欢迎来到易发表网!

关于我们 期刊咨询 科普杂志

超声检测技术论文优选九篇

时间:2022-09-29 02:46:10

引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇超声检测技术论文范例。如需获取更多原创内容,可随时联系我们的客服老师。

超声检测技术论文

第1篇

[论文摘要]介绍当前压力容器制造和使用过程中所采用的无损检测技术,包括射线、超声、磁粉、渗透等常规技术和声发射、磁记忆等新技术,并论述他们的工作原理、优缺点和应用范围。

一、引言

随着现代工业的发展,对产品质量和结构安全性,使用可靠性提出越来越高的要求,由于无损检测技术具有不破坏试件,检测灵敏度高等优点,所以其应用日益广泛。目前对压力容器的检测方法有多种,本文主要介绍无损检测的常用技术如射线、超声、磁粉和渗透及新技术如声发射、磁记忆等。

二、无损检测方法

现代无损检测的定义是:在不损坏试件的前提下,以物理或化学方法为手段,借助先进的技术和设备器材,对试件的内部及表面的结构,性质,状态进行检查和测试的方法。

(一)射线检测

射线检测技术一般用于检测焊缝和铸件中存在的气孔、密集气孔、夹渣和未融合、未焊透等缺陷。另外,对于人体不能进入的压力容器以及不能采用超声检测的多层包扎压力容器和球形压力容器多采用Ir或Se等同位素进行γ射线照相。但射线检测不适用于锻件、管材、棒材的检测。

射线检测方法可获得缺陷的直观图像,对长度、宽度尺寸的定量也比较准确,检测结果有直观纪录,可以长期保存。但该方法对体积型缺陷(气孔、夹渣)检出率高,对体积型缺陷(如裂纹未熔合类),如果照相角度不适当,容易漏检。另外该方法不适宜较厚的工件,且检测成本高、速度慢,同时对人体有害,需做特殊防护。

(二)超声波检测

超声检测(UltrasonicTesting,UT)是利用超声波在介质中传播时产生衰减,遇到界面产生反射的性质来检测缺陷的无损检测方法。

超声检测既可用于检测焊缝内部埋藏缺陷和焊缝内表面裂纹,还用于压力容器锻件和高压螺栓可能出现裂纹的检测。

该方法具有灵敏度高、指向性好、穿透力强、检测速度快成本低等优点,且超声波探伤仪体积小、重量轻,便于携带和操作,对人体没有危害。但该方法无法检测表面和近表面的延伸方向平行于表面的缺陷,此外,该方法对缺陷的定性、定量表征不准确。

(三)磁粉检测

磁粉检测(MagneticTesting,MT)是基于缺陷处漏磁场与磁粉相互作用而显示铁磁性材料表面和近表面缺陷的无损检测方法。

在以铁磁性材料为主的压力容器原材料验收、制造安装过程质量控制与产品质量验收以及使用中的定期检验与缺陷维修监测等及格阶段,磁粉检测技术用于检测铁磁性材料表面及近表面裂纹、折叠、夹层、夹渣等方面均得到广泛的应用。

磁粉检测的优点在于检测成本低、速度快,检测灵敏度高。缺点在于只适用于铁磁性材料,工件的形状和尺寸有时对探伤有影响。

(四)渗透检测

渗透检测(PenetrantTest,PT)是基于毛细管现象揭示非多孔性固体材料表面开口缺陷,其方法是将液体渗透液渗入工件表面开口缺陷中,用去除剂清除多余渗透液后,用显像剂表示出缺陷。

渗透检测可有效用于除疏松多孔性材料外的任何种类的材料,如钢铁材料、有色金属材料、陶瓷材料和塑料等材料的表面开口缺陷。随着渗透检测方法在压力容器检测中的广泛应用,必须合理选择渗透剂及检测工艺、标准试块及受检压力容器实际缺陷试块,使用可行的渗透检测方法标准等来提高渗透检测的可靠性。

该方法操作简单成本低,缺陷显示直观,检测灵敏度高,可检测的材料和缺陷范围广,对形状复杂的部件一次操作就可大致做到全面检测。但只能检测出材料的表面开口缺陷且不适用于多孔性材料的检验,对工件和环境有污染。渗透检测方法在检测表面微细裂纹时往往比射线检测灵敏度高,还可用于磁粉检测无法应用到的部位。

(五)声发射检测

声发射(AcousticEmission,AE)是指材料或结构受外力或内力作用产生变形或断裂,以弹性波形式释放出应变能的现象。而弹性波可以反映出材料的一些性质。声发射检测就是通过探测受力时材料内部发出的应力波判断容器内部结构损伤程度的一种新的无损检测方法。

压力容器在高温高压下由于材料疲劳、腐蚀等产生裂纹。在裂纹形成、扩展直至开裂过程中会发射出能量大小不同的声发射信号,根据声发射信号的大小可判断是否有裂纹产生、及裂纹的扩展程度。

声发射与X射线、超声波等常规检测方法的主要区别在于它是一种动态无损检测方法。声发射信号是在外部条件作用下产生的,对缺陷的变化极为敏感,可以检测到微米数量级的显微裂纹产生、扩展的有关信息,检测灵敏度很高。此外,因为绝大多数材料都具有声发射特征,所以声发射检测不受材料限制,可以长期连续地监视缺陷的安全性和超限报警。

(六)磁记忆检测

磁记忆(Metalmagneticmemory,MMM)检测方法就是通过测量构件磁化状态来推断其应力集中区的一种无损检测方法,其本质为漏磁检测方法。

压力容器在运行过程中受介质、压力和温度等因素的影响,易在应力集中较严重的部位产生应力腐蚀开裂、疲劳开裂和诱发裂纹,在高温设备上还容易产生蠕变损伤。磁记忆检测方法用于发现压力容器存在的高应力集中部位,它采用磁记忆检测仪对压力容器焊缝进行快速扫查,从而发现焊缝上存在的应力峰值部位,然后对这些部位进行表面磁粉检测、内部超声检测、硬度测试或金相组织分析,以发现可能存在的表面裂纹、内部裂纹或材料微观损伤。

磁记忆检测方法不要求对被检测对象表面做专门的准备,不要求专门的磁化装置,具有较高的灵敏度。金属磁记忆方法能够区分出弹性变形区和塑性变形区,能够确定金属层滑动面位置和产生疲劳裂纹的区域,能显示出裂纹在金属组织中的走向,确定裂纹是否继续发展。是继声发射后第二次利用结构自身发射信息进行检测的方法,除早期发现已发展的缺陷外,还能提供被检测对象实际应力---变形状况的信息,并找出应力集中区形成的原因。但此方法目前不能单独作为缺陷定性的无损检测方法,在实际应用中,必须辅助以其他的无损检测方法。

三、展望

作为一种综合性应用技术,无损检测技术经历了从无损探伤(NDI),到无损检测(NDT),再到无损评价(NDE),并且向自动无损评价(ANDE)和定量无损评价(QNDE)发展。相信在不员的将来,新生的纳米材料、微机电器件等行业的无损检测技术将会得到迅速发展。

参考文献:

[1]魏锋,寿比南等.压力容器检验及无损检测:化学工业出版社,2003.

[2]王自明.无损检测综合知识:机械工业出版社,2005.

[3]沈功田,张万岭等.压力容器无损检测技术综述:无损检测,2004.

[4]林俊明,林春景等.基于磁记忆效应的一种无损检测新技术:无损检测,2000.

