时间:2022-09-21 18:56:58
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇软土地基处理论文范例。如需获取更多原创内容,可随时联系我们的客服老师。
1.1沉降处理
沉降处理包括加速固结沉降和减少总沉降量两方面。加速固结沉降可采用加载预压、竖向排水(设置砂井或芯板排水)和挤实砂桩等方法。减少总沉降量可以采用换填好土、石灰(水泥)桩、挤实砂桩等方法。
1.2稳定处理
稳定处理可以采用换填土、挤实砂桩、石灰(水泥)桩等措施增加抗滑阻力。各种加速固结沉降措施都有助于促进软土层强度的增长;慢速或分期填筑路堤可以达到阻止地基强度降低的目的。
1.3应注意的问题
(1)地基的土质及土层构成(厚度、排水层等)条件。(2)道路的性质、路堤高度和宽度,是否为与构造物连接的地段等条件。(3)工期、材料供应、施工机械作业条件和对周围环境的影响等条件。以上处理方法可以单独使用,通常用几种方法组合使用,以发挥各种方法的特长,取得良好的处理效果。
2.1换填土法
当淤土层厚度较簿时,可采用淤土层换填砂壤土、灰土、粗砂、水泥土及采用沉井基础等办法进行地基处理,鉴于换砂不利于防渗,且工程造价较高,一般应就地取材,以换填泥土为宜。可将软土全部挖除,使路堤筑于基底或尽量换填渗水性土。这种方法适用于软土厚度小于2m的路堤。换土法要回填有较好压密特性土进行压实或夯实,形成良好的持力层,从而改变地基承载力特性,提高抗变形和稳定能力,施工时应注意坑边稳定,保证填料质量,填料应分层夯实。
2.2抛石挤淤法
在路基底从中部向两侧抛投一定数量的片石,将淤泥挤出路基范围,以提高路基强度,所有片石宜采用不易风化的大石块,尺寸一般<0.3m。其上铺0.1m厚碎石及0.1m厚砂层后再填土。这种方法的适用范围为:软土厚度<3.0m,表层无硬壳,呈流动状态、排水困难的地基状态。
2.3反压护道法
当软土和沼泽较厚,路堤高度不超过极限高度的2倍时,路堤两侧填筑适当厚度和宽度的护道,在护道附加荷载的作用下,保持地基的平衡,增加抗滑力矩,防止路堤的滑动破坏。通过反压护道法使路堤下淤泥趋于稳定。护道一般可采用单组形式,其高度为路堤高度的0.3—0.5倍。适用范围:当路堤超过极限高度的1.5—2.0倍以内时适用。
施工时,护道尽量与路堤同时填筑,且压实度要达到90%以上。它的特点是施工工艺简单、费用较低,但施工用地增大。
2.4砂垫层法
在软土地基上铺设厚度为0.5—1.2m的砂层,可使软土顶面增加一个排水面,促进路基底的排水固结,提高路基的强度及稳定性。砂垫层材料的选择以透水性好的砂或砂砾(74u筛孔通过率为3%以下)为宜,以保证所需的排水能力;砂垫层的宽度以每侧宽出路堤0.5—1.0m为宜。砂垫层适用于路堤高度<2倍极限高度的状况。
2.5设置砂井法
砂井与连接的砂垫层配合使用效果较好,一般砂井直径为0.2—0.3m,井距为井径的8—10倍,常用范围为2—4m,平面上呈矩形或梅花形布置。适用范围:软土层厚度>5m,且路堤高度超过天然地基承载力容许的高度很多时适用。
2.6摊铺土工布法
高填土可适当分层,采用土工布加强路堤刚度,并在软土基上隔垫,使荷载均匀,避免局部破坏,对地下水防治相当有利,也可以用土工布摊铺软土底层,并折向沿边坡作防护,这样既提高基底刚度,也使边坡受到维护,有利于排水和因地基应力再分配而增加路基的稳定性
2.7排水固结法
排水固结法是解决淤泥软粘土地基沉降和稳定问题有效措施,由排水系统和加压系统两部分组合而成。排水系统是在地基中设置排水体,利用地层本身的透水性由排水体集中排水的结构体系,根据排水体的不同可分为砂井排水和塑料排水带排水两种。
2.8灌浆法
是利用气压、液压或电化学原理将能够固化的某些浆液注入地基介质中或建筑物与地基的缝隙部位。灌浆浆液可以是水泥浆、水泥砂浆、粘土水泥浆、粘土浆及各种化学浆材如聚氨酯类、木质素类、硅酸盐类等。灌浆法对加固淤泥软土地基具有明显效果,如福建省龙海市角美壶屿港水闸由于淤泥软基不均匀,沉陷闸基沉降最大达到0.63m,加固时采用单管高压旋喷灌浆处理,每个闸墩上、下游侧和中间各设5个灌浆孔,沿闸墩轴线两侧布孔,灌注水泥浆,成桩直径0.5m,伸入闸基础10.5m,采用灌浆压力为20MPa,经过处理后闸基沉降基本得到控制。高压旋喷灌浆处理原理是通过在闸基中高压旋喷灌浆形成水泥土摩擦桩,提高闸基承载力,达到控制沉降的目的。另一种对淤泥软土地基闸室淘空处理通常应通过水闸上游防渗如设置水平铺盖或垂直防渗控制闸基渗流,然后再对闸室进行灌浆处理。
3结语
总之,软土地基的强度或变形的问题是工程土中必须十分注意的问题,过大的沉降及不均匀的沉降造成软土地区大量的工程事故。因此,在软土地区进行设计与施工的道路工程时,必须从地基、建筑、结构、施工、使用等多个方面综合考虑,采取相应的措施,减少地基的不均匀沉降,保证建筑物的正常使用。
参考文献:
[1]徐至钧.建筑地基处理技术丛书:软土地基和预压法地基处理[M].机械工业出版社,2005.
[2]王晓谋,袁怀宇.高等级公路软土地基路堤设计与施工技术[M].人民交通出版社,2001.
