时间:2023-01-04 05:48:58
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇模具设计论文范例。如需获取更多原创内容,可随时联系我们的客服老师。
一般来说,并没有不好的材料,只有在特定的领域使用了错误的材料。因此,设计者必须要彻底了解各种可供选择的材料的性能,并仔细测试这些材料,研究其与各种因素对成型加工制品性能的影响。本文只就传统的热塑性材料进行分析以说明问题。在注射成型中最常用的是热塑性塑料。它又可分为无定型塑料和半结晶性塑料。这两类材料在分子结构和受结晶化影响的性能上有明显不同。一般来说,半结晶性热塑性塑料主要用于机械强度高的部件,而无定型热塑性塑料由于不易弯曲,则常被应用于外壳。这是材料选用的大框,其次,还要根据填料和增强材料继续选择。
(一)根据填料和增强材料进行选择的分析
热塑性塑料可分为未增强、玻璃纤维增强、矿物及玻璃体填充等种类产品。玻璃纤维主要用于增加强度、坚固度和提高应用温度;矿物和玻纤则具较低的增强效果,主要用于减少翘曲。玻璃纤维会影响到成型加工,尤其会对部件产生收缩和翘曲性。所以,玻璃纤维增强材料不能被未增强热塑性塑料或低含量增强材料来替代,而不会有尺寸改变。玻璃纤维的取向由流动方向决定,这将引起部件机械强度的变化。试验(从注射成型片的横向和纵向截取了10个测试条,并在同一个拉力测试仪上对它们的机械性能进行了比较)表明,对添加了30%玻璃纤维增强的热塑性聚酯树脂,其横向的拉伸强度比纵向(流动方向)低了32%,挠曲模量和冲击强度分别减少了43%和53%。
在综合考虑安全因素的强度计算中,应注意到这些损失。
在一些热塑性塑料中加入了一系列增强材料、填料和改性剂来改变它们的性质。由这些添加剂产生的性能变化必须认真地从手册或数据库中查阅,更好的是听取原材料制造厂家的专家的技术建议。以选用最为合适的材料。
(二)考虑湿度对材料性能影响
一些热塑性材料,特别是PA6和PA66,吸湿性很强。这可能会对它们的机械性能和尺寸稳定性产生较大的影响。在进行设计时,应特别注意这种性能,考虑其对产品性能的影响。
模具材料的选用取决于制品材料,细致分析制品材料后,才能在模具设计时选用最为合适的模具材料。
(三)塑料制品模具材料选用
细致分析塑料制品使用的材料后,选取最为合适的模具材料。目前我国市场常见的、适合热缩性材料的模具材料有:非合金型塑料模具钢(即碳素钢)、渗碳型塑料模具钢、预硬型塑料模具钢、时效硬化型塑料模具钢、整体淬硬型塑料模具钢、耐腐蚀型塑料模具钢几种。在模具材料选取时,根据制品材料是否改性和增加填充剂,添加何种添加剂来选取适合的模具材料。例如:制作形状复杂的大、中型精密塑料制品时,其模具材料可选用预硬型塑料模具钢;制造复杂、精密且生产时间较长,需要高寿命模具时刻采用时效硬化型塑料模具钢。具体选用时主要还是要针对塑料制品的材料和模具预计使用情况选取。适宜的材料加上合理的设计将极大的提高模具使用周期,同时也可以提高产品质量。
二、壁厚及相关注意事项对产品性能的影响
在工程塑料零件的设计中,还有一些设计要点要经常考虑,其中对于壁厚的设计尤为重要,壁厚设计的合理与否对产品影响极大,改变一个零件的壁厚,对以下主要性能将有显著影响:零件重量、在模塑中可得到的流动长度、零件的生产周期、模塑零件的刚性、公差、零件质量,如表面光洁度、翘曲和空隙等。
(一)塑料模具设计工艺中的基础要求
在设计的最初阶段,有必要考虑一下所用材料是否可以得到所要求。流程与壁厚比率对注塑工艺中模腔填充有很大影响。如果在注塑工艺中,要得到流程长、而薄,则聚合物应具有相当的低熔融粘度(易于流动熔解)是非常必要的。为了深入了解聚合物熔化时的流动性能,可以使用一种特殊的模具来测定流程。
增加壁厚不仅决定了机械性能,还将决定成品的质量。在塑料零件的设计中,很重要的一点是尽量使均匀。同一种零件壁厚不同可引起零件的不同收缩性,根据零件刚性不同,这将导致严重的翘曲和尺寸精度问题。为取得均匀的,模制品的厚壁部分应设置模心。此举可防止形成空隙,并减少内部压力,从而使扭曲变形减至最小。零件中形成的空隙和微孔,将使横截面变窄,内应力升高,有时还存在切口效应,从而大大降低其机械性能。不同壁厚塑料制品的模具设计时,模腔的要求也不同,根据制品的要求,设计模具的模腔及脱模斜度,斜度要与塑胶制品在成型的分模或分模面相适应;是否会影响外观和壁厚尺寸的精度。
(二)热塑性塑料设计中的指标分析
热塑性塑料一般具有高的延展性和弹性,不需要像具有高刚性、低延展性和低弹性的金属一样指定严格的范围。设计者在决定热塑性塑料模具制品的成本方面起了关键作用,合理且不影响产品性能的、缩小公差,较少成本是可以实现的。一般商业上可接受的产品与标准尺寸的偏差不高于0.25-0.3%,但这还需要与应用时的具体要求相结合来判断。精确的模具可以有效的缩小制品公差,从而降低制品成本。因此,模具精密度对制品生产厂家具有重要意义。
三、塑料模具设计时对收缩值的考虑
为了不对塑料部件制定过分严格的范围,必须要注意一些影响塑料制品尺寸准确性的因素。模具制造的标准必须严格遵守,同时要特别注意脱模斜度的重要性,因为它决定了脱模容易与否及防翘曲性能。
还有一个与产品设计相关的重要问题是,当成型品是由不同材料或不同壁厚制成时,其模后收缩值与方向和厚度相关如果复杂的成型对加工的要求非常严格,必须要获得模具原型有关收缩值和翘曲行为的准确数据玻璃增强材料的这一性质最为明显。玻璃纤维的取向性可在水平方向和垂直方向产生具有显著性差异的收缩,从而导致尺寸不准确。塑料制品的几何形状对收缩也有影响,进而影响到产品的性能,这也是设计者值得关注的一点。因此在此类制品模具设计时要注意制品脱模收缩后的尺寸是否为产品要求尺寸,否则因制品模后收缩值的影响,极有可能导致产品尺寸不符合标准。
结论:
与产品模后性能相关问题还有许多,设计人员可以参考手册进行设计。总之,在塑料制品模具设计时要充分考虑可能影响制品尺寸、性能、外观等多方面因素,综合利弊,选用适合的材料,合理的设计,才能保证产品的性能。
参考文献
[1]张国栋.模具设计概述[J].中国模具设计,2003,6.