第2篇

【关键词】道路桥梁;桥梁检测技术;综述

经济高速发展的需求带动道路桥梁的进入了大规模建设期,但是,交通运输业的高速发展与相关基础设施建设相对落后之间的矛盾越来越突出,有相当一部分处于超期服役的状态,人为损坏、老化以及承载力下降等现象十分突出,严重制约与威胁着交通事业的发展与人民群众的生命财产安全。采用高效的检测技术能够让技术人员准确了解道路桥梁的各项性能参数,有利于及时采用相关措施。下文综述了道路桥梁检测的几种技术。

1 超声检测技术

上个世纪50年代,加拿大人切斯曼(Cheesman)与莱斯利(Leslied)以及英国人琼斯(Jons)与加特弗尔德(Gatfield)第一次利用超声脉冲检测技术来进行混凝土的检测,他们共同开创了混凝土超声检测的先河,随后超声检测技术在工程领域得到了广泛地应用。

超声法检测道路桥梁缺陷的基本原理是利用带波形显示功能的超声波检测仪和频率为20-25kHz的声波换能器,测量与分析超声脉冲在道路桥梁中的传播速度(声速)、首波幅度(波幅)、接受信号主频率(主频)等声参数,并根据这些参数及其相对变化,来判定道路桥梁中的缺陷情况。

科学技术的发展使得超声检测仪器从最初笨重的电子管单示波显示型转变为现在的半导体集成化、数字化甚至智能化的轻便仪器。同时,测量参数也更加多元化,从当初的单一声速参数检测发展为现在的声速、波幅以及频率等多参数检测;其检测效果也有了质的飞跃,从最早的定性检测发展为现在的定量检测。

在进行道路桥梁检测时,超声波能够穿透混凝土结构并在其中传播较远的距离,并且使用安全,操作简便。使用超声仪器最为常用的方法就是穿透测法,但是利用该方法进行检测时要求两个相对测试面。因此,这限制了超声检测的应用范围,例如,超声检测技术不适用于隧道中的衬砌、喷射混凝土等结构或者在墙体、路面、跑道、护坡、护坦以及底板等方面。同时需要注意的是,因为是声波穿透检测,其缺陷信号的有效捕捉始终是制约其发展的瓶颈问题。因此,在对于道路桥梁进行检测的过程中,我们通常采用比较多测点测试数据的方式,利用统计概率对数据进行处理,并对缺陷情况进行评估,所以,超声检测技术的直观性非常差,而且为了获得更高的策略精度,通常需要增加多个测点。

2 地质雷达检测技术

地质雷达(又称探地雷达,Ground Penetrating Radar,简称GPR)检测技术是一种高精度、连续无损、经济快速、图像直观的高科技检测技术。它是通过地质雷达向物体内部发射高频电磁波并接收相应的反射波来判断物体内部异常情况。作为目前精度较高的一种物理探测技术,地质雷达检测技术已广泛应用于工程地质、岩土工程、地基工程、道路桥梁、文物考古、混凝土结构探伤等领域。

地质雷达仪器的构成部分主要包括:控制单元、控制中心(通常是笔记本电脑)、发射天线以及接收天线。探地雷达的工作流程为:①检测人员利用笔记本电脑能够对控制单元发出各种指令;②控制单元在接收到指令之后,可以同时向发射天线与接收天线发出触发信号;③在发射天线触发之后,它能够向地面发射高频脉冲电磁波(通常其频率在几十至几千兆赫之间);④电磁波在向下传播的过程中会遇到不同电性的目标和界面等,或者当被探位置局域介质不均匀体的时候,部分电磁波便可以被反射回地面,并由接收天线进行接收,接收到的信号会以数据的形式被输送到控制单元,并最终传回到笔记本电脑,以图像的方式显示出来。⑤通过对图像进行处理与分析,就可以了解地下介质的具体分布情况,检测目的便也达到了。

3 声发射法检测技术

声发射法的具体原理是,由于材料内部微观构造不均匀或者存在性质不同的缺陷,局部的应力集中会致使应力分布的不稳定;材料的塑性变形、产生裂缝、裂缝扩展、失稳断裂等一系列过程能够有效完成不稳定高能状态向稳定的低能状态的转化;在整个应力松弛释放的过程中,所释放的部分应变能将会以应力波的形式想四周发射,我们称之为声发射。

以道路桥梁中的混凝土结构为例,它在荷载作用下会产生变形。当这种变形超过设计要求,混凝土结构便会出现裂缝,并通过弹性波的形式释放出应变能(例声能、热能或者光能等)。在对其进行测试的时候,我们可以将声发射感应器放置在待检测部位,通过确定不同位置收到声音的时间差,我们可以明确发生源(即裂缝部位)的具置。通过此种措施,我们可以比较详细、准确地了解道路桥梁的内部变化。同时,分析与研究发声位置之后,裂缝的大小、种类、开裂速度、最大荷变应力都可以得到比较详细地认识。

但是其最大的缺点是进行检测非常容易受各种噪声的影响,进而导致检测精度的幅度下降;然而,该检测方式是利用道路桥梁自身的内部缺陷,因而可以实现连续的动态检测。总体来说,声发射检测技术已经应用较少。

4 冲击回波法检测技术

我国南京水利科学研究院在20世纪80年代末研制成功IES冲击反射系统,并在大型模拟试验板及工程实测实践中取得了成功,使冲击回波法在我国进入实用阶段。冲击回波法的测试原理是仪器通过机械冲击器向物体表面发送短周期应力脉冲波,其中压缩波(P波)在物体内传播过程中,当遇到内部缺陷(如裂缝宽度>0.03mm)时,波便不能穿透而产生反射,遇到表面边界时也会发生反射,一旦波速确定,且选择正确的冲击器,就可通过单面测试准确地测得裂缝等缺陷的位置和深度,当构件不存在缺陷时则可测得其厚度。

冲击回波法通常为单面反射测试,因此它的测试比较方便和快速,测试结果也比较直观。此方法可以实现“测一点判断一点”,因此曾经广泛地应用于测定道路桥梁的沥青混凝土或者混凝土结构的内部缺陷,但是这种方法由于是单点检测,其检测结果往往不全面,因此实际应用也比较少。

5 红外热像检测技术

红外热像检测技术是指运用红外热像仪探测物体各部分辐射出的红外线能量,根据物体表面的温度场分布状况所形成的热像图,直观地显示材料、结构物及其结合上存在的不连续缺陷的检测技术。它是非接触的无损检测技术,即在技术上可作上下、左右对被测物非接触的连续扫测,因此也称红外扫描测试技术。

红外热像检测技术具有以下优点:①在理论上,其探测器焦距为20cm至无穷远,所以特别适合具有非接触和广视域等特点的大面积无损检测;②该探测器只对红外线响应,因此只要道路桥梁高于绝对零度(显然会高于绝对零度),红外线热像监测技术便可以工作,白天和晚上均可;③当前红外热像仪的温度分辨率已经高达0.1℃,因此检测精度有技术保证;④红外热像仪的可测温度范围在-50℃-2000℃之间,具有非常广阔的探测空间;⑤摄像速度在1帧每秒至30帧每秒之间,静态的常规检测和动态的跟踪探测都适用,检测模式的选择更加灵活。

参考文献:

第3篇

【关键词】声波透射法;基桩;完整性检测

1 引言

在现行的检测技术中,无损检测被越来越多的人接受,成为了一种新的检测方式,特别是在各种大型工程、地下工程中得到广泛应用。在桥梁基桩桩身完整性检测中,声波透射法充分发挥了其准确性高,可定量分析出桩身缺陷的大小和确切部位的优点,具有较高的实用价值。

2 声波透射法测试原理及方法

内部的结构特性与外部环境条件等很多因素会制约混凝土的物理力学性质,混凝土的应力应变关系反应于它的声波传播特性。根据弹塑性介质中的波动理论,其应力波波速为:

其中E为介质的动态弹性模量;ρ为密度;μ为泊松比。混凝土的弹性模量和介质的强度之间存在一定的相关性。超声检测的理论依据是混凝土介质的物理力学指标(强度、密度、动弹模等)与超声波的各种传播参数(波幅、声时值、衰减系数和声速等)之间的相关关系。当混凝土介质的构成材料以及均匀度、施工条件等所有内、外因素大多数一致时,超声波在其中的传播参数也会是一致的;超声波在传播中遇到存在缺陷的混凝土介质时,超声波会产生异变,声时、声速、声幅、频谱等各项参数都会产生变化,检测桩基完整性可通过高精密声波发射-接收仪器及传感器来记录与描述。

