欢迎来到易发表网!

关于我们 期刊咨询 科普杂志

处理工艺论文优选九篇

时间:2022-10-08 21:50:51

引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇处理工艺论文范例。如需获取更多原创内容,可随时联系我们的客服老师。

处理工艺论文

第1篇

通过降低热处理工艺温度能有效减少由此产生的变形。降低工艺温度,能相对减少工件的高温强度,并增强其塑性抗力以及抗应力变形、抗淬火变形、抗高温蠕变的能力。降低工艺温度,还能够减少工件加热、冷却的温度区间。温度区间减少后,由热处理引起的各部位温度的一致性也会增强,而温度的不一致性正是引起工件组织应力和热应力的根本原因,随着温度不一致性减少,由此而导致的变形也会相应减少。此外,在降低工艺温度并缩短工艺时间的情况下,将缩短工件的高温蠕变时间,从而减少变形。科学合理的热处理工艺是减小热处理变形的关键因素。由图1可以看出,在650%球化退火后的硬度梯度和740%球化+680%等温处理的硬度梯度结果相近,未经球化退火的齿轮的硬度较前两个低。这是因为球化退火可使淬火后渗层表面残留奥氏体量减少,从而提高了齿表面硬度,因此20CrNi2MoA钢齿圈渗碳后应采用球化退火工艺,同时为减小热处理变形,在650℃球化退火效果更好。

2变形的其他影响因素及减小措施

2.1预备热处理在热处理过程中,有可能引起内孔的变形增大,如存在混晶、大量索氏体或魏氏组织以及过高的正火温度。因此需要对正火温度进行控制,也可以采用等温退火的方式来对锻件进行处理。金属最终的变形量与很多因素有关,如淬火前进行的调质处理以及退火和正火。金属产生变形进而导致金属组织结构也发生变化。研究和实践表明,为使金属组织结构均匀,在进行正火处理时采用等温淬火是一种有效的减小其变形量的措施。

2.2运用合理的冷却方法金属淬火后冷却过程的控制也是必须考虑的一个因素。淬火后采用油进行冷却,因此其变形直接受到油的冷却能力的影响。通常来说,热油淬火产生的变形小于冷油淬火,一般控制在100+20%。同时,变形还受到淬火的搅拌方式和速度的影响。在进行金属热处理时,金属产生的应力及模具的变形与冷却的速度和冷却的均匀程度有关。过快的冷却速度和不均匀冷却都会导致应力及模具变形的增大。因此,应尽量采用预冷,不过需要注意的是应保证模具的硬度要求。为减少热应力和组织应力,可以选用分级冷却淬火,这种方式对形状复杂的工件十分有效,能显著减少其变形。采用等温淬火的方式,则适用于十分复杂并且有较高精度要求的工件,能使金属变形显著减少。

2.3零件结构要合理改善零件的结构是减少热处理变形的关键环节。经过热处理后的工件,其厚度不同的部分冷却的速度也是不同的。因此,在满足工件使用性能的前提下,应使工件的厚度差别不能过大,尽量使零件的截面均匀,减少由应力集中导致的过渡区的畸变和开裂现象。保持结构与材料成分和组织的对称性,避免尖锐棱角、沟槽等。此外,采用预留加工量的方式也是减少厚度不均匀零件变形的有效方式之一。

2.4采用合理的装夹方式及夹具通过采用合理的装夹方式和夹具,能够使工件获得均匀的加热和冷却,从而减少热应力以及组织应力的不均,有效减小热处理导致的工件变形。

2.5机械加工工件的加工通常需要经过很多道工序,如果热处理加工是最后的工序,则应控制其畸变的允许值,使之满足图样规定的工件尺寸。依据上道工序的加工尺寸来对畸变量加以确定,因此掌握畸变规律尤为重要,为使热处理导致的畸变处于合格的范围,在进行热处理前应对尺寸进行预修正。如果热处理是中间的工序,机加工余量和热处理畸变量之和即为热处理前的加工余量。导致热处理变形的因素多而复杂,因此相较于机械加工余量来说,热处理的加工余量不易确定,在实际加工中应留出足够的加工余量用于机械加工。

2.6采用合适的介质在热处理的过程中,介质的选择也十分重要,应选择有利于减小变形量的介质。研究和实验表明,硬度要求相同的情况下,采用油性介质是更好的选择。不同介质具有不同的冷却速度,在其他条件相同的情况下,同油性介质相比较,水性介质的冷却速度较快。此外,水温的变化也会对介质的冷却性能造成影响,其变化对油性介质冷却特性产生的影响较小。热处理条件相同的情况下,水性介质淬火后会产生相对较大的变形量。

3结束语

第2篇

各元素在合金中的作用如下:(1)Si和Mg的影响Si和Mg是该铝型材合金的主要组成元素,其结合形成了产品的主要强化相Mg2Si。但Si和Mg比例不同,形成强化相的数量和分布有差别,这直接影响到产品日处理后的力学性能。研究表明[3],对于Al-Mg-Si三元合金,当其处于ɑ(Al)-Mg2Si-Si三相区间内时,具有最大的抗拉强度。对于Al-Mg-Si三元合金,Mg2Si含量增加,会提高其抗拉强度,但会降低其伸长率;当Mg2Si含量为定值时,Si含量增加,抗拉强度增加,伸长率变化不大,但当Si出现过剩相时,合金的耐蚀性随过剩相含量的增加而降低,脆性增大;当Si含量为定值时,增加Mg含量,也会提高抗拉强度。合金位于ɑ(Al)-Mg2Si两相区或Al单相区(Mg2Si固溶于基体),具有最佳的耐蚀性能。公司根据以上机理,确定了内控标准。(2)Mn的影响Mn亦可强化基体,提高产品的韧性和耐蚀性,但Mn含量过多时,会减少Si的强化效果,形成晶内偏析,产生粗精组织,降低铸锭的挤压性能,因此,要适当控合金中Mn含量。(3)Ti的影响Ti是晶粒细化剂,可以避免铸造时形成热裂纹,减少铸锭中的柱状晶组织,细化铸锭的晶粒度,减少挤压产品的各向异性。(4)Zn和Cu的影响少量的Zn和Cu可以提高铝型材的强度,耐蚀性变化不大,但添加量过多时会降低铝型材的抗腐蚀性。同时,少量的Cu可以减少人工时效后机械性能的下降。(5)Fe的影响Fe是铝型材中的杂质元素,会损害型材的综合性能,应尽量减少其含量。综上所述:在该产品用铝合金成分配比中,镁硅比应保持在1.18左右,此时铝型材内强化相绝大部分是Mg2Si,含有少量的富余Si,Si含量亦不过剩,此时强度较高,塑性和抗蚀性未降低;由于没有过剩的硅含量,Mn含量可以处于国标的下限。Fe含量应根据原铝锭冶炼水平,越低越好。