关键词:道路改造;软土路基;处理方法
一、软土路基成因
路基强度及稳定性与路基干湿状态密切相关。路基干湿状态是由土中含水量的高低决定的,而含水量的高低取决于各种湿源的作用和延续时间。由于路面宽、路基低、排水设施不全或失效,使得雨水和生活污水向路基内渗透、地下水位升高,路基长期处于潮湿状态,加上土的水稳定性差等原因,导致路基软化。
二、软土路基判别
(一)测定方法
所谓软土,比规范[1]中的定义广泛,包括强度达不到设计要求的湿粘土。对软土路基的测定可以采用弯沉测定:
将相对完好的砼板块逐一编号。采用两台5.4m贝克曼梁及一台BZZ-100标准车,按每车道双向往返检测。选取位于横缝、断缝附近的板角等荷载最不利位置作为检测点,测点分主点(受荷板)、副点(未受荷板),主点位于板横缝前10cm,副点在横缝后10cm,分别测定主点弯沉和副点弯沉。[2]
在非不利季节检测时,弯沉值根据经验进行季节影响修正。实际取其系数=1.1~1.2。
(二)判别方法
平均弯沉值反映了原结构的承载能力,而弯沉差则反映了加铺后沥青路面反射裂缝出现的机率和严重程度。造成原结构承载力不足的原因有板底脱空、基层强度低和软土路基。采用排除法通过值来判别软土路基。当45≥≥20时,进行压浆处理;>45时,先将砼板打裂压实,使其与基层紧密结合;再次检测,仍然有>45,表明基层强度严重不足或有软土路基;挖除路面结构后,通过路基顶面弯沉的检测,或者通过路基土的干密度、天然含水量综合判定。
三、软土路基处理方法的比选和优化
(一)做一个模拟软土路基方案其具体条件和基本要求
1.公路自然区划为Ⅳ3,路基干湿类型为潮湿,但不加高路基,不增设地下排水设施,只对地面排水设施进行修复;
2.软土路基处理最小面积=4.2×5.0m,即一块砼板的面积,属于局部软土路基;
3.大部分软土路基为稠度=0.5~0.9的湿粘土,不易破碎晾干;
4.软土路基深度<2m,其中上部为路基工作区,对强度和稳定性的要求高;
5.软土路基处理不能对原路基的强度和稳定性带来不利影响,处理后应达到强度与原路基基本一致、工后沉降为零、水稳定性好的要求;
6.雨季施工,行车干扰大,工期三个月。
(二)比选
软土路基处理方法按处理深度分为浅层处理和深层处理。浅层处理的深度≤3m,因此拟处理的软土路基属于浅层处理的范围。
浅层处理施工工艺简单,投资少,是施工中经常采用的方法。浅层处理一般有换填法、晾晒法、垫层法、动力固结法、加筋法、灌浆法、排石挤淤法和爆炸排淤法。
分析后认为,晾晒法等七种方法不符合上述条件或要求。换填法通常用于软土路基分布范围较小,深度≤2m的情况,换填料可视具体情况用砂、砂砾、改良土或其他适宜材料,因此初步决定采用开挖换填法处理。
(三)优化
原路基为粘土填筑,若采用砂、砂砾等材料换填,虽然保证了自身的强度和稳定性,但此类材料具有透水性,其内部的干湿变化,会引起四周路基土的软化或二次固结,导致路面的不均匀沉降等病害。若采用风化石换填,存在着风化石粒径、强度、土石比例的问题,粒径大、强度低、石含量多,施工时不易压碎压实,除存在与透水性材料相同的问题以外,其自身的强度和稳定性也难以保证。若采用粘土换填,由于施工面小、地下管线多,填土难以压实,浸水后自身的强度和稳定性同样无法保证。
土经改良后不但强度提高,还能呈现出板体性和一定的水稳定性,弥补了上述材料的不足。为使换填部分的物理力学性质与原路基基本一致,选用了与原路基土质相近,<40%,<18,含水量适宜的低液限粘土(CL)进行改良。
改良土常用的改良剂有石灰和水泥,由于水泥改良土工序少、早期强度高,适用于春融期、多雨季节、地下水位高、工期紧迫地段。最后确定采用水泥改良土换填的处理方法。
四、软土路基施工工艺
(一)换填深度
开挖过程中可以观测到,随着深度的增加,坑壁四周路基土的密实度逐渐降低,含水量逐渐增大,上部1.0~1.2m范围内的密实度高含水量小,并且有明显的分界线。表明路基工作区深度为1.0~1.2m。
当软土路基较薄,有硬底时,清除后直接换填。当软土路基较厚,应挖到坑底土与四周路基相同土层的密实度一致时的深度,一般为1.0~1.2m;当坑底土过湿时,下挖到保证上部回填压实时不出现“弹簧”的深度,一般为0.4~0.5m,总的换填深度=1.4~1.7m。
(二)水泥掺量
换填土的强度过高或过低,都会使其内部及四周结构产生附加应力和变形,造成路面病害,因此应与原路基保持基本一致。
由于难以准确检测原路基土的无侧限抗压强度,水泥掺量无法按常规试验确定。路基的回弹模量不但是路面设计的基本参数,更是衡量路基质量的基本指标,并且设计值已知,因此水泥掺量通过回弹模量室内试验确定。由路基设计弯沉值=200,计算出路基回弹模量设计值=47MPa,再根据公式[3]反算得到室内试验回弹模量标准值=135MPa。水泥掺量不宜小于3%,实际控制在3~4%,否则难以拌和均匀。为提高下部改良土的早期强度,使上部工作区能尽早换填,上下部采用相同的水泥掺量。
(三)压实
压实功愈大、分层愈多愈容易出现弹簧。由于对工作区以下密实度的要求相对较低,故采用挖掘机铲斗击打配合双向振动平板夯(工作重量123kg)压实。待具有一定强度后再进行工作区范围内的换填,尽可能采用胶轮压路机碾压,边角用双向振动平板夯压实,压实度≥95%。
五、结语
1.与沥青路面的承载能力检测不同,水泥砼路面的检测有主、副点之分,必须配备两台贝克曼梁。用一台贝克曼梁只能检测出、,混淆与、与两者的概念会造成误判。采用双向往返法检测,贝克曼梁的支点和主测点不在同一块砼板上,消除了支点变形对测点弯沉值的影响;测完后检测车驶离受荷板,消除了后轴落点对主点弯沉值的影响。贝克曼梁法检测的是回弹弯沉,自动弯沉仪法检测的是总弯沉,落锤式弯沉仪检测的是动态总弯沉。贝克曼梁法是规范规定的标准方法,采用其它方法必须进行标定换算。同样,现场承载板法是路基回弹模量的标准检测方法,采用其它方法也必须进行标定换算。测定弯沉和模量时,都应将季节因素考虑在内。
2.与公路不同,道路由于两侧人行道和建筑物地基高于行车道,加上排水设施不完善等因素的影响,路基长期处于潮湿状态,容易产生病害。
3.与新建道路不同,改建工程是对道路功能的恢复和提高,应遵循一切服从于老路,一切有利于老路的原则,达到新旧一体,路基稳定、密实、均质,为路面提供均匀的支承。经过几十年地运营,绝大部分路基已经稳定,已适应了所处的水文地质环境,应充分利用。
4.与地基中的大面积软土路基不同,路基中的软土路基一般都属于局部浅层软土路基,处理后要求工后沉降为零,并具有较高地强度和良好地稳定性。尤其是路基工作区,对保证路面强度与稳定性、满足行车要求极为重要。
每一种软土路基处理方法均有其针对性、适用范围以及局限性,必须根据具体条件选择符合设计要求的软土路基处理方法,才能取得理想的处治效果。对能达到处理效果的方法进行使用阶段技术可靠性、施工难易程度、工程造价、工期、对周围环境影响等方面的综合评比,确定最合理的软土路基处理方案,并不在于技术的先进与否。
【参考文献】
[1]中华人民共和国行业标准.JTGD30-2004公路路基设计规范[S].北京:人民交通出版社,2004.