[2]李海龙.注塑模具设计[J].模具前沿,2005,12.
[3]肖海燕.模具设计之材料选用[J].西安机械设计,2006,1.
[4]吴利国.塑料模设计手册[M].机械工业出版社,2005,1.
[5]张旭.塑料成型工艺与模具设计[M].高等教育出版社,2002,7.
首先,根据型材截面质心确定挤压中心。根据金属流动特性,选择扇形分流孔、四孔布置,桥宽20mm,上模高100mm,下模80mm,经理论计算验证分流桥强度合理。其次,根据挤压筒规格选择焊合室深度为20mm,底部圆角8mm,焊合角25°。第三,重点在模孔工作带区段的划分,因型材结构特殊性,保证挤压中心与型材质心重合[2];以金属均匀流动为前提,根据工程经验进行区段划分和工作的长度计算[3],型材模孔工作带长度分布如图2所示。
2挤压过程模拟
2.1模拟模型建立
将上述设计的挤压模具结构导入铝型材专用挤压模拟软件hy-erxtrude中,对其挤压过程进行模拟。根据挤压过程中金属变形程度及流经的区域建立模拟模型,按照不同区域划分网格。工作带部分网格最小0.4mm,挤压坯料最大网格尺寸6mm,这样避免了挤压过程中金属流动而造成的网格畸变和重划[4]。挤压工艺参数设计:挤压筒直径140mm,挤压速度1mm/s,坯料预热温度480℃,模具预热温度460℃,挤压比27.45,得出型材出口金属流速结果如图4所示。
2.2模拟结果分析
从型材出口金属流速分布可知,T形悬臂部分的金属流速慢仅15.58mm/s,而矩形空心的左上角流速过大达到37.76mm/s,速度相差过大,造成型材出口流速不均匀,使得型材扭曲变形,产品不合格。
3模具结构优化及结果验证
3.1模具结构优化
(1)从工作带的长度方面,根据型材出口的金属流速分布情况,因T形悬臂部分的型材厚度为3.2mm,而其他部分为2.8mm,而且悬臂部分远离挤压中心,金属流速必然不均匀。因此调整工作带长度,微调悬臂横梁部分的工作带长度到10mm,悬臂竖直部分中间工作带长度从8.7mm向两侧逐渐减小到6.8mm。优化后的模孔工作带如图5所示。(2)采用分流孔来调整金属流速[5],将两个分流桥分别向左上方,左下方平移2mm,使得桥中心向左平移,与挤压中心更接近,这样有利于金属的均匀流动,型材矩形部分的变形更均匀。同时,平移后右边分流孔变大,悬臂T形部分不受分流桥的遮挡,金属流动更趋于均匀。优化后的分流桥结构如图6所示。
3.2模具结构优化模拟结果
保持挤压工艺参数不变,根据反复的挤压过程模拟和结构参数优化,最后得到如图7所示的型材金属流速分布图。从模拟结果可以看出型材流速得到很大的改善,很接近理论平均挤压速度27.45mm/s,金属流动均匀,保证了产品质量。
4结论
1.1模具结构及工作原理
根据上述确定的工艺方案,设计了如图3所示的落料-冲孔-拉伸复合模。
模具工作过程为:坯料送人,上模下行,落料-拉伸凸凹模6、凹模4及冲孔凸模11、拉伸-冲孔凸凹模13分别与坯料接触完成落料和冲孔,压机滑块继续下行,落下的带孔圆形毛坯随即被落料一拉伸凸凹模6、拉伸-冲孔凸凹模13的相应拉伸工作部位拉成椭圆,随着拉伸完成,压机滑块上升,拉伸好的半成品椭圆盖分别被卸料块12、顶料板14推出各自拉伸工作零件型腔。
图4为设计的零件整形修边复合模结构。
模具置于压力机工作台面上,压机滑块上升,模具开启,上、下模脱离接触,卸料板6通过顶料杆7在压机弹性缓冲器的作用下上升至凹模4型腔中适当位置。此时,将椭圆盖半成品置于凹模4型腔中,完成零件的定位。
当压力机下移,整形凸模or首先进人拉伸好的椭圆盖半成品内腔,随着压机滑块的下行,整形凸模10与凹模4共同作用开始对半成品椭圆盖的外形进行整形,当卸料板6降至极限,椭圆盖外形整形完成,此时,斜楔1左右斜面首先与模具中左右布置的四把小切刀8上的斜面接触,在斜楔11的斜面作用下,小切刀8与凹模4共同作用,将零件端面的废边裁剪成两段,当剪切即将完成时,斜楔n前后斜面随着压机滑块的下行,开始与模具中前后布置的两把大切刀13上的斜面接触,在导向杆14的导向作用下,大切刀13开始沿模具前后方向滑移,与凹模4共同作用对椭圆盖的端面进行前后方向的剪切,直至椭圆盖前后端面需修边的废料被完全裁剪,与零件完全脱离。当压机滑块上升,斜楔11前后斜面首先与模具中前后布置的大切刀13上的斜面脱离接触,大切刀13在弹簧巧弹力作用下沿着导向杆14的导向轨迹得到回复,随着斜楔1左右斜面与模具中左右布置的四把小切刀8上的斜面脱离接触,小切刀8在弹簧9弹力作用下沿大切刀上开设的回复轨道也得到回复。当压机滑块继续上升,整形凸模10离开椭圆盖的内腔,完成切边的椭圆盖在顶料杆7的作用下被卸料板6推出凹模4的型腔。至此,零件的切边工序全部结束。压力机转人下一个工作循环。
1.2设计要点
