时间:2022-04-02 20:11:05
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇永磁传动技术论文范例。如需获取更多原创内容,可随时联系我们的客服老师。
【关键词】永磁同步 电动机 低速大扭矩 高效节能
1 引言
随着经济的发展,人类社会对能源的需求也日益增加,石油、煤炭等不可再生资源也日益枯竭,能源紧张也成为了全球共同关注的话题,党的十六届五中全会强调,要加快建设资源节约型,环境友好型社会。同时,国家也提出了推广变频永磁电动机技术的要求,在这种背景下,低速永磁同步电动机技术也日益成熟,广泛运用到了各个行业中。
2 低速永磁同步电动机的特点
永磁同步电动机与传统感应电动机工作原理基本相同,都是由定子产生磁场带动转子,其不同之处在于低速永磁同步电动机由永磁体励磁替代了传统感应电动机的电励磁。永磁同步电动机具有低速大扭矩、结构简单、功率因数高、效率高、体积小、噪声低、可靠性高等显著优点。
低速大扭矩、结构简单。与传统电动机相比,低速永磁电动机的气隙磁场是有永磁体产生的,加上永磁体形状及磁路设计的多样性,这样就可以简化电动机结构,根据需要灵活设计电动机的外形尺寸。传统感应电动机在起动时存在最小转矩,通常来说其最小转矩倍数小于1,而低速永磁同步电动机是变频起动,在起动时无最小转矩倍数的限制,只要负载所需起动扭矩小于最大转矩,都可以顺利起动。在某些领域,传统感应电动机低起动转矩的特性,使其在选型时不得不提高电动机功率来增大起动转矩,以永磁同步电动机设计转速100rpm为例,由公式
可知,相同功率的低速永磁同步电动机与传统4P电动机相比,其起动扭矩是传统电动机的15倍。
效率、功率因数高。传统感应电动机因存在定子电阻和定子电流损耗,稳定运行时风磨耗也占据一定比例,这些因素限制了功率因数的提高;低速永磁同步电动机在运行时不产生无功励磁电流,且风磨耗、杂耗、机械耗等损耗都低于传统感应电动机,这些因素都使永磁同步电动机的效率、功率因素高于传统感应电动机。大量统计表明,就效率而言,同规格永磁电动机比传统感应电动机提高了2~8%。图1是低速永磁同步电动机和传统感应电动机不同负载下的效率、功率因数曲线,从图中可以看出,低速永磁同步电动机在25%~120%额定负载范围内均可以保持较高的功率因数和效率,而传统感应电动机在低负载率或者高负载率时效率、功率因数同额定负载率相比下降很多,在低负载率时下降尤为明显。低速永磁同步电动机这种高效率、高功率因数的优点是传统感应电动机所不具备的。
体积小。对于传统驱动系统,尤其是末级传动需要较低速度时,一般需要异步电动机加减速机或者是异步电动机加2~3级皮带轮减速来实现,这种机构体积庞大且笨重,不仅增加了设计成本,在设备安装方面也占据了大量的空间。而低速永磁同步电动机直驱系统的体积和重量通常不到传统驱动系统的一半,加上可以灵活设计永磁电动机的结构,在设备的安装、调试等方面要求大大降低。
噪声低,运行平稳。应用低速永磁同步电动机的直驱系统取消了减速机、皮带轮等机械减速装置,消除了齿轮啮合或皮带轮传动时的噪声,系统高速运转时由于各个部件中间不平衡带来的噪声、震动大大降低。
可靠性高。机械减速传动装置的取消,消除了中间传动环节的机械故障,同时,由于设备磨损、机械变形、零部件松动等带来的油泄露问题也不复存在,大大提高了传动系统的稳定性,如图1所示。
3 低速永磁同步电动机应用现状
自1831年科学家巴洛发明世界上第一台永磁电动机以来,各国的科技工作者一直在探索永磁同步电动机的发展,但由于永磁材料性能的限制,一直停滞不前。二十世纪三十年代以来,随着铝镍钴和铁氧体材料的先后出现,永磁材料的性能得到了很大的提升,用永磁体做成的电动机也不断的出现在军事装备、工业生产设备、日常家电等领域。但是,由于铝镍钴和铁氧体材料矫顽力偏低、剩磁密度不高等缺陷,永磁电动机性能并没有达到预期效果,加上当时永磁电动机成本较高,在一定程度上限制了永磁电动机的发展。1983年,铷铁硼(NdFeB)永磁材料的出现,极大的提高了永磁材料的各项性能,且加上价格相对便宜,加快了国内外对永磁电动机研究的步伐,研究的重点也逐渐的转移到了工业装备自动化和日常生活领域。随着科学工作者对永磁材料研究的不断深入,永磁材料的电磁性能、耐高温性能也在不断的提升。同时,伴随着电力电子控制技术的发展,与传统电励磁电动机相比,永磁电动机高效节能的优势更加明显,低速永磁同步电动机也朝着大功率化、高转矩化、微型化、智能化等多个方向发展。
目前,由于低速永磁同步电动机低速大扭矩、体积小、输出平稳、高效节能等优点,已经在很多方面作为驱动装置得到应用,如电动车辆、煤炭开采、石油开采、冶金、电梯等领域。在电动车辆方面,日本已将其用于低地板式电动车、独立车轮式电动车上;德国、法国也将永磁同步电动机用于高速列车组和低地板车;在煤炭、石油、冶金、港口起重等工业装备自动化领域,低速永磁同步电动机在保证高性能、高效率、高精度需求的同时,省去了传统传动系统中的机械减速装置,已经成功得到应用;在电梯曳引机上,由于低速永磁同步电动机可以实现无需机械减速装置的直驱运行,日本三菱公司首先采用了永磁同步电动机作为动力源,美国奥迪斯公司研发的GEN2系统也广泛采用了永磁无齿轮曳引机技术。
4 低速永磁同步电动机的发展趋势
目前来看,去除减速机、多级皮带轮等机械减速装置,采用低速永磁直驱系统,更能够充分发挥低速永磁同步电动机的优势。低速永磁同步电动机作为驱动系统动力提供者,正向着专用化、高性能化、轻型化、机电一体化等等方向发展。
4.1 专用化发展
在工业生产领域,有很多设备需要减速机等机械减速装置来减速进而驱动负载,这就需要电动机行业技术人员仔细分析其负载特性,专门设计一种性能优良、运行可靠且价格合理的低速永磁同步电动机,来替代传统传动装置。据统计,有些专用低速永磁同步电动机节电率可以达到20%左右,如油田用到的抽油机电机、泥浆泵电机,陶瓷行业用到了陶瓷球磨机电机等。
4.2 高性能方向发展
S着工业的发展,对电动机的要求不仅仅是简单的提供动力,而是提出了各种各样的性能要求。如航空航天领域要求具备高性能同时,还要具备高可靠性;化纤行业、数控机床、智能加工中心等设备要求电动机具有高调速精度。
4.3 轻型化方向发展
由于安装空间、携带等方面的因素,都对永磁同步电动机提出了重量轻、体积小的要求。如地下煤矿开采、数控机床、医疗器械、船舶推进、便携式机电一体化产品等都有这方面的要求。
4.4 机电一体化方向发展
高性能的永磁电动机是实现机电一体化的基础,电力电子技术、微电子控制技术和永磁同步电动机技术的结合催化出了一批新型且性能优异的机电一体化产品。
5 结语
我国具有丰富的稀土矿产资源,且对以稀土作为原材料的永磁材料和永磁电动机技术研究都已位列世界先进水平,充分发挥这种优势,加快低速永磁同步电动机技术的研究和推广,对加快我国经济建设具有十分重要的意义。低速永磁同步电动机较传统电励磁电动机在性能上有很大优势,但目前在我国工业领域并没有得到广泛应用,其市场还正处在推广阶段。相信随着永磁材料技术的发展、电力电子和驱动装置技术的进步,以及人类社会环境保护意识、能源问题社会意识的提高,在不久的将来,低速永磁同步电动机作为动力的驱动装置会慢慢渗透到工业和日常生活的各个方面,低速永磁同步电动机也将得到广泛应用。
参考文献
[1]杨萌.起重用低速大扭矩永磁同步电动机研究与设计[D].华中科技大学(硕士学位论文),2013.
[2]唐任远.现代永磁电机理论与设计[M].北京:机械工业出版社,1997.