【关键词】乐自高速公路;软基处理;振冲碎石桩;技术分析;质量控制
中图分类号:U412.36+6 文献标识码:A 文章编号:
一.引言
采用振冲碎石桩来加固松软土地基,这样可以形成复合土体或者符合地基,能够有效的增强地基的稳定性,可以提高地基的承载力,能有效防止地基的沉降,除此之外还可以增加建筑物的抗震能力。本文结合乐自高速公路的具体工程,对振冲碎石桩施工的工艺进行较全面的探讨。
二.乐自高速公路工程概况
乐自高速公路是《四川省高速公路网规划》中汉源-乐山-自贡横线高速公路的重要组成部分,是连接川南乐山、自贡两个较大规模城市的重要通道,该横线高速公路先后与纵向布局的乐宜、内宜高速公路以及规划的仁寿经沐川至新市联络线相交,可实现多条高速公路之间的相互转换和联系,并与国家高速公路网相接,对完善四川省和区域高速公路网、增强川南地区城市之间的联系、增加川西南地区出省路径的选择具有重要意义。
乐自高速公路工程七合同段由山东省路桥集团有限公司承建,本合同段位于荣县境内,跨越来牟、长山两镇。本合同段内含长山互通区一处、长山停车区一处,主线全长为8.98公里。软基处理面积9.3万平方米,塑料排水板8.3万延米,碎石桩3.5万延米,换填砂砾石2.8万方。在整个工程中存在大量的软土地基,处理这些地基都是采用振冲碎石桩法来加固地基的。
三.软土地基的力学特性
我们所说的软土主要有几个特点:透水性比较小、可压缩性高、抗剪强度十分低,软土主要以散泥土质为主,其主要是在流动较慢的河流中,或者湖泊中沉积,之后由于生他作用而形成。这种土质的天然空隙要大于1,而压缩性系数则大于0.05平方厘米没千克。它的不排水性抗剪强度则小于30 kpa,如果其天然孔隙比大于1.5那么就成为了淤泥,当其天然孔隙比处于1和1.5之间时则为淤泥质土。在软土中含有大量的饱和水,其土质可能成流塑的状态,这种土质最主要的特质是强度低、透水性小以及压缩性高。正是因为这样所以软土地基的稳定性十分差,其承载力不足,很容易发生沉降,致使工程遭到破坏。
四.振冲碎石桩的加固原理
如下图所示,按一定间距排列打了许多桩体的土层称“复合土层”,由复合土层组成的地基称为“复合地基”。如果软弱土层不太厚,桩体可以贯穿整个软弱土层,直达相对硬层。如果软弱土层比较厚,桩体也可不穿过整个软弱土层,这样,软弱土层只有部分厚度转变为复合土层,其余部分仍处于天然状态。
1.当软弱土层比较薄时的加固原理
当软土层比较薄时,这是桩体就可以直接被打到比较硬的土层,这样就可以集中桩体的应力作用,我们知道桩体的压缩模量要大于软土的压缩模量,困而通过基础传给复合地基的外加压力随着桩、土的等量变形会逐步集中到桩上去,从而使软弱土负担的压力相应减少。这样就可以有效提高复合地基的承载力,同时减少了其压缩性,这样就可以使软地基加固。
2.软弱土层较厚时的加固原理
如果遇到的软土层比较厚时,这是桩体是不可能达到硬层深度的,也就是相对的硬层和复合土层不相接触时。该垫层把荷载引起的应力向周围横向扩散,使应力分布趋于均匀.这样就可以有效提高复合地基的承载力,同时减少了其压缩性,这样就可以使较厚软地基得以加固。
五.振冲碎石桩施工技术分析
1.处理范围
首排碎石桩距基础外缘60cm,处理长度为基础外缘50 m,第一个20 m段碎石桩间距2 m,第二个20 m段碎石桩间距2.2 m,第三个10 m段碎石桩间距2.5 m,碎石桩处理宽度为坡角以外0.5 m。每米碎石用量为:π×(0.8×0.8÷4)×1.35=0.678 平方米。填料可选用天然级配,但不能采用单级配料,含泥量不超过10%,粒径为20至50mm。
2.施工设备
施工设备如下表:
3.施工工艺
(1)工艺流程
采用振冲碎石桩加固软土地基的工艺流程如下:地上地下清障、地面整平;放线定桩位;桩机就位垫平、调平;闭和桩尖垂直对准桩位;启动桩锤沉管;沉管同时喷水造孔;沉到设计深度;清孔;留振10—20s拔管;反插至密实电流;成桩;移到下一根桩。
(2)施工工艺
①放线,碎石桩按正三角形布置,测量人员根据图纸段落处理宽度及处理长度放出区域控制桩,经测量监理工程师确认后,按照图纸桩距逐点测定桩位并用长竹签做好标记,施工过程别注意桩位标志。
②定位,移机到达指定桩位,闭和桩尖垂直对准桩位,其偏差不大于5cm。用枕木基本垫平桩机,然后调整支腿桩管垂直地面,桩身垂直偏差不超过1.5%,施工中质检员进行认真现场检查并填写检查记录。
③造孔,启动供水泵及振冲器,待振冲器下端射水口出水的水压及水量达到工艺要求时启动振动器,使振冲器以0.5m/min至2 m/min的速度在土中徐徐下沉,造孔过程中应始终保持振冲器处于悬挂状态,以免造成斜孔。当造孔达到设计深度时,将振冲器提出孔口,再放至孔底,往复2至3次,使孔口泥浆变稀,清除孔内泥土,保证填料顺畅,减小桩体含泥量。
④成桩,成孔后将振冲器提离孔底30一50 cm,在孔底留振10—20 s后拔管,拔管速度控制在0.8—1.2 m/min,每次填料厚度不宜大于50cm,将振冲器下放至填料中,进行振密。这时振冲器一方面将填料振密,另一方面使填料挤入孔壁的土中,从而使桩径过大。随着填料的不断挤人,孔壁土的约束力逐渐增大,当约束力与振冲器产生的振力相等,桩径不再扩大时,继续振密,振冲器电机的电流值迅速增大,当电流达到密实电流时认为该深度的桩体已经密实。桩体密实电流根据现场情况确定。
五.结束语
乐自高速公路对完善四川省和区域高速公路网、增强川南地区城市之间的联系、增加川西南地区出省路径的选择具有重要意义。在这个施工的过程中处理软土地基是一个较大的难题,本文就以乐自高速的软土地基处理为背景作了简单的阐述,具体的介绍了施工的技术要点以及质量控制方法。虽然随着我国经济的发展,科学技术的不断进步,我国对于软土地基的处理方法也有了较大的发展,振冲碎石桩加固法的应用也越来越广,但是在具体的施工过程中也还存在许多的问题,这需要行业的专家以及施工的工作人员,在具体的工作中不断的探索,不断的发现问题解决问题,只有这样才能使得技术不断的科学化。
参考文献:
[1]黄维章 振冲碎石桩在加固软基中的应用 [期刊论文] 《广州航海高等专科学校学报》 -2003年2期
[2]赵进坤 振冲碎石桩在软土地基处理中的应用[期刊论文] 《水运工程》 PKU -2001年7期
[3]黄中华 袁际萍 探讨振冲碎石桩在软土坝基处理中的应用 [期刊论文] 《城市建设理论研究(电子版)》 -2012年10期
[4]王本炜 赵亮 浅谈振冲碎石桩地基加固中的管理与应用 [期刊论文] 《中小企业管理与科技》 -2010年1期
[5]林文庆Lin Wenqing 振冲碎石桩技术在软基加固施工中的应用 [期刊论文] 《福建电力与电工》 -2000年1期
[6]柯涛 李应祥KE TaoLI Ying-xiang振冲法碎石桩技术在鲁基厂水电站大坝软基加固中的应用 [期刊论文] 《四川水力发电》 ISTIC -2009年5期
【关键字】软土地基,深基坑,支护,土压力
中图分类号:TU4 文献标识码:A 文章编号:
前言
随着我国经济的发展,城市中的用地越来越紧张,这突出表现在密集型的大城市,所以改造开发大型的地下空间来解决用地紧张的问题在这几年已经逐渐成为一种趋势,随着这种趋势的愈演愈烈,地下空间的开发愈来愈大,开挖深度也逐年加深,对深基坑支护技术的需求日益旺盛,要求也越来越高。同时,高楼越盖越高,高楼的稳固与深基坑技术也密不可分。现在,在全国的不同地区,在不相同的地质条件下,深基坑支护技术已经取得不少的成功经验,但是仍存在一些问题需进一步改进或提高,以适应现代化经济建设的需要。比如在软土上进行基坑建设所要面临的一系列问题就是我们必须尽快解决的问题。假如在设计时稍有不慎,在施工过程中不仅会危及基坑本身安全,可能还会殃及临近的建(构)筑物或各种地下设施,从而造成巨大的经济损失和不良的社会影响。因此,在软土地基上进行支护工程设计时必须充分考虑软土的工程特性和深基坑工程的复杂性,确保基坑的稳固安全。其中对土压力的研究是极为重要的。