2热处理工艺控制

2.1铝棒均质热处理工艺控制在铝棒铸造成型过程中,受合金成分、浓度梯度、温度梯度、冷却强度等因素的影响,铝棒不可避免的会出现树枝晶、蔷薇晶、带状组织、偏析、非平衡相、铸造应力等不希望得到组织或状态,为了在挤压前消除这些缺陷,优化铸棒组织,需要对铝合金棒进行均质处理。均质处理时一是要考虑铝棒不能过烧,出现二次共晶;二是要使粗大的针状、带状和非平衡相充分溶解。以XX公司35吨均质炉,装入直径292mm铝棒为例,考虑到热电偶误差,保温温度应控制在570±5℃,保温6h为宜,低于560℃,可能出现组织不均匀区域(低倍组织),挤压型材力学性能较低;高于585℃,将会使晶界粗化,引起过烧,严重时形成难熔质点。保温时间应在5.5~6.5h之间,过高和过低都影响铝型材力学性能。以保温温度570℃,保温6h为参照,挤压工艺相同的情况下,当保温温度延长至7.5h时,抗拉强度下降约11%。冷却时,采取风冷+水冷分级的冷却方式,一方面使冷却介质均匀分布,一方面不至于冷却速度过慢或扩快,影响均质效果。

2.2加热固溶热处理工艺控制研究表明[4],模具出口处型材温度受铝棒加热温度、挤压速度和其它因素多重影响,其中铝棒加热温度影响强度约44%,挤压速度影响强度约32%。对于本文研究的该型材产品,由于合金为6082合金,本身变形抗力较大,同时型材截面复杂,幅面宽,因此,适宜较高的铝棒加热温度,低的挤压速度。对铝棒加热的控制主要是加热温度和保温时间,对于加热温度控制,主要考虑因素是型材出口温度(固溶温度)和变形抗力,铝棒加热温度过低,将造成变形抗力过大,出现模具崩裂或走水;即使挤出型材,型材出口温度较低,型材性能较差。考虑到铝棒从铝棒炉出来到进入挤压机有一定的时间间隙,铝棒加热温度应适当提高。对于铝棒保温时间控制,主要考虑析出物溶解程度和铝棒温度均匀性,对于长棒炉,通过改善加热方式和内部热循环方式,尽可能提高炉内温度均匀性。对生产该型材的铝棒,保温时间应控制在3分钟以上,能够保证析出相的充分溶解,如果铝棒进入加热炉前长时间放置,保温时间应延长。同时,实践证明,保温时间继续延长,对挤出型材性能影响不大。当生产铝型材使用在线淬火方式时,型材出口温度即为固溶温度。固溶温度与铝棒加热温度直接相关。对于生产该型材的6082合金,理论上,固溶温度越高,越有利于强化相的彻底固溶。由上述可知,其它挤压工艺相同的情况下,铝棒加热温度直接决定固溶温度,因此铝棒温加热温度越高,固溶的越好,但固溶温度要低于合金最低熔点,防止合金过烧。生产实践表明,当固溶温度处于520-545℃时,型材具有较高的性能;此时,采用某挤压工艺时,铝棒加热温度应控制在485~510℃。

2.3淬火工艺控制由于生产本文所述型材产品使用的是6082铝合金,该合金的淬火敏感性比6061、6063等牌号合金要高[2],因此,淬火强度要高,否则,将影响产品强度和时效效果。在曾经使用过的水淬、强风+雾、强风等淬火方式中,水淬冷却强度最大,淬火后硬度高,但淬火后由于型材厚度不均,容易出现产品的翘曲和变形,造成废品。强风+雾的淬火方式亦能达到产品性能要求,但对光身料产品,气雾容易在产品形成水渍,增大后期处理难度。Xx公司通过改变出风口位置,改善气体质量和温度,可以使产品强度和硬度等性能指标达到要求。在淬火工艺控制过程中,该型材的淬火冷却速度要保证达到300℃以上。

2.4时效工艺控制经过固溶淬火后的铝型材得到一种不稳定的固溶体,此时其力学性能并不能达到最大;同时,由于该固溶体处于过饱和状态,又有较大的析出倾向,如果不对其进行人工时效处理,析出相将在晶界处聚集,出现晶间腐蚀或应力腐蚀。在实际生产过程中,由于可能需要整形等工序,人工时效前产品会在自然状态放置一段时间,相当于一个自然时效过程。生产实践显示,自然状态放置时间应尽量避免在5~7h之间,在此时间区间内,相同人工时效工艺下,力学性能偏低。在人工时效工艺参数优化过程中,当时效温度为175℃吴宗闯,等:集装箱铝型材生产过程中热处理工艺控制初探•89•时,保温6.5h,产品性能最优;但延长保温时间,产品强度、硬度等力学性能变化不大,保温时间延长至15h,产品性能略有降低,强度降低小于3%。但保温时间低于5.5h,力学性能下降明显。考虑企业成本控制因素,保温时间控制6~7h最佳。

3结束语

第3篇

1.1球化退火锻造后球化退火的主要作用是为接下来的热处理做准备,经过球化退火的材料能够效降低材料的硬度,提高其韧度,其塑韧性有了明显的提高,同时减小了对淬火温度的敏感性。不过在进行球化退火前要保证组织为细片状珠光体,如果不能够达到该要求,要在进行球化退火前对其进行处理。按照有关规定,在未进行球化退火的组织应在2-5级5范围内才为合格。