[3]王秀和.永磁电机[M],北京:中国电力出版社,2007.
[4]闫萍,吴梦艳.现代永磁电机技术的研究[J].防爆电机.2014.
[5]王帅.抽油机直驱用低速大转矩永磁电机及其控制系统研究[D].沈阳工业大学(硕士学位论文),2010
作者简介
王锦涵(2000-),女,河南省南阳市人。现为南阳第一高级中学在读学生。
【关键词】永磁同步电机;恒压频比开环控制;矢量控制;直接转矩控制
1.引言
近年来,随着电力电子技术、新型电机控制理论和稀土永磁材料的快速发展,永磁同步电动机得以迅速的推广应用。永磁同步电动机具有体积小,损耗低,效率高等优点,在节约能源和环境保护日益受到重视的今天,对其研究就显得非常必要。因此。这里对永磁同步电机的控制策略进行综述,并介绍了永磁同步电动机控制系统的各种控制策略发展方向。
2.永磁同步电机的数学模型
永磁同步电机(PMSM)的永磁体和绕组,绕组和绕组之间的相互影响,电磁之间的关系十分复杂,由于磁路饱和等非线性因素,建立精确的数学模型是很困难的。为了简化PMSM的数学模型,我们通常作如下的假设:
(1)磁路不饱和,电机电感不受电流变化影响,不计涡流和磁滞损耗;
(2)忽略齿槽、换相过程和电枢反应的影响;
(3)三相绕组对称,永久磁钢的磁场沿气隙周围正弦分布;
(4)电枢绕组在定子内表面均匀连续分布;
(5)驱动二极管和续流二极管为理想元件;
(6)转子磁链在气隙中呈正弦分布。
对于永磁同步电机来说,即用固定转子的参考坐标来描述和分析其稳态和动态性能是十分方便的。此时,取永磁体基波励磁磁场轴线即永磁体磁极的轴线为d轴,而q轴逆时针方向朝前90o电角度。d轴与参考轴A之间夹角为。图1为永磁同步电机(PMSM)矢量图。
图1 PMSM空间向量图
Fig.1 Space vector diagram of PMSM
根据图1所示向量图进行坐标变换,满足功率不变原则,得到在旋转坐标系下PMSM的数学模型方程如下
(1)电压方程
由三相静止轴系ABC到同步旋转轴系dq的变换得:
(1)
,Rs为定子相电阻,其中:
。
(2)磁链方程
(2)
式中为转子(永磁体)在dq轴的磁链,,ud、uq,id、iq和、分别为dq轴的电流、电压和磁链。、为dq轴的电感。
(3)转矩方程
电磁转矩的表达式为:
(3)
pn为极对数,定子磁链空间矢量,is为定子电流空间矢量。
3.恒压频比开环控制(VVVF)
恒压频比开环控制(VVVF)是为了得到理想的永磁同步电机转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的。 按照这种控制策略进行控制,使供电电压的基波幅值随着速度指令成比例的线性增长,从而保持定子磁通的近似恒定。VVVF控制策略简单,易于实现,转速通过电源频率进行控制。但同时,由于系统中不引入速度、位置等反馈信号,因此无法实时捕捉电机状态,致使无法精确控制电磁转矩:在突加负载或者速度指令时,容易发生失步现象;也没有快速的动态响应特性。因此,恒压频比开环控制电机磁通而没有控制电机的转矩,控制性能差。通常只用于对调速性能要求一般的通用变频器上。
4.矢量控制(VC)
七十年代中期,德国学者提出“交流电机磁场定向的控制原理”,即用矢量变换的方法研究交流电机的动态控制规律。矢量控制理论采用矢量分析的方法来分析交流电机内部的电磁过程,是建立在交流电机的动态数学模型基础上的控制方法。它模仿对直流电机的控制技术,将交流电机的定子电流解祸成互相独立的产生磁链的分量和产生转矩的分量。分别控制这两个分量就可以实现对交流电机的磁链控制和转矩控制的完全解祸,从而达到理想的动态性能。使交流传动的动、静态特性有了显著的改善,开创了交流传动的新纪元。矢量控制是目前高性能交流电机调速系统所采用的主要控制方法,具有很好的动态性能。然而这种控制技术本身还是存在一些缺陷的,受电机参数影响较大,由于电机参数在不同运行情况与环境的多变性,所以系统鲁棒性不强;矢量控制的根本是实现类似直流电机的控制,因此需要进行复杂的解耦运算,增加了信号处理工作负荷,要求更高的硬件处理器配合;
5.直接转矩控制(DTC)
1985年德国学者M.DepenBrock教授首次提出了磁链采用六边形控制方案的直接转矩控制理论。该方法只是在定子坐标系下分析交流电机的数学模型,强调对电机的转矩进行直接控制,省掉了矢量旋转变换等复杂的变换和计算。其磁场定向所用的是定子磁链,只要知道定子电阻就可以把它观测出来。因此,DTC大大减少了矢量控制技术中控制性能易受参数变化影响的问题,很大程度上克服了矢量控制的缺点。
转差角频率越大,转矩越大。转差角频率增加,转矩也增加。说明异步电机的转矩和转矩增长率都可以通过控制定子磁场对转子的角频率来控制。也就是说,异步电机DTC是建立在电机转差角频率控制的理论基础上的。而同步电机并不存在这种转差角频率,正是由于这个原因,DTC策略在同步电机上没有能够快速地得到应用。直到1996年英国的French.C和Acarnley .P发表了关于PMSM的DTC的论文,1997年由澳大利亚的Zhong L, Rahman.M.T教授和南航的胡育文教授等合作提出了基于PMSM的DTC方案,初步解决了DTC控制策略在PMSM上应用的理论基础。有了这个理论基础,PMSM的DTC控制也成了众多学者研究的一个热点。
就目前而言,永磁同步电机控制的直接转矩控制摒弃了矢量控制解耦的思想,将转子磁通定向更换为定子磁通定向,通过控制定子磁链的幅值以及磁通角,达到控制转矩的目的,具有控制手段直接、结构简单高效、控制性能优良、动态响应迅速的特点。直接转矩控制在克服了矢量控制弊端的同时,这种粗犷式控制方式也暴露出固有的缺陷。首先控制器采用Bang-Bang控制,实际转矩必然在上下限内脉动;再者调速范围受限。在低速时,转矩脉动会增加,而且定子磁链观测值会不准。另外,电机参数的时变对直接转矩控制也有影响。
6.结论
本文所阐述的永磁同步电机的控制方式是最基本的三种控制方式。通过文中的阐述,可以看出每种控制方式都有其利弊,可以根据设备的应用环境工况来选择设备的控制方法。
同时随着控制理论的不断发展,学者们采用智能控制策略,如最优控制、遗传算法、模糊控制等方法,用来克服每种控制方式的弊端,使得永磁同步电机的应该更加广泛,充分发挥其体积小,损耗低,效率高等优点。
参考文献
[1]王成元,周美文,郭庆鼎.矢量控制交流伺服驱动电动机[M].北京:机械工业出版社,1994.
[2]李华德,杨立永,李世平.直接转矩控制技术的新发展[J].工业大学,2001.
[3]许大中编著.交流电机调速理论[M].杭州:浙江大学出版社,1991.