(1)图3中的落料一拉伸凸凹模6、拉伸一冲孔凸凹模31具有拉伸、落料或冲孔的双重作用,件6外圈为落料凸模,内型腔为拉伸凹模型腔,件31中的外形为拉伸凸模,内孔为冲孔凹模,落料及冲孔部分尺寸分别保证与凹模4、凸模11的单面间隙为.009~0.12mm,拉伸部分保证两零件间的尺寸单面间隙为3.1~3.2mm。
(2)落料-冲孔-拉伸复合模工作时,须保证拉伸在落料及冲孔完成之后进行,以利于材料拉伸时的有序流动。考虑到装饰盖拉伸高度较大,模具中相应的工作零件也较厚,为减少模具材料成本,在其工作零件上设置采用Q253-A制造的垫块5及下垫块16来满足要求。
(3)图4所示模具中,切刀设计成两组,一组为小切刀8,另一组为大切刀13。整个零件切边分两步完成,即:斜楔11的左右两斜面首先单独与4块小切刀8接触,对零件长轴方向需裁剪部分进行修边,同时将废料切成两部分,随后,斜楔1与两组大切刀13的斜面接触,推动大切刀13沿零件前后方向滑动,由于小一切刀8分别安装在两组大切刀13左右的定位滑槽中,因此也同时、同步随同大切刀13共同移动,直至将零件椭圆短轴方向的废边切除。斜楔11、小切刀8及大切刀12斜面间的角度均取305,以保证相互间斜面对称一致。
(4)图4所示模具中,端面切边间隙由凹模4及整形凸模10的高度控制,切刀与凹模保证间隙.009-0.12mm,若间隙太大,易造成切口不平整,若间隙太小,则会造成切刀的卡滞。
(5)在整形修边复合模中,大切刀13的前后滑移通过与整形凸模01滑动联接的导向杆14进行定位、导向,小切刀8安装在大切刀13中,其滑移过程中的导向及回复均依靠大切刀13中开设的滑槽提供,大、小切刀滑移后回复的动力分别由各自弹簧9、巧压缩后储存的弹力提供。
2结束语
1制件分析
卡箍制件要求成形加工后表面平整、光滑、无皱折、无压痕及划伤等现象。在该制件的制造过程中,成形工序是工艺流程中的重要工序,正确的成形工艺方法、模具结构设计合理与否是加工出合格制件、提高生产效率的关键。该卡箍制件结构分析无特殊的装配和使用要求。弯曲件外形简单,精度要求不高,工件厚度1mm,定位较为容易,且定位精度易保证,该类似结构的制件较多,材料不同,有不锈钢、高温合金、铝合金、20钢、铜合金等,根据不同环境选择不同材料的卡箍制件,以下选择其中的一种规格来进行分析。冲压技术要求:材料:LY12-M;材料厚度:1mm;生产批量:大批量;未注公差:按GB/T1804-m级确定。
2工艺存在的问题
原工艺流程为:落料、手工整形、成形(弯曲)。存在的问题:由于操作工人手工整形时手工控制,半成品制件无法达到一致性,造成预弯时尺寸和外观不一致,压痕、划伤,表面不平整、不光滑、圆度差等质量问题,并且工作效率很低,给后续工序带来很大困难,造成最后一道成形工序后的制件外观不一致,稳定性不好、质量差、安全性较差。目前简易弯曲模具如图2所示,要想解决目前存在的这些问题,必须摸索更合理、高效率、高质量的成形工艺方法,设计合理的模具结构,提高加工质量和效益。
二工艺优化成形方法和模具设计必须着重考虑
通过该工件的工艺性分析可知,卡箍是典型的弯曲件。针对上述存在的问题,提出初步的改进方案,确定用2次成形单工序来代替一次成形来完成。如图3所示。将工艺流程初步改为:落料、预成形(第一次成形)、成形(第二次成形)。
三模具结构改进根据工艺初步方案,确定为二次成形,即预成形和成形,每次成形由模具来保证。
1预弯模装配图结构
自动完成制件的预成形。模具工作过程:毛坯件放在凹模2上,用定位板13定位,上下模分别设置压料杆6和顶料杆15,可避免弯曲过程中毛坯件窜动。当上模下压时,压料杆和顶料杆起定位作用,毛坯逐渐受力向下弯曲,直到凸模、坯料和凹模三者完全压合,弯曲过程结束。当上模回升时,弹簧回复,顶料杆顶出工序件。
2二次成形模
(卷圆模)装配图结构完成成形工序,考虑要卸模和取件方便,用连杆机构来完成这个动作。卡箍卷圆模的工作过程:预成形件放在凹模1上,用定位销6和定位块7定位,当上模下压时,连杆机构带动推件块以凸模本身作为滑动轨迹向后移动,凸模逐渐向下压工序件,直到凸模、坯料和凹模完全压合,弯曲过程结束。当上模回升时,连杆机构的带动推件块向前移动,从而推出工件。
四结束语
从几类胶塞的结构及用途可以看出,胶塞生产具有批量大、尺寸要求严格及有洁净和生物安全性要求的特点,针对这几个特点,在胶塞模具设计时必须考虑以下几点:(1)胶塞属于大批量生产的模型制品,因为多腔模具生产效率高且能满足生产需求,所以,模具设计时必须是多腔模具,设计模具时尽量占满整个热板。模具型腔之间的间距一般与产品尺寸保持+3.5~4mm,型腔呈交错排列。(2)胶塞尺寸要求严格,模具型腔及模具大板必须采用精密的加工技术才能满足尺寸精度要求。模具型腔芯(简称模芯)与模具大板分别加工,然后镶嵌在一起。(3)胶塞有洁净和生物安全要求,硫化完成后的胶片,不宜采用撕边和冷冻除边工艺,否则剩余胶丝和胶粉末会因清洗困难而影响生物安全性。