什么是软土地基深基坑支护建设中的土压力
所谓土压力,就是在工程建设中,作用在支护结构和土体界面上的压力,是作用于挡土支护结构中的主要荷载,它的形成是由土层的自身重量,土层所承受的长期的压力所产生的。在大型的深基坑工程建设中,很重要的一项工作就是准确的估算土压力,这对整个基坑建设的顺利圆满完成具有不可忽视的重要作用。根据挡土墙的位移情况和墙前土体所处的应力状态,传统土压力分为静止土压力、主动土压力、被动土压力三种(图2-1)。
对影响软土地基深基坑支护中土压力影响因素的分析
土压力的大小和分布的规律是同支护结构的水平位移方向和大小、土的性质、开挖深度及支护结构物的刚度等众多的影响因素相关,具体的来说。我们可以把它分为以下几种:
一是深基坑建设场地的岩石、土壤的成分状态及其性质特点。不同的地区的土地因为受不同的气候环境,地理环境,人为因素的影响会产生不同的岩石和土壤。它们的组成成分,结构构造,水分含量等等都是各不相同的,对基坑建设中所产生的土压力自然也有着不同的影响,从而产生不同的土压力。
二是不同施工单位在建设基坑支护时对设计参数的选取和测试方法的不同所产生的影响。不同的建设单位有着不同的水平和高度,对建设工程所抱有的理念和设计思想也是不一样的,他们在建设工程的过程中,依据自身的经验在设计时所选取的参数和测试的方法是不一样的。并且,试样都是从建设施工区域的局部取出来的,不同的单位会选取不一样的区域。这就导致对施工现场的岩石和土壤的测试所得到的指标是不一样的,这为接下来工程建设所提供的资料和信息也是不一样的,从而使得在施工的时候,采取不一样的施工方式,所产生的土压力也就必然是不一样的了。
三是施工现场的深基坑支护产生的土压力的计算方法的影响。土压力的计算方法有很多,除了Rankine和Coulomb土压力理论外,目前具有代表性的一些研究成果有:考虑施工过程的土压力增量分析计算方法;考虑开挖深度变化的土压力计算公式;根据桩身弯矩反分析土压力的数值分析方法;考虑时间因素和挡墙位移变化的土压力计算方法等等。不同的计算方法极有可能得到不一样的土压力值,可见,对计算方法的选取也是一件相当重要的事情。
四是基坑的施工现场支护体与土体之间的摩擦力也会对土压力的分布和大小产生影响。不同的支护体与土体之间的接触方式是不一样的,抵抗土压力作用的位置和强度也就是不一样的,支护的刚度、形状、和坑体作用力都会使两者之间的摩擦力产生变化,从而导致土压力的大小和分布情况产生变化。
五是各种其他因素之间的相互作用的影响,包括周围建筑物,施工的时间长度,施工人员的经验,能力和素质以及各种天气等等因素都时时刻刻的对基坑的施工现场产生影响,是土压力的大小和分布发生变化。
对软土地基的基坑建设中的土压力的一些看法和相关解决措施
一是切实加强对土压力相关问题的理论研究。理论永远是实践最好的指明灯,当然也不是空泛的探讨理论,要结合基坑建设的具体实践,配合长期的观察,资料统计来进行研究,争取在计算方法上能有新的更好的突破,对水土本身特征的了解,对压力相关知识的研究等等也必须是相伴的,只有在这些小的细节,各个单元部分上有所掌握和思考,才有可能在整体上找到突破。
二是建立区域性岩土信息管理系统。借助地理信息技术和数据库技术,建立全国范围内,尤其是大中城市区域性的岩土信息管理系统。该信息系统主要包括地层、水系的赋存特征,岩土的结构、组成、力学指标、流场的变化等。信息来源可通过大量已建在建工程的勘探、施工、监测结果,外加适当的补勘成果。拟建工程,可查询相关区域工程特性信息并做必要的补勘修正即可,不仅工程类比性好,且可减小岩土区域性和个性的影响。
三是尽量采用扰动较少的原位测试法获取设计参数,并选择有代表性的区域进行实际土压力的监测,利用这些实测的土压力反分析设计参数,并和原位测试获得的设计参数对比,建立其试验参数的修正关系。
四是加强基坑建设过程中的监测力度和水平,要实时的动态的监测现场施工的流程和情况变化,对每个阶段完成后的土压力及与其相关的因素都做细致的研究,一段发生变化,及时反映情况,做出应对举措,并把参数变化的结果记录在案,为以后的土压力研究提供实际的有效的参考资料和数据,为下一次的工程建设提供参考意见和指导。
五是采用动态支护技术的变形控制理念。基坑工程是一个典型的不确定性系统工程,受不确定因素影响显著” 。完全考虑到所有可能的影响因素并准确度量各因素可能的影响大小是非常困难的。设计中只能做到向真实土压力的无限接近,工程中只能借助于足够安全可靠的支护措施。但不确定因素引起的土压力变化既可能增大,也可能减小,不能一味采用安全系数很大的支护方法,浪费成本和延长工期。实践中可考虑采用能随土压力增减变化而相应动态调节支护能力的支护工艺。
五.结语
基坑开挖与支护技术的发展水平,在一定程度上标志着一个国家工业建设和建筑水平的高度,它从一个侧面反映了这个国家城市建设人员的能力和素质水平。从整个全球的发展和趋势看,我国工程建设技术,尤其在基坑支护水平上,还是有所欠缺的,为了适应经济的告诉发展水平,还必须继续深入研究和开发这方面的技术。软土地基不仅在空间上发生了变化,而且随着时间的变化其性质也在发生变化。众多不确定因素的影响,造成了理论分析结果与实际的差异。因此,在处理软土地基时,应认真进行调查,重视施工过程中的动态观测,随时进行调整。软土地基的处理一定要遵照“因地制宜、综合考虑”的原则进行。在基坑开挖与支护领域中,人们已应用各种手段和技术措施,集中解决了一个又一个工程问题和难题。相信今后在不断完善、认识和提高深化的过程中,必定会将这一工程领域的技术水平推向更新的高度,为岩土工程总体增添更加丰富的内容。通过本文,对软土地基深基坑支护中的土压力做了相应系统而又全面的介绍,对其产生原因和解决措施探讨的比较深入。然而,土压力相关的问题不仅仅只有这些,各方面的看法和理解也是各不相同的,鉴于土压力问题在基坑建设中的重要地位,对其的研究是不能停止的,各个研究者的相互交流探讨也是相当重要的。希望土压力的研究在未来的几年时间内能有长足的进步,为基坑建设提供更好的参考依据。
参考文献
[1]田高超 李维滨 软土地基深基坑支护工程设计 (被引用 3 次) [期刊论文] 《山西建筑》 -2007年28期
[2]赵宁刚 李朋 软土地基深基坑支护的模糊综合评判优选模型 (被引用 2 次) [期刊论文] 《山西建筑》 -2007年5期
[3]吴铭炳 软土地基深基坑支护中的土压力 (被引用 14 次) [期刊论文] 《工程勘察》 ISTIC PKU -1999年2期
[4]张虹翔 软土地基深基坑支护工程的施工技术分析 [期刊论文] 《广东科技》 -2009年10期
[5]黄茂兴 软土地基深基坑支护技术探讨 [期刊论文] 《科学之友》 -2010年18期
[6]张为 论述软土地基深基坑支护工程的施工技术 [期刊论文] 《建材发展导向》 -2011年5期
关键词:路桥施工 软土路基 处理
中图分类号: TU471 文献标识码: A 文章编号:
我国地质构造复杂多变:有处于青藏高原的常年冻土;有位于滨海平原的软土等等。针对不同的土质在道路施工上也就有着不同的要求,这是对我国土木工程的一项巨大的考验。本文针对软土路基的处理,做出如下分析:
一 软土与软土路基的概念
(一)软土的概念
软土,即淤泥和淤泥质土的总称,主要是由天然含水量高,承载力低,压缩性高的淤泥沉积物与腐殖质组成。这类土质主要分布于沿海城市,珠江三角洲等含水量较大的地区。这种土质孔隙大,压缩性强,土里往往沉积大量天然水。这类土质如不好好治理,会严重影响路基的坚固。
(二)什么是软土路基?