3 声波透射法测试方法

3.1 主要仪器设备

超声检测仪器设备主要采用:中国科学院武汉岩土研究所RSM-SY5智能声波检测仪1台及CH-1型声波跨孔测试换能器3只。

3.2 检测方法

首先向所有被检测的混凝土灌注桩预埋声测管内注满清水,用钢卷尺准确测量出桩顶各个声测管之间的净距离。缓缓将声波跨孔测试换能器分别置于预埋管中的两个声测孔的底部,让其高度保持一致,记录好深度,每隔25cm布置一个测点,基桩声波透射法现场检测示意图参见图1。为保证检测的准确性,确保各测点发射与接收换能器累计相对高差不大于2cm,并且随时校正其高度,如果发现测试结果异常,则必须对数据不合理部位重新检测。缺陷的位置和范围通过对测、斜测、交叉测及扇形扫测等各种测试方法确定。以每两声测管为一个测试剖面,对同一基桩所有剖面分别进行检测。

图1 桩基声波透射法现场检测示意图

3.3 数据处理及判定

可以用以下三种情况来判定桩身混凝土异常的临界值:

(1) 声速判据

在混凝土中超声波的传播速度(波速)Vp依据实测声时值tp、测距L计算得出:

其中:

t0为声时值初读数,t/为声时值修正值。

式中D为测管外径,d为测管内径,d/为换能器外径,Vt为检测管壁厚度方向声速,Vw为水的声速。

μp(μt)、σv(σt)分别为波速平均值和波速标准差。

如果实测混凝土声速值低于声速临界值,则应将其作为可疑缺陷区。

(2) 波幅判据

用波幅平均值减6dB作为波幅临界值,当实测波幅低于波幅临界值时,应将其作为可疑缺陷区。

式中 AD―波幅临界值(dB);

Am―波幅平均值(dB);

Ai―第i个测点相对波幅值(dB);

n―测点数。

(3) PSD判据

采用斜率法作为辅助异常判据,当PSD值在某测点附近变化明显时,应将其作为可疑缺陷区。

式中:tci---第i个测点的声时;

tci-1---第i-1个测点的声时;

Zi---第i个测点的深度;

Zi-1---第i-1个测点的深度;

如果发现混凝土声速和波幅值出现异常并判为可疑缺陷区,必须用水平加密、等差同步或扇形扫测等方法进行更细致的测量,结合波形分析确定桩身混凝土缺陷的位置及其严重程度。

4 结语

随着现代铁路、公路的繁荣发展,很多重点工程都要求对桩基进行超声波无损检测。声波透射法优点众多,具有很广阔的市场前景。本文浅析声波透射法的基本原理和检测方法,旨在给该领域提供简单参考,还有很多缺陷和不足,有待进一步去完善。

参考文献

[1] 中华人民共和国行业标准.建筑基桩检测技术规范(JGJ 106 C 2003),北京:中国建筑科学研究院,2003

[2] 罗骐先.桩基工程检测手册,北京:人民交通出版社,2003

第4篇

【关键词】超声检测;高职教育;教学研究

超声波检测是应用最广泛的无损检测方法之一。超声波检测是利用进入被检材料的超声波对材料表面或内部缺陷进行检测。利用超声波进行材料厚度的测量也是常规超声波检测的一个重要方面。此外,作为超声波检测技术的特殊应用,超声波还可用于材料内部组织和特性的表征以及应力的测量。它的意义的一般指超声波与工件作用,就反射、透射和衍射的波进行研究,对工件进行宏观缺陷检测、几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用进行评价的技术。从上世纪30年明以来,由于超声检测具有安全高效,体积小,便携等特点,越来越被广泛应用于,工业,医疗等各行各业。

在高职学校开设超声检测的课程对于培养应用型操作人员有很大的优势,对于超声检测这种操作技能要求较高的行业,工作人员的培养应以实践操作为主,高职教育正好能满足这一要求。因此制定一个合理的课程规划来达到理想的目的是非常必要的。下面就超声检测这门课程在高职院校的开展进行讨论。

1、课程建设的指导思想和总体目标

在日常教学的制定中要遵循高职教育教学的规律与特点,始终坚持以“学生为主体,教师为主导”的原则,坚持以工学结合的方式开展教学,注重素质教育,注重技能教育,重视学生创新能力的培养和个性发展。让学生能学会处理各种特殊的工艺要求。通过课程建设,对传统的教学内容和方法进行改革,把超声检测新技术、新工艺、新标准恰当地引入课堂教学,使课程做到知识性与应用性的统一,使课程结构体系和教学内容得到进一步的优化。利用现代教育技术平台改革相应的教学方法和手段。

课程建设的目标是落实课程建设的措施,更加明确课程目标即培养能够进行超声检测操作的人员,遴选课程内容对理论性太强的部分加以弱化,优化课程结构,专注与实践教学,让学生多通过现场操作来学习了解这一行业。改进教学方法、丰富教学手段,加强教师队伍的建设,加强课程研究,开展技术推广、咨询和服务,建立课程资源库,改善实训条件,规范课程考核评价方式,进一步提高课程效果,加强课程管理,以保证群体教学水平稳步提高,使课程建设处于良性发展。

2、课程目标

根据学校办学定位和学生实际,明确本课程职业岗位指向和职业能力要求;高职学校的生源包括高中生,中职生,及以3+2方式培养的学生。明确了学生的实际情况就能明确课程知识目标、技能目标、态度目标,更加重视本课程在职业能力培养中所处的重要地位、作用和价值;主要目标应在加强学生学习能力、应用能力、协作能力和创新能力的培养。建设措施:(1)开展专业教育,让学生明确职业岗位指向和职业能力要求,让学生清楚地认识到专业课程在职业能力培养中所处的地位、作用和价值,激发学生学习兴趣。(2)课程知识模块应该有:超声检测物理基础、检测器材与设备、检测方法、检测工艺、超声检测应用、检测标准、课程设计、技能训练部分;技能目标是培养学生动手操作的能力,为行业培养初、中级无损检测技能型人才。学生学完本课程后,要求学生掌握超声检测相关理论知识,能独立完成超声检测工作。能与他人团结协作,具有一定的创新能力。毕业前取得锅炉压力容器无损检测人员UTⅠ、UTⅡ级资格证书(中专Ⅰ级、高职Ⅱ级)。毕业生经过一段时间的工作实践,向中、高级人员过渡。(3)教师在教案中交代每个知识模块学生应达到的知识目标、技能目标、态度目标,并在授课过程中明确告诉学生;教师应注重学生学习能力、应用能力、协作能力和创新能力的培养。

3、课程内容和课程结构

围绕为行业培养初、中级无损检测技能型人才的要求,遴选教学内容,适时吸纳新知识、新技术、新工艺、新标准,培养了学生良好的职业道德、严谨认真的工作作风、实事求是的科学态度,强化学生安全意识;形成模块化课程结构;实践性教学内容达到50%以上。建设措施:(1)按照无损检测人员资格证考试规则和企业、行业对无损检测人员的要求,安排教学内容。(2)要求教师加强学习,不断更新知识,适时吸纳新知识、新技术、新工艺、新标准,定期到企业作市场调研和挂职锻炼。(3)按照职业岗位和职业能力培养的要求,整合教学内容,构建以职业岗位作业流程为导向的教学模块,按岗位作业流程分小模块进行教学,形成模块化课程结构。(4)不拘束于某一个具体工件,而以多种规格、多种材质的工件作为研究对象,增加学生实训机会和实训内容,安排学生进企业实习,使实践性教学内容达到50%以上。(5)联系本地相关企业,利用企业的设备和技术人员对学生进行实践学习。让学生了解企业实际的工作生产情况,可能遇到的各种问题。(6)在与企业联系过程中,可以把优秀的学生推荐给企业,以此来与企业互利互惠,形成良好的合作关系。