关键词 交流传动车辆, 电气制动, 制动力分配
交流传动车辆的制动分类如图1 所示。对于交流电机而言,可使用的电力制动方式除了再生制动, 还有反接制动和能耗制动,但在交流传动车辆中一般不采用。本文分析了各种电气制动方式在交流传动车辆制动中的应用。
图1 交流传动车辆的制动分类
1 车辆制动时的制动力分配
德国ICE —V 列车采用复合制动方式,其制动力分配试验结果见图2 。由图2 可知,列车制动时, 高速区列车制动以轨道涡流制动为主,再生制动由于处于弱磁区,随转速不断降低而逐渐增大,总制动力不足可采用盘形摩擦制动补偿;速度降至基速后(图2 中基速对应列车运行速度162 km/ h) ,再生制动力增值到最大;低速下则以盘形摩擦制动为主。
图2 德国ICE —V 列车复合制动的制动力分配
上海轨道交通3 号线(明珠线) 车辆的牵引、制动特性曲线如图3 所示。城轨车辆的速度较低,车辆均采用再生制动和闸瓦摩擦制动的复合方式。在大部分的速度范围内,均以电气制动为主,速度在5 km/ h 以下时采用空气制动。
图3 3 号线车辆牵引、制动特性曲线
2 电力制动分析
力制动指牵引电机运行中产生的电磁制动力。当交流异步电机运行于发电工况下,电机输出转矩作用方向与电机转速方向相反,电磁转矩使得电机处于制动状态,转子减速,牵引电机轴输入机械能转变为电能。按照制动能量的不同产生方式,电力制动可分为反接制动、能耗制动及再生制动。
2. 1 电力制动原理分析
异步电机在牵引[3 ] 和制动工况下的磁链矢量图如图4。在牵引工况下,定子磁链ψs 带动转子磁链ψr 旋转,定子磁链在空间位置上超前转子磁链,电机输出正转矩。在制动工况下,转子旋转频率超过定子频率,转子电流与牵引状态下方向相反,使得气隙磁场幅值增大。为保持气隙磁场恒定,定子电流需要反向以减小气隙磁场,定子电流流向中间直流环节, 在空间位置上滞后于转子电流,电机输出负转矩。电磁转矩( Tem) 可由定子磁链和转子磁链的叉积得到。B点,电磁转矩变为负值,电机将在负载转矩与电磁转矩共同作用下迅速运行至C 点。如果对电机继续供电,则电机进入反向牵引工况。在反接制动瞬间,电机将产生很大的制动电流和制动转矩。如处理不当,电机将发生反向行驶。从安全角度考虑,电力传动车辆上均不使用反接制动。
2. 3 能耗制动
能耗制动时切断三相交流电源,并在定子中通入直流电源产生恒定的静止磁场。该静止磁场与转子磁场的相互作用产生电磁转矩,其方向与转子旋转方向相反。牵引工况与能耗制动工况下的电磁与转矩关系如图6 所示。
图4 交流异步电机牵引、制动工况磁链矢量图
在实际运行中,要改变电磁转矩,可以通过改变定子磁链和转子磁链的相位关系来实现。
2. 2 反接制动
反接制动是通过控制定子磁场的旋转方向与转子磁场的旋转方向相反来实现的。电机正向旋转时, 定子磁场超前于转子磁场,定子磁场拉动转子磁场以同步转速旋转;当改变电源的相序时,定子磁场的旋转反向,而转子磁场因转子惯性的作用运行方向不变,滑差s
图5 反接制动工况下电机调速特性
在牵引状态下,定子电压与频率一定时运行于图5 中A 点,电磁转矩与恒负载转矩TL 相平衡。反接制动时,电机的转矩—转速特性曲线变为曲线2 , 由于电机转速不能突变,电机工作点由A 点变为
图6 电机牵引工况和能耗制动工况电磁模型
能耗制动工况下,转子和负载的动能及从直流电源吸收的电能全部转换为转子回路的损耗,使得电机发热严重。能耗制动的最大优点是可以通过改变定子绕组直流电流的大小来调节磁场,进而控制制动转矩。由于在车上需加装可调的直流电源,以及牵引电机发热严重等因素,交流传动车辆上一般也不采用能耗制动。
2. 4 再生制动
电机运行过程中,如果外力使电机转子加速,或人为控制定子频率降低,使转子频率高于定子频率, 滑差s
出现再生制动状态通常有两种工况:
(1) 减速制动。图7所示为电机机械特性曲线。定子频率为f 1 , 负载转矩为TL ,电机工作于第一象限点A点(曲线1) ,电磁转矩与负载转矩相平衡。减速制动时, 降低定子供电频率为f ′ 1< f1) ,1 (f ′ 由于车辆惯性,电机转速不发生突变,电机工作于第四象限的B点(曲线2) 。这时, n > n1、Tem < 0 , 电机进入发电状态,在电磁转矩和负载转矩共同作用下沿f ′特性曲线减速,若不断降低定子供电频率,可获得满意的减速制动特性。
(2) 恒速下坡制动。车辆下坡时,特别在长大坡道上,由于重力作用迫使车辆加速, 电机工作点沿着f 1 机械特性曲线进入第四象限, 电磁转矩为负,电机为发电制动状态;直到电磁转矩与负载转矩相平衡的C 点,电机处于新的稳定状态。
3 电磁涡流制动
电磁涡流制动是利用电磁涡流在磁场下产生劳伦磁力,而劳伦磁力方向与物体运动方向相反。电磁涡流制动具有无摩擦、无噪声、体积小、制动力大的优点。目前车辆利用电磁涡流制动的方式主要有盘形涡流制动和轨道直线涡流制动。
3. 1 盘形涡流制动
盘形涡流制动利用安装在车轴上的圆盘切割磁力线产生涡流和劳伦磁力。根据产生磁场的机理可分为电磁涡流制动和永磁涡流制动。
日铁新干线的高速电动车组采用的电磁涡流制动原理如图8 所示。图中, IF 为励磁电流, 使电磁铁心在制动工况下产生所需要的磁场; n 为轮对旋转速度; TB 为制动力。电磁涡流制动装置安装于电动车组的拖车上,利用相邻车辆牵引电机的主电路电源作为励磁电源。
永磁涡流盘形制动利用永磁铁代替电磁铁线圈产生电磁场,制动盘在磁场中产生涡流阻止磁场增加,产生制动转矩。日本铁道综合研究所试验的永磁涡流盘形制动装置原理如图9 所示。永磁涡流制动装置的制动盘安装于转轴上,定子为永磁圆盘。永磁圆盘分为内圈圆盘和外圈圆盘,配置有内、外两圈磁轭。两圈磁轭内均交错放置N 极和S 极的永久磁铁。车辆正常运行时,外圈和内圈的永磁铁极性为异性排列在一起,磁通在极片和磁轭内构成闭合磁路、不穿越制动圆盘,因而不产生制动转矩。车辆制动时,内、外圈的永磁铁极性为同性排列,永磁铁通过极片和制动圆盘构成磁路。制动盘随转轴转动,切割磁力线产生涡流和制动转矩,改变极片相对位置可以调节制动转矩的大小。
两种涡流制动中,电磁涡流盘型制动的制动功率大,但设备较多,已在日本新干线得以广泛应用; 永磁涡流盘型制动结构简单,但由于目前制动功率受到一定限制,尚处于试验阶段。
图7 再生制动工况下的
图8 电磁涡流盘形
图9 永磁涡流盘形电机调速特性制动装置原理图制动工况的磁通流向
3. 2 轨道直线涡流制动
轨道直线涡流制动通过对安装于转向架两侧车轮之间的条形磁铁励磁,在钢轨上产生涡流使车辆制动。具有无摩擦、制动迅速等优点。同时,轨道直线涡流制动装置可增加车辆轴重,提高车辆粘着力。其原理图见图10 。制动状态时,由于电磁铁的N 极和S 极相对于钢轨的运动,在钢轨内产生交变的磁场,使钢轨头部产生涡流,涡流与电磁铁相互作用, 产生一个垂直于钢轨面的吸引力和一个与车辆运行方向相反的制动力;垂直于轨面的力可增加车辆的粘着力,与车辆运行方向相反的力就是电磁涡流制动力。但轨道涡流制动如果要得到很大的涡流制动力,则需要很庞大的制动装置。这种轨道涡流制动装置应用于上海磁浮列车的制动控制系统中[4 ] 。