软土路基是指强度低,压缩量较高的软弱土层.多数含有一定的有机物质。这类地基每层之间的物理力学性质差别较大,土层层状分布也相对复杂。对于这种路基的处理,需要针对每层土壤的不同特性找出合理化的解决方案。
二 软土路基处理的一般原则
软土路基的处理通常有两种办法:一种自然沉降;另一种是采用相应的技术方式对地基进行处理。自然沉降在这两种方式中是比较经济的一种,但是其本身的实施度要困难得多。自然沉降的方法仅限用于工程量较大的、工期较长的项目。然而采用相应的技术这种处理方法可以在工程有限制时确保工程的质量与安全性,从而被更广泛的应用。
三 路桥施工中软土路基的处理
(一)填换法
填换法是针对浅层土壤而言的,首先要将土层较浅位置的土挖出去,继而用一些强度较高的、抗腐蚀性的、质地坚硬的石头、砂砾等重新分层填充。再用人工或者机械等手段去夯实、压实,将材料充分混合,从而达到道路路基坚实的要求。
(二)垫层法
垫层法有两种,一种是在地基表面铺设一定厚度的垫层使路基达到应有的强度。另一种是把表面部分软弱土层挖去,置换成强度较大的砂石素土等。垫层的最终目的是:提高路基的承载力;加速土质的固结;防止路基冻胀;使路基的刚度均匀化。垫层的材料一般有砂垫层材料,粉质粘土垫层材料等。在垫层施工中常用的为砂石垫层材料,即用各种砂石混合良好,且不能含有垃圾或者植物残体等影响稳固的物质存在,铺设的厚度一定要适中,不要影响上层的排水效果,从而确保路基的稳定性与强度。
(三)压实法
压实法是通过挤压或夯实将土壤的孔隙变小,多半是通过物理方法或者化学原理将其实现。孔隙变小了,路基的强度也就相对变高。
1 灰土挤密桩对路基的处理
灰土挤密桩对于黄土路基的处理还是比较奏效的。其原理在于生石灰吸水后膨胀,使桩间的土脱水,膨胀后的生石灰挤压路基上的土壤,从而使土壤间的密实度增大,继而增强了路基的强度,这种方法试用与路基中含水较多的土壤,如:湿陷性黄土、素填土、杂填土等。这种处理方式的好处在于:生石灰可以就地取材,材料不难找到;工程的难度不是很大,可以在时间上缩短工期。
2 强夯法
顾名思义,强夯法就是利用重锤提升到一定高度并使其自由下落,达到夯实路基的效果。这种夯实是为了提高路基的强度,降低压缩性。夯实法被广泛使用在我国沿海城市。当然,夯实法也有不适用的土质,它不适用于较厚的淤泥质与淤泥土壤。因为强夯法的加固效果取决于路基的渗透程度,所以必须要有良好的排水通道。
(四)排水固结法
排水固结法是针对天然地基,或先在地基中设置砂井等竖向排水体,然后利用建筑物本身重量分级逐渐加载;或在建筑物建造前在场地上先行加载预压,使土体中的孔隙水排出,逐渐固结,地基发生沉降,同时强度逐步提高的方法。排水固结法分为堆载预压法、真空预压法、降水预压法、电渗排水法。需要针对不同的软土土质选用不同的排水固结法。
(五)化学固结法
1搅拌桩法
是指利用特质的搅拌机械,用水泥或其他材料作为固化剂,在深层进行搅拌。将软土与固化剂进行强制的搅拌,通过一系列的物理化学性质的变化,形成坚实的桩体并与原来的地基融为一体。从而起到复合地基的作用。
2灌浆法
灌浆法是将某些固化的浆液注入土壤路基的孔隙中。这些浆液通常是利用液压、气压等因素被注入的。从而改善路基的物理性质,增强路基的抗压性等。
(六)土工合成材料加固法
土工合成材料是土木工程应用的合成材料的总称。这种材料是人工合成的,放置在路基上能使各种材料良好的融合在一起,不论是从表层还是深层,都起着加固的作用。具备防渗,排水,加固,过滤等多种特性,是一种新型的岩土工程材料。
四 对软土路基处理的一些意见与建议
综上所述,我国对软土路基的处理与研究已经达到一定的水平并初具规模。但是从现状来看,仍有一些不足的地方需要关注,根据软土路基的现状,提出以下几点意见与建议。
深入研究路桥软土的基本特点
根据我国不同地区的不同地质,分析出该段路基软土的具体特性:并以此作为模板,找到加强路基稳固的最适宜的方式方法;并从工程角度出发,分析着重研究影响工程进度的因素,从而更好的应付突发事件。
深入开展软土路基沉降计算方法的研究
路基沉降的计算方法是处理路基沉降的核心内容之一,开展软土路基沉降计算方法的研究就刻不容缓。
加强路桥软土路基处理的系统化研究
近年来,针对软土路基处理的系统化的研究的论文并不少见,我们所要做的就是对这些论文进行具体的、系统化的分析与研究,这对软土路基的处理不论是理论上还是实际施工上都有很好的帮助。
提高路桥软土路基处理的智能化研究
在工程领域,很难找到一个最好的答案,那么,换一种思路,“退而求其次”不失为一种明智的选择。人工智能方法是解决软土路基处理智能化的最好的办法之一,也是最有效的方式之一。
我国路桥软土路基处理的研究还会继续不断深化,这就需要我们土木人将全部的热忱投入其中,尽力弥补路基处理的不足,争取完善路桥软土路基的处理。
总结:
在路桥施工中,不注重软土路基的处理是很危险的。作为技术人员,一定要充分的掌握其特性与相应的应对措施,还要加强技术理论的学习,从理论与实际两方面共同保障软土路基的安全问题。从而让我国公路建设更有保障性与安全性。
参考文献:
[1]孙连军,冯勇.地基处理方法综述[J].山西建筑.2007 (4).
[2]袁得富,史建党.公路工程软土地基处理[J].河南科技.2006 (10).
[3]李阳.高等级公路软土地基处理技术[J].四川建材.2007 (1).
[4]赵金健.郭建军.软土地基处理技术[J].中国高新技术企业.2008 (6).