4、课程教学方法与手段

课程教学方法坚持“教、学、做合一”的原则,采用现场教学、项目教学、讨论式教学、探究式教学等教学方法;高度重视实训、实习等实践性教学环节,以真实或仿真的任务为实习实训项目,将实习实训与项目结合起来,强调学生将所学知识和技能在实践中应用,积极引导学生自主学习;充分运用现代教育技术进行教学,充分利用网页资源,将课程教材、教师教案、教学大纲、检测标准、习题、实验实习指导、参考文献目录、授课录像、网络课件、在线测试等相关资料在网上公布,实现优质教学资源共享,方便学生在网络中自主学习。(1)制定教学过程规范,包括授课计划规范、理论备课规范、课堂教学规范、作业辅导规范、考试考核规范、教书育人规范,把提高群体教学质量落实到教学过程的每一个环节中。落实备课规范,提高课程授课计划质量。教师备课必须要钻研大纲,研究教材,掌握教学目的、要求和重点,研究和掌握教学方法。授课计划要体现教学目的、教学方法、教学思想。(2)建立优秀教案档案,促进群体教案水平提高。每学期每位教师提交一份优秀教案,课程组通过评定、交流后存档,逐步提高整体教案水平。(3)抓住课堂教学这个中心环节,争取最佳教学效果。课堂讲授必须执行课堂授课规范,做到内容熟练、概念准确、重点突出、结构合理、条例清楚、语言精炼、板书工整且布局合理,要充分调动学生积极性,启发学生思维,培养学生能力,要注意理论联系实际,加强教学的科学性和思想性。(4)建立学校老师与企业技术人员的技术交流来提高教学内容的质量,引入最新的理念,让学生一切从实践出发,真正做到精通。(5)以多种规格、多种材质的工件作为研究对象,以真实或仿真的任务为实习实训项目,将实习实训与项目结合起来,增加学生实训机会和实训内容。安排学生进企业实习,使实践性教学内容达到50%以上。强调学生在实践中应用中消化所学知识和技能,积极引导学生自主学习。(6)建立一体化专业教室,充分运用现代教育技术进行现场教学;引入相关的检测仪,配备完善的各种标准试块和对比试块,使教学内容丰满具体。

5、课程资源建设

课程资源建设要求拥有学校教师与现场专家一起开发的校本教材、实验实训指导书、教师教学指导书和学生学习指导书等,建成集纸质与电子、静态与动态的图书和网络资源于一体的立体化教学资源库。教学资源库包括课程标准、教学内容、实验实习实训、教学指导和学生学习效果评价方案等要素;校内实验实训室的设施设备技术含量高,有能完全满足课程教学需要的实验实训设施设备;建立真实或仿真的职业环境,有便于学生自主学习的实验实训室管理制度,管理规范;建立校外实践教学基地,与相关企业建立合作机制,校外实践基地成为课堂教学的有效延伸。

6、课程考核及措施

课程考核要求建立体现职业能力为核心的课程考核标准,建立分模块的课程考核评价方式,每个课程模块既考核学生所学的知识,也考核学生掌握的技能及学习态度,采用形成性评价与终结性评价相结合的考核方式。笔试、口试、操作、论文相结合,开卷、闭卷相结合,第一课堂考核与第二课堂考核相结合,校内老师评价与企业、社会评价相结合,学生自评、互评相结合的评价方式,各种评价有明确的比例分配。

具体的建设措施:(1)每学期至少要进行一次期中和期末考试。考试要严格要求,同一教学计划的班级,期末考试要统一命题,统一评分,统一阅卷。考试方式为:闭卷,记分方法为:平时成绩占30%(10%的作业,10%的课堂表现,10%的课堂测验),期中考试占20%,期末考试占50%,其中10%的课堂表现分数由老师评价、学生自评、互评三项各占1/3产生,加重平时学习权重,注重对学生学习过程的检查和对知识的掌握程度的考核;第一课堂考核成绩占70%,第二课堂考核成绩占30%;同时期末考试除理论考试外还有实践操作考试,根据无损检测人员资格证考试的要求,理论和实践考试都必须达到70分才认定及格。(2)建立超声检测试题库,条件成熟可以实行教考分离。(3)参加校级以上技能竞赛取得名次的给予加分。

7、课程效果

建设目标:学生学完本门课程后能掌握85%以上的知识点,完全掌握核心知识点;100%掌握课程中包涵的技能,在真实或仿真的环境中能完成检测工作;能理解本门课程在专业中的地位、作用和价值;学习目的明确,学习兴趣明显提高;理解本门课程所要求的职业素质,具有团队精神、协作精神,能够与人合作完成工作项目;学生在教师的指导下,能进行探究式、创新性学习。 建设措施:建立科学合理的教育教学质量评价体系,为学生提供优质教育服务;加强学生思想道德和职业道德教育;加强学风建设,努力提高教育教学质量;建立科学的学生学习评价体系。

8、结论

随着我国初会的不断进步,工业水平,制造能力的稳步提高,特别是我们国家制造行业在国际地位的不断提升,对制造业人才的需求与日俱增,尤其是工作一线的初、中级的优秀操作人才更是供不应求,超声检测技术在制造的生产中有着不可替代的作用,超声检测人员的市场需求不断增加,对人才的要求也在不断变化,于此相比,中、高职学校培养的的专业毕业生却非常少,现从事无损检测的人员大都是从其它岗位等转岗而来,因此,他们没有学习系统的无损检测课程,加之专业的特点和学生知识结构的原因,在校学生对本专业课程知识和内容非常的贫乏和陌生。传统的教学是“讲授+板书”方式,学生大都对课程不感兴趣,即使现在引进多媒体教学方式,学生也只能抽象的思考学,对实践中的情况一无所知。也就达不到理想的教学效果。最终的后果是,大部分的学生毕业进入岗位后连最常见的工作设备、零件不认识,最基本的工作步骤不会操作,达不到企业最起码的工作要求,因此,培养出适合企业需要的一线的优秀的无损检测专业操作人才就是当前这个专业的重点,通过课程规划的制定和实施,能够培养出合格的,生产企业要求的一线技术人员。

参考文献:

[1]刘福顺,汤明. 无损检测基础. 北京航空航天大学出版社 2002.

[2]应崇福.超声学. 北京科学出版社,1990.

第5篇

混凝土无损检测(NDT:Nondestruetive Testing)是指在不破坏混凝土内部结构和使用性能的情况下,利用声、光、热、电、磁和射线等方法,直接在构件或结构上测定混凝土某些适当的物理量,并通过这些物理量推定混凝土强度、均匀性、连续性、耐久性和存在的缺陷等的检测方法。

实践证明,由于具有不破坏混凝土结构构件,操作简单、费用低,不受结构物尺寸和形状限制,可对重要结构部位长期监测等诸多优点,混凝土无损检测技术已经得到越来越广泛的应用,也必将有更大的发展。

1 进一步扩大混凝土质量无损检测内容及使用范围

混凝土检测技术是多学科多领域紧密结合的产物,从20世纪30年代人们就开始研究混凝土无损检测方法。材料学和应用物理学的发展,为无损检测技术提供了理论基础;电子技术与计算机科学的迅速发展,又为无损检测技术提供了现代化的测试手段。

随着人们对建设工程质量的关注,国家颁布了《建设工程质量管理条例》,明确了建设单位,勘察、设计单位,施工单位和监理单位的责任和义务,并提出了主体结构工程、地基基础工程在设计文件规定的合理使用年限内长期保修和对事故责任人终生追究法律责任。住建部也全面贯彻有关标准的强制性条文,进一步完善了建设工程的标准体系和明确了质量管理的技术依据。这些措施的落实,使无损检测技术在建设工程质量管理中的作用和责任日益明显。这是因为工程质量是由一系列工程技术指标来体现的,这些指标的量化值又是通过检测来获取的,如果检测结果不准确则必将对工程质量造成误判。目前施工质量控制和验收还仅仅建立在前期材料试件检测和外观检测的基础上,但结构物的原位质量才是实际的工程质量,而原位质量只能通过无损检测的手段来获取,