1.2淬火工艺采用等温淬火工艺能够很好地满足圆板牙的工艺要求。在利用等温淬火进行工艺加工前,要在600℃~650℃的高温下进行预热,预热的目的是降低圆板牙发生脱碳的几率。根据未落碳化物数量及原材料的球化级别、加工尺寸等诸多因素确定淬火加热的温度。尺寸较大的圆板牙一般情况下,选择低温淬火加热处理。由于W18Gr4V中含有Si元素,而该元素在进行加热的过程中极易发生脱碳,所以在加热的过程中要使用较特殊的加热炉,如盐浴炉、可控气氛炉或真空炉,其中盐浴炉的脱氧作用可以有效降低圆板牙的脱碳倾向。保证适当的等温停留时间有助于提高钢的强韧性。等温停留时间一般维持30~45min,如果超出该范围其性能将明显降低。这主要是因为下贝氏体和残余奥氏体量过多。分析上表可发现,在进行淬火冷却时,要在硝盐槽中放入冷却水套或循环水管,以保证工件和工装带的温度平衡。

1.3回火工艺回火的主要作用是根据不同的工作性能要求,使其硬度、强度、塑性和韧性适当。前文中已经介绍Si、Cr元素可以有效提高钢的回火稳定性。

2圆板牙的热处理质量检验

2.1回火缺陷在经回火处理时,如果不能严格控制回火温度,将会出现钢的硬度过高或过低。不过当回火温度控制适当,这些问题就可以解决了。如果一次装炉量过多,或选用加热炉不当,将会出现硬度不均匀。当回火前工件内应力不平衡时,回火工件很可能发生变形。

2.2板牙热处理后变形分析板牙经过热处理后将会变形,目前,针对这一问题有两种解决方法:一种是在淬火前应对板牙进行弼质,使其内应力减到最小,保证其之直径大小同螺纹的中径尺寸相同。要保证棒料尺寸适当,尺寸过小,则会造成金属材料的浪费;尺寸过大,将会导致棒料扭曲、折断。被切削捧料的材料性能、切削速度,对于螺纹外径均有一定的影响。

2.3热处理过程金相组织分析W18Gr4V材料只有经过正火或球化退火才能进行粗加工,图2即为球化退火后的显微组织。浸蚀方法:4%硝酸酒精溶液浸蚀组织组成物:白色是珠光体,黑色是渗碳体。W18Gr4V在经淬火后的显微组织图如图3,其浸蚀方法如下:4%硝酸酒精溶液浸蚀组织组成物:M+A

2.4控制螺纹淬火的注意事项控制螺纹淬火的注意事项:在了解了螺孔及松紧情况后方可进行处理;利用经过脱氧后的盐浴炉对圆板牙进行预热和最终加热,同时要保证盐浴中有害物质不会造成螺纹的腐蚀;要保证工件的均匀加热;对特大型板牙(大于等于M80)的温度一般选择为150°C左右。

3结语

第4篇

1、除油除锈

优质的磷化膜只有在彻底去除了油物、锈、氧化皮等异物的工件表面上形成。因为残留在工件表面的油污、锈蚀、氧化皮等会严重阻碍磷化膜的生长。此外,还会影响涂层的附着力,干燥性能、装饰性能和耐蚀性能,彻底去除这些异物是磷化的必要条件。

除油和除锈是磷化之前的两个基本工序,相对而言,油比锈的危害性大,而且有油的工件直接影响除锈速度,所以,除锈应在除油的基础上进行,但对于油少锈多的工件也可以将除油与除锈两个基本工序合二为一,在一个槽中同时完成除油除锈工序,可缩短生产线,降低设备和厂房投资费用,但处理质量不如分槽好,对要求不高的场合可采用。采用此工序后,除油剂也应选择酸性药剂和除锈剂配套使用。除锈仍采用盐酸,盐酸除锈速度快,除锈干净彻底,对氧化皮也有很好的去除功能,且又是常温使用,弊病是盐酸除锈酸雾较大,有害健康,环境污染严重。随着的,环境保护和劳动条件的改善已成为人们共同关心的。因此,在选择药剂时应考虑环境保护的需要。所以选择除油剂时要求配制简单,去污能力强,不含常温下难清洗的氢氧化钠,硅酸盐,OP乳化剂等成分,常温下易水洗,不含毒性物质,不产生有害气体,劳动条件好;选择除锈剂时要求内含促进剂,缓蚀剂和抑制剂,能提高除锈速度,防止工件产生过腐蚀和氢脆,能较好的抑制酸雾。尤其值得重视的是酸雾抑制,酸洗除锈过程中产生的酸雾,不仅腐蚀设备和厂房,污染环境,而且可引起人们牙齿腐蚀,牙结膜发红,流泪,疼痛,咽喉干燥,咳嗽等症状,所以,有效抑制酸雾,不但是环保的需要,还是本单位自身的需要。

考虑上述要求,经筛选,除油和除锈剂我们采用了

祥和磷化公司的XH-16C除油除锈添加剂与验算配制而成,常温下使用,处理时间10-30min,它能提高除锈速度,防止工件产生过腐蚀和氢脆,能较好的抑制酸雾。

配方:XH-16C4%+HCL(35%)60%+H2O

2、水洗

除油除锈后的水洗,虽然属于涂装前的辅助工序,但同样需引起足够的重视。除油除锈后工件表面易附着某些非离子表面活性剂,及CL-等。这些物质若清洗不彻底,就可能引起磷化膜变薄,产生线状缺陷,甚至磷化不上。因此,要提高除油除锈后的水洗质量。须经多次漂洗,采用两道水洗,时间1-2min,并经常更换清水,保证清水PH值在5-7值之间。

3、磷化

所谓磷化,是指把金属工件经过含有磷酸二氢盐的酸性溶液处理,发生化学反应而在其表面生成一层稳定的不溶性磷酸盐膜层的,所生成的膜称为磷化膜。磷化膜的主要目的是增加涂膜附着力,提高涂层耐蚀性。磷化的方法有多种,按磷化时的温度来分,可分为高温磷化(90-98℃),中温磷化(60-75℃),低温磷化(35-55℃)和常温磷化。