[关键词]凤凰大桥 软土地基 工程施工方案
[中图分类号]TU471.8 [文献码] B [文章编号] 1000-405X(2014)-1-226-2
0引言
广州市南沙区凤凰一、二、三桥工程连接南沙区黄阁、灵山、横沥和珠江管理区,位于南沙地区发展规划的中部组团,是连接黄阁、灵山半岛、横沥半岛以作珠江管理区的重要通道。路线总长7.4651km,其中桥梁总长约5.735km,道路长约1.730km。本项目是构成环大南沙“中环路”的重要组成部分。详见图1:地理位置图。
1地质概况
本标段地处三角洲平原,地形平坦,地势开阔,地面标高约3.67~8.60m,河床标高约-10.30~1.20m。
路线途经地区及其附近地层主要为第四系、第三系和燕山期花岗岩,其地层岩性特征分述如下:
(1)第四系(Q):广泛分布于沿线地表,为第四系海陆交互相沉积层,由灰色,灰白色或褐黄色等淤泥、淤泥质土、粉细砂,粘土,亚粘土及砂砾、卵石、亚粘土等组成,厚度较大,约18.5~46.8m。(2)岩浆岩(γ52(3)):燕山三期花岗岩和时代不明小型石英斑岩体。在珠江三角洲平原区以残丘或部分台地及隐伏岩体产出。
上述第四系、燕山三期花岗岩为本路段主要地层岩性。
2凤凰大桥地区软土性质特点
凤凰大桥施工沿线特殊性岩土主要为软土,沿线软土主要由第四系沼泽相淤泥(层号为3)、淤泥质亚粘土(层号为3-1、6-1)及淤泥质粉砂组成,以淤泥及淤泥质亚粘土为主。根据勘探资料,对软土分布及赋存状态分类统计列表如下:
2.1软土主要物理力学性质指标
2.2静力触探及十字板剪切成果统计
根据上述统计资料不难发现,本项目的软土分布广泛,赋存厚度较大,具“含水率高、压缩性高、抗剪强度低、承载力低、透水性差”等特点。
3凤凰大桥沿线地质施工建议
本区域主要由桥梁、辅道路基工程工程构成。本标段全线地貌类型为平原,地处于平原松散岩组工程地质区。工程施工沿线广泛分布软土(淤泥、淤泥质土、淤泥质砂),巨厚层软土对辅道路基工程及构造物场地稳定性有所影响。在公路桥梁施工过程中,软土地基具有极大的危害性,如果在施工中没有妥善处理,会造成地基失稳,使公路桥梁出现道路沉降,缩短使用寿命,影响桥梁安全。
第四系覆盖层中对工程影响较大的主要是软土,本标段范围连续分布有软土层,对一般路基建议采用袋装砂井(塑料排水板)结合堆载(超载)预压进行处理,对桥台软基,建议采用粉喷桩或CFG桩进行处理。
4具体施工方法说明
4.1袋装砂井(塑料排水板)辅以堆载(超载)预压
袋装砂井(塑料排水板)辅以堆载(超载)预压即袋装砂井(塑料排水板)堆载(超载)预压法。袋装砂井(塑料排水板)堆载(超载)预压法是排水固结法中的一种软土地基处理方法。因为饱和软粘土地基在荷载作用下,孔隙中的水被慢慢排出,孔隙的体积慢慢地减小,地基就会发生固结变形,同时,随着超静水压力逐渐减退,有效应力逐渐提高,地基土的强度也在逐渐增长。根据固结理论,粘性土固结所需时间和排水距离的平方成正比,土层越厚,固结延续的时间越长。为了加速土层的固结,最有效的办法是增加土层的排水途径,缩短排水距离以减少排水时间。袋装砂井(塑料排水板)和砂垫层就是为此而设立的竖向排水和水平排水垫层。堆载是排水固结法的加压系统,它使地基土的固结压力增加而产生固结。
袋装砂井(塑料排水板)堆载(超载)预压法施工中,应注意以下几个问题:(1)定位要准确,砂井垂直度要好,这样就可确保排水距离和理论计算一致。(2)砂料含泥量要小,这对小断面的砂井尤为重要,因为直径小,长细比大的砂井井阻效应较为显著,一般含泥量要求小于3%。(3)袋中砂宜用风干砂,不宜用潮湿砂,以免袋内砂干燥后,体积减小,造成袋装砂井(塑料排水板)缩短与排水垫层不搭接等质量事故。(4)聚丙烯编织袋在施工时应避免太阳光长时间直接照射。(5)砂袋入口处的导管口应装设滚轮,避免刮破砂袋而漏砂。
4.2粉喷桩处理法。
粉喷桩也称加固土桩,是属于深层搅拌法加固地基方法中的一种形式。它是利用石灰和水泥等材料作为固化剂中的主剂,采用预制的搅拌机械将软土和粉体状固化剂进行就地强制搅拌,通过利用软土和固化剂二者之间产生的化学变化和物理反应,使软土形成一定强度的优质地基,增强软土硬结程度,保证软土的整体性和水稳性。在高速公路施工中,一般在淤泥土质和含水量较高的粘性土路段中使用较多。通过固化剂对软土的作用,解决软土地基的易沉降问题,粉喷桩法最适用于加固各种饱和软粘土。粉喷桩加固是基于水泥加固土的物理化学反应过程,通过搅拌使水泥和土发生水解和水化反应,形成水泥水化物而构成凝胶体,使土团凝结而形成整体稳定的结构。
4.3CFG桩处理法
CFG桩是水泥粉煤灰碎石桩的简称(即cement fIying-ash gravel pile)。它是由水泥、粉煤灰、碎石、石屑或砂加水拌和形成的高粘结强度桩,和桩间土、褥垫层一起形成复合地基。CFG桩复合地基通过褥垫层与基础连接,对于软土层地基来说,CFG桩复合地基可保证桩间土始终参与工作。由于桩体的强度和模量比桩间土大,在荷载作用下,其桩顶应力比桩间士表面应力大。CFG桩可将承受的荷载转向较深的土层中传递并相应减少了桩间软土承担的荷载。在采用CFG桩处理办法时要注意以下两点:(1)冬期施工时混合料入孔温度不得低于5℃,必须对桩头和桩间土应采取保温措施。(2)施工垂直度偏差不应大于1%;对满堂布桩基础,桩位偏差不应大于0.4倍桩径;对条形基础,桩位偏差不应大于0.25倍桩径,对单排布桩桩位偏差不应大于60mm。
5结束语
软土分布广泛,赋存厚度较大,具“含水率高、压缩性高、抗剪强度低、承载力低、透水性差”等特点,对一般路基工程,上文提及了有效的处理办法。对桥台软基,CFG桩处理或粉喷桩处理可以解决这一软土施工难题。同时建议路基及桥台软基处理宜同步进行。当工程进度一旦受到软土结构影响时必须马上联系专业人员对其进行处理,不要盲目采取措施,影响工程质量。
参考文献
关键词:桩-网复合地基 桩土应力比 桩土荷载分担比 土拱效应
Study of soil arching effect of geogrid-reinforced and pile-supported embankment
WANG LONG1,LONG Xiu-jun2
( 1. China Railway Engineering Consultants Group Co.,Ltd., Jinan 250022, China2.China Railway SIYUAN Survey and Design Group Co.,Ltd., Wuhan 430063, China)
Abstract: In this dissertation, based on soft soil foundation treatment of a coastal railway,Interaction characteristics between pile and soil on geogrid-reinforced and pile-supported embankment were studied. According to the the change law of pile-soil stress ratio and and pile-soil load share,soil arching effect and its change law with the load above were verified, which provide theoretical reference for optimization engineering design on soft soil foundation.
Key words: geogrid-reinforced and pile-supported embankment; pile-soil stress ratio; pile-soil load share; soil arching effect
中图分类号:TU47文献标识码: A 文章编号:
前言
我国幅员辽阔,软土分布范围广大,特别是在沿海地区,软土大面积发育。为了保证上部构筑物的稳定性,必须对软土地基进行处理。近年来,桩-网复合地基正在成为软土地区建筑工程中普遍采用的一种地基处理方式,对这种新型地基处理方式的作用机理及效果,已进行了大量研究,并取得了一定成果[1-6],但是对桩网复合地基中的桩土相互作用规律的研究还有待深入。本文基于我国沿海地区某软土地基上的新建铁路地基处理工程,用模型试验的方法研究桩-网复合地基中的土拱效应。