目前,通常采用连片硫化生产(分模边厚度0.6~1.2mm)进而采用冷冲切工艺,一次性切除分模边,不留胶丝毛刺。(4)胶塞为含胶率高的纯胶制品,所用胶料卤化丁基胶及其他胶种必须采用抽真空平板硫化机或注射抽真空硫化机来生产,对硫化设备要求高,且必须为抽真空设备。(5)由于胶塞尺寸的严格性,化胶塞的面压大于普通的橡胶制品,一般在100kg/cm2以上(普通橡胶制品为50kg/cm2左右)。(6)硫化模具除采用多腔设计外,由于冲切工艺的限制,多腔排布需要再分割冲切分区。(7)硫化前的半成品采用薄胶片进行整模具覆盖,对半成品尺寸及重量要求严格(长宽尺寸误差±1mm,厚度误差±0.1mm,重量误差±5g)。(8)由于采用连片生产,半成品胶片精度高,一般只在模具大板周边设计溢胶槽。(9)胶料的收缩率通常根据胶种不同、含胶率不同、配方不同、硫化条件不同,将根据实验实际测定后确定,经验值一般在1.8%~2.8%之间。(10)模具定位通常采用4个定位销定位,模具固定在硫化机热板上,硫化机采用大开档结构,便于放入和取出胶片。(11)为了提高效率,硫化机热板尽量采用大台面、大吨位的平板硫化机。硫化模具尺寸变大,模具加工困难也相应增大。目前我公司的胶塞模具尺寸达到1300mm×600mm×100mm的模腔数量多达2352腔/模。
2胶塞模具的结构组成及加工方法
根据以上胶塞模具的特点进而可以设计出胶塞模具的结构,通常胶塞模具均采用二开模、多腔镶芯技术。模具由上模具大板、上模芯、下模具大板、下模芯、定位销及定位套组成。
2.1上模具大板与下模具大板上模具大板的典型结构如图8所示,下模具大板的典型结构如图9所示。上模具大板与下模具大板的主要功用是固定和连接上模芯与下模芯,它们与上下模芯之间通常采用H6/k5配合。上模具大板通常设分区线,目的是便于硫化后分片和冲切。下模具大板内腔设预留分模边,分模边的厚薄将根据胶料硫化时的流动特性来确定,通常为0.5~1mm。下模具大板周边设溢胶槽,满足半成品重量误差需求,生产合格产品。上模具大板与下模具大板将根据不同直径形状及厚度的产品,选用不同排布形式与厚度,排布形式有直排型和交错排列型,在同样模板面积上,交错排列型的生产效率比直排型提高7.5%,因此只要结构允许,应尽量采用交错排列形式。上下模具大板的加工通常采用坐标镗床或加工中心一次完成上下模具大板坐标孔的加工。
2.2上模芯与下模芯上模芯典型结构如图10所示,下模芯结构如图11所示。上下模芯是胶塞硫化成型最关键的部件,它的加工质量直接影响到产品质量。胶塞模具是多腔模具,模芯数量巨大,目前我公司腔数最多的可达2352腔/模,因此模芯的一致性要求很高,对于简单型腔的产品,一般采用数控车床生产,而对于复杂型腔的产品除采用数控车床加工外,还必须辅以电火花等加工方法来完成其加工,还有个别型腔复杂的产品采用镶嵌法生产,但质量和一致性很难保证。
2.3定位销与定位套定位销与定位套的结构如图12所示,由于多腔模具的特殊性,通常1套模具一般只有4对定位销与定位套对上下模具进行定位,上下大板的定位套与定位销孔通常在坐标镗床或加工中心与模芯孔一次加工完成,定位销、定位套与大板采用H7/n6配合,销与套之间采用H7/g6配合。
3胶塞模具装配与使用过程的常见问题与处理方法
胶塞模具零件加工完成后,就可进行模具装配工作,胶塞模具的装配有其特殊性,主要应注意以下几个方面的问题。
3.1模具大板与模芯的装配精度问题由于胶塞模具是多腔镶芯模具,模芯与大板装配配合精度要一致,尽管图纸标注尺寸是一致的,但实际加工过程会出现一些偏差,这些偏差就会造成模板与模芯配合尺寸不一致。配合过紧会使得模板变形,进而影响硫化产品的精度;配合过松会导致模芯与模板之间积胶,进而使硫化产品产生毛边。为了解决模板变形问题,一般采用加厚模具大板的办法来解决,但过厚的模板会给更换模具和抽真空带来困难。
3.2模芯加工的一致性问题模芯内腔加工的不一致会造成胶塞产品不一致,而不一致的胶塞会造成药品自动分装生产线运转不畅,导致胶塞大批退货。因此,胶塞模芯内腔尺寸的一致性是胶塞模具最关键的一环。通常通过模芯加工后的尺寸检查和硫化胶塞产品尺寸检查环节来控制产品尺寸。
3.3预留分模边与最终硫化产品分模边的关系由于多腔胶塞模具设计属于半开放模具,尽管半成品尺寸及重量控制严格,但最终硫化的胶片还会出现多余胶料溢出现象,正是这些胶料的溢出造成了预留分模边与最终硫化产品分模边存在差异,这些因素在模具设计时必须考虑,按经验值一般在0.15~0.20mm之间。
3.4预留分模边内槽尺寸与模芯最小距离的问题在多腔模具的边缘经常会出现硫化后的胶塞变形或尺寸不合格的问题,造成这种问题的主要原因是分模边内槽边缘与模芯距离过近造成,适当加大该尺寸就能解决这个问题,因此胶塞模具设计时应特别注意这个问题。