另外,随着无损检测技术的迅速发展和日臻成熟,它不但已成为工程事故的检测和分析手段之一,而且正在成为工程质量控制和构筑物使用过程中可靠性监控的一种工具。可以说,在整个施工、验收及使用过程中都有其用武之地。在以往的研究中主要集中在强度检测和缺陷探测两方面,为了满足新的需要还应进一步开拓新的检测内容,例如,混凝土耐久性的预测、已建结构物损伤程度的检测、早期强度检测,高性能混凝土强度及脆性的检测等等。只有不断拓展无损检测的检测内容和使用范围,才能有效保证建筑产品混凝土质量及强度,确保建设工程质量安全。

2 积极拓展混凝土无损检测新途径

无损检测技术经过几十年的发展,已经在混凝土检测方面得到较为一定程度的应用。但是,随着检测内容和使用范围的不断扩大,必将产生出无损检测的新技术、新途径。目前,已有技术主要集中在测强和测缺两方面。

在混凝土强度检测方面:如何提高强度检测的精度仍然是主要的研究方向。

应该看到,在过去的20年中,测强技术进展不大。究其原因,除了混凝土强度的影响因素太多、太复杂之外,还因为过去的研究工作主要集中在超声和回弹等方法上,思路不够开阔。从理论上来说,超声、回弹测强主要是建立在混凝土应力应变与强度的相关关系上的,而与混凝土强度相关的因素很多,在实践中应该扩大探索的范围,以便综合更多参数,确保检测精度。半破损方法的检测结果比较直观可靠,许多工程都采用无损方法作为普遍测量的手段,而用半破损方法作为校核手段,两者的结合无疑可提高检测精度和检测效率,但如何合理结合是需进一步研究的关键问题。

此外,无损测强方法所推定的混凝土强度,与按混凝土立方体强度标准值所计算的强度等级之间的统计关系需要进一步明确,以便使无损检测的评定结果与试件评定结果具有等效性。

在缺陷检测方面:超声测缺技术近年来进展较快。

在测试结果处理技术方面,可以说正在进入一个新的飞跃,即由数理统计方法进入信息处理技术的新阶段。数据处理与信息处理的含义有所不同,前者主要是对大量测试数据分析处理,归纳有关规律,它主要运用数理统计的基本理论;而信息处理则是指信号的变换、分离、滤波、频谱分析、成像、存储、记录等方面的技术。例如CT成像技术、频谱分析技术、神经网络技术等近年都已越来越多地被无损检测研究者运用,在所发表的研究论文中占有相当大的比例,并已运用于工程检测,使检测结果的直观性和可靠性大为提高。此外,一些新的物理方法将会更多用于缺陷探测,例如,雷达技术、红外遥测技术、冲击回波技术等。

在检测仪器方面:我国的非金属超声检测仪已达到国外同类产品的先进水平,有些仪器甚至已处于领先地位,但其他方法的仪器则相对落后,随着其他检测方法的研究和应用,仪器也必将随之发展。

技术规程的编制也是大力推进无损检测技术的重要保障因素。因为它一方面是对该项技术研究成果的总结和提高,另一方面又是对该项技术的促进。目前我国虽然制订了无损检测的部分技术规程,但尚未形成体系,今后应将无损检测规程纳入混凝土及钢筋混凝土检测体系中统一规划逐项落实。

3 大力加强无损检测技术队伍建设

第6篇

论文关键词:钽铌铍加工材,超声波探伤,着色渗透探伤,超声波测厚,渗漏试验

1.前言

钽铌铍及其合金材料现已被广泛应用在航空、航天、医疗、石油、化工等行业。随着应用领域的不断扩大,对产品的检测要求越来越高,要稳固占领市场,就要有质量稳定的产品,同时要为用户提供各种无损检测报告。国内外用户已明确提出对订购的钽、铌、铍加工材进行无损检测。其中超声波探伤是无损检测的一种重要方法,其次还有着色渗透探伤法,超声波测厚法,耐压水压检测法等。无损检测是始终与材料质量、安全联系在一起的一门极其重要的应用技术,对其质量控制和安全使用起着举足轻重的作用。我分厂钽铌铍及其合金管、棒、板材品种多、规格杂,采用各种无损检测方法可以检测材料内部或外部的缺陷,为提高信誉度、稳定生产工艺、控制中间转料、出厂产品质量提供依据。

2各种无损检测方法原理及应用

2.1超声波探伤原理及应用

探伤仪按缺陷显示方式分类分为:A型、B型、C型、三种显示,我厂采用的均为A型,A型显示是一种波形显示,探伤仪荧光屏的横坐标代表声波的传播时间(或距离),纵坐标代表反射波的幅度。由反射波的位置可以确定缺陷位置,由反射波的幅度可以估算缺陷大小。原理如图1:

超声波检测仪工作原理:同步电路产生周期性的同步脉冲信号。一方面它触发发射电路(或经触发延迟在时间上做适当延迟后触发发射电路)产生一个持续时间极端的电脉冲加到探头内的压电换能器上,激励品片产生脉冲超声波。另一方面,同步脉冲经过扫描延迟,在时间上适当延迟后控制扫描发生器产生线性较好的锯齿波,经过轴放大器放大后加到示波管Y轴偏转板上,使光点从左到右随时间做线性地移动。超声波透过偶合剂射入试件。在试件内部传播的超声波遇到界面或缺陷时即产生反射,这种超声回波已停止激振的原探头接收,转变成电脉冲输入高频放大器。经检波电路再由祝频放大器进一步放大后加到示波管的Y轴偏转板上,这是光点不仅在水平线上按时间作线性移动而且还要受Y轴偏转板上电压的影响做垂直运动,从而在扫描线上就出现波形。根据反射回波在扫描线上的位置可确定试件中界面或缺陷与换能器间的距离,荧光屏上显示的波高一般与换能器接收到的超声波声压成正比,故可据以评定反射回波的声压大小。

1-时基电路2-扫描延迟3-扫描发生器4-X轴放大5-接收电路6-高频放大及衰减器7-检测电路8-视频放大器9-同步电路10-发射电路11-示波管12-示波管荧光屏13-换能器14-试件

图1超声波检测仪工作原理图

在我们厂超声波探伤法应用几乎涉及了钽、铌、铍及其合金的管、棒、板材,贯穿了整个工艺流程,超声波探伤可以检测出料中的气孔、夹渣、裂纹及组织的不连续。我们厂从原料铸锭的领取到成品发货均需要超声波检测。钽铌铸锭在电弧熔炼过程中会产生封顶缩尾缺陷,如果锯切不干净,那么在以后压力加工中将越裂越大,导致整节铸锭的报废,超声波可发现封顶缩尾缺陷,可以及时切除。钽、铌及其合金棒材在加工过程中,由于前期很多是锻造的,会出现裂,用超声波探伤可以检测出来,并且可以分析裂的产生原因及状态,根据实际情况,判断物料是切除还是改做它用。钽、铌及其合金管材也是我们的主要产品,它们主要应用于化工防腐行业,对超声波探伤这方面要求也比较严格,我们用超声波自动水浸探伤可以大批量的对管材进行内壁和外壁的扫查,可以迅速检测出内壁和外壁的凹坑、夹渣、沟槽、裂纹等等缺陷,并自动剔除。海蓝公司是我们铍铜的最大客户,曾经因为产品的内部缺陷而退货,现在我们在超声波检验铍铜管棒的技术已经比较成熟,海蓝、7103厂、西安煤院等客户对我们的超声波技术也比较认可。

2.2着色渗透探伤法原理及应用

着色渗透探伤法是在测试材料表面使用一种液态染料,涂上该有色液体染料后,并使其在体表保留至预设时限,然后再涂上显影剂,在正常光照下观察即能辨认的有色液体。可广泛应用于检测大部分的非吸收性物料的表面开口缺陷,无需额外设备,便于现场使用。