1 工程概况
工程位于广东省潮州市,地表水网稻田发育。地表为第四系冲洪积相、海陆交互相成因淤泥及淤泥质粉质黏土、淤泥质砂,厚度约为10~32m,其下为第四系上更新统冲积层的粉质黏土、粉土、中细砂、粗砂、细圆砾土,总厚度30~60m。软土层主要为淤泥、淤泥质黏土、淤泥质砂层。
本模型试验原型地层分布特征如图1所示。可见,该断面软土地层主要为淤泥和黏土,层厚分别约为15m、10m,埋深5~30m,属于深厚层软土。现场采用PHC管桩对地基进行加固处理,管桩埋深约25m,桩间距2.5m;桩顶设置正方形桩帽;其上设置0.6m厚碎石垫层夹两层双向土工格栅。
图1现场地层分布特征
2 试验概况
模型中,采用聚丙烯PP-R冷水管(以下简称PP-R管)模拟管桩;选用普通杉木作为桩帽材料;选用聚乙烯四宗单层网来模拟土工格栅,采用常见的细角砾石来作为褥垫层材料;采用普通中砂来模拟路堤填料。模型中所用的地基土取自现场,为扰动样,物理力学性质与原型土层存在一定差异,模型试验中通过加水、搅拌、压实等操作保证了重度、含水量与原型相同。
本模型试验相似比为20,利用模型的对称性,在模型左右两边设置了不同桩间距进行对比试验。 本次模型试验选取了对应于现场的2.5m桩间距和比较用的3m桩间距,对应于模型中的桩间距为2.5/20=0.125m及3/20=0.15m。
3 数据分析
两种桩间距下桩土应力比随荷载的变化情况分别如图2、图3所示;两种桩间距下桩土荷载分担比随荷载的变化情况分别如图4、图5所示。
图2 小桩间距下桩土应力比变化曲线
图3 大桩间距下桩土应力比变化曲线
图4 小桩间距下桩土荷载分担比变化曲线
图5 大桩间距下桩土荷载分担比变化曲线
从图2~图5可以看出:
随着路堤填土荷载的增加,小桩间距下桩土应力比从最初的9逐渐增大到最终稳定的20,桩土荷载分担比从最初的79%逐渐增大到最终稳定的88%;而大桩间距下桩土应力比从最初的15逐渐增大到最终稳定的45,桩土荷载分担比从最初的81%逐渐增大到最终稳定的92%。且桩土应力比和桩土荷载分担比增大的速率随着时间的增长均逐渐变慢。说明在加载初期,桩的承载力发挥得并不充分,随着路堤填土荷载的进一步增加,桩同承担的荷载由桩间土逐渐向桩顶转移,桩的承载力才逐渐发挥出来。
小桩间距下,桩土应力比稳定在20左右,桩土荷载分担比稳定在88%左右;大桩间距下,桩土应力比稳定在45左右,桩土荷载分担比稳定在92%左右。可见,室内试验模型中,随着桩间距增大,桩土应力比明显增大,桩土荷载分担比略有增大,说明桩间距对桩土应力比有显著影响,而对桩土荷载分担比影响较小。其主要原因有以下两点:其一,由于桩的刚度相对于桩间土要大很多,在上部路堤填土荷载作用下,桩间土顶的沉降相对桩顶的沉降要大很多,使得路堤填土中产生了土拱效应,一部分原来由桩间土承担的荷载被转移到桩顶上来,因此桩土应力比明显增大;其二,由于桩帽的存在,直接与褥垫层接触的桩间土面积减小,大部分上部荷载都作用在桩帽上,在土拱效应作用下,从桩间土上转移到桩帽上的荷载相对于桩帽本身承担的荷载要小很多,因此桩土荷载分担比略有增大。
4 结论
本文采用模型试验的方法,研究了桩-网复合地基在软土地区的桩、土相互作用性状。可以看出:模型试验中,路基填土中存在土拱效应,刚度相对较大的桩承担了大部分荷载;随着桩间距增大,桩土应力比及桩土荷载分担比均增大,土拱效应发挥得更明显。本次模型试验对软土地区桩网复合地基的设计提供了一定参考依据。
此外,本次模型试验也存在不足之处,主要有:没有设计第三种桩间距进行同步的对比试验,因此不能就桩间距对土拱效应的影响做出准确评价。在下一步研究中可以重点进行桩间距对土拱效应的影响研究,为工程中选取最优的桩间距提供理论依据。
参考文献
[1]饶为国. 桩-网复合地基原理及实践[M]. 北京:中国水利水电出版社,2004
[2]连峰. 桩网复合地基承载机理及设计方法[D]. 博士学位论文, 杭州:浙江大学, 2009
[3]Alzamora, D.,Wayne, M. H.,Han,J.. Performance of SRW supported by geogrids and jet grout columns[A]. Proceedings of ASCE Specialty Conference on Performance Confirmation of Constructed Geotechnical Facilities[C]. USA:ASCE, 2000(94):456-466
[4]肖宏. 高速铁路无碴轨道桩网结构路基研究[D]. 博士学位论文, 成都:西南交通大学, 2007
[5]孙献国,张思峰,陈文. 粉喷桩与土工格栅联合加固技术的现场试验研究[J]. 山东大学学报(工学版), 2004, 34(05):72-75
【关键字】软土地基; 混凝土面板;石坝
【 abstract 】 for building for, the foundation is very important. Foundation processing is appropriate, not only affects the cost of building, and directly affect the safety of the building. After 10 years of development, China's concrete face rockfill dam technology mature gradually. However, in soft soil foundation is built on the concrete face rockfill dam is a new technology, it needs further research. This paper from the soft soil foundation, concrete face rockfill dam foundation of knowledge, and then simple introduced in soft soil foundation processing technology development, and finally in soft soil foundation to build on the concrete slabs of stone puts forward relevant solutions.
【 keywords 】 soft soil foundation; Concrete panel; dam
中图分类号:TU471.8文献标识码:A文章编号:
1.基础知识介绍
1.1软土地基
软土,即软弱土层,一般具有含水量高、强度低、压缩性高、天然孔隙比较大、抗剪强度较低、透水性差、扰动性大等特点,我们通常把淤泥、淤泥质土以及软粘性土统称为软土。堤防工程中所说的软土,主要是指由天然孔隙比在1.5左右的亚粘土和粘土所组成的淤泥以及天然孔隙比在1.0~1.5之间的粘土所组成的淤泥质粘土[1]。
在日本高等级公路设计规范中,软土地基是指由粘土、粉土等细微颗粒较多的松软土和孔隙大的有机质土、泥炭以及松散砂等土层构成的地基。而我国目前在公路行业规范中尚未对软土地基做出定义。值得注意的是,由于施工状况和填方形状存在一定差异,软土地基不能简单地按照地基的条件进行判定,而应当先对填方与构造物的形式、种类和地基特点等进行充分研究后再做出判断。
1.2混凝土面板堆石坝简介
19世纪50年代,面板堆石坝技术首先被美国加利福尼亚州内华达山脉的矿区所应用,不过当时的堆石坝采用木面板防渗。经过了150多年的发展,该技术日臻成熟,现多为混凝土面板堆石坝。混凝土面板堆石坝具有施工方便、资金投入少、工期短、安全、抗震性好等诸多优点,并具有较强的适应能力。因此,这项技术成为了坝型的首要选择。
1985年,我国引进了现代筑坝技术,用来建设混凝土面板堆石坝。经过不断实践与总结,我国在面板堆石坝建设方面取得了一定成就,共有约170座坝高30 m以上的混凝土面板堆石坝,其中最具代表性的是水布垭混凝土面板堆石坝,位于湖北省巴东县水布垭境内。
2.我国软土地基处理技术的发展
在公路工程建设过程中,偶尔遇到工程地质条件不良的软土地基是不可避免的。而要想保证道路的质量和使用功能,就得保证其路基具有相应的承载能力和稳定性,这就要求对软土地基进行一定的处理。