3.5硫化机面压与热板精度的影响由于胶塞尺寸的严格性,硫化机面压必须足够大,才能硫化出合格产品,面压一般在100kg/cm2以上比较合适,低于此数据会造成合格率降低、胶塞厚度不均等问题。热板精度低的硫化机,不仅不能生产出合格的胶塞产品,还会对模具造成永久伤害,严重者会造成模具报废。因此,胶塞生产尽量采用高精度、高压力的硫化机。
3.6形状复杂的非回转体产品上下模芯定位及对正问题由于多腔胶塞模具的模芯外形一般为回转圆柱体,当胶塞本身结构为回转体时,上下模芯可以随意安装,而对于形状复杂的非回转体胶塞来说,上下模芯必须按一定的方向排列固定,才能生产出合格的胶塞产品,这种情况下,一般要对加工模芯做好定位,否则会给后期装配和生产带来很多困难。
3.7溢胶槽、定位销、定位套、模具与热板固定螺孔尺寸的位置干涉问题胶塞多腔模具的设计原则是尽量让模具占满整个热板,但必须留足溢胶槽、定位销、定位套、模具与热板固定螺孔的位置,这些功能部件必须独立,不得互相干涉,否则会导致产品质量不稳定,甚至会造成模具报废。
3.8胶塞偏心问题多腔模具最容易出现和最难解决的问题就是产品偏心,一般加工精度和装配方法都会影响产品的同心度,这两点尤其要注意。
4结语
它能制得外形比较复杂,尺寸比较精确,并且能带有金属嵌件的产品,对各种聚合物加工的适应性也强,比较易于实现自动化生产加工。模具是现代工业生产的重要工艺装备之一,它具有节能节材、生产成本底、生产效率高及产品的一致性好等显著的特点。因而掌握注塑模具的设计方法具有重要的现实意义。在注塑过程中,塑件收缩率的波动及模具制造误差是影响塑件尺寸精度的主要因素。我们知道,任何一种塑件都会或多或少的要有一定的强度和刚度,为了达到其自身要求的强度和刚度,这就需要塑件要有一定的壁厚。对于同一个塑件,我们设计时,应尽可能设计出相同的壁厚,因为不同的壁厚,它们会因冷却或固化速度的不同而产生附加应力。热塑性塑料会在后壁处产生气泡、缩孔等。诚然,要做到塑件的每一处壁厚都百分百的一样也是不现实的,但是我们要尽可能做到壁厚大致相同。在注塑过程中,塑料由于热胀冷缩的缘故,冷却后会产生收缩而包在型芯上,或由于其粘附的作用,塑件会紧粘在型腔上,从而不便进行脱模。所以,我们要设计出合理的脱模斜度以便于脱模,并且防止在脱模时划伤、擦毛塑件表面。注射模最终是要安装在注射机上进行注射成型生产的,所以我们还要处理好注射模与注射机之间的关系。这就要求我们模具设计人员在设计模具之前,不但要知晓注射成型工艺规格,也应知晓注射机的技术规范和使用性能,这样才能使设计出来的注射模能在注射机上正确安装和使用。模具型腔是成型塑件外表面的模具零件,在生产时,熔体能否充满模具型腔与注射机的最大注射量是直接相关的,我们在设计模具时应保证注射模内所许熔体总量小于注射机实际的最大注射量。
二在注射成型时
当原料以高压注进型腔内时,型腔内熔体对模具还具有涨开力,会对模具产生一个撑开的力量,注塑机为了克服这种张开力,会施加给模具一个锁紧力,这个锁紧力称为锁模力。影响锁模力的因素主要有两个。其一是模腔沿模具分型面上的最大投影面积,如果投影面积超过了注射距的允许使用的最大成型面积,则成型过成中将会出现涨模、溢料现象。另一个因素是模腔压力,模腔的压力来自熔体流动的阻力,一般来说,模腔压力在注射压力的0.4—0.6倍之间。分型面是动模和定模在闭合时接触的部分,分型面的设计是模具设计成败的关键因素之一,对于分型面的选择,我们遵循五个利于:利于脱模、利于简化模具结构、利于排气、利于产品质量、利于加工。模具的浇注系统是模具设计工作者十分重视的技术问题,浇注系统的设计直接影响着塑料产品的外观、性能及成型效率。主流道应设计成圆锥形,便于流道凝料的脱出。但锥角要合理,锥角过大会产生湍流或涡流,卷入空气,反之会使凝料脱模困难。
三设计分流道时
CAE软件实现了计算机与设计人员相互作用,计算机技术发挥其高效率的特长,设计人员发挥其灵活性特点,这样就使模具的制作流程更加灵活,并且提高了模具的生产效率。CAE软件采用计算机技术把设计方案优化,使模具在制作过程中结构合理,工艺参数精确。CAE软件可以提高企业的生产率,节省时间。CAE软件实现了设计计算的自动化和图样绘制的精确化,这样就大大节省了设计人员的时间,而且使设计的精确度提高。CAE的使用使设计到制作的时间减少,从而降低了劳动力和材料的成本。计算机的运转提高了绘图的效率,计算机进行设计的优化时考虑到原材料的使用问题,确保原材料得到充分利用,节省了企业成本,提高了企业的经济效益。
2散热器罩的工艺分析
2.1覆盖件冲压工艺的主要特征
在进行覆盖件的冲压过程中,尽量运用一道工序就可以完成任务,使覆盖件的轮廓清晰,如果覆盖件在两次工艺才成形的话,会导致成形不完整的问题,使覆盖件的质量降低。当覆盖件的形状确定后,尽可能使覆盖件表面平滑均匀,使各个部位的变形程度能够达成统一,在不同的工序完成时,能够确保各个工序能够相互调整,使工序的状态良好。覆盖件上的孔是在各个工艺完成后再制作,以免在孔的形成过程中产生畸变问题。当覆盖件成型以后,就可以进行翻遍等工作,先确定好工料的形状和尺寸,然后对成形的工艺进行分析,对模具的结构进行分析,然后分析在模具成形过程中需要的零部件。
