欢迎来到易发表网,期刊咨询:400-808-1701 订阅咨询:400-808-1721

关于我们 期刊咨询 科普杂志

结构设计论文优选九篇

时间:2022-10-03 11:31:43

引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇结构设计论文范例。如需获取更多原创内容,可随时联系我们的客服老师。

结构设计论文

第1篇

1.1地基与基础根据甲方提供地质资料,本工程办公楼A座、B座、C座及通道1,2,3拟采用CFG桩复合地基,基础底标高为-12.10m;地基处理范围:CFG桩的平面布置均在各楼座及通道内;经地基处理后基底承载力特征值(fspk)应大于350kPa;而地下车库部分采用天然地基方案,基底持力层为③粉土层或③1层粉细砂。地基承载力特征值为fak=120kPa。经计算,CFG桩桩径取400,桩顶标高为-12.570m,有效桩长18m,桩端持力层为⑧层粉细砂层,桩端进入持力层深度不小于1.0m。单桩承载力特征值大于600kN,施工桩顶标高宜高出设计桩顶标高不少于0.5m。CFG桩混凝土强度等级为C20。基础设计时,经过反复核算,我们在办公楼A座、B座核心筒部分采用筏板基础,其余部分为十字交叉柱下条形基础。筏基部分的基底反力约245kPa,条基的基底反力约232kPa,两者反力基本接近。基底标高约为-12.10m,条基宽度为3.0m。办公楼C座也采用柱下条形基础,基础宽度为3.0m,基底标高同A,B座,局部达到-14.0m。同样基底反力为230kPa左右。通道1,2,3部分为筏板基础,此处由于上部钢结构跨度大,柱下荷载相对较大,采用筏基后,基底反力均达346kPa左右,满足设计要求。采用分层总和法沉降计算,办公楼A座、B座、C座条形基础及筏基的沉降量计算均小于50m。相邻柱沉降差异及沉降总量计算均满足设计要求。地下车库部分采用天然地基,基础宽度3.0m,基底标高为-11.800m。在所有条形基础与筏板之间及条形基础之间设置钢筋混凝土防水板,防水板厚350。设计时地下水位的浮力按5m的水位进行设计,其中防水板抗浮计算中已考虑枯水期的水位变幅1m。防水板经计算构造配筋已满足设计要求。

1.2上部结构设计1)结构分段。整个建筑我们采用上分而下不分的原则,在办公楼A座、B座、C座及通道1,2,3在±0.000地面以下连为一体,在±0.000地面以上各相邻单体之间设置防震缝,使得将整个看似复杂的连体高层建筑的计算将划分为在±0.000嵌固的6个独立的计算单元进行计算,避免了因楼座之间高位连接所形成的超限问题。我们对整个结构进行了包络设计,即采用整体多塔分析与各单体的独立计算。施工期间,在楼座与地下车库之间设置用于沉降的后浇带,沉降后浇带在结构主体完成后浇筑。C座因为长度119.6m,属于超长结构,我们在设计时考虑了一定的温度应力,在框架梁柱外侧及屋面板面均设置一定数量的温度筋,抵御温度应力,且C座办公楼在长度1/3位置设置用于温度后浇带,温度后浇带在地下室结构完成后60d浇筑。2)结构体系。本工程办公楼A座、B座及C座均采用钢筋混凝土框架—抗震墙的结构形式;通道1,2,3采用钢骨混凝土柱、钢骨混凝土剪力墙、钢梁的框架—抗震墙结构形式;其中西侧通道2、东侧通道3跨度为20.9m,北侧通道1为29.8m~37.3m。楼面、屋面采用钢梁+钢筋混凝土板的组合楼面体系。地下室采用钢筋混凝土框架的结构形式。3)建筑物抗震等级。上部:办公楼A,B,C座,抗震墙抗震等级为一级,框架等级为二级;通道1,2,3抗震墙抗震等级为一级,框架等级为二级(按钢结构考虑)。地下部分:办公楼A,B,C座及通道1,2,3地下一层抗震墙抗震等级为一级,框架等级为二级;地下2层(含夹层)抗震墙抗震等级为二级,框架等级为三级。地下车库抗震等级为三级。与主楼连接的相关范围内其抗震等级同主楼的相应部位的抗震等级。对于地库与主楼连接处的错层部位,我们采取了提高一级抗震等级的构造措施进行包络设计,满足了规范要求。

2结构分析及结果

1)本工程设计计算所采用的计算程序。采用《多层及高层建筑结构空间有限元分析与设计软件—SATWE》(2012年6月)进行结构整体分析。2)主要计算结构如下。办公楼A,B座计算结果见表1,表2。

3设计总结

第2篇

1.1支撑方式和支撑点选择

由于相机采用全反射光学系统,反射镜的背部不参与光束传输,因此,常采用刚度较高的背部支撑方式。

1.2柔性支撑结构设计

在主镜支撑结构上减弱了个别方向上的刚度,引入了一定的柔性,以此来抵消反射镜由于温度变化产生的热应力和微小变形。柔性铰链被广泛应用于支撑结构的柔性设计领域,其具有无机械摩擦、结构简单、释放自由度和灵敏度高等特点。柔性铰链通过在某一方向上切开一个柔性槽,以降低该方向上的刚度,体现其柔性,使其能够产生微小变形,释放热应力,只存在一个柔性槽的柔性铰链被称为单向柔性铰链,而在一般情况下,往往将多个柔性槽成组使用,即可实现在多方向上的柔性,达到释放多个自由度的目的,将其称之为多层柔性铰链。由于主镜采用背部3点支撑方式,在反射镜长度方向上对称分布支撑点位置,基于半运动学安装定位原理,每个柔性支撑结构需要约束两个方向的自由度,因此,采用3层组合式柔性铰链,释放4个方向的自由度,参考Bipod双脚架设计原理,设计柔性支撑结构,其分为两个部分,上部分与反射镜支撑孔粘接,下部分与支撑背板连接,上下两部分通过螺钉连接。3个柔性铰链对心安装,便可以恰好约束镜体6个方向的自由度,又不会因为过定位产生装配应力。支撑背板的作用是固定连接3个柔性支撑结构,将反射镜固定安装在框架指定位置,因此采用高强度的加强筋与薄壁组合的结构形式,组成多个结构封闭的四边形单元,以达到支撑背板高刚度的的要求。对比材料各项性能指标,综合考虑力学性能、热性能、对空间环境的适应性以及加工工艺性等因素,选用线胀系数经过特殊匹配的Invar作为反射镜柔性支撑结构的材料,采用比刚度高、导热性好、线胀系数低的高体份SiC/Al复合材料作为支撑背板的材料。

2镜体轻量化设计

在反射镜背部,布置一系列形状规则的三角形轻量化孔,具有轻量化率较高、刚度好、“网格效应”低、加工制造工艺成熟等优点。为确定主镜镜体最优的结构尺寸,在反射镜刚度最大和质量最小之间取得最佳平衡,需要对镜体进行优化设计。首先建立反射镜的有限元模型,分析其在1g重力作用下的变形,并提取镜面最大变形结果,生成优化过程中所需要的分析文件,然后,选择优化处理器,确定目标函数为反射镜质量最小,状态变量为1g重力作用下的镜面最大变形结果,设计变量为反射镜结构尺寸参量,选择背部3点支撑约束,指定优化方法及循环控制方式,便可以进行优化分析。但是,在主镜结构优化设计过程中,影响反射镜镜体质量和刚度的结构参量有很多,若都进行优化设计,会使设计变量增多,迭代次数增加,运算效率降低,甚至导致无法收敛。由于各结构尺寸的影响程度各不相同,可以首先分析各参量对镜体质量和1g重力条件下镜面最大变形量的影响。因此,在进行结构优化分析之前,先确定影响较小的结构尺寸参量,降低计算规模,再对影响较大的结构尺寸参量进行多变量优化。

3反射镜组件有限元分析

对经过分析和优化设计后的主镜组件进行有限元分析,在建立结构的有限元模型时,以六面体Hex6单元为主,以提高分析精度和效率。利用有限元分析软件,分析得到主镜组件在重力和温度影响下的变化结果,Fig.8Thefirst-orderfrequencyofprimarymirror由分析结果可以看出,主镜组件在重力和温度变化作用下,表征面形变化的PV值和均方根(rootmeansquare,RMS)值,以及表征位置变化的位移值和转角值均能满足设计要求,1阶频率为80.03Hz,满足卫星对载荷特征频率大于60Hz的要求,因此,主镜组件结构具有较好的力学适应性、温度适应性和动态刚度。

4力学振动试验

为了验证上述有限元分析结果的正确性,以及对实际加工装配后的主镜组件结构的稳定性有一个客观评价,对主镜进行了1g正弦扫频试验,测试结构的实Fig.9Vibrationtestofprimarymirror际模态,如图9所示。振动响应曲线如图10所示,纵坐标表示对测点加速度响应值Ma求以10为底的对数。从响应曲线可以看出,主镜组件的实际1阶频率为73.06Hz,动态刚度较高,且与有限元分析误差不到10%,说明了有限元分析结果精度较高。Fig.10Responsecurveof1gsinusoidalvibration