着色渗透探伤法的优点是灵敏度较高,检测成本低,使用设备与材料简单,操作轻便简易,显示结果直观并可进一步作直观验证,其结果也容易判断和解释,检测效率较高。缺点是受试件表面状态影响很大并只能适用于检查表面开口型缺陷,如果缺陷中填塞有较多杂质时,不容易检出。

目前我们的钽、铌、铍及其合金的φ14.4以下的小规格拉制棒材在修料中是工人用肉眼判断表面是否有缺陷,这种目视检测法效率很低并且失误率很高,如果料表面的缺陷没有被发现,没有及时修理干净,那么遗留到后序的继续加工中,缺陷将越来越多,越来越大,如果投入到拉丝工序中,拉出的丝将会断掉,这不仅是人力物力的浪费,成材率也很难上去。目前我们渗透检测应用于钽铌铍φ14.4以下的拉制棒材,检验各种裂纹、麻坑、粘料等开口型缺陷,这就大大减少了工人的劳动强度,并且可以很快很准确的检测出缺陷,及时修理,效率很高。

2.3超声波测厚原理

测量超声波在工件上下底面之间往返一次传播的时间来求得工件的厚度。

数字超声测厚仪内部有计算电路,可以计算出来时间,再换算成工件厚度显示出来。如图2

图2超声波测厚原理示意图

我们的壁厚仪范围在0.102mm~254.00mm之间,精度达±0.025mm。目前我们应用它来检测各种规格材质的管材壁厚,如在调轧过程中,需要时时监控管材的壁厚,原来是调一段,切下来有尺子量,这样效率低浪费材料准确度还差,用超声波测厚效率很高而且可以整根测量。管材和板材的中间部位或是很厚的材料,壁厚尺根本量不到,用壁厚仪就很轻松的量到任何一个需要控制的点。

2.4渗漏试验的原理及应用

渗漏试验是专门检验液体或气体从承压容器中漏出或从外面渗入真空容器中的无损检测技术。渗漏试验分为不用示踪气体的压力系统和利用示踪气体检测器的压力系统。我们所选的是不用示踪气体的压力系统的气密性试验。

下面介绍我们所用的三种压力系统检测法:水压测试、气压检测和氦质谱检漏法。

2.4.1水压测试的原理及应用

如图,盛放在密闭容器内的液体,其外加压强p0发生变化时,只要液体仍保持其原来的静止状态不变,液体中任一点的压强均将发生同样大小的变化。即帕斯卡定律(在密闭容器内,施加于静止液体上的压强将以等值同时传到各点p=p0+ρgh),利用水为工作介质静压力传递进行工作如图3。该方法主要是检验料的强度。

图3帕斯卡定律P1/S1=P2/S2

我们所检测直径φ4-φ60、长度≤6米钽、铌及其合金管,铍青铜管材,水压额定试验压力2.0Mpa,工作试验压力10Mpa。我们用泵把压力加到8Mpa-10Mpa时,保持10S,当发现管材表面有渗水或管材破裂扭曲时,说明它的强度达不到标准,将判该管材不合格。

2.4.2气压检测原理及应用

气压检测是来自空压机产生的高压气源,经控制系统测控后,经高压软管输送给试样,当漏孔的两侧存在压差时,气体就通过漏孔从高压侧向低压侧流动,如果在低压侧施加适当液体后,漏孔处将会吹起一个个气泡,从而可以发现漏孔的存在。类似于自行车补车胎。

我们所检测直径φ4-φ60、长度≤6米钽、铌及其合金管,铍青铜管材的气压额定试验压力1Mpa,工作试验压力0.7Mpa。该方法主要是检验料的气密性,它简单可靠、使用方便、能定出漏孔的位置,成本低。

需要强调的是:水压试验千万不能用气压试验代替!!!水压试验为强度试验,气压试验为密封试验。一般气体容器先强度试验而后气密试验。若反之,一旦容器强度失误,它的爆炸威力“一个压力”在一平方厘米的面积上的压力是1公斤。也是现在说的一个大气压。

2.4.3氦质谱检漏法原理及应用

该方法是通过质谱室是用来检测氦的分压强。当质谱室内的总压强(真空度)低于10Mpa时,电离室中由钨丝制成的灯丝启动,加热后产生高速电子轰击离子源中的气体分子,使分子电离。大部分的气体分子都能变成离子,离子在电场中被(加速电压)加速,从而进入与其垂直的偏转磁场,不同质量数的离子其偏转半径不同。加速电压使得氦离子可以打到放大器的入口(电子倍增器),从而检测出氦离子流的强度,氦离子流与容器内的氦分压成正比,因此对氦离子的测量可以确定被检件的漏率。氮质谱检漏仪是用氦气为示漏气体的专门用于检漏的仪器,它具有性能稳定、灵敏度高的特点。是真空检漏技术中灵敏度最高,用得最普遍的检漏仪器。其灵敏可达10~10Pa.m/s。如图4。由于氦气的分子直径很小,本身是惰性气体,很安全,用它可以检测出很小的漏点,该方法在我厂常用于φ10---φ60mm钽、铌及其合金管材的漏点。

图4质谱室工作原理图

3展望

近几年NDT技术无论是在声学、电学还是磁学方面都有很大的进步,NDT技术有广泛的应用,应用NDT可以用较少的劳力和开支对钽铌铍加工材的质量进行动态或静态,长期或短期的测量和监控,目前我们厂在加工材方面的无损检测技术起步较晚比较薄弱,主要表现在人员素质还不是很高,数量偏少,设备陈旧落后,资金欠缺,技术不成熟,还未形成规模化系统化检测流水线。随着科技的不断发展,客户对NDT技术提出了更高更严的要求,由于我们的技术达不到,很多客户因此流失,在产值和声誉方面受到了很大的损失。因此我要努力向同行学习,多做实验多看资料,提高我们的技术水平和人员素质,我们的NDT技术现在仍有很多问题极具挑战性,鼓励我们要投入更大的热情和人力物力来促进它的发展。

参考文献

1 中国机械工程学会无损检测学会编.超声波检测.第2版.北京:机械工业出版社,2000

2 超声波探伤》编写组编著.超声波探伤.北京:电力工业出版社,1980

3 郭成彬等。认识数字超声探伤仪.无损检测,2004,26(3):149-154

4 国防科技工业无损检测人员资格鉴定与认证培训教材.超声检测,机械工业出版社,2008

第7篇

关键词:曲面工件;超声自动检测;碰撞干涉

1碰撞干涉检测

碰撞干涉检测问题是确定不同的物体在空间是否占有相同区域的问题。该问题可描述如下:“给定N 个物体s1 , s2 ,… , sn ,它们在空间中的位置是由定义在时间域[t 0 , t 1 ] 上的函数f 1 ,f 2 ,… , f n 来确定的,判定在这个时间域内相同时刻是否存在任何一对物体占有公共空间”。该问题的描述说明了这样的意义,物体占有的空间决定于时间,由此又引出静态干涉和动态干涉检测的定义。

静态干涉检测: 物体在空间中的位置是可移动的,但不随时间变化,位置的变化是由其它参数定义的,判别是否有任何一对物体占有公共空间。空间布局和装配干涉检测等即属于此类问题。

动态干涉检测: 动态干涉检测与时间相关,即碰撞检测。物体在空间中的位置是随时间变化的,它可分为二种情况: ( 1) 运动空间中只有一个物体是运动的。例如一个机器人在车间里运动,机器人是运动的,车间里的其它障碍物是静止的;( 2) 一对物体都必须是运动的,例如车间里两个运动的机器人。无论是静态干涉检测还是动态干涉检测,目的都是要求避免物体间的碰撞。