为提供良好的涂装基底,要求磷化膜厚度适宜,结晶致密细小。

中、高温磷化工艺,虽然磷化速度快,磷化膜耐蚀性好,但磷化膜结晶粗大,挂灰重,液面挥发快,槽液不稳定,沉渣多,而低、常温磷化工艺所形成的磷化膜结晶细致,厚度适宜,膜间很少夹杂沉渣物,吸漆量少,涂层光泽度好,可大大改善涂层的附着力、柔韧性、抗冲击性等,更能满足涂层对磷化膜的要求。值得注意的是,过去一直认为磷化膜厚,涂装后涂层的耐蚀性高,磷化膜本身在整个涂装体系中并不单独承担多大的耐蚀作用,它主要起到使漆膜具有强粘附性,而整个涂层系统的耐蚀力则主要取决于漆膜的耐蚀力以及漆膜与磷化膜的优良配合所形成的强粘附力。

磷化液一般由主盐、促进剂和中和剂所组成。过去使用的磷化液,大多采用亚硝酸钠(NaNO2)作促进剂,效果十分年、明显,但在NaNO2在磷化液中有很大危害:一是磷化液的稳定性,NaNO2在酸性条件下极不稳定,在极短的时间内就分解了。因此,不得不经常添加。NaNO2的这种特性,往往引起磷化液的主盐不稳定,磷化液沉淀较多,磷化膜挂灰严重,槽液控制困难,磷化质量不稳定;二是NaNO2是世界公认的致癌物质,长期接触危害人体健康,环境污染严重。解决的方法:一是减少NaNO2的用量;二是寻找替代物。

配方:XH-1B4%+H2O

4、钝化

磷化膜的钝化技术,在北美和欧洲国家被广泛,采用钝化技术是基于磷化膜自身特点决定的,磷化膜较薄,一般在1-4g/m2,最大不超过10g/m2,其自由孔隙面积大,膜本身的耐蚀力有限。有的甚至在干燥过程中就迅速生黄锈,磷化后进行一次钝化封闭处理,可以是磷化膜孔隙中暴露的金属进一步氧化,或生成钝化层,对磷化膜可以起到填充、氧化作用,使磷化膜稳定于大气之中。

第5篇

关键词:水处理循环水工艺流程技术改进

Abstract:Thetectnicalflowprocess,equipmenttipeandsituactionofuseareintroduced.Andsomeequipmentsinthemudpoolareimprovedintechnology.

KeyWords:watertreatment;circulatingwater;technicalflowprocess;technologicalimprovement

1、概述

南昌钢铁有限责任公司棒材厂成立投产于2001年1月,是年产60万吨直径为12~32㎜的螺纹钢及直径为18~32㎜的圆钢棒材生产线,该厂自动化程度高、产材产量高,所用的系列冷却水为循环的工业水,并做到全部内部循环、不外排。循环水分为浊水循环、净水循环两个系统,现总用水量2020m3/h,其中浊环水900m3/h,净环水1120m3/h.水处理主要负责冷却水的循环、水质处理、加压、降温等工作。

4、水处理系统概况

4.1浊环水系统

该系统供粗、中、精轧机组、控制水冷装置及冲氧化铁皮等用水。供水量900m3/h.其回水经氧化铁皮沟自流至旋流沉淀池,沉淀后一部分经4M泵加压至车间冲氧化铁皮;另一部分经1-3M泵加压至化学除油器进行除油和二次沉淀处理,除油、沉淀后,进入浊热水池,再用5D泵加压至冷却塔冷却,冷却后自流至浊冷水池,最后用3D、4D泵加压至用户循环使用。

化学除油沉淀器底部污泥用排污阀排出流至污泥池,经污泥泵加压抽至板框压滤机压滤脱水,脱水后泥饼由厂方综合利用。污泥量1300t/a.

4.2净环水系统

该循环系统主要供轧线直流电机、液压、加热炉冷却、进出炉辊道等所需的间接冷却水。经使用后的水只是水温略有升高,经冷却处理后即可使用。净环水量1120m3/h.净环水设施有循环水泵房、吸水井、冷却塔等。

为保证系统水质,系统中设有GSL-22000×7100125t/h自动清洗滤水器进行旁通过滤。

4.3给排水系统设施

4.3.1旋流沉淀池及浊水泵房

漩流池及浊水泵房合建。

浊水泵房内设两组水泵。一组为化学除油器供水泵组,即1、2、3M泵,型号为250LC-32立式长轴泵(Q=480m3/h,75Kw)共三台,两用一备;一组为冲氧化铁皮泵组,即4M泵,型号为200LC2-46立式长轴泵(Q=300m3/h,75Kw)共一台,不设备用泵。并旋流池上部设一抓斗吊钩两用桥式起重机,用于抓取其内的氧化铁皮。

4.3.2化学除油器及污泥脱水间

设有MHCYG-IV型化学除油器3台,设计处理水量Q=400m3/h,N=3Kw.

XMG50/800板框压滤机一台,其中过滤面积S=50㎡,N=5.5Kw.

MY3.2-4-AHA42×3加药装置两条。

4.3.3循环水泵房及水池

循环水泵房及水池呈南北布置,共有四个水池。一个净环水热水池,一个净环水冷水池,一个浊环水冷水池,一个浊环水热水池。泵房内东西布置设有五组共14台水泵。

第一组:净环水热水泵组(1D),将净环水热水池热水抽至净环水冷却塔冷却,再自流至净环水冷水池。泵型号250S-39(Q=485m3/h,N=75Kw)共三台,两用一备。

第二组:净环水供水泵组(2D),将净环水冷水池中的水抽至棒材厂各冷却设备用水点冷却设备后再用管道流至净环热水池。,泵型号250S-65A(Q=468m3/h,N=110KW)共三台,两用一备。

第三组:浊环水供水泵组(3D),将浊环水冷水池的水抽至棒材厂轧机冷却用,再经轧机冲渣沟流至旋流沉淀池。泵型号300S-58A(Q=720m3/h,N=155Kw)共两台,一用一备。

第四组:浊环水穿水冷却供水泵组(4D),将浊环水冷水池的水抽至棒材厂轧机穿水冷却用,再经轧机冲渣沟流至旋流沉淀池。泵型号200S-43×3(Q=288m3/h,N=155Kw)共三台,两用一备。

