缩格式尚未成熟的情况下,作为印刷输出还嫌太早。但是後续发展潜力无穷,尤其在网路出版方面,其利用价值更高,WAVELET的出现就犹如当时的JPEG出现,在影像的领域中掀起一股旋风,但是WAVELET却有JPEG没有的优点,JPEG乃是失真压缩,且解码後复原程度有限,能在网路应用,乃是由於电脑的解析度并不需要太高,就可辨识其图形。而印刷所需的解析度却需一定的程度。WAVELET虽然也是失真压缩,但是解码後却可以还原资料到几乎完整还原,如此的压缩才有存在的价值。
有一点必须要提出的就是,并不是只要资料还原就可以用在印刷上,还需要有解读其档案的RIP,才能用於数位印刷上。等到WAVELET的应用成熟,再发展其适用的RIP,又是一段时间以後的事了。
在网路出版上已经有浏览器可以外挂读取WAVELET档案的软体了,不过还是测试版,可是以後会在网路上大量使用,应该是未来的趋势。对於网路出版应该是一阵不小的冲击。图像压缩的好处是在於资料传输快速,减少网路的使用费用,增加企业的利润,由於传版的时间减少,也使印刷品在当地印刷的可能性增高,减少运费,减少开支,提高时效性,创造新的商机。
柒、结论
WAVELET的理论并不是相当完备,但是据现有的研究报告显现,到普及应用的阶段,还有一段距离。但小波分析在信号处理、影像处理、量子物理及非线性科学领域上,均有其应用价值。国内已有正式论文研究此一压缩模式。但有许多名词尚未有正式的翻译,各自有各自的翻译,故研究起来倍感辛苦。但相信不久即会有正式的定名出现。这也显示国内的研究速度,远落在外国的後面,国外已成立不少相关的网站,国内仅有少数的相关论文。如此一来国内要使这种压缩模式普及还有的等。正式使用於印刷业更是要相当时间。不过对於网路出版仍是有相当大的契机,国内仍是可以朝这一方面发展的。站在一个使用其成果的角度,印刷业界也许并不需要去了解其高深的数理理论。但是在运用上,为了要使用方便,和预估其发展趋势,影像压缩的基本概念却不能没有。本篇文章单纯的介绍其中的一种影像压缩模式,目的在为了使後进者有一参考的依据,也许在不久的将来此一模式会成为主流,到时才不会手足无措。
参考文献:
1.GeoffDavis,1997,WaveletImageCompressionConstructionKit,。
2.张维谷.小宇宙工作室,初版1994,影像档宝典.WINDOWS实作(上),峰资讯股份有限公司。
3.张维谷.小宇宙工作室,初版1994,影像档宝典.WINDOWS实作(下),峰资讯股份有限公司。
4.施威铭研究室,1994,PC影像处理技术(二)图档压缩续篇,旗标出版有限公司。
5.卢永成,民八十七年,使用小波转换及其在影像与视讯编码之应用,私立中原大学电机工程学系硕士学位论文。
6.江俊明,民八十六年,小波分析简介,私立淡江大学物理学系硕士论文。
7.曾泓瑜、陈曜州,民八十三年,最新数位讯号处理技术(语音、影像处理实务),全欣资讯图书。
附录:
嵌入式零元树小波转换、阶层式嵌入式零元树小波转换、阶层式影像传送及渐进式影像传送
目前网路最常用的静态影像压缩模式为JPEG格式或是GIF格式等。但是利用这些格式编码完成的影像,其资料量是不变的,其接受端必须完整地接受所有的资料量後才可以显示出编码端所传送的完整影像。这个现象最常发生在利用网路连结WWW网站时,我们常常都是先接收到文字後,其网页上的图形才,慢慢的一小部份一小部份显示出来,有时网路严重塞车,图形只显示一点点後就要再等非常久的时间才再有一点点显示出来,甚至可能断线了,使得使用者完全不知道在接收什麽图案的图形,无形中造成网路资源的浪费。此缺点之改善,可以使用嵌入式零元树小波转换(EZW)来完成。
阶层式影像传送系统的主要功能为允许不同规格之显示装置或解码器可以从同一编码器中获得符合其要求之讯号,如此不需要对於不同的解码器设计不同的编码器配合利用之,进而增加了其应用的范围,及减低了所架设系统的复杂度,也可以节省更多的设备费用。利用Shapiro所提出的嵌入式零元树小波转换(EZW)技术来设计阶层式影像传送系统时,其编码的效果不是很好。主要的原因是,利用(EZW)技术所设计的编码器是根据影像的全解析度来加以编码的,这使得拥有不同解析度与码率要求的解码器,无法同时分享由编码器所送出来的位元流。虽然可以利用同时播放(Simulcast)技术来加以克服之,但是该技术对於同一影像以不同解析度独立编码时,将使得共同的低通次频带(LowpassSubband)被重复的编码与传送,而产生了相当高的累赘(Redundancy)。
基於上述情况,有人将嵌入式零元树小波转换(EZW)技术加以修改之,完成了一个新式的阶层式影像传送系统。该技术为阶层式嵌入的零元树小波转换(LayeredEmbeddedZerotreeWavelet,简称LEZW技术。这个技术本论文由整理提供
使我们所设计出来的阶层式影像传送系统,可以在编码传送前预先指定图层数目、每层影像的解析度与码率。
LEZW技术是将EZW技术中的连续近似量化(SAQ)加以延伸应用之,而EZW传统的做法是将SAQ应用於全部的小波转换系数上。然而在LEZW技术中,从基层(BaseLayer)开始SAQ一次仅用於一个图层(Layer)的编码,直到最高阶析度的图层为止。当编码的那一图层码率利用完时,即表示该图层编码完毕可以再往下一图层编码之。为了改善LEZW的效率,在较低图层的SAQ结果应用於较高图层的SAQ过程中,基於这种编码的程序,LEZW演算法则可以在每一图层平均码率的限制下,重建出不同解析度的影像。因此,LEZW非常适合用於设计阶层式影像传送系统。
LEZW技术也可以应用於渐进式传送,对於一个渐进式影像传送系统而言,控制其解析度将可以改善重建影像的视觉品质。而常用的渐进式传送方法有使用向量量化器或零元树资料结构编码演算法则。但是向量量化器需要较大的记忆体及对与传送中的错误敏威,而利用EZW技术所设计的渐进式影像传送系统,可以改善这些缺点,所以享有较好的效能。但是它也有缺点就是,应用於渐进式传送时是根据全解析度来做编码及传送,因此在低码率的限制之下时,若用全解析度来显示影像将使得影像模糊不清。所以在低码率传送时的影像以较低的解析度来显示时,则可以使影像的清晰度有所改善。
所以将LEZW技术延伸至渐进式传送,在编码之前可以先设定每一级(Stage)的解析度与传送每一级所累加的码率(AccumulatedRate),然後再编码与传送之。该系统在低码率时用低解析度来显示影像,在较高码率时则以高解析度来显示影像,将改善渐进式传送的视觉品质。此系统在编码传送的过程中,允许传送的位元流在任一点位置被中断停止,而接收端可以由所接收到的资料,将影像重建在资料中断时的解析度下。
渐进式影像传送与阶层式影像传送的设计方法是相似的,只不过在传送方法上两者有相当大的不同。在阶层式影像传送系统中,所有图层的资料是平行的一起传送出去的。而渐进式影像传送则是以级对级(Stage-by-Stage)的方式传送的。因此,利用LEZW技术所设计的渐进式传送可看做是单一图层(Single-Layer)系统,其解析度与传送都是可以控制的。如此网路资源的浪费,便可得到某种程度上的解决。