5结论

第3篇

由于事故闸门在非小频率洪水期,长期处于挡水状态,且隧洞又较长,水头较高,经分析比较,在事故闸门前设置1道检修闸门是必要的,用来事故闸门及其埋件检修时挡水。检修闸门孔口尺寸为10.5m×10.5m,按正常蓄水位设计,设计水头为40m。其底坎高程为224.00m,闸门检修平台高程为278.25m。检修闸门为焊接结构,主体材料根据其工作环境温度、操作条件及荷载工况设计为Q345B,主横梁采用工字型实腹等截面焊接结构,闸门主支承采用高强度钢聚甲醛复合材料滑道,较常用的铸铁滑块摩擦系数低,可以大大降低启闭机容量,节省了工程投资。门叶结构按国家运输单元划分标准沿高度方向设计成5节制造运输,在现场焊接连成整体,闸门采用上游止水方式。闸门的操作条件为静水启闭,闸门充水平压方式采取节间充水平压方式和小门充水平压方式两种进行比较。考虑闸门孔口尺寸较大,为大型平面滑动闸门,设计水头又高,采用节间充水平压方式,会引起闸门振动,存在安全隐患。因此,经综合比较采用小门充水平压方式是合适的,当闸门前后水头差达到预先设定值时静水启门。检修闸门的数量为1孔1扇,选用1门1机的布置方式,经计算选用1×1600kN高扬程固定卷扬式启闭机操作,闸门平时锁定在检修平台上,不存在钢丝绳泡水问题,也避免了采用拉杆装拆繁琐问题。闸门锁定梁采用如意式自动锁定梁,较常用的人工及半自动工字梁操作方便,省时省力,安全可靠。启闭机平台的布置根据启闭机上极限、闸门充水行程及闸门整节吊离孔口并留有检修底水封的空间高度,确定启闭机平台高程为296.50m。

2进口事故闸门及其启闭设备

在检修闸门下游侧设有1道1孔1扇事故闸门,在隧洞及出口工作闸门发生事故时可起到保护作用。事故闸门孔口尺寸为10.5m×10.5m,其底坎高程为224.00m,闸门挡水水位按万年校核水位268.50m设计,设计水头按系列水头取为45m,闸门检修平台高程为278.25m。事故闸门为焊接结构,闸门主体材料依据其工作环境温度、操作条件及荷载工况设计为Q345B,由于底主横梁荷载较大,采用箱型梁实腹等截面组合梁,其他主横梁采用工字型实腹等截面组合梁。闸门主轮材料依据轮压荷载选为ZG35Cr1Mo,采用偏心轴定轮支承,以便在现场安装时,调整各主轮踏面高度,使每个主轮踏面尽量在同一平面内。因闸门跨度较大,为保证主轮与主轨踏面接触良好,主轮轴承选用自关节轴承,以便适应主轮处转角。门叶按国家运输单元划分标准分5节设计、制造及运输,在工地焊接连成整体。闸门采用上游止水方式,以避免闸门长期处于挡水状态而使主轮泡水而发生锈蚀破坏。闸门的操作条件为利用配重动水闭门,闸门的配重可选择利用水柱和铸铁配重两种方式,考虑利用水柱闭门闸门结构复杂,启闭机容量大,投资相对较高,选用了简便易行的铸铁加重块布置固定在闸门门叶梁格内,用来满足动水闭门的要求。闸门充水平压方式可采用节间充水和小门充水两种方式,考虑闸门孔口尺寸较大,为大型平面定轮闸门,设计水头又高,为避免充水时引起闸门振动,埋下安全隐患,采用了在门体上开小门充水平压方式,当闸门前后水压差达到设定的数值后静水启门。闸门启闭设备考虑了固定卷扬式启闭机和液压启闭机两种启闭设备,对于该部位两种启闭设备都需要水工布置安装固定排架,如使用液压机需配拉杆,增加了施工及运行期安装与拆卸的工程量。固定卷扬式启闭机较液压启闭机造价低廉,更经济合理,足以满足操作闸门的要求。因此,闸门选择了2×2500kN高扬程固定卷扬式启闭机进行操作。闸门平时处于关闭状态,启闭机吊具直接与闸门吊耳相连接,由于闸门为上游止水,不存在钢丝绳泡水问题。启闭机安装高程根据启闭机上极限、小门充水行程高度及闸门整节吊离孔口在检修平台以上有一定的裕度综合考虑,确定启闭机布置在296.50m高程的平台上。

3出口工作闸门及其启闭设备

在隧洞出口闸室段设1道1孔弧形工作闸门,用来调节50年一遇及以下小频率洪水,闸门平时处于开启状态,当事故闸门开启需进行充水平压前,工作闸门下闸挡水,有局部开启要求。由于弧形闸门无门槽,水流条件较平面闸门好,能更好地满足闸门局部开启调节泄量的要求,因此,工作闸门型式选用弧形闸门。工作闸门孔口尺寸为8.8m×8.8m,其底坎高程为193.00m,支铰中心至底板距离确定为13.0m,闸门挡水水位按万年校核水位268.50m设计,设计水头按系列水头取为76m,弧门面板外缘半径为18m,经流激振动试验表明闸门布置合理满足泄洪时支铰不阻水及局部开启要求。闸门采用直支臂主纵梁焊接结构,按常用的计算方法,初步确定断面形式及尺寸,再通过有限元计算方法进行强度、刚度及稳定性分析,根据有限元计算成果加强了断面尺寸。门叶主纵梁为焊接组合箱型梁,纵隔板为实腹T型焊接结构,主梁和支臂均采用组合式焊接结构,闸门主体材料依据其工作环境温度、操作条件及荷载工况设计为Q345B。闸门顶水封结构形式在门叶和门楣上各设一道,门叶上P型橡皮顶止水可沿水流方向在水封座板上移动,避免了支臂受水压后的弹性压缩使闸门漏水,门楣上水封采用转角式,利用水压力将水封压紧在面板上。支铰型式为圆柱铰,支铰材料为ZG35Cr1Mo,支铰轴承为铜基镶嵌自球面轴承。支臂与门叶、支臂与支铰之间均采用螺栓联接,为了承受支铰的作用力和便于闸门的精确安装,设置了支承面经加工的支承钢梁,钢梁埋入二期混凝土内与一期混凝土埋件相连接,有效地将闸门所承受的荷载安全的传递到混凝土中去。潜孔弧形工作闸门启闭设备可选用弧门卷扬式启闭机和液压启闭机两种型式,但经计算该闸门需要1600kN闭门力才可动水闭门,使用弧门卷扬式启闭机操作需要加配重,这样必然增加启门力,启闭机的容量和重量以及外形尺寸都要相应增加,势必造成开挖量增大,造成浪费。液压启闭机本身可以设计成具有1600kN闭门力的型式,节省了配重,减小了启门力,外形尺寸小,布置整齐、美观。经综合比较选择了中间铰支摇摆式液压启闭机操作该闸门。液压启闭机布置在225.8m高程液压启闭机室内,启闭容量为4500kN/1600kN(启门力/闭门力),一台液压启闭机设置一套泵站进行操作和控制,液压启闭机吊点型式为单吊点,根据闸门的启闭高度,确定启闭机的工作行程13m,最大行程13.2m。

4结语

第4篇

1.1贴楦及要求

中国的童鞋分为小童(3~6岁)、中童(7~12岁)和大童(12岁以上),大童的尺码已接近成年人,一般按成年人的尺码进行设计,但在童鞋设计时,要区分小童和中童。在设计小童鞋时,一般选用26码作为基本码;如果设计中童鞋时,一般选用32码(法码)作为基本码。而本次设计是以小童鞋为例,所以选用26码楦作为标准楦,数据也选用标准数据,即它的楦底样长为166mm、跖围为165mm。目前,贴楦绝大多数是采用美纹纸贴楦法,而在进行沙滩凉鞋的帮样结构设计时,基本都采用贴全楦法,即在贴楦时,有三条美纹纸竖向贴(先贴一条背中线,再在两侧各贴一条),接着其他采用横向贴法,且每条美纹纸都有1/2的重合(见图2)。

1.2标划“三点一线”和口门、后帮控制线

用铅笔在已贴美纹纸的楦头上,将背中线、后弧线、楦底中心线画出,并找到外腰边沿凸度点O,过点O作背中线的垂线OH,即为口门控制线。取OH的中点E和后跟高度点C(26码的后跟高度为45mm),用软尺直线连接CE,即为后帮高度控制线(见图3)。