图10 轨道涡流制动装置原理图
参考文献
1 徐国卿. 城市轨道交通车辆电力传动. 上海:上海科学技术出版
社,2003
2 王振民. 三相异步电动机的制动. 北京:机械工业出版社,1998
3 吴峻. 鼠笼电机再生制动状态分析与控制. 微电机,2002(3) :60
4 朱仙福. 磁悬浮列车的涡流制动问题. 机车电传动,2001(4) :33
论文摘要:交流电动机固有的优点是:结构简单,造价低,坚固耐用,事故率低,容易维护;但它的最大缺点在于调速困难,简单调速方案的性能指标不佳,这只能够依靠交流调速理论的突破和调速装置的完善来解决。本文论述了交流调速传动的现状和发展
交流传动系统之所以发展得如此迅速,和一些关键性技术的突破性进展有关。它们是功率半导体器件(包括半控型和全控型)的制造技术、基于电力电子电路的电力变换技术、交流电动机控制技术以及微型计算机和大规模集成电路为基础的全数字化控制技术。为了进一步提高交流传动系统的性能,国内外有关研究工作正围绕以下几个方面展开:
1采用新型功率半导体器件和脉宽调制(PWM)技术
功率半导体器件的不断进步,尤其是新型可关断器件,如BJT(双极型晶体管)、MOSFET(金属氧化硅场效应管)、IGBT(绝缘栅双极型晶体管)的实用化,使得开关高频化的PWM技术成为可能。目前功率半导体器件正向高压、大功率、高频化、集成化和智能化方向发展。典型的电力电子变频装置有电压型交-直-交变频器、电流型交-直-交变频器和交-交变频器三种。电流型交-直-交变频器的中间直流环节采用大电感作储能元件,无功功率将由大电感来缓冲,它的一个突出优点是当电动机处于制动(发电)状态时,只需改变网侧可控整流器的输出电压极性即可使回馈到直流侧的再生电能方便地回馈到交流电网,构成的调速系统具有四象限运行能力,可用于频繁加减速等对动态性能有要求的单机应用场合,在大容量风机、泵类节能调速中也有应用。电压型交-直-交变频器的中间直流环节采用大电容作储能元件,无功功率将由大电容来缓冲。对于负载电动机而言,电压型变频器相当于一个交流电压源,在不超过容量限度的情况下,可以驱动多台电动机并联运行。电压型PWM变频器在中小功率电力传动系统中占有主导地位。但电压型变频器的缺点在于电动机处于制动(发电)状态时,回馈到直流侧的再生电能难以回馈给交流电网,要实现这部分能量的回馈,网侧不能采用不可控的二极管整流器或一般的可控整流器,必须采用可逆变流器,如采用两套可控整流器反并联、采用PWM控制方式的自换相变流器(“斩控式整流器”或“PWM整流器”)。网侧变流器采用PWM控制的变频器称为“双PWM控制变频器”,这种再生能量回馈式高性能变频器具有直流输出电压连续可调,输入电流(网侧电流)波形基本为正弦,功率因数保持为1并且能量可以双向流动的特点,代表一个新的技术发展动向,但成本问题限制了它的发展速度。通常的交-交变频器都有输入谐波电流大、输入功率因数低的缺点,只能用于低速(低频)大容量调速传动。为此,矩阵式交-交变频器应运而生。矩阵式交-交变频器功率密度大,而且没中间直流环节,省去了笨重而昂贵的储能元件,为实现输入功率因数为1、输入电流为正弦和四象限运行开辟了新的途径。
随着电压型PWM变频器在高性能的交流传动系统中应用日趋广泛,PWM技术的研究越来越深入。PWM利用功率半导体器件的高频开通和关断,把直流电压变成按一定宽度规律变化的电压脉冲序列,以实现变频、变压并有效地控制和消除谐波。PWM技术可分为三大类:正弦PWM、优化PWM及随机PWM。正弦PWM包括以电压、电流和磁通的正弦为目标的各种PWM方案。正弦PWM一般随着功率器件开关频率的提高会得到很好的性能,因此在中小功率交流传动系统中被广泛采用。但对于大容量的电力变换装置来说,太高的开关频率会导致大的开关损耗,而且大功率器件如GTO的开关频率目前还不能做得很高,在这种情况下,优化PWM技术正好符合装置的需要。特定谐波消除法(SelectedHarmonicEliminationPWM——SHEPWM)、效率最优PWM和转矩脉动最小PWM都属于优化PWM技术的范畴。普通PWM变频器的输出电流中往往含有较大的和功率器件开关频率相关的谐波成分,谐波电流引起的脉动转矩作用在电动机上,会使电动机定子产生振动而发出电磁噪声,其强度和频率范围取决于脉动转矩的大小和交变频率。如果电磁噪声处于人耳的敏感频率范围,将会使人的听觉受到损害。一些幅度较大的中频谐波电流还容易引起电动机的机械共振,导致系统的稳定性降低。为了解决以上问题,一种方法是提高功率器件的开关频率,但这种方法会使得开关损耗增加;另一种方法就是随机地改变功率器件的导通位置和开关频率,使变频器输出电压的谐波成分均匀地分布在较宽的频带范围内,从而抑制某些幅值较大的谐波成分,以达到抑制电磁噪声和机械共振的目的,这就是随机PWM技术。2应用矢量控制技术、直接转矩控制技术及现代控制理论交流传动系统中的交流电动机是一个多变量、非线性、强耦合、时变的被控对象,VVVF控制是从电动机稳态方程出发研究其控制特性,动态控制效果很不理想。20世纪70年代初提出用矢量变换的方法来研究交流电动机的动态控制过程,不但要控制各变量的幅值,同时还要控制其相位,以实现交流电动机磁通和转矩的解耦,促使了高性能交流传动系统逐步走向实用化。目前高动态性能的矢量控制变频器已经成功地应用在轧机主传动、电力机车牵引系统和数控机床中。此外,为了解决系统复杂性和控制精度之间的矛盾,又提出了一些新的控制方法,如直接转矩控制、电压定向控制等。尤其随着微处理器控制技术的发展,现代控制理论中的各种控制方法也得到应用,如二次型性能指标的最优控制和双位模拟调节器控制可提高系统的动态性能,滑模(Slidingmode)变结构控制可增强系统的鲁棒性,状态观测器和卡尔曼滤波器可以获得无法实测的状态信息,自适应控制则能全面地提高系统的性能。另外,智能控制技术如模糊控制、神经元网络控制等也开始应用于交流调速传动系统中,以提高控制的精度和鲁棒性。
3广泛应用微电子技术
随着微电子技术的发展,数字式控制处理芯片的运算能力和可靠性得到很大提高,这使得全数字化控制系统取代以前的模拟器件控制系统成为可能。目前适于交流传动系统的微处理器有单片机、数字信号处理器(DigitalSignalProcessor--DSP)、专用集成电路(ApplicationSpecificIntegratedCircuit--ASIC)等。其中,高性能的计算机结构形式采用超高速缓冲储存器、多总线结构、流水线结构和多处理器结构等。核心控制算法的实时完成、功率器件驱动信号的产生以及系统的监控、保护功能都可以通过微处理器实现,为交流传动系统的控制提供很大的灵活性,且控制器的硬件电路标准化程度高,成本低,使得微处理器组成全数字化控制系统达到了较高的性能价格比。
关键词:永磁同步电动机;应用特性;研究
引言