第五组:浊环水热水泵组(5D),将浊环水热水池热水抽至浊环水冷却塔冷却,再自流至浊环水冷水池。泵型号250S-39(Q=485m3/h,N=75Kw)共三台,两用一备。

泵房屋顶设有两组冷却塔,第一组为净环水冷却塔,型号为MBZ-1共两台,第二组为浊环水冷却塔,型号为MBNW-1共三台。

5、技术改进

从棒材厂投产以来,水处理系统运行正常,水量、水压、水质、水温处理都符合要求,能顺利配合生产需要,满足生产要求。但原设计的污泥池沉积的污泥用污泥泵抽至板框压滤机进行污泥压滤脱水一直是个问题,不能正常进行。原因主要是原设计的抽污泥泵是潜水式的,污泥池没有搅拌设施,排污后污泥沉淀于池底。污泥的主要成分是氧化铁皮,密度大,沉底易结块,很快就将污泥泵头堵死,使得污泥泵不能工作。污泥池的污泥只能靠定期的人工挖掘,既浪费大量的成本,又对环境卫生造成污染,在人工清泥的过程中会影响日常排污工作的开展。

鉴于此,对污泥池进行了改造。将已坏的污泥泵拆除,并安装了一台自控自吸泵于地面作为抽污泥泵,其型号为80NFB-C1(Q=50,N=22Kw)

进水管径DN=80mm,出水管径DN=50mm,吸水管下伸至距污泥池底约0.8米,出水管接至板框压滤机。并在原污泥泵两侧1米处安装两台和污泥泵同样的自控自吸泵用于搅拌污泥,其出水管设计成螺旋式,下伸长至距池底部0.4米,并在螺旋式出水管表面均匀分布直径30mm小孔,以增加出水面积,从而形成螺旋式搅拌。

在操作规程中规定:排污后沉淀30分钟,用清水泵抽掉上部清水,然后开两台搅拌机搅拌30分钟,再开抽污泥泵抽污泥,同时搅拌机泵一直处于搅拌状态,防止污泥沉淀结块,至抽完为止为一操作循环周期。如此循环操作一天进行两次。解决了污泥去除问题。

此项技术改造总投资5万元,取得较好效果,排污工作正常进行,污泥不再需人工清理,每年可节约成本10万元。

第6篇

1.1样品制备

本实验采用熔融热处理工艺制备玻璃陶瓷。在钡硼硅酸盐玻璃体系中加CaO、TiO2和ZrO2(摩尔比为2∶3∶1)作为晶核剂,含量保持45wt%不变。所用原料为分析纯的SiO2、H3BO3、BaCO3、Na2CO3、Na2SO4、CaCO3、TiO2,考虑到ZrO2在硼硅酸盐玻璃中很难溶解,因此用质量分数为95.2%的ZrSiO4来引入ZrO2,由于ZrSiO4同时引入了Si,所以,Si的含量由调节SiO2的含量来保持平衡。按照配料比称取所需原料(≈90g),用玛瑙研钵充分研磨混匀后放入刚玉坩埚中。将坩埚放于马弗炉中加热到850℃焙烧2h,以5℃/min的升温速率升温到1250℃下熔融3h。将熔体水淬后得到玻璃样品,做DTA分析玻璃样品的核化温度和晶化温度。之后采用熔融热处理工艺分别在核化温度Tn和晶化温度Tc(由DTA分析得到)各保温2h后自然冷却得到玻璃陶瓷样品。

1.2测试与表征

将所制得的玻璃样品研磨过筛(100~200目,75~150um)后,利用SDTQ600型同步热分析仪,以20℃/min的升温速率升温到1200℃对样品进行差热分析(DTA),确定玻璃的热处理温度;用X’PertPRO型X射线衍射分析仪X衍射(X-raydiffraction,XRD)分析,铜靶(35kV,60mA),扫描速度5°/min,步长0.02°,扫描范围为10~80°;用质量分数为20wt%的HF水溶液腐蚀样品30s,超声20min,烘干后,利用德国蔡司公司EVO18型扫描电镜对样品微观形貌分析(SEM)。

2结果与分析

2.1样品的热分析

为水淬后所得玻璃样品的DTA曲线。基础玻璃的Tg在738℃左右,一般而言,成核温度Tn比Tg高50℃左右。因此,本实验研究的核化温度选取750℃、780℃和810℃。除Tg处的吸热峰外,在815℃和970℃附近还出现了宽化的放热峰,表明晶化温度Tc在该温度附近,两个放热峰可能对应不同种类的晶体长大温度或者同一种类的晶相不同长大速率的温度。本研究选取的晶化温度分别为850℃、875℃、900℃、925℃、950℃、1000℃和1050℃。

2.2核化温度的确定

对于固化HLLW来说,玻璃陶瓷固化体应具有晶粒多而小、均匀分布的特点,而晶粒的多少和分布情况主要由核化温度决定。为了确定最佳的核化温度,先在970℃附近选一个温度不变作为晶化温度,本研究选取此温度为1000℃。将玻璃陶瓷样品分别在750℃、780℃和810℃核化处理2h后,再在1000℃处理2h。玻璃样品经过750℃、780℃和810℃核化处理后,所得晶相都是钙钛锆石。而且在Tn=780℃时,XRD图谱上钙钛锆石相的峰最强,显然其钙钛锆石的含量也是最多。为了研究钙钛锆石晶粒的分布情况和形貌,对其做SEM检测。随着晶化温度从750℃向810℃变化,晶粒的尺寸从约400μm减小到约100μm再增大到约340μm。另一方面,经过750℃处理的样品,晶粒分布不均匀,出现聚集情况,780℃处理后的样品晶粒分布则比较均匀,810℃处理后,所得晶粒成片状且分布不均。核化温度为780℃时,玻璃陶瓷体内,钙钛锆石晶粒多且分布均匀,尺寸较小。由此可以确定,该玻璃陶瓷的较佳核化温度Tn为780℃。