近二十年来,大量公路工程的实践对我国软土地基处理技术的迅速发展起了重要的促进作用,使得这项技术不断完善。目前,我国处理高等级公路的软土地基的主要方法有:粉喷桩法、砂垫层法、碎石桩法、竖向排水法、砂桩法和加铺土工织物法等,其中砂垫层法和袋装砂井(或者塑料排水板)土工布法是最常用的处理方法。
2.1 CFG桩长螺旋成孔技术
所谓CGF桩,指的是水泥粉煤灰碎石桩,它是在水泥中加粉煤灰、石屑、碎石、砂和加水,然后拌和,再用成桩机械做成的强度可变桩。这种技术是采用长螺旋钻孔芯管泵输送混合料,并进行灌注桩的施工方法,故通常用于粉土和粘性土 ,以及对泥浆污染、噪声等要求相对严格的地方,它便能起到成孔效率高、、没有污染和噪声、质量好等优点。
2.2爆夯法软土地基处理技术
经过多年的发展,强夯法技术已经比较成熟,只是处理软土地基时深度受限;爆夯法是新技术,方兴未艾,该技术具有不受处理深度限制、费用低工期又短等优点。爆炸法、强夯法均是动力固结的,都通过动载荷的方式作用在软土地基上,继而产生排水固结沉降上的形变,以起到加固软土地基的作用[2]。
2.3双向拌桩技术
双向拌桩技术是改良目前水泥土搅拌桩机的动力传动系统,并采用一心两轴钻杆技术,也就是说在内钻钻杆上装正旋叶片,外钻钻杆上装反旋叶片,通过外钻钻杆叶片反旋的压浆力使水泥浆不上冒,而上下搅拌叶片分别进行正反旋转,从而达到均匀搅拌,高质量成桩的目的。
2.4 Y形灌注桩技术
这种技术是我国借鉴国外(最早出现在法国)的Y形桩灌桩设计的理念开创的,它融合了我国经典的沉管灌注桩技术。
其实,这种技术也采用普通沉管桩技术,只是还将原圆管形桩的模变成Y形。它既具备沉管灌注桩价格低、施工快的亮点,又包含升高摩阻力之优点,在同等工程量的情况下能大大提升桩基承载力。
3.在软土地基上建混凝土面板堆石坝的方法
我国疆土广阔,地形复杂,软土的分布很广,软土地基的处理便成了我国土木工程的工作者重点研究课题。近年来,随着武广高铁、沪宁高铁等一大批重点工程的顺利完工,我国工程人员在对软土地基的处理方面应用了大量的新理论和新技术,并取得了良好的效果[3]。
面板堆石坝建于江、河、湖边,地基以软土为主。综合软土地基处理技术的发展和混凝土面板堆石坝的总体建设情况,得出,要做好在软土地基上建混凝土面板堆石坝的工程可从以下几方面着手:
3.1覆盖层全挖法
开挖将整个软基全部清除,使坝体置于基岩上,增加了坝体的安全可靠性。但此方法所需开挖施工面大,以解决出渣问题。大量弃渣需另设渣场堆放,环保水保措施较为复杂。基础开挖形成后,将形成一个较大较深的基坑,施工排水困难,基坑的护壁加固风险大。坝基基础开挖量和坝体回填量大,使得枯水期施工压力大,度汛风险较大。
关键词:软土地基地基沉降沉降量预测
中图分类号: TU47 文献标识码: A
在高速公路的路堤建设过程中,为了控制施工进度,指导后期施工组织及安排并保证路堤的稳定和实用,需要对路基的不同时刻沉降和最终沉降量进行预测,尤其针对以软土为地基的路基施工,路基实际土层的性质很复杂。软土地基在其顶部荷载及重力作用下产生压缩变形,从而引起基础沉降。沉降量是指地基土经压缩变形达到固结稳定状态时的最大沉降量,称为最终沉降量。软土作为一种特殊工程材料,土体本身性质变异性较大,特性复杂,而且取样时容易受许多不确定因素的影响,所以无论是传统方法还是数值方法,其本构模型存在的缺点已有共识,如参数的取得、影响因素和破坏准则等,至今仍然没有一种计算方法是能够令人信服的。但是通过现代的预测理论进行分析,根据实测资料或者模拟实验数据推算沉降量以时间关系的预测方法已经在工程中被广泛应用。目前,此类方法归纳起来,主要有如下几种:
1、经验公式法
土体的压缩变形随时间的变化过程不仅能在室内模型试验时观测到,而且在实际工程中也可以通过观测沉降量随时间的变化而得到。采用科学的预测方法处理沉降实测资料和试验数据,有助于准确和预测沉降,从而使后期施工组织安排到达最优化。目前常用的经验公式法主要有:指数曲线法、双曲线法、对数曲线法、抛物线拟合法、三点法、星野法、沉降速率法等等。
(1)指数曲线法模型
指数曲线法是假定沉降的平均速率以指数曲线的形式减少的经验推导法。此法认为曲线
——约呈折线型的三段直线,其经验公式为:
(1-2)
在——直线上选取两点(,)和(,),使其满足,代入式(1-2)即得,由此可求得最终沉降量为:
(1-3)
式中,——对应沉降曲线拐点处的沉降值;
——对应沉降曲线拐点处的沉降速率。
(2)双曲线模型
该法认为沉降-时间关系符合双曲线式(1-2),若沉降过程观测历时较长,在沉降趋于稳定的后段取点计算,能够得到较为满意的结果[8],但在曲线前段应用时便会出现较大的误差,正是因为这点,冯文凯等又提出了修正的双曲线法。
(1-4)
式中,——参数;
其他变量含义同(1-1)。
另外,双曲线式通过坐标零点,对一级加载情形,可把沉降时间关系起点定在处,即施工期的一半处。
2、Asaoka法
该法是由日本学者Asaoka在1978年提出的,又称图解法。是依据某级荷载作用下现场实测的个沉降值,然后再以为坐标系绘出个数据点,其中。可以看出所有的数据点基本都在同一条直线上,设该直线的斜率为,与轴的交点纵坐标为,其延长线与线的交点即为本级荷载下最终沉降量(图1):
(1-5)
式中,——与所选取的时间间隔有关的两个系数。
图中的直线关系只有当土体行为完全符合太沙基一维固结理论假设才能存在。
该法可以作为路堤最终沉降量的一种简便的预测方法,其最突出的优点在于可利用短期的观测资料得到较为可靠的最终沉降推算值。其次,还能够对是否已进入次固结阶段进行分析判断,并进行次固结沉降推算。但此法也存在一些不足之处:如最终沉降值在一定程度上依赖时间间隔,对主次固结的划分存在一定的人为误差。
图1 Asaoka法预测最终沉降示意图
Fig.1 The schematic of Asaoka method to predict the final settlement
3、灰色理论法
由于引起地基沉降的因素太多,用理论方法计算最终沉降量还有一定的困难,而上述方法都有一定的使用性和地区性。工程实践已经证明:双曲线法拟合出来的沉降量结果偏大,而指数法拟合出来的结果偏小等。近年来,岩土工程领域的科研人员也在采用灰色模型解决一些沉降问题。灰色系统理论的基本思路是:首先对数据进行累加处理,使数据序列的随机因素影响淡化,从而提高数据序列的内在规律,再将数据序列建成一个具有微分、差分、近似指数规律兼容的灰色模型。利用灰色模型(GM)预测对数据没有严格要求,而且灰色预测是一个动态的预测,可以根据新增加的数据相应的变动模型,而计算程序不用改变,这点正好适用于软土路基的信息化施工。
灰色理论预测是以已知单位时段内的沉降量为研究对象,通过对这些数据的处理来获得地基沉降的变形规律,从而对工后沉降进行预测。石世云等研究了多变量灰色模型MGM(1,n)在变形预测中的应用,将单点的MGM(1,1)模型扩充为多点的MGM(1,n)模型,通过沉降实例分析证明,MGM(1,n)模型精度高于分别单独使用单点的MGM(1,1)模型;曾超等把灰色模型的路堤沉降预测结果和双曲线法的预测值分别与实测值进行了对比,证明了灰色模型沉降量预测值和实际沉降量更接近。
4、人工神经网络法
人工神经网络(ANN)作为一门新兴的信息处理系统,已经在信息科学和工程技术领域得到了广泛的应用。它是模拟生物脑神经系统的一种计算机处理模式,由一系列简单的高度互联的处理单元组成。其优点在于具有较强的非线性映射能力和学习能力,在解决复杂问题时,对于外加的输入,是以并行的、非确定的方式进行处理的。它在复杂非线性系统中具有较高的建模能力和对所提供数据的良好拟合能力。
在地基沉降计算方法中,分层总和法虽然计算方便但其计算精度不高;数值计算法理论上虽然严谨,但是模型参数的取值是影响计算结果精度的关键,且对技术人员的素质有很高的要求,推广起来比较困难;经验公式法主要是基于地方经验,且存在着取点位置等带来的一些误差。而人工神经网络法在处理非线性问题上具有独特的优越性,能够充分运用人工神经网络较强的非线性映射能力,基于路堤沉降的实测或者试验资料,对高度复杂的非线性的土工结构直接建模来预测路堤的沉降量,这样能够更好的反映软基路堤的沉降规律。
参考文献:
[1] 王志亮. 软土路堤沉降预测和计算[D]. 河海大学博士学位论文, 2004.
[2]张诚厚, 袁文明, 戴济群. 高速公路路基处理[M]. 北京: 中国建筑工业出版社, 1997.
[3]陈祥福. 沉降计算理论及工程实例[M]. 科学出版社, 2005.