稀土永磁电动机具有高效节能的显著优点,应用范围正日益遍及国防、航空航天、工农业生产和日常生活的诸多领域,发展潜力巨大。相较于电励磁电动机,稀土永磁电动机结构特殊且种类多样,传统的设计理论和分析方法已难以适应高性能电机研发的要求,需要综合运用多学科理论和现代设计手段,进行创新研究。传统设计模式得到的产品,在工况相对固定的应用场合,能够表显出良好的技术性能,但在永磁同步电动机实际运用的过程中,其振动与噪声始终没有得到有效解决,甚至会对其实际运行的稳定性产生不利的影响。为此,针对永磁同步电动机设计当中的关键技术研究十分有必要,同样也逐渐成为国民经济发展的关键增长点。因此,本文在电机和电磁场理论的基础上,结合实际工程应用问题,对永磁同步电动机的工作工程中的振动和噪声问题进行实验分析研究,并提出具体解决改善措施。论文的工作主要集中在以下几个方面:(1)测试装置与系统的实验,选择11kW的永磁同步电动机,对其振动和噪声的特性进行测试。其中,将非金属环合理安装于9000A的涡流传感器之上,随后,同样将其安装在轴承端盖的位置,进而对转子动态特性展开全面测试。(2)永磁同步电动机振动与噪声信号的分析,通过对永磁同步电动机振动和噪声信号的测试与分析,当电动机处于额定负载的情况下,其振动信号呈现出一簇脉冲,其电流信号也有所改变,并非正常的正弦时域波形。(3)对噪声频谱的分析,当11kW永磁同步电动机处于空载状态时,根据声压级频谱的内容可以发现,其中存在两个峰值。而当11kW永磁同步电动机处于额定负载的状态下,根据声压级频谱内容可以发现,存在三个峰值。而通过噪声频谱与振动频谱的对比和比较,可以发现对于永磁同步电动机噪声产生影响的因素中,轴承振动并非主要矛盾。通过对空载以及额定负载条件下的声压级频谱对比与比较可以发现,峰值多出一,而具体的原因就是受负载增加的影响,导致电流与功角随之提高,进而生成了频率成分。
以下是详细实验过程:
1 永磁同步电动机应用特性的实验分析――以振动与噪声为实验对象
1.1 测试装置与系统的实验
选择11kW的永磁同步电动机,对其振动和噪声的特性进行测试。其中,将非金属环合理安装于9000A的涡流传感器之上,随后,同样将其安装在轴承端盖的位置,进而对转子动态特性展开全面测试。
1.2 永磁同步电动机振动与噪声信号的分析
通过对永磁同步电动机振动和噪声信号的测试与分析,当电动机处于额定负载的情况下,其振动信号呈现出一簇脉冲,其电流信号也有所改变,并非正常的正弦时域波形[1]。
1.3 对噪声频谱的分析
当11kW永磁同步电动机处于空载状态时,根据声压级频谱的内容可以发现,其中存在两个峰值。而当11kW永磁同步电动机处于额定负载的状态下,根据声压级频谱内容可以发现,存在三个峰值。而通过噪声频谱与振动频谱的对比和比较,可以发现对于永磁同步电动机噪声产生影响的因素中,轴承振动并非主要矛盾。通过对空载以及额定负载条件下的声压级频谱对比与比较可以发现,峰值多出一个,而具体的原因就是受负载增加的影响,导致电流与功角随之提高,进而生成了频率成分。
2 改善永磁同步电动机应用特性的具体措施
2.1 有效降低力波
第一,绕组选择要科学。在选择定子绕组的过程中,最好选择谐波磁动势不高的,像是正弦绕组,能够有效地降低噪声。第二,将定子槽与转子槽的开口宽度减小。通过半闭口槽亦或是闭口槽能够使气隙磁导谐波有效降低。与此同时,为了能够实现转矩脉动的降低,就需要采用槽开口宽度增大的方式。第三,气隙磁通密度适当减少。因为径向力和气隙磁密平方呈现出正比例关系,而振幅和径向力同样呈正相关关系。除此之外,升功率和振幅平方近似呈正比例的关系[2]。在这种情况下,磁通的密度如果相对较高,那么不仅只是声功率随之提高,同样还会影响系统运转的效果,分叉与混沌现象的发生几率会更高。然而,一旦减小气隙磁密,还会使电动机的自重增加。在这种情况下,应当综合考虑多种因素来进行设计。
2.2 磁场应对称
在永磁同步电动机实际运行的过程中,如果转子偏心很容易引起低阶径向力,导致电动机自身的噪声不断增加[3]。在这种情况下,不仅要对加工工艺与装配工艺进行合理地控制,同样采取定子并联绕组的方式,也能够避免因转子不同心而带来的噪声,这样就能够确保各级磁通处于一致状态,有效地规避了磁拉力出现的不平衡性,使得振动与噪声的产生几率下降。
2.3 斜槽与斜极的控制
对于永磁同步电动机来说,将其定子铁心以斜槽的形式制作出来,能够确保径向力波始终沿着电动机的长度方向轴线来移动[4]。这样一来,其沿着轴线方向的平均径向力就会随之下降,同时,附加转矩以及噪声也会随之降低,然而,实际的附加损耗却并不会下降。
2.4 定子动态振幅与声振幅的合理减少
第一,要科学增加阻尼。可以在永磁同步电动机的定子铁心以及机座中适当地涂上阻尼材料,与此同时,使用清漆亦或是环氧树脂,实现定子叠片的有效粘结[5]。基于此,应当对定子铁心以及机座间存在的间隙进行及时填充,这样也能够使电动机阻尼不断增加。第二,声辐射效率的减少。在对永磁同步电动机声辐射功率进行计算的过程中,主要是相对声强辐射系数和无穷大平板声强公式相乘[6]。其中,相对声强辐射的系数和电动机的定子长径比以及振动模态阶数等存在紧密的联系。为此,在立波阶数的增加,使声强辐射系数减少,可以有效地控制噪声。
3 结束语
综上所述,永磁同步电动机在实践应用中的作用十分重要,所以,对其应用特性的研究具有重要的现实意义。电动机振动过大不仅会对运行可靠程度带来负面影响,同样还会引发噪声。因而,文章将稀土永磁同步电动机作为重点研究对象,并且以振动和噪声两个特性为例,阐述了控制这两种特性的可行性方式,以期为永磁同步电动机的正常运转提供有价值的参考依据,充分发挥其自身的功用。
参考文献
[1]皇甫宜耿,LAGHROUCHES,刘卫国,等.高阶滑模消抖控制在永磁同步电动机中的应用[J].电机与控制学报,2012,16(2):7-11,18.
[2]姬芬竹,高峰.电动汽车驱动电机和传动系统的参数匹配[J].华南理工大学学报(自然科学版),2006(04).
[3]王家军.速度指定位置跟踪双永磁同步电动机的反推控制[J].控制理论与应用,2015,32(2):202-209.
[4]杨玉波,王秀和,张鑫,等.磁极偏移削弱永磁电机齿槽转矩方法[J].电工技术学报,2006(10).
涤纶短丝装置是上海石化股份公司涤纶部西区的一个主要装置,共有六条生产线,设计单线产量为1.5万吨/年。前纺电气传动采用德国AEG公司SEMIVERTER变频器及永磁同步电动机,后纺采用直流电动机长轴传动。该纺丝装置是我国80年代初自己设计、自行制造的大型生产装置,虽然建成初期创造了一定的经济效益和社会效益,但是由于受到历史条件的局限,出现了一些先天性不足,产品的种类和单耗达不到部颁标准,不能适应市场的需要,为此在原一号线位置上改造、引进了一条3万吨/年涤纶短丝生产线(简称新生产线),电气传动采用德国西门子6SE70系列变频器和永磁同步电动机(前纺)、异步电动机(后纺)。本文就共用直流母线多逆变器调速系统在纺丝线上的应用作一些探讨。
2合成纤维纺丝机变频调速系统发展概况
合成纤维纺丝机变频调速系统发展大致可分为3个阶段:
(1)大变频器调速由一台大功率变频器来驱动多台永磁同步电动机。电动机可逐台起动或分组启动。优点是系统简单、控制方便,可保证多电机同步运行。缺点是变频器容量必须选用很大;单台电动机短路故障有可能引起变频跳闸,造成整台纺丝机停车。