2.3晶化温度的确定

玻璃样品在780℃处理2h后,分别在850℃、875℃、900℃、925℃、950℃、1000℃和1050℃保温2h。晶化温度在850~1000℃范围内,对应钙钛锆石晶相的XRD峰强逐渐增加,当温度升高至1050℃时,峰强又降低,说明玻璃陶瓷样品在780℃经过均匀成核后,其长大速率在1000℃达到最大值。值得注意的是,当温度低于1000℃时,XRD图谱上存在少量的氧化锆晶相的峰。这可以解释在970℃附近出现的不算明显的放热峰:一方面,钙钛锆石晶体长大是放热过程,另一方面,氧化锆慢慢溶解到玻璃中是吸热过程,两种不同的热效应共同作用就导致了热分析曲线在970℃附近出现的宽化的放热峰。示。晶化温度为850℃和875℃时,钙钛锆石晶相呈柱状,且温度升高,晶粒变大。晶化温度继续升高到900℃后,晶粒形状渐渐变的没有规则,925℃处理后晶粒长成块状。当晶化温度为950℃时,晶粒开始变为柱状,但尺寸较Tc分别为850℃和875℃时要小的多,同时出现晶粒聚集的现象,分布不均匀。晶化温度升高到1000℃后,所得钙钛锆石晶粒尺寸变小,分布均匀,该晶化温度下生成的钙钛锆石晶相也是最多的。晶化温度继续升高到1050℃后,晶粒变的粗大而且呈聚集状态。结合XRD和SEM分析可知,SiO2-B2O3-BaO-Na2O-CaO-ZrO2-TiO2体系基础玻璃经过Tn=780℃处理后,较佳的晶化温度是1000℃。

3结论

第7篇

本试验对3种工艺处理后Fe-Co合金的磁性能进行了比较,具体见表1。3种热处理工艺的具体制度分

别为:真空热处理真空度优于10-2Pa,随炉升温,到温后保温2h,氩气淬火,冷却速度300℃/h。氢气保护热处理加热炉到温后将加热容器马弗罐入炉,零件到温后保温2h,罐体出炉空冷至200℃,全程高纯氢保护,氢气露点低于-40℃。氢气保护磁场热处理加热炉到温后将加热容器马弗罐入炉,零件到温后保温1.5h后施加环形磁场,保持0.5h后磁场停止,罐体出炉空冷至200℃,全程高纯氢保护,氢气露点低于-40℃。从表1可以看出,和真空气淬工艺相比,氢气保护处理可以明显提升材料的磁性能,施加磁场后效果更加显著。但随热处理温度的升高,磁场作用下降,840℃时磁场基本不起作用。图1比较了740℃温度下,Fe-Co合金经氢气保护热处理及氢气保护磁场热处理后的磁化曲线和磁化率曲线。可见,材料在磁化过程中,外磁场达到200A/m时,氢气保护磁场处理及氢气保护处理合金的磁感应强度分别为1.6T和1.4T;外磁场达到400A/m时,二者的磁感应强度分别为1.9T和1.7T,这表明磁场热处理使得合金在低磁场下就具有较高的磁感应强度。氢气保护处理主要是通过氢气在高温下和材料的C、S等杂质元素发生化学反应,生成气相化合物并排出炉外,从而达到净化合金的目的,随着温度的提高,原子扩散速度加快,净化作用得到提升;磁场处理主要通过干涉热处理过程中材料组织的变化,如形核、晶化、晶粒长大过程,使之在磁场方向上形成一定的织构。这种织构的形成机理,目前认为是在组织变化过程中原子扩散受磁场影响,在磁化方向上形成了能量最低状态,并在随后的冷却过程中保持下来,随着温度升高,原子扩散容易,磁性织构容易形成,对于磁性能的提升有益,但温度继续升高并接近居里温度,原子磁矩排列趋于紊乱,磁场作用反而下降。从以上结果可以看出,高强Fe-Co软磁合金热处理的试验结果符合这些原理,从应用需求角度出发,热处理温度的提高会降低材料强度[8],为了确保材料强度达到1000MPa,一般热处理温度不宜超过760℃,所以磁场处理成为优化材料磁性能的首选工艺。

2磁场热处理

由于磁场热处理对高强Fe-Co合金性能影响显著,因此,对不同保温温度、充磁时间和磁场强度等参数进行了研究,结果见图2。从图2可以看出,热处理温度对磁性能的影响明显,随温度升高磁性能上升,这和常规热处理结果是相同的;保温时间对磁性能的影响相对较弱,随保温时间的延长磁性能上升,到2.0h后则基本不变,这和常规热处理结果基本一致;充磁磁场强度对磁性能的影响不强烈,随磁场增加,磁性能增加,150A之后变化不大,150A时产生的有效磁场为1330A/m。

3降温速率

由于Fe-Co软磁合金在730℃附近存在无序-有序化转变,导致性能恶化,所以1J21、1J22等Fe-Co合金热处理工艺中,必须控制降温速率,通常是在730℃以上缓冷,730℃后快冷。如前所述,高强Fe-Co软磁合金的热处理温度区间一般低于760℃,处于敏感区间,降温制度对材料性能的影响至为关键。为此,利用真空气淬设备对降温速率可控技术,研究了不同降温速率对高强Fe-Co合金性能的影响,结果如表2所示。从表2可见,降温速率对材料的性能具有一定的影响,但总体变化不大。从数据对比来看,降温速率为150℃/h和600℃/h时,力学性能略低,但磁性能和其他样品差别不明显。前者可以认为是无序-有序转变的结果,后者则应该和过快冷却造成的内应力有关。为了评估Fe-Co合金添加元素对合金升、降温过程的影响,采用DSC测量了750~1050℃的差热曲线,如图3所示。3种Fe-Co软磁合金中,1J21含V元素1.2wt%左右,1J22含V元素2.0wt%左右,而高强Fe-Co合金除含V元素2.0wt%外,还添加了Nb、Cr等其他元素。从图3可以看出,随着添加元素含量的增加,居里点(以极值点数值定义)呈下降趋势,但升温和降温过程表现不同,升温过程居里点相差不多,为964~972℃,降温过程居里点相差较大,为867~926℃,而且放热/吸热峰宽也随着增大。这说明添加元素的增加,合金的居里转变滞后程度增加;降温过程的影响更加显著,表明添加元素起到的作用主要是对磁畴的钉扎。无序-有序化过程同样受添加元素的影响,从居里点的变化来推断,高强Fe-Co合金的无序-有序转变会受到更大抑制,这也是降温速率对性能影响不大的主要原因。从以上试验结果来看,300~600℃/h的降温速率都适用于高强Fe-Co合金热处理的冷却。