1.3设定各部位点

各部位点的设定,见图4。(1)鞋帮总脸长的设定鞋帮总脸长没有固定的数据,主要视鞋的风格类型和分割比例而定,同时兼顾美观和穿着的舒适性。本款式凉鞋总脸长点设在脚弯点与跗骨点之间,一般是楦底样长的65%,即166mm×65%≈108mm;以楦底前端点I沿背中线向后量取长为108mm处,定为J点,线段JI即为鞋帮总脸长。(2)内怀最前点的设定全空式凉鞋的内怀最前点主要根据款式类型而定,一般设计在大脚趾后端点的前方。根据本款式特点,内怀最前点一般设计在楦底样长的85.5%处,即以楦底后端点K为起点,直线量取142mm(166mm×85.5%≈142mm)与楦底边沿交叉点P,即为内怀最前点。(3)外怀最前点的设定全空式凉鞋的外怀最前点,也是根据款式类型而定,一般设计在小脚趾后端点的前方。根据本款式特点,外怀最前点一般设计在楦底样长的83.1%处,即以楦底后端点K为起点,直线量取138mm(166mm×83.1%≈138mm)与楦底边沿交叉点S,即为外怀最前点。(4)后帮高度的设定后帮高度主要根据款式、后跟造型和穿着的舒适性而定。本款式是带有后带的凉鞋,且后带中包有海绵,因此,这样的后帮高度要略高于正常的后跟高度点。通常是占楦底样长的28.9%,即166mm×28.9%≈48mm。以楦底后端点K沿后弧线向上量取长为48mm处,定为M点,线段KM的长度即为后帮高度。

1.4设定部位线条与造型

各部位线条与造型的设定,决定了本款式的美观度和一定的舒适度(舒适度还与楦型有关),因此在帮样结构设计中此步骤非常关键。各部位线条和形状见图4或图5。(1)A—前帮内侧面的形状设定本款式的前帮内侧面,是一条带形状,可设计成直条形,但这样设计会过于简单,不是很美观,所以将它设计成下大上小的造型,这样做会有线条的美感,以及与B部件结合的非常流畅,不会那么呆板。大小要考虑B部件的数据,因为B部件的材质是织带,它的宽度数据是固定的几种,有15、18、20、25mm等规格。在本款中选择18mm或20mm(本文选择20mm)规格比较合适,因为太小,不够大方,美观度不好;太大,感觉过于臃肿。因为上端连接B部件,所以选择22mm的宽度;下端要比上端大一些,选择28mm。(2)B—前帮外侧面的数据设计上面已经介绍过,B部件的宽度选择,这里不作过多表述。而它的长度与E部件有关,因为B部件没有内里,它通过对折后固定在A部件上,形成环套,E部件从中穿过。所以与穿过B部件处的E部件宽度有关。(3)C、D—装饰片的造型设计鞋用的装饰件品种繁多,有装饰花、金属扣件、图案装饰等。而本款式的装饰件采用的是金属扣件与皮料装饰搭配使用,使装饰不会过于单调。此装饰件由3个部件组成,分别是C、D部件和“D”字形的金属扣。而C、D部件首先起到固定金属扣的作用,附带装饰的效果。因此,C、D部件连接金属扣处的宽度以D字扣的内径为准,而另一端设计成半边D字形的造型,使整个装饰看起来更协调、美观。本款式的D字扣的内径选用16mm,根据装扣件原则,皮料要比扣件内径略小一点,所以C、D部件与金属扣连接处的宽度设为14mm。C部件的另一端设计的要大一些,因为C部件的位置刚好在脚背上,视觉效果很明显,所以选用3颗铆钉去固定,这样饰看起来会更大气,它的宽度设为20mm,长度设为30mm。而D部件的另一端设计的稍大一些即可,因为D部件的位置在后方,装饰效果不很明显,所以用一颗铆钉固定便可,它的宽度设为16mm,长度设为22mm。(4)E—中帮面的线条设定在中帮面的设计中,主要配合整个鞋帮的造型和美观度,但对于凉鞋来讲,还要考虑有尽可能多的部位,同时不影响穿着的舒适度。本款式的中帮面造型中有一部分属于前帮面,它直接顺延到中帮面上,最终形成一个“Y”的造型。在前帮这个部分,它的宽度要与前帮内腰面相协调,因为与B部件有一个镶套的连接,它的尺寸要比A部件设计的小一些,所以在镶接处的宽度设为20mm,帮脚处设为24mm。在中帮面部分的宽度要比前帮面的略宽一些,设为26mm。鞋口处的线条用截面的方法去设计,即固定内外怀鞋底处定位点,再用软尺绕楦型一周,直接画直线便可。前帮部分与中帮部分直接将线条顺延起来,形成“Y”字形的整体。在中帮面的外腰部分,没有设计成直接到帮脚处,为了使穿着更方便,将此处设计成开口装置,用魔术贴(俗称毛刺)作为活动开口。开口的下方连接着F—后腰面部件,中帮面与F部件有一部分重叠。重叠部分的长度设为38mm,因为太长,没必要,太短,魔术贴粘不住。中帮面的分割处离帮脚处约5mm,这样设计可以使后腰面隐藏起来,感觉像是没有分割,是一个整体,会有比较好的视觉效果。(5)F—后腰面的形状设定在本款设计中,后腰面属于隐藏部位,且在中帮面的下方,所以它的尺寸与线条主要顺延中帮的线条设计,只是在上端做成倒角,保证穿着的舒适性就可以了。因此,后腰面的上端宽度设为26mm,帮脚处设为30mm。(6)G—后跟条带带的造型设计对于凉鞋后跟条带的设计,主要考虑保证穿着时的跟脚,及保护中后帮面的造型不易变形。最常用的尺寸为20mm(宽)×25mm(长)。因为这样的长度和宽度就可以满足需求,尺寸太小,会不好入脚;太大,无法起到让穿着更跟脚的作用,也是一种浪费。

2帮面样版的制作

2.1展平样版

在帮样结构设计中,样版的制作方法有很多种,有美纹纸贴楦法、牛皮纸贴楦法和比楦法等。而本文将介绍的是最常用的美纹纸贴楦法。鞋楦是一个三维立体的造型,而帮面样版是一个二维平面图形。因此在制作帮面样版之前必须有一个立体向平面转化的过程,即展平处理。经过展平处理而得到的样板,称之为展平样板。另外,每一块帮面样版都可以根据展平而制得,所以展平样版也称之为母版。具体步骤如下:(1)将已进行结构设计的美纹纸割去多余部分,在后跟条带上沿后弧线方向割开,再将美纹纸撕下,并展平在准备好的纸板上。从背中线部分向两侧逐渐展开、贴平,尽可能不产生褶皱(见图6)。(2)在帮脚处加7mm,后弧线断开处的两侧加2.5mm,然后再将各线条修顺畅,并割下。(3)在帮脚处用分规画一条距边5mm的线,然后在这条线上,取一些点(间距为5mm)并冲孔,作为线缝工艺操作时的缝线定位点。(4)在帮面装饰片的固定位置处,刻出槽线,用于制作装饰片的样版和定位。这样就完成了展平样板的制作(见图7)。

2.2净样版

(1)A—前帮内侧面先在纸板上画出前帮内侧面的轮廓线和帮脚的缝线定位点以及缝线的槽位线,并将此轮廓线割下,再在样板中间处刻一道槽线,作为缝假线的定位线,并做上内怀标志的牙剪。这样就可以得到前帮内侧面的净样板(见图8)。(2)B—前帮外侧面因为前帮外侧面使用的材料是织带,它有固定的宽度,之前的结构设计时已选择宽度为20mm,所以先割取一条宽度为20mm的条带,然后在这条带上做一对折线,将展平样板B部件的外轮廓一端,对准条带的对折线,然后画下与A的分割线和缝合线,最后放出8mm的压茬量,再沿着对折线对折,并剪去多余的条带,即可得到前帮外侧面的净样板(见图9)。(3)C—前装饰片在纸板上先画出前装饰片的轮廓线,然后在离前装饰片与金属扣件连接处3mm(因为金属扣是有厚度的,放出这3mm可抵消扣件厚度对样板的影响)远的地方做一条中心线,作为前装饰片的对折线,做出一个等腰三角形(底边长为8mm,边长为12mm),以此三角形的顶点作为铆钉定位点,用内径为2.0mm的冲子冲孔,将纸板沿对折线对折,并割出其轮廓线,展开后将两侧按线条走向顺延减小,长度为超过第一个铆钉定位孔8mm,剪去多余样板,在对折线上打两个定位孔,这样即可得到前装饰片的净样板(见图10)。(4)D—后装饰片方法同前装饰片的制作,只是在设定铆钉定位点时,将3个点改成1个点即可,这个点距离底边8mm左右,以便可得到后装饰片的净样板(见图11)。(5)E—中帮面先在板纸上画出中帮面的轮廓线和装饰片的定位点,以及帮脚处的线缝定位孔,然后将线条修顺,将外怀后侧的两个圆形倒角画好,后侧鞋口处放3mm翻缝工艺量,在内怀处冲出后跟条带的定位点,在帮脚处冲出的线缝定位点,然后再用内径为2.0mm的冲子冲出装饰片的定位点,最后割出轮廓线,做上内怀标志的牙剪,即可得到中帮面的净样版(见图12)。(6)F—后腰面先在板纸上画出后腰面的轮廓线和帮脚处的线缝定位孔,然后将线条修顺,将上端的两个圆形倒角画好,再冲出后跟条带的定位点,并在帮脚处冲出的线缝定位点,再做出毛刺定位线,最后割出轮廓线,即可得到后腰面的净样版(见图13)。(7)G—后跟条带先在板纸上画出一条中心线,将展平样版的内侧后跟条带的后端线对准此中心线,画出后跟条带的轮廓线,再将展平样版的外侧后跟条带的后端线对准此中心线,画出后跟条带的轮廓线,在上端鞋口处放3mm的翻缝工艺量,在两端各放8mm的压茬工艺量,并刻出槽线,最后割出外层轮廓线,在内怀做上内怀标志的牙剪,在中心线的上端剪出一个牙剪,下端打一个标志点,这样即可得到后跟条带的净样版(见图14)。