2碰撞干涉检测技术

2.1二维平面碰撞检测

Tetsuya,Toshiaki和Mario等人提出了一种称为空间占有的方法,即物体在目标空间移动,当试图占有相同的球体时来检测它们的碰撞。这种算法基于这样一条原理没有任何物体和其它物体占有同一个球体,也不需要特殊的计算来检测碰撞。并且,在它们的方法中,每个物体连同它们所占有的球体在三维空间中都被赋予一个名字,因而其它物体知道它们和哪个物体发生碰撞。

chin和wang研究了两个多边形的相交和最小距离问题。利用可视边链和凸的顶点相对于其内部点的单调性,提出了判别凸一边形和一个简单非凸m-边形的相交问题的最优算法,并且研究了当两个多边形相交时一个多边形是否被另一个多边形完全包含的问题,其时间复杂度都为o(m+n)。

汪嘉业利用单调折线研究了在一个多边形的凸包和另一个多边形不相交的条件下,确定两个多边形是否碰撞,并在碰撞时确定全部碰撞部位的问题,提出了时间复杂度为o(m+n)的最优算法,并且其算法还可推广到确定包含有圆弧边的多边形之间的最初碰撞部位。

李辉利用最大最小坐标的顶点子集的方法研究了一个凸多边形沿一给定方向移动时是否与另一凸多边形发生碰撞,并且利用斜支撑线的方法来研究一个凸多边形相对于另一个凸多边形的可移动区域问题,提出了时间复杂度为o(log(n+m))和o(m+n)的算法,在常数意义下,它们都是最优的。

2.2三维空间碰撞检测

三维空间碰撞检侧干涉有两大类静态干涉和动态碰撞检测。动态碰撞检测就是沿特定轨迹移动的物体的干涉检测。动态碰撞检测算法又可分为两大类①判断移动的物体之间是否发生碰撞亦即可碰撞问题②检测到碰撞的存在并采取措施进行规避,也就是碰撞规避问题。根据所用实体表示模型的不同,静态干涉检测算法大致可分成两类。一类算法主要基于B-rep模型,提高算法效率的关键是如何减少被测元素的数量。在这方面Ganter利用空间分割技术作出了新的尝试。另一类算法是以层次模型为基础的,如八叉树干涉检验算法和层次Sphere检验算法等。由于层次模型中相邻两层节点的检测过程之间缺乏直接联系,即一个层次上的干涉检验结果并没有反映出下一个层次节点的状态信息,因此无法对检验过程进行优化,以减少不必要的运算。

动态碰撞检测先后利用到两类技术。第一类技术是基于给定轨迹反复利用静态干涉检测被称为“单步检测”的方法,即当物体移动过程中将轨迹划分为很多时间步,在每一个时间步都进行静态干涉检测,来判定运动的物体之间是否发生碰撞。Maruyama介绍了多面体之间的静态干涉检测的第一种一般方法,提出了一种递归空间分割算法和一种一般的面对面相交算法然而,提出了第一种可用的单步检测系统,。计算几何领域对许多其它相交测试技术进行了规范化和分类。其中有许多技术是二维相交技术的延伸和扩展。第二类技术是基于产生称之为“扫描实体”的物体。这些物体代表了物体在给定轨迹上移动过程中所占有的体积空间。如果环境中的物体在它们各自的轨迹上行进时会发生碰撞,那么它们各自的扫描体将会发生静态干涉。因而,扫描体可用简单的静态干涉检查来对动态碰撞进行测试,这些扫描体的产生是运动学和实体模型的结合。由于实体模型具有多种表示方式,因此,多种形式的扫描体被提出。

虽然扫描体可用于许多有趣的工程问题,但在现在的计算机图形硬件条件下,单步检测方法更适合于实时计算机图形显示。并且扫描体方法也没有单步检测方法所具有的决定碰撞时间的灵活性。而且用扫描体来进行碰撞检测需要利用一个独立的步骤来产生扫描实体。和发展了单步检测方法,提出了一种空间分割技术的方法,这种空间分割技术将包含物体的空间划分为一个个子空间,将所有的测试限制在两个物体的重叠局部区域来进行。并且在重登区域内的所有的子空间都按照它们的最小、最大值来排序。然而在空间分割技术中,子空间的个数将影响到检侧结果的正确性和算法的效率。

Hahn采用层次包围盒技术来加速多面体场景的碰撞检测。Moore则提出了两个有效的碰撞检测算法,其一是用来处理三角剖分过的物体表面。由于任一表面均可表示成一系列三角面片,因而该碰撞检测算法具有普遍性该算法的缺点是当景物为一复杂的雕塑曲面时,三角剖分可能产生大量的三角片,这会大大影响算法的效率。而另一算法则用来处理多面体环境的碰撞检测。Moore和Wilhelems根据Cyrus-Beck裁剪算法提出了一种凸多面体碰撞检测算法,即通过检测多面体顶点是否相互包含来判定它们是否发生碰撞。对于具有n个凸多面体、每个多面体有m个顶点的问题,此算法的时间复杂度为o(n2m2);对于凹多面体则分解为多个凸多面体来处理Ganter和Isarankura提出了一种空间分割的方法,即将给定物体所占有的空间划分成一系列子空间,将碰撞测试限定在两物体的重叠子空间中进行,并且在重叠子空间里的元素都按最大、最小来排序,从而进一步减少了测试时间。Alonso,Serrano和Flaquer采用定义碰撞影响矩阵及体元的数据结构等一些优化策略来加快碰撞检测,它们的算法分四步来检测两个物体的干涉①检测碰撞影响矩阵②计算每对容器之间的干涉③计算体元之间的干涉④计算面与面之间的干涉。算法的基本思想是每一步都比它的下一步快,因而,假如在某一步发现两个物体不会碰撞,就不必进行下面的测试,从而可节省计算时间。

3碰撞干涉在超声自动检测中的应用

和数控加工、产品装配一样,超声自动检测过程中可能存在碰撞干涉,如探头和工件的碰撞、工件夹具和探头的碰撞等。在实际检测过程中如果发生了碰撞,不仅可能造成工件的报废、探头和设备的损坏,严重时还可能威胁到操作者的人身安全。因此有必要在实际检测之前对扫描路径进行校验,找出发生碰撞干涉的运动点位,重新进行路径规划,避免碰撞带来的损失。

超声检测的曲面工件一般具有复杂的外形,碰撞干涉检测时运算量很大,同时对检测的精度和效率都有较高的要求。尽管现有碰撞干涉检测的方法很多,但针对超声自动检测过程中碰撞干涉检测的性能有限,如包围盒算法计算简单,容易实现快速碰撞检测,但该方法的精确性不高;空间分解法将整个虚拟空间划分成相等体积的小单元格,然后对占据同一单元格或相邻单元格的几何对象进行相交测试,精确性高但运算复杂。

参考文献:

[1]张旭辉,马宏伟.超声无损检测技术的现状和发展趋势,机械制造,2002,40(7):24-26

[2]罗雄彪,陈铁群.超声无损检测的发展趋势,无损检测,2005,27(3):148-152

第8篇

关键词:表面等离子体激元;SPP效应;应用现状

表面等离子体激元(SPP)具有近场增强、局域受限、短波长等比较独特的特性。在SPPs的表面局域特性方面,SPPs在垂直于金属表面电场方向的强度呈指数衰减,利用表面局域特性构造表面结构可以降低光学控制的维度,形成二维微纳光学应用。在SPPs的近场增强特性上,金属的介电常数、金属薄膜厚度、表面粗糙程度等决定了场增强的程度。尤其是人们在研究光与纳米材料相互作用时,研究金属微纳结构中局域表面等离子体的共振是一种重要方法,引起了人们的广泛关注。这些特性已在光学、化学传感和检测领域均获得了广泛应用。