4结论

第8篇

在航空工业中广泛应用合金结构钢制造飞机、发动机的主要零件[3]。12CrNi4A、18Cr2Ni4WA等都是航空器普遍使用的合金钢,主要做传动轴、销子。40CrMoA调制合金钢,综合机械性能好,在具有相当高的强度的同时又具有良好的韧性。广泛用于制造高负荷、大尺度的轴零件,也可以用来做大截面、高负荷、高抗磨及良好韧性要求的重要零件,如发动机曲轴等。

2曲轴热处理工艺

2.1曲轴工作条件活塞式发动机一般由气缸、活塞、曲轴、连杆、气门机构和机匣组成,曲轴的组成,如图3所示。曲轴除了和连杆一起将活塞的直线运动转变为旋转运动,还将功率传递给螺旋桨,曲轴由轴头、轴尾和曲柄等组成,曲柄又由曲颈和曲臂组成,轴头前段与螺旋桨轴相连。

2.2材料选择IO-360-L2A发动机曲轴采用高级优质合金钢40CrNiMoA锻件制成,它是在优质碳素结构钢的基础上,适当地加入一种或数种合金元素(总质量分数不超过5%)而制成的钢种,主要成分应符合GB/T3077的规定[4],高级优质钢的含硫、磷质量分数应小于0.025%,由于曲轴为热加工用钢,其铜质量分数规定应不大于0.20%,如表1所示。它属于低合金中碳超高强度钢。该材质经处理后具有良好的综合机械性能,Cr、Ni等合金元素的加入使其淬透性较好并使铁素体的强度和韧性得到提高;Mo、Cr等碳化物形成元素的加入,可阻止奥氏体晶粒长大,提高钢的回火稳定性,在使用中能有一定的冲击抗力和断裂韧性,高的疲劳强度满足曲轴对材质性能的要求。

2.3曲轴热处理IO-360-L2A发动机使用多曲柄曲轴,由铬镍钼钢锻件制成,曲轴是发动机受力最大的部件之一,曲轴的曲颈和曲柄表面都经过渗氮处理,增加了表面的抗磨性,曲轴上螺旋桨安装凸缘表面未进行渗氮处理,表面仅镀一层防腐金属层,维护时应避免划伤,预防曲轴腐蚀和产生裂纹。曲柄是空心的,这不仅可以减轻曲轴的质量,还可为滑油提供通道,同时也是一个收集淤泥、积碳和其它杂质的空腔,滑油流动越多,清洁效果越好。材料40CrMoA曲轴热处理工艺是锻造正火粗车调质精车去应力退火精加工到成品氮化抛光装机[5],其技术参数如表2所示。

2.3.1曲轴热处理技术要求主轴颈和连杆轴径处要求淬硬层硬度为56~63HRC;淬硬层深度为3.5~5.5mm,淬硬层边缘到曲轴对于V形轴不大于4~5mm,对直列轴不大于6~8mm。为了确保质量,对曲轴的热处理实际采用中频感应加热淬火法[6],如图4所示,采用曲轴轴径轮流淬火,分别进行表面淬火,其加热频率1000Hz;始锻温度1150℃,终锻温度850℃。

2.3.2曲轴热处理工艺[7]1)正火+高温回火。正火处理的目的是为了改善曲轴的基体组织,消除锻造过程造成的粗大组织及魏氏组织,细化晶粒,并消除锻造应力。回火后为防止回火脆性,应油淬,回火温度在600~640℃左右。最好是淬火出来先打一个淬火硬度,根据实际情况调整回火温度。a.正火:加热温度880℃,保温270min,出炉空冷;b.回火:加热温度640℃,保温600min,出炉空冷。2)热处理调质处理。曲轴锻造、正火后要进行热处理调质处理,以获得整体的最佳综合机械性能,并为表面氮化处理做好组织准备。曲轴调质后的金相组织应为均匀的回火索氏体+少量贝氏体组织,不允许出现大量的铁素体组织,否则将导致氮化层的脆性加大,降低曲轴的疲劳性能。a.淬火:加热880℃(氮气保护)保温时间5h;冷却曲轴出炉后预冷1.5min(曲轴表面颜色在800℃以上一点),随后淬入水玻璃水溶液中,冷却6~7min出水空冷。淬火介质使用玻美度3~3.5的水玻璃水溶液。b.回火:40CrMoA轴加热温度560~570℃,保温时间为5.5h,出炉空冷。3)气体氮化处理。曲轴表面进行氮化处理,一方面是为了获得高的疲劳强度,另一方面是为了获得高的表面硬度,提高曲轴的耐磨性能。曲轴表面经氮化处理后,生成极细颗粒具有高硬度的ε相,同时还生成Fe3N和FeN,使轴颈和圆角均得到强化处理,改善表面耐磨性,增加表面强度,特别是增加抗疲劳强度,并提高材料的抗腐蚀性能。

3曲轴热处理缺陷分析及其防止措施

曲轴在生产过程中要经过冶炼、铸造、轧制(或锻造)等工序,最后成材,由这些工艺过程控制的质量,一般称为热处理质量。热处理质量直接影响产品的性能和使用安全。热处理缺陷中最危险的是裂纹,称为第一类热处理缺陷。工程构件在交变应力作用下,经一定循环周次后发生的断裂称作疲劳断裂,曲轴失效可以由多种原因引起,然而,冲击疲劳失效可能是曲轴失效中最普遍的原因。当裂纹尖端的应力强度因子KI达到材料断裂韧度KIc(或是裂纹尖端的应力集中达到材料的断裂强度)时,裂纹就会失稳快速扩展疲劳最终断裂是瞬时的,因此它的危害性较大,甚至会造成机毁人亡的惨剧。钢质工件经热处理后常见的质量缺陷有淬火显微组织过热、欠热、淬火裂纹、硬度不够、热处理变形、表面脱碳、软点等。