2.3划料样版

划料样板是在帮面的净样版基础上放出折边量和压茬量,再除去槽线和定位点的样版。因此,将帮面样版外轮廓线画在纸板上,如果遇到是折边工艺的,这个边放4.5~5mm;如果是压茬工艺的,这个边放8mm;其它工艺的保持不变,割去外轮廓线,即可得到划料样版。

3内里样版的制作

一般情况下,内里样版是根据帮面的展平样版来制作的,但分节式内里除外。而分节式内里一般都根据各组合的帮面来制作。本款式沙滩凉鞋采用的是分节式内里,所以选用帮面样版来制作内里样版。

3.1前帮里

先在纸板上画出前帮内侧面的轮廓线和槽线,在帮脚处向里缩条线3mm,在两侧各放出3mm,又在上端以槽线为基准放5mm,作为冲里量,然后割出轮廓线,作出内怀标志的牙剪,即可得到前帮里的样版(见图15)。

3.2中帮里

在纸板上先画出中帮面的轮廓线,在两边的帮脚处各向里缩条线3mm,在前端和外侧面放出3mm的冲里量,后端不变,然后割出轮廓线,作出内怀标志的牙剪、翻缝标志点和(魔术贴)毛面的定位点,即可得到中帮里的样版(见图16)。

3.3后帮里

在纸板上画出后腰面的轮廓线,在帮脚处向里缩条线3mm,其余部分放出3mm作为冲里量,然后割出轮廓线,即可得到后帮里的样版(见图17)。

3.4后跟条带里

将后跟条带样版放在纸板上画出轮廓线,在两端处各缩回3mm,在下端放出3mm的冲里量,即可得到后跟条带里样版(见图18)。

3.5(魔术贴)毛面和刺面

将中帮里与(魔术贴)毛面镶接的部位轮廓线画在纸板上,然后在后端缩回5mm,割出轮廓线即可得到毛面的样版。制作(魔术贴)刺面的样版时,先将后腰面的轮廓线和刺面的定位线画在纸板上,在前后两端各缩回2mm,割下轮廓线后,修顺四个圆角,便可得到刺面的样版(见图19)。

4定位版的制作

在制作定位版之前,要进行贴楦操作,只是贴楦主要是贴楦底板。贴楦完成后,在结构设计时,在楦底边沿做上各个帮脚处的定位标志,再将楦底样版揭下来,展平在纸板上,修顺轮廓线并刻下。用分规向内缩回5mm,画一圈线,然后将楦底边沿上所做的各个帮脚处的定位标志线顺延至此线,再剪去各定位处凹槽里的量,便可得到定位版(见图20)。

5问题分析

(1)鞋帮不伏楦鞋帮不伏楦分两种情况,原因有所不同,处理方法也有所变化。第一,如果鞋帮出现歪扭现象,从而导致不伏楦,很有可能是在制作展平样版时,没有顺延美纹纸的方向展平,强行拉动美纹纸,偏离自然跷度太多。或者在做定位版的时候发生了偏差,从而导致定位不准。第二,如果是因为鞋帮太大而导致鞋帮不伏楦,可能是因为材料太薄或延伸性太大所致。也可能是制作样版时放余量太大,或美纹纸被拉伸了太多。如果是材料问题,只需改变复合材料或增加复合材料便可。如果是样版问题,则必须修改样版。(2)鞋帮太紧,无法线缝这个问题比较简单,最有可能是因为制作样版时,没有加放余量或加放余量太小。又或者材料太厚或几种材料复合后太厚。如果厚度没问题,材料延伸性也正常,那就要调整样版了。(3)(魔术贴)毛、刺外露,盖不住毛、刺外露,可能是在设计时刺的大小已经超出了毛覆盖的范围。如果设计没有问题,那就是中帮面的样版制作得太小了。

6结束语

第5篇

根据场地岩土工程勘察报告,本场地在5层地下室开挖后,基底已落在强风化层或中风化层,强风化层顶面标高为-21.88~-9.91m。因此本工程基础主要采用人工挖孔灌注桩,桩端以中风化花岗岩作为持力层,局部微风化层较浅处以微风化层为持力层,部分位置采用天然基础,仍以中风化花岗岩为持力层。副楼地下5层墙柱在大震下仍然有拉力,故在基础设计时,综合考虑抗浮,设置了抗拔桩及抗浮锚杆,锚杆嵌入中风化或微风化层。场地不存在液化土层,地下水对混凝土具有弱腐蚀性,对钢筋具腐蚀性。

2抗震性能目标及抗震构造加强措施

主楼超限内容[3]为:1)超过B级适用高度15%;2)2层局部挖空楼板,形成跃层柱。根据超限情况,确定主楼抗震性能目标为C级,多遇地震下满足第1水准,设防地震下满足第3水准,罕遇地震下满足第4水准,具体构件抗震性能目标如表2所示,并要求结构在罕遇地震作用下最大层间位移角不超过1/100。本工程2012年6月已通过广东省超限委员会的超限高层建筑专项审查。

3计算分析

3.1小震弹性反应谱分析小震弹性反应谱分析采用SATWE及MIDASBuilding软件。沿X,Y向输入地震波,安评谱计算的基底剪力大于规范谱的计算结果,故采用安评谱进行分析。考虑偶然偏心,采用刚性楼板假定,主楼周期折减系数为0.9,连梁刚度折减系数取0.7,嵌固端取地下室顶板,分析模型包含3层屋顶架构,共46层。主要分析结果见表3,从表3可以看出,两种软件计算结果比较吻合,各项指标均符合高规[4]和广东省高规[5](层间位移角限值为1/565)的要求。SATWE软件计算的层间位移角曲线见图4,楼层抗剪承载力比值曲线见图5。

3.2小震弹性时程分析小震弹性时程分析仍采用SATWE软件,采用2条天然波(Oakwh波、Sanfern波)及1条安评波。分析结果见表4。由表4可知,X,Y向单条地震波计算所得基底剪力最小值占CQC法计算结果的百分比分别为84%,78%,X,Y向3条地震波计算所得基底剪力平均值占CQC法计算结果的百分比分别为85%,86%,符合高规[4]的相关规定。

3.3中震分析中震分析采用SATWE软件,连梁刚度折减系数仍取0.7,不考虑构件承载力抗震调整系数及与抗震等级相关的内力调整系数,材料强度中震弹性取设计值,中震不屈服取标准值,其余输入参数(考虑偶然偏心、周期折减系数、双向输入地震力)同小震分析。配筋较大的第10层墙、柱、梁的配筋见表5,其中各构件编号见图3(b)。由表5可知,墙柱配筋取小震分析结果即可满足中震分析要求,梁的配筋取小震和中震分析的较大值。首层典型剪力墙抗剪承载力见表6。由表6可知,剪力墙抗剪承载力有很大富余。由表5,6可知,各构件均符合抗震性能目标的要求。

3.4大震动力弹塑性时程分析

3.4.1基底剪力和层间位移角采用MIDASBuilding进行大震动力弹塑性时程分析,梁柱铰特性值均采用武田三折线模型(考虑刚度退化修正),剪力墙采用纤维单元模拟,并采用施工图的实配钢筋。采用小震弹性时程分析的3条地震波,峰值加速度均为220cm/s2,持续时间均为30s,地震波的时间间距为0.02s。主要分析结果见表7,层间位移角响应见图6。由表7可知,大震动力弹塑性时程分析的基底剪力与小震弹性时程分析的基底剪力的比值的平均值为3.53(X向)、3.78(Y向),满足高规[4]要求,同时也说明结构耗能良好。Sanfern波作用下结构响应最大,X,Y向的最大层间位移角分别为1/195,1/189,均小于高规[4]限值1/100的要求。由图6可知,X向层间位移角呈弯剪型,Y向层间位移角呈剪切型,主楼X向采用弱连梁连接的双筒,比Y向有较好的耗能机制和耗能次序。