2.2散热器罩冲压工艺分析
2.2.1结构工艺介绍
散热器罩在形状设计的过程中是对称的,在覆盖件的制作中,在水平面上形成X和Y两个方向,这两个方向在制作的过程中设计的深度是不一样的,这就导致了在设计覆盖件的时候,确定形状会存在很多的问题,按照覆盖件制作的特点,为了能够提高制作的效率,就要减少相关的工序,可以将冲孔与两边的工艺在统一的模具中完成,运用水平修边的方法,使修边与侧壁的冲孔工艺同步进行。散热器罩是沿着Y方向对称的,而且其顶部形成一个较为平缓的面,在冲压的时候可以运用正装的方式,这样就不会出现凸模的死角,使模具的形状可以顺利地形成,X边的深度比较大,在制作的过程中需要进行压边操作。
2.2.2冲压方案的确定
在进行冲压的过程中,一般都会经过成形、修边这两个步骤,在成形的过程中,在X方向因为深度比较大,因此要采用拉伸的方式,在修边的过程中一般会采用单工序的方式,在拉伸成形的时候,在覆盖件的制作中一定要注意,一定要在一副磨具中完成,这样才能够确保拉伸的质量。
3散热器罩拉伸成形的CAE分析
3.1CAE仿真分析的功能
在对汽车的覆盖件进行设计时,运用CAE软件,实现了软件的制作的仿真,在运用CAE软件进行仿真的过程中,首先要运用三维建模的方法,建立一个曲面的模型,然后将零部件的模型放到仿真软件中,分析二者是否可以匹配。按照冲压设备在设计中拉伸的效果,从而对接触的方式进行确定。在模具冲压的过程中,可以在参考力学模型的基础上,运用有限元的相关知识,建立有限元的模型,加入零部件的曲面模型中没有确定补充面,这时,就要运用CAE软件进行模型表面的设计,从而能够运用软件自动生成补充面。在CAE软件中,由于网格的自动划分功能并不能很好地实现求解器的需求,当网格被划分完成后,就可以运用CAE对网格进行检测,将那些不合格的网格检查出来。通过对模具的类型进行分析,从而建立分析模型。通过对零部件的分析,从而能够计算出毛坯的尺寸,运用CAE软件对毛坯的尺寸进行进一步的计算,从而确定毛坯的形状,运用CAE软件分析毛坯的主要轮廓,从而能够制作出毛坯的主要模型。在对拉伸筋进行定义的过程中,可以分析出金属的流动状况,能够在制作模具的时候防止起皱问题的发生,从而能够制作出更加平整的模具,运用拉伸筋能够将成形的数据进行模拟和分析,运用拉伸筋建立几何模型,这种方法在计算数据时精确度比较高,但是,这种方法在建立拉伸筋模型时需要耗费很多时间,而且在建立拉伸筋模型的过程中容易出错。也可以运用建立等效的拉伸筋模型的方法,这种方法能够按照尺寸建立出等效的模型,比较灵活,能够对数据进行准确地分析,被广泛地应用。
3.2散热器罩的CAE仿真分析
在散热器罩的CAE仿真分析的过程中,在对单元进行划分的时候一定要格外注意,一般都是运用四边形单元,而且要根据模型,设计合理的划分方法,在对自动的网格进行划分后,其中四边形单元占单元总数的大部分。在分析冲压方向的时候,一般都会运用CAE来确定,确保没有死区的产生,而且尽量可以使拉伸的深度减小。为了能够使拉伸成形更加得成功,就必须要对模具的工艺进行完善,要对补充面进行设计,并且要分析压料面的问题,在对压料面进行设计的时候,不能出现凹凸不平的问题,要使压料面保持平整,而且要尽量简化压料面制作的流程。对压料面的工艺进行完善,要确定好压料面的拉伸方向和位置,从而能够使压料面的各个部位都能够均匀分布。在进行压边设计后,确定了拉伸筋的结构后,运用CAE的分析,对模具的起皱问题进行考量,模具的内部如果出现了起皱的问题,可以发现,模具出现起皱的部分几乎都在模具的中心部分,在模具的中间部分,在压边的过程中由于受力不足,而且,在拉伸筋设计的环节存在一定的问题,因此,在解决这种问题的时候,可以运用强化压边力度,或者是增加拉伸筋的数量,对拉伸筋的位置进行调整,将拉伸筋调整到模具的中间部位,也可以通过使用剂,从而能够减小摩擦系数。在对模具进行计算的过程中,一般来说,模具的厚度在0.8毫米的时候,能够形成一个较大的节点,这时不会发生模具起皱的问题,而且不会影响模具的美观度,也不会出现模具出现局部开裂,给汽车带来安全隐患的问题。
4结语
随着手机行业发展的变迁,中国早已成为世界手机塑料制件的生产基地。尽管我国的注塑模设计在近几年得到了快速的发展,但是我国注塑模具在设计制造水平等方面要比德、美、日、法等工业发达国家还是要落后许多,主要表现在以下的几个方面。
(1)供给和需求不平衡