3.1淬火裂纹及防止措施淬火裂纹是钢材的淬火或淬火后形成,由于冷却时的高应力所造成;也有可能是在淬火油中的水所导致。具体如下:钢质工件由于结构设计不合理,钢材选择不当、淬火温度控制不正确、淬火冷却速度不合适等;增大淬火内应力,会使已形成的淬火显微裂纹扩展,形成淬火裂纹;由于增大了显微裂纹的敏感度,增加了显微裂纹的数量,从而增大淬火裂纹的形成。淬火裂纹一旦发生,绝大部分将造成零件的报废,必须预防淬火裂纹的产生。首先曲轴原材料的横截面酸浸低倍组织试片上,不得有目视可见的缩孔、气泡、裂纹、夹杂、翻皮、白点、晶间裂纹等缺陷。材料选择上做到经济性和技术性的合理搭配,既要保证价格便宜又要保证材料有较好的加工性,热处理性要好,易于淬火,变形小,淬裂倾向小。随着含碳量的提高,Ms点降低,淬裂倾向增大,在满足基本性能如硬度、强度的条件下,尽量选用含碳量低的钢。为了防止零件在淬火急冷中开裂,应使其均匀加热、均匀冷却、均匀涨缩。在零件结构设计上,尽量避免截面形状尺寸突变,同时注意圆角过渡。合理安排工艺路线,如正确安排好预备热处理、冷加工和热加工等工序可以有效减少热处理淬火开裂倾向。恰当地选择加热介质、加热速度、加热温度和保温时间也可以有利于减少淬火开裂。

3.2氧化与脱碳及防止措施氧化是因为钢在有氧化性气体中加热时,会发生氧化而在表面形成一层氧化皮,在高温下,甚至晶界也回会发生氧化。脱碳是钢在某些介质中加热时,这些介质会使钢表面的含碳量下降,脱碳的实质是钢中碳在高温下与氧和氢发生作用生产一氧化碳。脱碳会明显降低钢的淬火硬度、耐磨性及抗疲劳性能。防止氧化、脱碳的有效措施是采用盐熔炉加热、护气氛炉、真空炉加热和预留足够的加工余量,见表3所示。

4结论

第9篇

关键词:生活污水;湿地处理;工艺流程

一、概述

盘锦鼎翔集团现有常住人口1.2万人,平均日排放污水1万m3,多年来一直采取自然排放的方法,进入双台子河流域,对流域水质、周边地区及空气环境质量造成了很大的污染。同时,现有的排水系统淤积渗漏严重,区外采用明渠排放,给人民生活环境造成不良影响。

建设鼎翔集团人工湿地污水处理可使境内水系的水质得到极大的改善,逐步缓解和消除对环境的污染,保护本地区的生态环境。同时与城市生态建设紧密结合,增加城市水面、绿地面积与景观用水量,对于改善盘锦市生态环境,营造亲水文化氛围,提高盘锦市整体形象具有十分重要意义。

二、处理规模

盘锦市鼎翔集团污水处理规模为:10000m3/d,小时流量按500m3/h设计。

三、设计水质

3.1原水水质

根据盘锦市环境监测站的分析,污水水质为:COD110-138mg/l,BOD536-50mg/l,SS50-80mg/l,NH3-N18-24mg/l,TP1.5mg/l,pH8.05。

3.2出水水质

根据盘锦市总体规划,出水水质达到辽宁省污水综合排放标准(DB21/1627/2008)中Ⅰ级标准,COD50mg/l,BOD530mg/l,SS70mg/l,NH3-N5mg/l,TP0.5mg/l,pH6-9。

四、生活污水湿地处理技术工艺

4.1概述

污水的人工湿地处理是近年来发展起来的一种新型的污水处理技术,是一种人工建造和监督控制的与沼泽类似的地面,它的基质通常是碎石,植物生长于碎石床介质中。这种湿地系统是在一定长宽比及底面有坡度的洼地中,由填料、土壤和种植在表面具有处理性能好、成活率高、抗水性能强、生长周期长、美观及具有经济价值的水生植物(如芦苇)形成一个独特的生态系统,污水在系统中流动,通过填料、土壤、植物和微生物等的共同作用,对污水进行净化处理,因此人工湿地在处理污水中具有高效率、低投资、低费运转、处理效果好、维修费用低的特点。

4.2工艺流程及工艺参数简述

管网收集到的生活污水首先经过格栅进入集水池,然后由污水提升泵将污水提升到曝气生物滤池。经过曝气生物滤池处理后,出水COD≤96mg/l,BOD5≤40mg/l,SS≤56mg/l,NH3-N≤19mg/l,TP≤1.2mg/l。

污水经过曝气生物滤池处理后进入沉淀池,沉淀池出来的污水进入潜流人工芦苇湿地处理系统。

该工程构筑潜流湿地3.3hm2,设计负荷0.3m/d的潜流湿地,采用水平潜流运行模式,底部铺设防渗膜,床体中下层、第二层、第三层及第四层均铺碎石,上层铺熟土,表面种植芦苇。潜流人工芦苇湿地处理系统处理结果:出水COD≤50mg/l,BOD5≤30mg/l,SS≤10mg/l,NH3-N≤5mg/l,TP≤0.5mg/l。

为提高水资源利用率,将经过潜流湿地处理的污水,经过二级泵站(Q=400m3/h,H=10m,N=22kW)提升至景观湿地-国坝南侧的芦苇湿地进行深度处理。芦苇湿地出水直接排入人工湖,经处理后的污水排入辽河。最终出水:COD≤50mg/l,BOD5≤10mg/l,SS≤10mg/l,NH3-N≤5mg/l,TP≤0.5mg/l。

五、结束语

为使环境保护的步伐能够与经济发展同步,兴建盘锦鼎翔集团污水处理厂,彻底消除污水对河流水域的污染,保护生态环境和人民的身体健康,同时,将处理后的污水回用于景观湿地建设,提高了水资源的利用率,它将产生显著的社会效益、经济效益和环境效益。

相关文章
相关期刊