3.4.2结构抗侧力体系损伤情况取结构响应最大的1条天然波(Sanfern波)X向地震作用下的结果进行分析。由图7,8可知,在罕遇地震作用下,塔楼结构主要抗侧力构件没有发生严重破坏,大部分连梁和框架梁屈服耗能,框架柱未屈服,底部加强区墙体少量进入抗弯屈服状态,墙体未出现剪切屈服,这说明结构是“梁铰破坏”机制。计算结果还表明,结构的耗能机制和耗能次序为:弱连梁耗能屈服强连梁及框架梁耗能屈服核心筒部分抗弯耗能屈服框架柱部分开裂。这说明结构是通过弱连梁和框架梁的屈服作为第1道耗能防线,双核心筒作为第2道耗能防线,框架柱作为第3道耗能防线,实现了良好的耗能机制,有效保护了竖向构件,延缓了主体结构的损伤。由图9可知,弱连梁延性系数大部分在0.5~3.5之间,极少部分在3.5~5之间,弱连梁仍具有较大变形能力,可以承受竖向荷载作用,结构整体和各类构件还有较大的弹塑性变形能力储备。

3.5无梁楼盖的屈曲分析本工程设5层地下室,为满足在相同净空要求的前提下能有效减小建筑层高,同时也能够减少土方开挖量,地下3层~地下1层地下室楼盖采用无梁楼盖体系,板厚270mm,柱帽厚550mm。由于埋深较深,土的侧压力和水压力较大,故采用SAP2000软件(V15.2.1版)对地下3层无梁楼盖(图10)进行屈曲分析。取恒载G+活载L作为初始荷载,屈曲荷载工况为:(Kaγh1+γwh1)h。其中Ka为静止土压力系数;γ为土的浮容重;γw为水容重;h1为计算点深度;h为地下室层高。屈曲模态见图11。计算结果表明,第1阶屈曲模态特征值为54.1,第2阶屈曲模态特征值为62.5,第3阶屈曲模态特征值为72.3。由此可见屈曲模态特征值远大于10,无梁楼盖稳定性有足够的安全储备。

3.6抗震构造加强措施根据主楼超限内容及计算分析的结果,采取如下的抗震构造加强措施:1)全楼抗震等级按一级采用,适当提高核心筒剪力墙分布筋的配筋率。2)对于连接双核心筒的弱连梁,其承载力为抗弯控制,抗剪承载力富余较大,同时配置加强箍筋及横向拉筋,提高该处连梁的变形能力。3)底部第2层由于建筑双层柱廊要求,结构楼板缩进,形成边框柱跨两层高。柱计算长度l为14m,l/b(b为柱宽)为8.5>4,为中长柱,其稳定系数接近于1,具有很好的延性。为了提高1~2层结构的侧向刚度及水平承载力,采取了加大底部两层墙体厚度和加大边框柱截面的措施。4)工程无竖向不规则,无抗剪承载力突变,无楼层质量不均匀,除顶部局部平面不规则外无平面不规则;无扭转不规则,除个别楼层外,其余楼层的扭转位移比均在1.2以内;通过改变柱尺寸、剪力墙厚度、采用剪力墙开洞口等方式逐步缩短剪力墙长度,使结构刚度由下至上逐渐均匀减小,不出现刚度突变。5)工程双筒的连梁配筋取小震作用下两端刚接和两端铰接的较大值。

4结语

第6篇

1.1滑槽的设计有以下三种方案方案一:在图1(a)中小球与轨道理想为两点接触,其受力情况为垂直于两斜坡面指向球心,因为碰撞后小球的速度方向不是理想的切线方向,若与理想的切线方向有角度的偏移,可能会发生干涉。方案二:图1(b)中小球与轨道为理想的单点接触,其受力情况垂直于底面向上,小球在运动的过程中与轨道始终保持单点接触,实现理想的纯滚动,这对于减少能量损失有帮助。图1(c)中小球与轨道的接触理想为单点接触,其摩擦力比图1(a)和图1(b)小一点,但是轨道截面形状的参数不易求解,加工实施困难。因此综合以上三种的方案的比较分析,方案二更有利于加工和减少能量的损失,从而滑槽选择方案二更适宜。

1.2球与滚道之间的摩擦力分析球与滚道之间的摩擦可分为滑动摩擦和滚动摩擦,滑动摩擦因数一般较大,摩擦的能量损失也较大,球在轨道上滑动的整个过程中产生的损失也最大,而整个过程中滚动摩擦力只是把平动动能转化为转动动能,因为转动动能在碰撞过程中大部分损失,所以为了减小碰撞的整个运动过程中能量的损失,必须尽可能地减小平动动能转化为转动能,较好的方法就是通过增加轨道和滚球的刚度,从而减小滚动摩擦因数μ以及正压力f。由f=μmgcosθ可知,滚槽的水平倾角θ越大,正压力越小。因此,θ越大,小球与滑槽之间的摩擦力越小。

1.3轨道基本轨迹的确定综上,对于该单摆球滚道“永动器”的轨道路径设计为圆弧-直线的组合式轨道,如图3(b)所示选用直线形轨迹,由于希望保持对心碰撞,轨迹底部加工出一段小水平直线,且该段直线的粗糙度较大,便于在小球碰撞摆锤时,小球将转动能转化为较大的摩擦力作用在摆锤上。考虑到命题要求以及工程上的因素,我们选用的轨道为圆弧-直线式组合轨道,其示意图如图4所示。

2摆系统设计

2.1摆锤与滚球的选取摆锤到达最低点与位于轨道上的小球发生正碰,由动量守恒定律,因此,当摆锤以速度v1的速度正碰静止的小球时,理想状态下,摆锤和小球可达到速度交换,从而实现永动碰撞的效果。由此类推,小球的质量是摆锤的3倍时,依然可以实现速度交换,理论上,两种方案都能实现速度交换,从而实现不断碰撞,但由于碰撞能量损失和小球在轨道上滚动时的摩擦,因此摆锤和小球的速度不断地交换下去实际上是不可能的。当选用方案二时,通过碰撞的速度交换规律得知,摆锤与滚球在实际中更容易在碰撞后一起摆动。为了尽可能地实现摆锤与小球多次碰撞,应选用方案一,即小球的质量与摆锤的质量相等。其摆锤和小球的参数为:小球直径为20mm,摆锤直径为20mm,二者都为实心钢球。

2.2摆锤与摆杆的连接命题要求摆杆直径为5mm的实心刚性杆件,由于摆杆自身的重量从而影响摆锤与滚球发生质心碰撞,因此为尽可能减小这种影响,摆杆的材料采用铝合金。摆锤的直径为20mm,考虑到摆球为刚性实心小球,其强度较大,不易攻螺纹孔,因此采用激光打通孔,在摆杆端部打一个M2.5的螺纹孔,通过紧固螺纹件将摆锤和摆杆相连。其三维设计图如图5所示。

3螺杆轴的强度校核

根据圆轴在扭转和弯曲组合变形下的强度条件。

4总体设计与调试

对于该装置,我们已经讨论得出其各个方面的大致情况,下面进行结构尺寸设计与调试。我们在调试中发现两个小球的碰撞过程分离开的时间极短,经过少量的几次碰撞后两个小球就会在一起摆动,这对于运动时间的延长极为不利,现进行如下分析:1)运动的小球在轨道上的速度衰减量极大,且最后近似于单摆的简谐运动,在空气阻力的影响下,经过若干次的振动后近似趋于静止。2)调试阶段我们选取了杆套与滑动摩擦的部分进行分析,观察发现其影响不大。且分析发现滑动转轴的精度如果设计不够好,会极大地损耗能量。3)摆锤与摆球的质量影响也比较大,且在运动的过程中我们发现,当大球碰撞小球时其运动过程较小球碰撞大球更易粘在一起运动。4)小球在轨道上下滚速度太快,致使摆锤与小球在第一次碰撞后运动过程无规律性,且最终的结果不太理想,这与周期有关。5)摆锤与小球碰撞点影响极大,因此在设计过程中需要能够满足支架和杆套可以进行一定的微调。单摆-球滚道“永动器”总体设计的示意图如图6所示。

5轨道工艺分析

为了防止轨道过于笨重,以及便于加工,轨道材料选用铝合金相对比较适宜。滑槽为矩形槽,其加工有两种方案[5]:方案一:用四轴联动的数控机床铣。方案二:将轨道分成两部分进行加工,即直接平面数控铣中间的滑槽面,另一边的挡板再用螺栓固定。但是方案一加工难度大,成本高,且滑槽面的精度不够高,而方案二采用普通的数控铣机床就可以加工,因此,从工程管理上考虑优先采用方案二加工。

6结语

第7篇

【关键词】型钢混凝土;石油化工;结构设计

1引言

型钢混凝土结构构件具备诸多优势,比如:受力性能好、截面尺寸小、抗震性能好、自重轻等,在石油化工结构设计中具备很优越的应用价值。在型钢混凝土结构设计过程中,需要明确方法,遵循《型钢混凝土组合结构技术规程》《型钢混凝土结构设计规程》等[1]。此外,还有必要通过构件的实际受力情况,对设计进行优化。总之,由于型钢混凝土具备很好的应用价值,所以对其应用进行探讨意义重大。