当今国内自配率不足,可以看到低档模具供过于求,中高档模具自配率不足60%。尽管中国模具工业发展迅速,但与需求相比,供不应求的问题还是比较突出的,其主要缺口集中于精密、长寿命、大型、复杂模具领域。因为在模具寿命、精度、制造周期及生产能力等各个方面,我国与国际平均水平和发达国家仍有较大差距,因此,每年需要大量进口模具。
(2)人才与科技发展不相适应
模具行业不同于其他的一般行业,是一种技术密集,资金密集的产业之一。尽管我国在模具设计中已经使用CAE模拟分析,但是我国人才的发展速度跟不上行业的发展速度,现在缺乏各种能把握运用新技术或者高级模具钳工等高技术人才。同时,由于基础差、投入少,缺乏一种长期可持续发展的观念导致我国模具产品及其生产工艺,工具(硬件和软件),装备的设计,研发(包括软件二次开发)和自主创新能力的薄弱。跟发达国家比起来,我国模具CAD/CAE/CAM的技术水平还很低,主要表现在软件开发的进度和水平低,CAE/CAM发展跟不上CAD,整体应用水平低,缺乏CAD/CAE/CAM知识的集成。
(3)标准化的程度低
长期以来,我国的注塑模设计受到了“大而全”、“小而全”的影响,模具行业的观念落后,难以完成较大规模的模具成套订单,与国际水平相差很远。虽然有的企业引起了国外的先进加工设备,但是总的装备水平与国外企业相比,依然是望尘莫及,设备控制率和CAD/CAM应用覆盖率要比国外的企业低很多,CAE、CAPP的普及率就更加低了。另外,模具标准化水平低,没有针对同一领域的产品建立针对的数据库,标准件的品种规格少且应用水平低,高品质的都依赖进口,设计现状如下表所示。这些都影响和制约着我国模具发展和质量的提高。
(4)材料等相关技术落后
模具材料性能、质量和品种往往会影响模具质量、寿命及成本,国产模具钢与国外进口钢相比,无论是质量还是品种规格,都有较大差距。塑料、板材、设备等性能差,也直接影响模具水平的提高。
(5)企业管理落后与技术的进步
我国模具企业的管理落后主要体现在生产组织方式及信息化采用等方面。以模具为核心的产业链各个环节的协同发展不足,尤其是材料的发展明显滞后,国内模具材料在品种、质量和数量上都不能满足模具生产的需要,高档模具和出口模具的材料基本上都是靠进口的。模具上游的各种装备(机床、工夹量刃具、检测、热处理和处理设备等)和生产手段(软件、辅料、损耗件等)以及下游的成形材料(各种塑料、橡胶、板材、金属与非金属及复合材料等)和成形装备(橡塑成形设备、冲压设备、铸锻设备等),甚至包括影响模具发展的物流及金融等产业链的各个环节大都分属于各有关行业,大都联系不够密切,配合不够默契,协同程度较差,这就造成了对模具工业发展的制约。
2影响我国手机注塑模模具设计效率的因素
(1)模具设计工程师流动较大
在当前的模具行业中,模具设计人员的流动是非常大的,每个公司的设计思路又不尽相同,这就直接会影响到模具设计的效率。因为在模具设计人员流动的过程会使得模具设计人员的素质总体偏低,因此在控制模具设计效率的问题上会缺乏准确性。此外,人员的经常变动必将使得模具设计的完成水平处于良莠不齐的状态,这就必将影响到模具设计的效率。
(2)模具设计师的主动性不够。
因为模具设计的设计师对工作的热情不够,每天都只是按要求完成任务,所以也就很难创造性的设计出高质量的模具。同时,热情的不够也会使设计人员设计的结构过于固定而缺乏一定的变通和创新,必将严重影响到模具设计的效率以及质量。
(3)设计师的设计水平普遍不高
在当前的模具设计岗位上,很多的设计师是通过专科院校专门培训出来的,对软件的操作非常熟悉,但是对设计的思想理论没有自己的把握和见解。因为,由于他们对模具设计核心技术的不熟练也将导致模具设计的时间过长,而且设计的方案也可能会有各种各样的问题,这就有可能在主管检查过后还要进行不断的修改,从而严重影响到模具设计的总体效率。
(4)公司模具设计没有标准化
如今,由于快速发展的手机市场导致手机生产商对产品需求的多样性不断的增加,因此模具的更新换代也在不断的加快。各个手机制造商和模具设计公司承担着繁重的模具设计任务,对于手机这一类产品经常有很多相似的结构,但因公司没有把类似产品进行标准化分类建库,在设计过程中有很多重复的而且缓慢的人工设计部分耗时太多,耗时结构如表1所示。这也使得设计师在模具设计的过程中不得不做很多重复性的工作,降低了模具设计效率。
(5)设计软件的不足
现在公司进行模具设计的辅助软件大部分用的是SiemensPLMSoftware公司出品的UG,尽管该软件已经做到非常完善了,但是在公司具体的应用过程中依然有很多的不足,工程师在设计的过程中有很多设计要经过繁琐的操作而不是一蹴而就的快捷,这就导致模具设计的效率不得不有所降低。
3提高我国手机注塑模设计开发效率的探讨