(2)多台小变频器驱动每台电动机均有一台小变频器驱动。对比大变频器驱动,优点有:a)、一台变频器驱动一台电机,可以实现软起动,变频器容量基本与电动机相同;b)、当某台电动机发生故障时,对应变频器停止工作,不会影响整台纺丝机的正常运转。缺点是:a)、总设定、总启动需另加调节环节;b)、几台变频器输出频率会有离散性,为达到转速同步,需加串行通信接口。
(3)共用直流电源多台小逆变器驱动采用共用直流电源多台小逆变器驱动。除了保持小变频器拖动的特点外,更重要的是可以实现再生发电制动,也可防止电网瞬时低电压(含瞬时失电)带来的停役故障。
3涤纶短纤维纺丝装置对电气控制系统的基本要求及对原有拖动系统的分析
(1)涤纶短纤维纺丝装置对电气控制系统的基本要求
纺丝机对电气传动的要求为“四高”和“一少”。
四高:即高同步性(一台纺丝机不同纺位的电机转速要求横向转速一致,纵向比例同步);高精确性(转速稳定,精确度高达0.1%~0.01%);高转速或甚高转速(在没有升速齿轮箱条件下,电机转速高达8000~9000r/min);高可靠性(至少保证一年安全连续运行8000小时)。
一少:即少维修或免维修,无须照看。在采用了高精度的变频调速器和永磁同步电动机组成的调速系统后,高同步、高精度、高转速和少维修可以实现,但高可靠性还做不到,影响了纺丝装置安稳长满优生产。以3万吨/年短丝生产线为例,其日产量为100吨短纤维,若外来电网瞬时低电压(或瞬时失电),引起计量泵变频器停役电机停转,会造成聚酯熔体压力增大,迫使聚酯装置熔体增压泵停止,从而影响聚酯装置正常生产。
(2)原有电力拖动系统的优缺点
原1.5万吨/年短丝直接纺装置的变频器属于第一代变频器,即一台变频器驱动多台永磁同步电动机,此类变频器在技术上采用公用换流环节,具有辅助充电装置的换流电路。优点是:a)、即使直流电压很低时也能可靠换流。b)、在短时间内数倍额定电流(最大为3倍)时,也能可靠换流。c)、变频器由空载状态到负载状态时,能够迅速抑制起动电流的极限值。但变频装置在运行中尚存在以下不足之处:a)、短丝装置由于多台电动机共用一台变频器,无法实现软起动,所以选用时既要考虑到最高频率时直接起动,又要考虑到若干台电机高速运转时,某一纺位故障排除后又继续投入运行,因此变频器容量不得不选用偏大。b)、纺丝机故障停台率偏高。但因变频器不能承受电网瞬时低电压(含瞬时失电),而由于雷电、电缆接地故障及开关倒闸操作,定会出现瞬时低压现象,造成变频器停役,致使整台纺丝机停产,酿成巨大损失。c)、无法实现再生发电制动。后纺采用直流拖动,电动机维护和保养很麻烦,牵伸比调节也很困难。
4前纺装置变频调速系统特点分析(由UPS供电、小逆变器永磁同步电动机开环同步拖动系统)
新生产线的前纺部分变频调速系统如图1。前纺装置变频调速系统主要是由UPS供电、小逆变器永磁同步电动机开环同步拖动系统组成,前纺装置的主要改进是电源系统采用UPS(西门子System4233,330kVA)供电。
正常情况下由市电进行供电,若电网瞬时失电或低电压,由电子开关控制自动切换到蓄电池供电,确保逆变器不受影响。为保证纺丝的精度,前纺没有采用1台逆变器带1台电动机的控制方式,而是由2台大逆变器分别向32台计量泵电机(永磁同步电动机)提供可变频交流电源。装置控制采用集散式数字工艺控制系统(DCS)和微处理机网络系统,在两台逆变器之间用PLC加串行通信接口组成开环控制,确保两变频器的输出频率相同,即保证了32台计量泵电动机转速的绝对同步。与原生产线相比,虽然一次性投入较大,但可确保在瞬时低电压(含瞬时失电)时,计量泵可正常工作,提高经济效益。在前纺调速系统中,32台计量泵电动机、7辊导丝辊电动机及喂入轮电动机的所有逆变器均接在共用直流母线上。
5后处理装置变频调速系统特点分析
后纺装置的变频调速系统如图2。后处理装置中牵伸、紧张热定型、叠丝、卷曲的拖动采用共用直流多逆变器变频调速系统,其逆变器接同一直流母线。电动机则采用大功率的异步电动机。共用直流母线由#1、#2整流装置供电。两套整流器的叠加既可扩大容量,又可减少纹波和谐波,稳定直流电压。与原生产线相比有如下优点:
(1)采用共用直流母线可以自适应调整不同牵伸比条件下被拖电动机的制动力矩。比如对某一设定好的牵伸比,头道、二道、三道牵伸机的转速分别为n1、n2、n3,由于丝的张力作用,在没有制动功能时,头道牵伸辊会被后面牵伸辊拖着跑,而现在采用共用直流母线的变频调速后,一旦n1的数值超过设定值,电动机便进入了再生发电制动状态。一方面被拖电机变成发电机,发出的电能经续流二极管整流变成直流回馈到直流母线,电动机不仅无须从电网吸收能量,还可将制动能量供给其他逆变器,既可稳定直流母线电压,又由于电动机容量较大(如第二牵伸机电动机为400KW),电能节约也相当可观。另一方面,被拖电动机处于制动状态,只要设置相应的频率比,就能控制转速比,确保了牵伸比控制精度。
(2)涤纶短丝后处理牵伸紧张热定型联合机组是涤纶短纤维生产中的一道关键工序,主要承担着将原丝按一定牵伸倍率进行拉伸和定型。涤纶部原短丝装置的后纺拖动由一台功率较大的直流电动机拖动一根机械长边轴,再带动各道牵伸辊、紧张热定型辊等。直流电动机虽然在调速的范围、调速的精度及动态响应等方面性能较好,但直流拖动最致命的问题就是直流电动机的维护和保养很麻烦,并且对环境要求也较高。另外采用长边轴传动,若要改变生产品种,则牵伸比的调节较困难,并且精度也达不到要求,这样势必会影响产品质量、品种翻改以及高附加值产品的开发。新生产线采用交流变频调速,各道牵伸辊具有独立的变频传动,只需改变各变频器的频率就能方便调整工艺需要的牵伸倍率。从投产后的生产情况分析,生产的涤纶短纤维品种增加(其中1.33dtex有光缝纫线销量占全国销量的1/2以上)、质量提高、单耗下降,停车故障大幅减少,经济效益显著。
叠丝机、卷曲机也采用共用直流母线多逆变器调速方案,只是功率较小,不再讨论。切断机则为独立变频器,和一般变频调速原理相同,在此不再展开。
6结束语
(1)如上所述,共用直流母线变频调速技术是可靠的,虽然一次投入较高,但每年可以减少停车2~3次,按一条3万吨/年生产线计算,可减少PET放流8~12吨,同时还可避免因停车造成的纤维质量波动(一次停车将影响144~216吨纤维的质量稳定性),如此计算不用几年就可收回改造费用。
(2)由于采用共用直流母线变频调速技术,使整体生产条件处于稳定状态,从而给改变产品规格、调整工艺参数带来极大便利。过度时间短,废丝少,工艺调整精确。
(3)从新生产线实际运行情况看,共用直流多逆变器调速系统在涤纶短纤维的生产中优势突出,代表了纺丝机拖动的发展方向。但在后纺部分仍不能完全排除电网失电对变频器的影响,如变频器一旦停役会使正在牵伸的一段涤纶丝(约100m)报废。改进方法可采用两个独立的交流电源供电,分别经整流器整流后送至共用直流母线(需用二极管隔离),一旦失掉一路电源,仍有另一路交流电源支持,不会停车。另外,前纺卷绕纺丝装机容量196kW,UPS输出容量330kW,实际使用的容量较小,需要注意。
参考文献
[1]刘亮喜.化纤纺丝机的变频调速系统[J].电世界,1998,(8):10-11.