2工程实例分析

在石油化工焦化装置中,焦炭塔框架属于核心构筑物,操作重量大,装置支座位置及井架总高度偏高,通常情况下会有焦溜槽以及楼梯间附带。整体结构体系较复杂,设计存在一定难度。以某炼油厂为例,其工程延迟焦化装置焦炭塔框架属于两塔结构,焦炭塔单塔自重达4300kN(430t),塔外径为9690mm,单塔最大高度为41.3m。水焦工况最大操作介质为3040t,满焦工况焦炭量达到1150t。该工程所处场地在地面上10m位置的基本风压为0.5kN/m2,地面粗糙度为B类,抗震设防裂度为7度,工程场地设计基本地震加速度值为0.15g[2]。从框架设计来看属正常,但在结构空间利用方面提出了一些基本建议:(1)尽可能控制主要构件截面,使整体平面布置的需求得到有效满足;(2)确保塔体下方具备充足的空间,能够设置冷焦水过滤器1台和别的附属操作框架;(3)在塔体下方框架位置,有必要对全封闭设备操作房进行合理设置;(4)确保型钢混凝土结构能够合理、科学地应用,进而发挥型钢混凝土结构的作用。

3型钢混凝土结构的选择以及模型的计算

3.1结构选择

对于上述工程的焦炭塔框架设备支承部分来说,为典型的塔型设备基础,即:两塔板式框架联合塔基础,一共有3层,高为27m,纵向连续两跨2.5m×2,横向为单跨12.5m,出焦井架标高为27~117m,属中心支撑钢结构框架。

3.2模型计算

在设计中,所使用的是有限元分析软件STRAT,在利用该软件进行计算过程中需由经验丰富的技术人员操作,以确保计算值的精准性。同时,在焦炭框架选择上,选择高耸组合结构,在建模分析过程中,有必要对下部混凝土框架和上部钢结构的共同作用充分考虑,以此有效模拟结构的具体情况。对于完整的焦炭塔框架模型来说,需具备:①混凝土框架柱;②井架钢结构梁;③混凝土框架梁。此外,利用厚壳单元模拟混凝土顶板,利用薄壳单元模拟设备塔体。

4荷载组合与截面设计

4.1荷载组合分析

根据相关设计规范要求,对焦炭塔框架设计需根据承载能力极限状态最不利的效应组合加以设计。因此,两塔结构设计时的荷载组合为:(1)正常操作工况下:1.2永久荷载+1.0×1.3×(介质荷载+活荷载)+1.4×风荷载;(2)停产之前:1.2永久荷载+1.0×1.3×(介质荷载+活荷载)+1.4×风荷载;(3)停产检修工况下:1.2永久荷载+1.0×1.3×活荷载+1.4×风荷载;(4)地震作用下:1.2×[永久荷载+0.5×(介质荷载+活荷载)]+1.3×水平地震荷载+1.4×0.2×风荷载[3]。总之,需合理分析荷载组合,以此为进一步截面设计以及计算结果的准确性提供保障。

4.2截面设计分析

截面框架柱、框架梁的设计内容如下:1)框架柱设计。在设计初始阶段,如果外在条件全部一致,为了使框架柱截面的尺寸得到有效保证,可选择2种框架柱截面尺寸,通常会选择1个大柱尺寸,即:2500mm×2500mm规模;同时选取1个小柱尺寸,即:1800mm×1800mm规模,根据计算结果,采取对比的方法最终选择适合本工程结构的合理尺寸。在外在条件一致时,大柱和小柱模型需采取分别进行计算的方法。由于会受到框架柱截面尺寸差异的影响,进而使结构刚度存在很大的差异。针对此类情况,需要利用地震组合工况控制好设计结构。从实际经验来看,小柱模型在刚度上偏小,在柔性上较好,基于同样风载或者地震条件作用之下,结构内力偏小,便于为构件截面设计提供有利的条件。2)框架梁设计。对于框架梁来说,因受到工艺设计需求的影响,加之标高相对明确,使得调整的空间偏小。在梁截面上,一般选取为1500mm×2500mm。在对梁截面刚度进行合理增多的条件下,能够使框架柱的反弯点位置得到有效控制,进而使框架梁设计弯矩的要求得到有效满足。基于框架梁内部对H型钢进行设计,能够和框架柱内型钢柱之间组合成为内框架体系,从而使结构的整体性得到有效提升[4]。此外,框架顶板属于设备的支座层,起到承载塔体荷载的作用,在顶板中间部位需设置型钢斜梁,并采取STRAT计算结果提取内力,对厚板配筋进行计算。总结起来,在设置斜梁的条件下,能够使顶板的受力得到有效改善,同时使传力路线得到有效简化。

5结语

本次研究结合实际工程案例,对型钢混凝土在石油化工结构设计中的应用进行了探讨。在了解工程实例的条件下,需选择合理的型钢混凝土结构,并通过模型的计算,进一步分析荷载组合,然后在截面设计过程中,注重框架柱的设计和框架梁的设计。总之,对于型钢混凝土结构来说,对型钢和混凝同受力的特性加以应用的条件下,使混凝土的抗压性能以及型钢的抗弯性能得到有效展现,进而使结构的延展性得到有效提升。此外,在合理应用型钢混凝土结构的条件下,能够提升结构空间的利用效率,进而使实际生产需求得到有效满足。

作者:冉艳华 单位:中海油山东化学工程有限责任公司

【参考文献】

【1】陈燕,何夕平,马乐乐.各国规程对型钢混凝土梁抗弯承载力计算对比分析[J].青岛理工大学学报[J],2016(3):24-29.

【2】孙宇,郑岩,胡勇刚.延迟焦化在炼油工业中的技术优势及进展[J].石化技术与应用,2012(3):260-264.

【3】苏君超.焦炭塔框架阻尼比的取值[J].石油化工设计,2014(4):15-18.

【4】宋桂珍.钢结构防火涂料在石油化工装置中的应用[J].技术与市场,2011(6):175.

【5】靳铁钢.轻型钢结构设计问题探讨[J].城市建设理论研究(电子版),2011(33):11-12.

【6】张金法.门式刚架轻型钢结构设计及施工中一些问题和措施[J].城市建设理论研究(电子版),2011(22):46-47.

【7】唐国昱.型钢混凝土结构在工程设计中的应用[J].价值工程,2012(21):93.

【8】JasimAliAbdullah.钢管混凝土和套管混凝土短柱的抗剪强度和性能分析[J].钢结构,2010(3):156-157.

【9】刘巨保,许蕴博.基于GB50341标准设计的立式拱顶储罐弱顶结构分析与评价[J].化工机械,2011(4):96.

【10】李懿.浅析轻钢厂房结构设计要点[J].山西建筑,2013(17):75.

第8篇

1、现行建筑结构抗震(理论)技术存在的错误:世界各国采用的抵抗地震破坏的建筑物体的基本类型,都是以吸收地震能量为主的插入式整体结构(对地球而言),即将建筑物的基础和上部结构设计为绝对不可分割的刚体插入地球,因而建筑物抵抗地震破坏力的受力分析和设计,就不得不从结构整体考虑建筑物的抗震性能,地震破坏力是通过土层和岩石冲击建筑物的基础并直接将冲击力传递给上部结构,上部结构的作用力(荷载)加上地震产生的内力又反作用于基础,因而建筑物基础的强度设计要求,应是地震力和上部结构反作用力的叠加。

地震破坏力是往覆水平剪切力,上部结构的反作用力是垂直于地面的。这样两个方向互相垂直,并处于运动冲击状态的作用力,在一个平面上会交了。地震破坏力以强大的往覆水平推动力,推动着(抓住)建筑物基础做水平往覆运动,因而很容易分析,在这两种力的会交面上,实质上形成了远大于地震破坏力的往覆剪切力。因此,建筑物的抗震能力在插入式整体结构中是很难达到实际抗震设计要求的,现在的建筑物一般都是偏于保守的理想设计和建造,因而投资也在大大增加,即便如此,在实际的地震灾害中,建筑物受破坏的程度依然是很严重的,进而也无法摆脱和减轻地震灾害,给人民的生命和财产造成的巨大损失。

历史的教训足已充分说明,插入式建筑结构体系受到了严峻的检验,即似地球为相当好的惯性参考系,又将建筑物体插入地球,形成不可分割的刚体。在过去的年代,建筑物还处于低层范围时,问题还不严重,而在现代化高层、重型建筑中,仍然是采用插入式刚箍捆住内力的结构,在实际的地震灾害中存在着严重的隐患。插入式整体建筑物结构体系在正常情况下,即非地震静止状态,是没有问题,而在地震灾害爆发时,插入式整体建筑物体系的结构受力传力路线明显发生混乱,建筑结构设计的极其重要的力学原则:

(1)、不论在任何情况下,结构的传力路线必须清楚。

(2)、以当地的最不利外界因素为设计依据,如很多地区必须考虑可能发生的最大地震破坏力。这就是说建筑物抵抗地震破坏的正确条件是:运动中建筑结构内力的传递必须正确、清楚。