随着科技的发展和技术的进步,模具早已经是制造业的重要工艺装备。在竞争激烈的手机市场中,谁能提高自己的生产设计效率,谁就能第一时间的占领市场,因此手机模具的设计速度是所有公司追逐的目标。我国模具技术已经得到了很大的发展,但总体来说与国际先进水平相比尚有10年以上的差距,设计的速度也比先进国家也慢了很多。由于模具技术的落后必将使得手机的生产和上市受到影响,所以我国手机注塑模具设计技术的发展是手机模具行业的当务之急。注塑模具种类繁多,不同种类的技术要求也是不一样的,经过调查总结,我国注塑模具模未来必将朝着下列方向不断发展进步。
(1)手机注塑模模具设计特点
随着电子行业的快速发展,手机已经成为一个快消品。因此其在当今市场更新换代的速度非常快,产品的快速更换对模具行业的发展也是一个很大的机遇和挑战。因此手机注塑模就进入了多品种小批量生产时代,人们要求模具的生产周期越短越好,由此可以看出快速经济模具将有广阔的发展前景。
(2)热流道、气辅模具技术的发展
今天的模具行业里面采用热流道技术无疑是提高塑料制件生产率和质量有效途径,而且相比于传统模具,热流道还能大幅度节约原材料。热流道技术在国外的塑料模具中占了50%,有的国家已经达到了80%以上,都得到了良好的效果。另外,气体辅助注射成型也具有很大的优点,如:注射压力低,制品翘曲变形小,表面的质量较好且易于注塑出壁厚跨度比较大的制件。所以它不但可以降低成本,最重要的是可以保证产品的质量。因此,手机外壳模具采用热流道或者气辅模具,将可以在低成本的情况下得到高质量的产品。
(3)提高手机注塑模模具设计的效率方法
1.开发理实一体化教学项目
为了推进本课程理实一体化教学,我们采用任务驱动、项目导向式的教学。围绕工作项目来组织教学,打乱原有的章节顺序,边学边做,边做边学,将所学理论与实践完全融合起来。让学生在操作过程中掌握理论知识,并学会如何运用专业知识去分析问题和解决问题。“冲压工艺与模具设计”教学内容主要涉及冲裁模具、弯曲模具、拉深模具设计等内容。分析企业的工作情境与工作流程,构建6个典型项目,每个项目包括若干模块。
2.实施理实一体化教学
在教学项目的基础上,进行课程理实一体化教学的实施。本文以项目二冲裁模的设计教学过程实施为典型案例,介绍理实一体化教学模式实施过程。
3.创新理实一体化教学考核评价方法
实施理实一体化教学,必须创新考核评价方法。本课程的考核内容主要是对学生的专业知识、应用能力、动手能力、团结协作能力、职业素养等进行考核。首先,将教学项目实施过程中各模块的理论知识学习效果纳入考核成绩,如教师布置的工艺分析、工艺计算、模具零部件设计计算等完成质量;其次,将项目实施过程各模块的实践操作纳入考核成绩,如模具拆装,模具零部件加工,模具装配,调试等完成情况;第三,将模具零件加工工艺编制,图纸完成质量和答辩成绩纳入考核成绩;第四,将学生的学习态度和工作状况,学习纪律、与同学之间的交流合作等方面纳入考核成绩。考核过程中采取多元化的评价主体和评价方法,将学生自评、学生互评、教师评价按比例计入成绩,这样既调动了学生学习的积极性,也保证了成绩的客观公正。
二、课程理实一体化教学模式实践的几点体会
1.需要高素质的教师团队
要完成理实一体化教学,必须要有一支精通模具专业理论知识,而且具有丰富模具制造经验的“双师型”教师团队作为保障。首先,要求教师深入模具生产一线锻炼,积累模具制造经验,了解行业先进技术及信息;其次,要求教师具有跨学科综合教学能力。模具设计教学项目的完成涉及多学科教学内容,是以学生对“机械制图”“公差测量”“模具材料”“模具制造”等课程的掌握为基础的,这要求教师不仅熟悉本学科和本专业知识,还要了解相邻学科或专业领域的发展状况。本课程在理实一体教学实施过程中,采取一名专业教师与两名实训教师的组合授课方式。专业教师负责教学项目中理论知识的讲授,并指导学生完成模具设计和图纸绘制;实训教师指导学生完成模具零件加工,装配与调试。整个教学过程使专业教师与实训教师优势互补,发挥教师团队的作用。
2.需要突出学生职业能力和职业素养的培养
理实一体化教学实施过程中,需要加强学生职业能力和职业素养的培养,为以后进入模具企业快速适应岗位要求打下良好基础。本课程在理实一体化教学实施过程中,教师加强了学生模具零件加工工艺编制能力的训练,根据教学项目结合现有加工设备条件,指导学生制定出合理的加工工艺流程。在模具零件生产过程中,教师严格要求学生按模具零件图和加工工艺流程加工模具零件,确保模具零件的加工精度。整个教学过程与企业生产过程紧密结合,并将教学目标与企业对人才的需求相统一。
3.需要科学的管理方法
理实一体化教学实践表明,这种教学模式更能激发学生的潜能,使学生快速融入教、学、做的过程中,但课堂管理难度较大。在课程实践操作环节,教师需要投入更大的精力,科学管理课堂。首先,确保学生的操作安全问题,操作前对设备线路进行检查;其次,操作过程的管理,如果学生动手操作加工模具零件,教师指导不及时,可能出现零件加工不合格而报废,不仅浪费了耗材,也达不到教学目标。此外,应根据学生的实际能力和个性发展,因材施教,合理施加压力,进行适当的引导和督促。
三、结语