1 表面等离子体激元的研究历程

1902年,Wood在实验中用连续光谱的偏振光照射金属光栅时观测到反常的衍射现象并公开进行了描述。1941年Fano根据表面电磁波在金属和空气界面上的激发对由入射波照射到金属光栅上引起的异常反射现象进行了解释。1957 年,Ritchie发现电子穿过金属薄片时存在“能量降低的”等离子体模式,第一次提出了 “金属等离子体”的概念,这种“金属等离子体”可用于描述金属内部电子密度纵向波动。从此,表面等离子体激元成为了一门表面科学,在相关领域得到越来越多的关注。随后,Powell 等人用实验证实了Ritchie 的理论,而Stem等人也研究了“表面等离子共振”的条件。1968年,Kretschmann和 Otto各自利用衰减全反射(ATR)的方法证实存在光激发表面等离子共振现象。1982 年,Nylander 和 Liedberg 在气体检测和生物传感领域中应用了SPR 原理。此后,SPR 传感技术迅速发展,基于表面等离子体激元的 SPR 传感结构设计元器件也不断呈现,各种SPP器件在化学-生物传感等领域得到了广泛应用。

1944 年Bethe曾研究了完美导体薄膜中圆孔(半径为 r)的光透射行为,得出亚波长小孔 的归一化透射效率应该很小。但是1998年,Ebbesen在实验上发现金属膜上的周期性小孔结构归一化的透射率大于1,即出现了远场透过增强效应,这被称为“Ebbesen 效应”。Ebbesen 指出,当金属膜上具备亚波长二维周期孔结构时,可以实现可见光与红外光的不正常透射,这种奇异现象(Ebbesen 效应)当时用衍射理论无法解释清楚,引起了众多研究者的关注,从此关于金属微纳结构的表面等离子体效应成为等离子体研究领域中的一个重要组成部分。在Ebbesen的论文中指出,在某一特定波长处的透射光能量是入射到圆孔上的光的能量的2倍,这种异常透过现象与入射光与二维圆孔阵列的表面等离子体激元的相互耦合存在着一定的关系。

目前普遍的观点认为,二维圆孔阵列的入射光透过增强现象是由表面等离子共振所导致的,光照射到金属薄膜的表面,激发金属表面SPP,一面的SPP沿着孔径隧穿到另一表面的 SPP 中耦合,最后经过金属-介质界面发生散射,形成远场增强透过现象。

单个孔径的透射增强效率非常有限。如果在孔径周围引入类似牛眼结构、金属狭缝-沟槽结构等周期性的沟槽结构,通过这些周期性的沟槽结构将入射光波有效耦合到SPP中,则光透射增强现象就十分显著。相对于金属孔径结构,金属颗粒结构表现出了局域的表面等离子体共振特性。当金属颗粒结构发生共振时,该结构可以有效地将入射光波集中到金属表面非常小的区域,实现较大局域场增强,同时增大了结构的散射截面,从而将局域场信息散射到远场。这是实现表面增强拉曼散射的一种有效途径。

2000年,Pendry提出银膜微结构可以实现亚波长成像。2002年,Lezec等提出了牛眼光栅结构,这种结构可以出现光束聚焦现象,并引发了新的关于这种现象机理及应用的研究。2008年,中科院半导体研究所的花磊等人研究了中红外下半导体掺杂调制成的表面等离子体透射增强效应,理论上研究了n型重掺GaAs薄膜上具备亚波长周期性沟槽结构时的红外波段的异常透射现象,这种红外波段的异常增强效应对红外波段的滤波器、发射器和探测器都具有巨大的应用价值。

2 SPP效应的应用现状

2.1 SPP效应当前在相关领域所取得的进展

1997年,有人研究了金属表面形貌缺陷对SPP散射作用的影响,提出纳米尺度的直线或曲线形状表面实现对SPP的反射和聚焦。2005年,日本东京大学某研究小组实验演示了这种情景,采用350nm直径的凸起作为纳米点缺陷,还有人采用直径为200nm的小孔作为纳米点缺陷,均实现了亚波长聚焦。他们在实验中将这些纳米点缺陷排成曲率半径为5tan的圆弧,得到了直径比激发光波长还小的聚焦光斑,即“亚波长聚焦”。

在亚波长结构中,由于SPP会引起电场强度的增强而产生非线性现象,利用这种非线性现象可以制作出纳米量级的光学开关,发展近场非线性光学。这种光学开关的原理是基于表面等离子体效应的一种新型光开关。当外部条件改变时,影响开关结构中SPP的激发或传输特性,以达到开关的作用。目前报道的SPP光开关类型主要有电光开关、热光开关及全光开关等。这些光开关可实现衍射极限尺度内的光控制功能,并能实现光子器件在纳米尺度上的集成。

在陈俊学的博士论文中提出了各种复杂结构中的模式耦合、非线性光学特性及SPP在一些基本结构中的色散关系,明确了在一维和二维周期性结构阵列中,波导模式在 SPP 辅助增强透射过程中所起的作用;研究了三阶非线性光学效应对于 SPP 激发和耦合的影响,并设计了基于共振元件的开关结构,通过改变入射光的偏振有效地实现了开关状态的调控。

还有,通过锥形波导方法可实现SPP聚焦。激发的SPP沿着锥形波导传播的过程中,由于锥形波导边界呈梯度变化,反射光与传播的SPP在再次传播的过程中形成干涉,电磁场越来越集中,最后在波导尖端形成的场增强十分显著。可见,这种锥形波导结构是可以实现电磁波的聚焦的,它能将电磁能量聚焦到更小范围,真正实现超衍射极限的纳米聚焦。

另外,在新型气体传感器应用方面,在传统 SAW 气体传感器基础之上,结合激光超声检测技术,用激光在覆有吸附性薄膜的金属表面激发出声表面波,利用反射式光束偏转法在薄膜处探测金属表面的声表面波情况,从而检测被测气体的浓度。这是一种新型气体监测方法。这种新型气体传感器采用了光学的方法来探测声脉冲,属于非接触式检测传感器。

2.2 SPP效应的应用局限

目前虽然SPR 技术已经成功的应用到生物的各个领域,但是从第一个 SPR 传感器诞生到现在仅20 多年,还是一种正处于发展初期的新技术,其方法还有很多不完善之处。基于SPP效应的表面等离子体共振技术还有待扩大其应用范围,最好还要简化操作,提高SPR 方法检测的灵敏度,这就是人们进行SPP效应研究的目的之一。

例如在实际应用中,将纳米粒子技术用于生物体系,极大的提高了SPR传感器的灵敏度。一般用金纳米粒子提高灵敏度有两种方法,将金纳米颗粒吸附在SPR传感器表面,改变SPR信号特征,从而提高灵敏度。另一种是将金纳米粒子与抗原耦合在一起,从而提高SPR 传感器的灵敏度。其他还有夹心法、脂质体、乳胶粒子增强法等也可以提高 SPR技术灵敏度。

3 SPP效应的应用前景

随着纳米材料及其制备科学的成熟,纳米器件的发展即将推动纳米电子和光电子器件等集成电路的发展。基于一维纳米材料的气体传感器也将在气体检测领域大有作为。例如目前采用金属氧化物半导体制作电子鼻传感器,而研发出基于纳米材料的新型气体传感器,必然会促使电子鼻传感器技术的发展。

光子晶体的研究也是光子学的一个热点问题,这类器件主要是由一些半导体材料或者绝缘材料制成,该波长级器件可以控制光与物质的作用。金属也可以用来制作光子带隙结构,其表面上的周期性结构可改变SPP性质:当周期性结构可以控制在SPW波长的一半时,SPP的散射将会产生SPP禁带,这种禁带的产生与金属的周期型结构有关,可以用来发展新型传感设备。

参考文献:

[1]花磊,宋国锋,郭宝山等,中红外下半导体掺杂调制的表面等离子体透射增强效应[J].物理学报,2008,57(11).

[2]陈俊学.金属微纳结构中模式耦合特性及其调控机理研究[G].中国科学技术大学,博士学位论文,2011.

[3]侯振雨,谷永庆,徐甲强等.纳米CuO 材料的甲醛气敏性研究[J].郑州轻工业学院学报:自然科学版,2006,20(02):42-43.

相关文章
相关期刊