关键词 电动汽车;驱动控制;轮毂电机
中图分类号:TM36 文献标识码:A 文章编号:1671-7597(2014)21-0041-01
电动汽车,是在传统燃油汽车面临能源危机与环境污染两大难题时,得到重视和发展的,并被视为解决上述两大难题的有效途径。它是车辆工程、电子信息、新能源技术、计算机、自动控制等多学科交叉技术的集成,更容易使车辆电子化、信息化,从而提高车辆智能控制水平。电动汽车电机驱动控制技术作为电动汽车关键技术之一,一直是国内外学者研究的重点。
1 驱动系统种类及驱动控制算法
目前,电动汽车的驱动系统按所使用的驱动电机类型不同可以分为交流感应电机、直流电机、开关磁阻电机、永磁同步电机、永磁无刷直流电机等驱动系统。电机驱动系统是电动汽车研究开发的重点之一,就目前而言,单电机配合减速器和差速器驱动车轮是电动汽车驱动的普遍方式。考虑到各地的差异性及车辆的通用情况,目前大多数控制策略及控制方法的研究都通过软件模拟仿真。山东大学的李珂等建立电动汽车异步电机仿真模型以及与之对应的控制模型,实现了对纯电动汽车动力性能仿真[1]。Z.Rahman等人,根据电动汽车驱动电机转速范围、车辆行驶对电池组能量需求、驱动电机工作效率、车辆传动系数,以建模仿真的方式来确定动力驱动系统关键部件的选型[2]。Mehrdad Ehsani等人,则利用电动汽车续航里程和行驶的动力需求为主要优化目标,对匹配纯电动汽车动力参数优化算法进行了深入研究[20]。王庆年,丁永涛等人,在MATLAB/SIMULINK环境下完成了整车的并联式控制策略的建模。所得出的研究结果表明,所开发电动汽车正向仿真平台正确性、可靠性,对提高电动汽车初期研发效率、降低电动汽车的研发成本具有非常重要的现实意义。
2 电动汽车轮毂电机驱动技术
早在上世纪中期,名叫ROBERT的美国人将驱动电机、传动/制动装置全部集成在轮毂上,研发了最初的电动汽车轮毂。该类电机根据其安装的方式不同,又分为轮毂电机驱动、轮边电机驱动两种结构。轮边电机驱动,它是将驱动电机固定在车架位置,电机的输出轴直接把驱动转矩传递给驱动轮,电机与车轮之间彼此相对独立,只通过电机输出轴或其它变速机构联接,减轻了车轮惯性力及车辆颠簸程度。轮毂电机驱动在结构上与轮边电机驱动有所不同,它是把驱动电机直接安装在车轮的轮毂内直接驱动车轮。这种结构省略了传统燃油汽车上面一系列的传动装置,大大提高了驱动效率,使系统结构更加简单。在2005年,美国德州大学教授E.J.Triche等人对轮毂电机直接驱动的混合动力及纯电动军用车辆的冲击载荷进行了相关的仿真和实验[4]。K.Cakir和A.Sabanovic设计了直接驱动电动汽车的电气系统,创建了电机三维模型,通过优化设计,使得该轮毂电机驱动系统很好的匹配实验车辆[5]。2012年,Perer Juris等人研究了温度对轮毂电机驱动系统的影响,运用有限元方法对轮毂电机进行瞬时热力学仿真分析,结果表明:过高的温度会导致轮毂电机的驱动失效,并导致永磁铁失磁。在国内,同济大学余卓平教授等,对四轮轮毂驱动的电动汽车路面附着系数估算方法进行了深入分析研究。他们利用电动汽车轮毂电机测速准确、驱动力响应迅速等特点对车辆行驶路面的附着系数进行估算,通过这种方式能有效防止车辆行驶时车轮滑转,确保车辆的行驶稳定性。2012年,张立军等人建立了包括电机转矩波动动力学模型与充气轮胎刚性圈动力学模型的系统耦合动力学模型,并进行了时频域特性分析。此外,北京理工大学在轮毂电机驱动方面也有较深入研究,如谢邵波,林诚对前轮轮毂电机驱动的电动车行驶稳定性进行研究,通过实验仿真,验证了其设计的控制策略可提高车辆横摆稳定性。
3 结论
目前,国内外在电动汽车电机驱动控制方面的研究已涉及各个方面,从目前研发的进程状况来看,国内外基本处于同一起跑线上,国外略处于领先地位。另外,在电机驱动系统中,绝大部分研究焦点都集中于对电机本体的研究,没有与电动汽车整车控制需求相结合。将电机驱动控制策略与车辆行驶工况紧密结合来提高驱动效率的相关报道较少。
参考文献
[1]陈勇,张大明,等.电动汽车用异步电机矢量控制系统仿真分析[J].上海交通大学学报,2007,19(16):3761-3765.
[2]Rahman Z,Ehsani M,Butler K L,An Investigation of Electric Motor Drive Characteristic for EV and HEV Propulsion Systems[C].SAE paper.2000-01-3062.
[3]Kowal J,Gerschler J B,et.Efficient battery models for the design of EV drive trains[C].14th Inernational Power Electronics and Motion Contorl Conference,2010,31-38.
[4]Ehsani M,Gao Y M,Emadi A.Modern Electric,Hybird Electric,and Fuel Cell Vehicles Fundamentals,Theory,and Design[M],Boca Raton:CRC Press,2010.
[5]K.Cakir A.Sabanovic.In-wheel Motor Design for Electric Vehicles[C].Proceedings of IEEE AMC06-Istanbul,Turkey.2006.6:13-20.
[6]夏长亮.无刷直流电机控制系统[M].北京:科学出版社,2009.
[7]王葳,张永科,刘鹏鹏.无刷直流电机模糊PID控制系统研究与仿真[J].计算机仿真,2012,29(4):196-199.
[8]朱颖合.自适应模糊PID控制器的研究与应用[D].杭州:杭州电子科技大学,2010(12).
【关键词】滤波装置 成像 步进电机
摄像机拍摄的图像是由被拍摄物发射光(反射光)及背景光两部分组成。在摄像机已经确定下来的情况下,一般采用通过改变曝光参数的方法,调整目标成像的亮度来改善目标的成像质量。但是在实际使用中,受被拍摄物体的亮度、运动方式、背景环境等多种因素影响,摄像机的曝光参数的调节有时比较困难,特别是物体本身亮度较强的情况下,参与成像的主要光谱对应的光强太大,使得摄像机接收CCD饱和,而目标轮廓对应的成像光谱光强较弱,所以轮廓不清晰。只靠摄像机自身降低曝光参数来进行目标的清晰成像并不是那么容易,因此,仅仅依靠调整曝光参数是无法从根本上解决成像质量清晰与否的问题,需要设计一套载有不同波段滤光片的滤波转动装置,采用步进电机驱动的转盘来装夹滤光片,滤波装置与摄影机时序匹配。本文中设计的滤波载盘旋转时,不拍摄;电机停转时,摄影机工作。滤波转动装置通过选择适当的高通、低通或带通滤波片,将干扰目标成像的光谱成分滤除,使目标在图像中的对比度得到改善。
1 滤波装置的组成
滤波装置是将装载不同波长性能滤光片的转轮置于摄影或摄像机之前,在摄影、摄像机工作时,控制转轮,使不同波长的光成像,比较成像的质量,决定滤光波长。
本套装置选用常规摄像机,考虑到目标距离摄影点很远,使用伽利略系统,目镜放大倍数为10倍,焦距为25mm,物镜焦距为900mm,总角放大倍数为36倍,有连拍功能。滤波装置由机械载片转盘、步进电机驱动器、控制电路以及显示设备组成。
主要完成以下功能:
(1)控制机能够带动转盘在0.5s内转动72°。
(2)完成转动后滞留一段时间,继续下一步,滞留时间以0.1s为单位可调。
(3)运行速度、加速度可调,转动角度以0.9°为单位可调。
(4)具有显示功能,显示参数设置信息以及电机运行信息。
(5)具备串口功能,可以方便进行程序烧写,并可与上位机交互通信及控制。
2 步进电机驱动控制装置
2.1 步进电机选型
摄像机带动转盘转动,对电机要求较高,不仅启动速度要快,而且停止后定位要准确,但在设计时发现转盘的转动惯量较大,不易停止下来。通过实验发现,采用永磁式步进电机可以满足本装置中对电机的要求:电机既可满足带动转盘高速运动的同时,又可满足在停止时转盘定位准确无过冲现象,同时功率消耗较小。
步进电机型号定为:85BYGH-201。
2.2 控制电路设计
步进电机控制方框图如图2所示。
为了保证本装置结构简单、运行可靠,经过论证,步进电机控制器采用STC89C52单片机芯片,能够满足本装置使用要求。该系统能够发出脉宽、频率、脉冲个数均可控制的方波,控制电机运行,并且还可以利用串口对单片机进行程序的烧写,对其功能可以进一步扩展。其整体的电路图如图3所示。
采用SMC1602A液晶显示器,能够将滤波装置的参数设置及工作状态实时显示出来,供操作人员实时监控。操作人员可以通过操作液晶显示器面板的控制按键,实现装置控制参数的显示、设置、电机运行和停止等功能。如图4所示是按键控制电路图。
2.3 软件设计
单片机采用多中断系统,分析判断中断标志位,确定有无中断以及中断方式,确定中断方式后再通过查询方式判断具体工作模式,最后执行相对应程序。软件控制流程如图5所示。
3 实验分析
采用普通摄像机加装本滤波装置,滤波片滤光范围在300nm至1200nm之间,对150米以外的物体做光谱采集,不漏掉目标,干扰光不进入系统,电机带动转盘按照预设程序,与摄像系统配合,依次拍下目标光谱信息。本滤波装置正确地在外场采集了目标光谱。如图6为拍摄照片滤波对比效果图。
综上实验结果,从图中可以看出,滤波装置正常工作,滤波效果达到预期目标。
4 结束语
本套滤波装置采用步进电机传动,脉冲频率控制转速,脉冲个数控制转角,使曝光与传动匹配。结构简单易行,用常规摄影摄像仪器、滤光片,经过光谱滤波后改进像质效果很明显,得到较好的像质。
参考文献
[1]崔星.机电混合驱动系统特性与参数匹配研究[D].北京:北京理工大学机械与车辆学院,2009.