插入式整体建筑结构在地震时,将地震破坏力直接传递给上部结构,使上部结构发生摇晃,由于上部结构是刚箍捆住内力的结构,因而在摇晃中产生的巨大能量没有释放点,而被迫返回基础,地震又很快的不断的冲击建筑物的基础,向上部结构输送地震能量。这样上部结构返回的作用力,同基础传来的地震内力发生冲撞,冲撞最厉害的集中点,就是能量集中释放的突破点,也是结构的破坏点,通常都在基础与上部结构的交面上,破坏的形式是剪切破坏,而整个建筑物不是倒塌就是倾斜。

目前,许多国家在高层建筑的抗震设计方案中,已经出现了新的结构,如:美国纽约的42层高层建筑物,建在于基础分离的98个橡胶弹簧上,日本的建在弧型钢条上防地震建筑物,前苏联的建在与基础分离的沙垫层上的建筑物,以及在中国已经获得了美国、中国和英国发明专利权的,刚柔性隔震、减震、消震建筑结构与抗震低层楼房加层结构,都十分成功的应用于工程实践中,都明显的在建筑结构体型上,改变了传统的插入式刚箍捆住内力(吸收地震能量)的结构体系。总之都在建筑设计的结构方面设法摆脱在地震灾害时,严重威胁着人们的生命安全的插入式刚箍捆住内力的结构体系。其实质都反映了对“似地球为相当好的惯性参考系”为指导理论,所制定的现行抗震硬抗、死抗地震打击设计规范的动摇,本质上也是改变了建筑结构受力体系,而不在似地球为绝对静止不动的惯性参考系了。

1、现行建筑结构抗震设计与地震场地效应的问题现行建筑结构的抗震设计,是根据结构力学和建筑结构设计的理论基础而来的。结构力学和结构抗震设计规范,将地震破坏力简化并规定为在建筑物上部结构中的水平运动力,对建筑物的水平作用力与反作用力的硬抗平衡,这一规定实质上存在着严重的问题和错误。

其一:地震爆发时,首先是大地在做往覆水平运动,由于建筑物基础插入大地,因而必然随大地的往覆水平运动而运动,建筑物上部结构也因此被迫运动,但是建筑物上部结构的运动形式不是水平运动(因而根本就没有受水平的作用),而是因基础在受地震水平力运动中,产生的运动力传递到上部结构,迫使上部结构沿地震受力方向,作反方向S形式倾斜摆动;

其二:地震爆发时的冲击波只有两个方向,而现在所有城市的建筑物的规划设计,是根据城市的道路按东西南北方向和建设的需要各自排列的。将建筑物上部结构视为受水平运动,也只能有30%的建筑物的结构抗震设计受力方向与地震冲击波受力方向相同,而70%的建筑物的抗震设计受力方向与实际地震冲击波的冲击方向,处于非常不利的位置,当地震爆发时,只有少数正好与地震冲击波方向协调一致的建筑物不一定破坏,而大多数与地震冲击波方向不一致的建筑物,自然就很难逃脱地震冲击破坏倒塌的后果。地震对建筑物的冲击破坏,主要是对建筑物基础产生的水平往覆冲击剪切力,从而使基础被冲击破坏失去稳定后,造成上部建筑物的破坏和倒塌,地震冲击波首先是破坏了基础,而不是破坏上部建筑结构,所谓万丈高楼从地(基)起,就是这个道理。基础都破坏了,上部建筑自然就保不住了;

其三:城市中建筑物的类型是多种多样的,主要反映在超高层、高层、多层和轻重型建筑之分,而这些不同类型的建筑,又以基础深度的差别体现在地震冲击波的大小上,基础越深、越大,受地震冲击波的冲击自然很大,在加上城市地下建筑设施不少(如:地下建筑、地铁、地下大型管道等),都是构成城市地震场地效应发生互相变化的种种直接因素。现行抗震设计中,都没有考虑地下建筑设施的自身抗震,以及对地面建筑物基础和地基的地震场地效应所产生的严重问题。

2、现行建筑结构抗震桩基设计与地震场地效应的严重问题现行抗震设计中的桩基础的设计有两种类型,一种是端承桩类型,另一种是摩擦桩类型。端承桩是将深层的地基反作用力通过桩传递给地面,构成对上部建筑物作用力(压力)的平衡。摩擦桩是通过桩基础与一定深度的地基土层十分紧密的挤压结合中产生足够的反作用力,通过桩传递到地面,构成对上部建筑物的作用力(压力)的平衡。这里必须指出的是,这两种类型的桩基础在对上部建筑物的作用力(压力)构成平衡的充分条件是:静力荷载,即在没有外力的作用下成立的。

在端承桩中,端桩是反作用力的顶点,桩身是传递反作用力的通道,桩身四周的土层是给桩身起到了极其重要的稳定作用,由此,可以定义:桩端的承载力,桩身的强度是和桩身四周的土层构成了端桩基础的整体,缺一不可。

在摩擦桩中,桩身的强度与桩身四周土层紧密挤压所产生的反作用力,构成了摩擦桩基础的整体,也是缺一不可的。这两种类型的桩基础在地震爆发时,强大的地震水平往覆冲击波,完全改变了上述状态,使端承桩在地震冲击波中,使端承桩的承载力发生水平往覆运动,不但失去对桩身的稳定,反而对桩身构成了往覆水平冲击,其结果:端承桩不是破坏,就是下沉失稳。随着端承桩的破坏和失稳,建筑物上部结构自然也就处于破坏倒塌的危险境地,而摩擦桩的危险就来的更快了,地震冲击波迫使摩擦桩桩身必须与四周土层与桩基松开,失去摩擦桩身必须与四周土层紧密挤压的必要条件,并且土层对桩身构成水平冲击力,随着摩擦桩中四周土层与桩身摩擦力的解除和改变,桩不是破坏就是失稳,其上部建筑物随之处于时刻会破坏和倒塌的危险之中。

3、现行予应力建筑结构在地震中的严重问题所谓予应力建筑结构,是人为的在建筑结构的主要承力构件中,对主要承力构件中混凝土施加予应力,一般是通过对结构中承力构件的钢筋进行张拉,利用钢筋的回弹力挤压混凝土来实现的。根据对承力构件中钢筋的张拉,与混凝土的先后关系,又可分为先张法和后张法两大类。

从建筑结构中的予应力构件,到予应力结构的发展,已经有较长的时间了,在建筑结构中应用予应力构件和发展予应力结构的优势,在很多城市的建设中,得到了较广泛的应用。在城市建设和发展中,推广和应用予应力构件和予应力结构,的确能起到一定的积极作用。但是,有一个十分重要的结构动力学问题需要特别注重,所谓建筑结构动力学方面的问题,也就是地震爆发时,地震冲击波迫使建筑结构产生振动的动态反应,地震冲击波冲击建筑结构,使其产生的内力在结构中传递,而予应力构件和予应力结构的力学模型是:1)予应力张拉两端的固端成支座,是不允许有任何改变的;2)予应力构件或予应力结构在使用过程中,其构件和结构是不允许发生水平推动,振动弯曲和上下振动的。也就是说,予应力构件和予应力结构,只有在没有任何外力的情况下,才能达到予应力构件和予应力结构设计的使用要求。因此可以定义:予应力构件和予应力结构的安全使用条件,是不能承受任何外力(尤其是地震冲击力)的静力使用状态。

地震冲击波在建筑结构中,将无情的迫使建筑结构中的所有梁、柱、板、墙体等受力构件发生变形,即地震冲击力能完全改变予应力构件和予应力结构的两端边界条件,使其构件和结构中的予应力偿失。任何在使用中的予应力构件和予应力结构,当予应力衰退和偿失后,其构件和结构必然破坏。因此,在地震设防城市的建设中,是不能使用予应力构件和予应力结构的。但是,现在许多城市的建设中都使用了予应力结构,这是十分危险的。因此,应尽快在地震爆发之前,采取补救措施,否则,后果一定是十分严重的。

综上所述,现行世界各国所实行的建筑结构体系,是与地震冲击波相对抗、硬抗(死抗)的捆住地震内力的结构体系。从结构动态平衡的根本原理来分析,这种与地震力相对抗的结构体系的静态平衡在地震中完全破坏了。也就是说,现行的建筑结构体系,只能满足静态(无地震冲击波)状况下的作用力与反作用力的平衡。当地震爆发时,建筑结构内力的静态平衡被破坏了。这就是现行建筑结构体系抵抗不了地震冲击破坏的根本原因所在。现行建筑结构的抗震设计,只是加大了建筑结构的刚变,使其增加了对地震冲击力的对抗力(死抗力),没有从结构动态平衡的基础上去寻求,建筑结构与地震冲击波的动态平衡,建立一个与地震内力相适应(不是相违背)的“释放地震内力的建筑结构动态平衡体系”。

总之,几百年来,人类所推行的静态(加大刚度)的建筑结构体系,违背了地球地震的客观规律。因此,给人类自己造成了巨大的灾难。人类为了在地球上更好的生存和发展下去,就得从根本上解决适应地球地震客观规律的建筑结构体系。因此,一种与地震力相适应的“释放地震内力的建筑结构动态平衡体系”的动态平衡的力学理论的建立,并制定新的建筑结构释放地震冲击波的设计标准(在也不是对抗的标准),将是人类发展的方向和目标。