[2]姚荣斌,孙红兵.基于STC89C51RC的转速测量系统设计[D].连云港师范高等专科学校学报,2007(04):84 -87.
[3]刘保延等.步进电机及其驱动控制系统[M].哈尔滨:哈尔滨工业大学出版社,1997.
[4]冯晓,刘仲恕.电机与电器控制[M].北京:机械出版社,2005.
[5]王诣,尤丽华.基于AT89S51单片机的步进电机控制系统的研究[D].无锡:江南大学机械工程学学术论文,2005.
作者简介
李阳(1977-)男,辽宁省葫芦岛市人。工程师,从事光学测量工作。
关键词:区域经济;工程实践;创新能力;课间壁垒
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)41-0183-02
由经济形势和行业需求所决定,中国高等教育资源和学生分布于理工科的占比大于其他学科。反思高校工程教育,笔者认为存在如下问题:
1.理工科学校对工程科技人才培养定位含糊,特色不明,重规模,轻质量。包括教师、教材、实验和作业把工程问题当成“可以解决”的简单问题。造成学生不能发现问题、提出问题、简化问题并最终解决问题。
2.重答案,轻过程。好奇心是创新的基础,有成就的科技工作者大多具有较强批判精神,敢于问“为什么”,并从中找到科学创新点。学生最初不会提问,然后害怕提问,最后变成没有问题可提。
3.关注教师授课体系,轻视学生知识系统。教师灌输式的教学方式,学生死记硬背的学习方式,无法掌握知识的内涵。教师提供“标准答案”,学生习惯于互相看答案。重以教师为中心,轻以学生为中心。
4.重科学论文,轻工程设计和实践教育。缺乏设计和工程实践环节,学生很少对实验产生深刻印象,更不用说影响学生兴趣和爱好。专业缺乏学科融合与交叉;与企业关系疏远;重理论轻实践,重课堂教学,忽视实践环节,注重传授知识,不重视能力或者轻视能力培养。
我国的工程教育规模居世界首位,提高工程教育质量是当务之急。高等教育培养出数量足够,能面向生产一线的优秀工程科技人才,这是中国高等工科院校不可推卸的历史责任。要达到这一目的,论文提出了提高本科工程教育质量的对策,并结合区域经济特色,探讨协同培养高校工程技术本科人才的模式,并以株洲区域经济为例,详述了湖南工业大学高校工程技术本科人才培养模式。
一、株洲区域经济
株洲是“中国电力机车摇篮”,也是“中国轨道交通之都”。南车株洲电力机车研究所有限公司、南车株洲电力机车有限公司、南车株洲电机有限公司等核心企业,在轨道交通装备领域的历史积淀、品牌优势、技术实力、集群优势是国内其他企业所无法比拟的。株洲电力机车厂出产了中国的第一辆电力机车,并且较长时期垄断国内市场;南车株洲电力机车研究所有限公司是中国电力机车牵引传动系统、安全监控系统的行业龙头;南车株洲电机有限公司是中国最大的高速动车组、城轨车辆电机和变压器专业化科研、生产基地。目前,株洲市拥有轨道交通产业相关企业共300余家,产业门类齐全,已形成完整的产业链,轨道交通零部件、配套件等覆盖电力机车与铁路车辆所需的70%以上,已成为全国最大的轨道交通装备制造产业集群。
作为“长株潭”国家自主创新示范区中重要一极,株洲在国家创新型城市建设的战略指引下,全力打造“中国动力谷”。2013年,株洲轨道交通产业入选全国首批创新型产业集群试点,“株洲国家轨道交通装备高新技术产业化基地”在17家被科技部授牌的国家高新技术产业化基地中综合实力排名第一。株洲到2016年将在以高新区为核心的区域内,形成全国首个千亿规模轨道交通产业集群,将推动科技服务体系的建立和完善,进一步提升产业链的科技含量,加速实现轨道交通产业的跨越发展。
轨道交通产业的良性发展离不开专业人才的培养,本地区的轨道交通对该领域的高层次人才需求很大。
二、结合区域经济的高校本科人才培养模式
根据株洲区域经济特色,以轨道交通自动化为主,分析相关企业行业的创新需求、并据此设置高校实践教学环节,培养本科工程实践创新能力,优化并合理使用本科专业创新资源,从而形成课堂理论培养为主、课外实践工程能力为辅完整的师资整合和创新训练体系创新人才培养机制。提出校企共建工程实践教育中心的举措,提供学生在企业学习的教学条件,形成“办学体制、科技创新、人才培养、校企产学研”全方位合作;明确企业承担继续培训工程技术人员和接纳实习的责任,为未来工程师提供实习岗位;企业逐渐成为创新主体,拥有先进的技术、设备和高水平的工程技术人员,企业文化有助于学生成长,企业经历有助于学生就业。
(一)聚合实践教学创新能量,协同构建高层次师资队伍
按照创新团队流动不调动的政策,分别从企业派驻院士、教授、高工及其团队到湖南工业大学参加创新创业人才的培养,并在资金、项目和人才队伍组建等方面予以全方位的支持,为形成深度融合的学科方向、学术团队,并为开展创新活动奠定了坚实的基础。
将湖南工业大学的高层次人才引进计划和科研团队建设目标纳入各自的人才队伍建设工程总体规划中,并分年度予以实施,在人才队伍建设工程中,充分考虑协同中心团队凝练的结构、层次、学科、方向需要,为创新创业人才培养提供强力的人才支持。
对纳入创新培养团队成员,实行重点培养和系统支持,在资源利用、项目申报、研究条件、成长发展等方面制定了相应的支持政策,鼓励冒尖、鼓励拔尖、鼓励创新研究和成果产出。与此同时,全面落实跨单位考评机制和考评办法。
(二)协同办学环境,创新人才培养模式
湖南轨道交通核心业务发展和下游产业链的延伸对高端专业人才的旺盛需求,极大地调动了相关轨道交通装备企业共同参与协同办学的积极性。结合产业对高素质工程技术人才的需求,以创新项目研究为载体,以强化轨道交通自动化相关专业特色为目标,制定“四个共同”人才培养机制。
协同培养研究生的模式主要有两种:一是独立导师制。由产业企业的技术骨干单独指导研究生,研究生在学校修完学科基础课后进入企业,跟随指导老师开展课题研究,具体科研题目由导师决定,企业提供学生的住宿和生活费;二是双导师制。由企业和学校各自派出一名导师共同指导一名学生,学生的课题由两位导师共同商量。截至2014年底,仅电气工程、计算机科学与技术等学科已经联合培养硕士研究生100余人,其中大部分毕业后留在联合培养单位从事科研开发工作,取得了很好的培养效果,深受企业和社会欢迎。
(三)聚合实践教学创新能量,实现技术产业无缝对接,快速推进科技成果转化
围绕株洲轨道交通千亿产业集群核心技术研发、产业链延伸的共性技术问题进行协同创新,各协同企业在轨道交通自动化领域针对永磁同步电机与传动控制、网络控制及故障诊断等理论进行了深入研究和探讨,对相关技术共同进行产业化培育,其中部分成果已成功应用于我国高速轨道交通和城轨铁路交通运行中。有力推动了株洲轨道交通千亿产业集群主导产业的创新发展和高新技术产业的形成,并对其他相关产业形成了创新技术溢出延伸效应,取得了显著的经济和社会效益。
大学生创新实践能力提升后,就业渠道明显拓宽。近三年毕业生平均就业率达93%以上,在湖南省同类专业中处于领先地位。由于就业成绩显著,2015年湖南工业大学被评为“全国毕业生就业典型经验高校50强”。
参考文献:
[1]厉骁,于国庆.基于区域经济发展的应用型人才培养模式研究[J].中国商论,2015,(12).
[2]郭松.地方高校教师实践能力培养的现状及路径分析[J].教育教学论坛,2015,(6).
[3]茹阳.行业高校特色发展服务区域经济的实践研究――以沈阳化工大学为例[J].中国科技纵横,2016,(3).
[4]常喜,王立忠,张刚,王广德.通信工程专业特色化人才培养体系的构建[J].高师理科学刊,2015,(6).
Regional Economic and The University undergraduate engineering Talents Training Mode
GU Zhi-ru1,CHEN Shun-ke1,HUANG Xiao-feng1
(1.College of Electrical and Information Engineering of Hunan University of Technology,Zhuzhou,Hunan 412007,China)