二、释放地震内力的建筑结构体系1、释放地震内力建筑结构体系的理论基础我们从现代地球物理学家关于地球板快运动理论的力学分析中,以及对地震客观规律的不断揭示,更进一步对地球的认识,有了新的力学见解,我们认为地球是一个在运动中自身求得内力平衡的结构体系,它有两个阶段的运动规律:

(1)、地球内力的平衡阶段:地球结构体,在自转和围绕太阳周转运动的过程中,所产生的内力,在平衡阶段,地表运动处于内力平衡,地球运动处于静止状态,此阶段可似地球为惯性参考系阶段。

(2)、地球结构体系处于内力平衡阶段后,其内力仍然在不断的增加,而地球结构体不能承受日益增大的内力,而在运动中,通过地球板快的运动,地震和火山等形式释放出来,以求得新的内力平衡,这个阶段是地表的活跃阶段。其不断增加的内力将在地球内力集中点释放出来,此阶段可似为非惯性参考阶段。地球内力平衡过程中的这两个阶段,在地球内部不断循环下去,形成了地球生态平衡的必然规律。

人类是在地球生态的环境中生存的,因此,人类必须遵循地球生态环境中的各种自然规律去发展。从人们开始认识到对过去认识的不足,即理论上的不足和错误,又不断的在生活实践中,提高了对地球生态环境的认识,进而不断的揭示自然规律,掌握和运用规律为现代人类和将来造福。应该明确的指出,人类对地球认识的提高和深化,其指导人类如何适应地球生态的科学理论,也就随之进入了更高的阶段。

2、释放地震内力建筑结构体系新技术的应用:已经获得中国、美国和英国发明专利权的新技术“建筑物抗震减震装置”、“建筑物消震装置”和“高层建筑隔震消能装置”完全改变了传统的插入式刚箍捆住地震内力的建筑结构体系,将建筑物整体有机的隔离成两个受力体系,这样地震破坏力的传递媒介改变了,由直接传递转化为间接传递。不言而喻,“建筑物抗震减震装置”将大大减少地震对上部结构的冲击,反之,上部结构对基础的作用力也大大减小。

新技术的设计依据是以柔克刚的动态平衡原理,该技术的主要特点是:能十分有效的大大减弱地震灾害对建筑物的打击破坏。目前,发展中国家和发达国家的科学家们在研究抵抗地震灾害方面,都从过去只是单纯考虑建筑结构加大刚度的硬抗(死抗)方式,而向建筑结构隔震减震的方面发展了。原因十分清楚,过去几百年来建筑物硬抗地震灾害方法的不断失败,告诉和启发人们要寻求一种适应地震客观规律的抗震方式。用一句通俗的话来讲,以柔克刚,才能达到建筑物在地震冲击中的动态平衡,而不被破坏,反之,以硬抗来对抗地震的打击,即以刚克刚设计的建筑物是根本抵抗不了地震的打击的。因为人们设计建筑物的刚度,不可能达到(保证)比地震破坏力还要大得多的程度。否则现代的专家们去研究建筑物的消震、隔震与减震,不就失去意义了吗?

第9篇

关键词:路桥过渡段;路基;路面;结构设计

路桥过渡段设计质量影响着道路桥梁的日常行车安全。这就要求相关部门在进行路桥过渡段路面路基结构设计过程中,结合实际情况,防止设计不合理而造成路桥过渡段出现变形现象发生。同时,技术人员需对道路桥梁过渡段情况进行详细检查,从而为道路桥梁的性能提供保障。

1路桥过渡段路基路面结构设计的重要性

当前,各个地区的经济往来越来越频繁,这就要求相关部门进一步加快路桥建设步伐,这也是社会主义现代化建设的需要。在这一背景下,就必须对路桥工程进行进一步设计,促使工程建设水平得到有效提升,满足新时期路桥运输要求。针对路桥过渡段而言,结构设计对于路桥的安全性、稳定性均具有重要影响。因此,要满足路桥工程稳定性要求,就必须增强设计方案的可行性和实用性。

2路桥过渡段路基路面结构的常见问题

2.1桥头引道过渡段结构设计不当。针对桥头引道路基过渡段而言,较为常见的处理方式有粗粒填筑、加筋土、钢筋混凝土过渡板法等[1]。上述方式难以避免桥头跳车现象,通过研究发现,桥头跳车主要原因在于人们没有找到可行的定型搭板处理计算方式。同时,搭板的长度不符合规定也会导致这一现象发生。2.2桥头引道软土地基处理不当。开展图纸设计过程中,如果设置的地质钻孔比较少,钻探的深度不符合标准规定,就会导致工作人员很难明确路基深度和范围,也难以探明软土路基性质,这种情况下,会导致软土路基段出现沉降,从而导致桥头跳车。进行设计过程中,针对软土地基,理论和实际之间存在一定的差异,会导致路基设置难以达到预期效果。2.3桥头引道路堤边坡防护措施不合理。雨水侵袭,道路桥梁会受到一定影响。我国一些沿海地区,降雨比较多,因此,需要对桥头引道路堤采取相应的防护措施。但是,若防护措施不够合理,即便实施相应的道路桥梁防水、排水工作,也难以实现预期效果,进而使台背填土冲刷流失,进一步降低了路基的强度,从而引发桥头跳车现象。

3路桥过渡段路基路面结构设计措施

3.1无搭板设计方案。近年来,路桥过渡段结构设计中,搭板设计得到广泛应用,能够有效降低路基沉降发生率。在采用该方式进行具体施工过程中,为使施工质量得到提高,采用不设置搭板的设计方案,需要进一步转移设计重心,重点设计填筑工程,对其进行适当的填筑和加固,促使道路桥梁的性能以及路面、路基面承载力得到提升。相关单位需要采用先进的科学技术,进一步提高压实力度,进而为路桥过渡段的施工质量提供保障。3.2有搭板设计方案。路桥过渡段沉降问题相对普遍,针对这一情况,可在桥头位置设置搭板,从而防止桥头跳车情况发生。此外,对桥台搭板进行进一步分析,其长度主要是以坡度值作为依据进行设计,通过这种方式,能够保障其有能力承担车辆行驶过程中所带来的负荷,从而有效降低沉降发生率[2]。采用这种方式比较简单快捷,但不是全部的路桥工程均能够使用这一方式。对于路桥过渡段,设置相应的桥头搭板,以防止桥头出现沉降现象,取得了一定的效果,但是还是存在一定弊端。例如,一些承受较大交通压力的路桥,如果为其设置搭板,跳车现象就难以解决,导致这一路段被磨损,若路堤台衔接处发生沉降问题,逐渐向其他方位转移,会促使局部位置出现沉降问题。这种情况下,技术人员需将实际工程情况作为依据,从而对搭板进行合理化设计。图1为搭板设置示意图。对桥梁搭板的宽度进行设置,对搭板的宽度以及桥面的宽度进行控制,要求宽度一致,采用这一方式进行设计,能够有效防止行车过程中发生安全事故。针对桥梁板的边缘位置,两者之间要设置0.5m的差距。这种情况下,相应技术人员和施工人员,需针对搭板厚度进行科学设置,并且充分考虑位移情况,设置的搭板厚度越大,出现的位移就会越小。在对桥梁建设过程中,工作人员应控制搭板厚度。在我国,一些小型路桥搭板厚度在20~36cm之间。但是对大型搭板进行设计过程中,需要对厚度做进行一定调整,一般情况下,其厚度被控制在30~40cm之间[3]。设计人员进行搭板设计过程中,需进一步研究搭板的长度,从而避免搭板设计缺乏合理性。同时,可以利用锚固栓连接台顶和塔板,从而有效降低沉降情况。此外,结合桥台实际情况,对搭板筋进行合理设计,从而有效提升过渡段性能。3.3路桥过渡段路基路面压实设计。对路桥过渡段进行具体施工过程中,可以同时对路桥台背和桥坡填实和填土,采用这一方式,能够有效防止沉降现象的发生。同时,结合相关施工方案对其进行具体施工,也可以采用分层填筑的方式。对每一层的厚实度进行合理控制,按照相关规定对不同环节进行具体施工,首先将土卸下车,然后使用推土机推平,此后对路面进行洒水[4]。相应施工人员要使用专用工具对路面进行填平,然后使用压路机实施具体的压实操作。

4结语

当前我国基础设施的建设还不是十分完善,如道路和桥梁的过渡段位置,结构设计存在一定问题,影响车辆行驶的安全性。这种情况下,相关部门应当加大重视力度,并对路桥施工技术进行深入研究,使我国路桥施工质量和施工水平得到有效提高,从而为人们提供一个安全、良好的出行环境。

作者:史龙 单位:石家庄宏业交通建设监理有限公司

参考文献:

[1]范明亮.浅谈路桥过渡段路基路面结构设计[J].黑龙江科技信息,2017(9):219.

[2]赵玉国.路桥过渡段路基路面施工病害及主要应对措施分析探讨[J].科技创新导报,2015(29):62-63.

相关文章
相关期刊