欢迎来到易发表网!

关于我们 期刊咨询 科普杂志

复合材料论文优选九篇

时间:2023-03-01 16:31:59

引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇复合材料论文范例。如需获取更多原创内容,可随时联系我们的客服老师。

复合材料论文

第1篇

家具设计应在物质技术条件的基础上,与材料、结构、工艺密切结合,尽量做到材料多样化,产品标准化,零部件通用化,使所设计的产品与现有的技术装备及工艺水平相适应,避免设计与生产实际脱节。同时,物质技术条件是实现使用功能要求和造型艺术的重要保证。

2木塑复合材料的设计属性

2.1外观属性

材料的外观属性通常包括形态、色彩、肌理等方面。木塑复合材料大部分是挤出成型的,因此可以制造出凹凸的肌理,使其富有特殊的装饰效果(图4),但大多数情况下只能呈现直线状态[4]。木塑型材的通孔设计(图5)一方面可以丰富木塑复合材料的形态特征,使其呈现多变的断面形态,同时可以减轻重量,从而节约成本。在木塑复合材料中加入着色剂[5],不仅能使木塑制品显示出各种各样的色彩外观(图6),而且也可以改善其耐候性。随着对木塑复合材料的深入探究以及技术的突破,木塑产品表面还可以制成类似木材的纹理和色泽,营造温暖亲近的感觉。此外,木塑复合材料还可以覆盖塑料表层[6],增加材料颜色的多样性和耐潮湿性。

2.2加工性能

目前,木塑复合材料的成型工艺主要有三种:挤出、热压和模压。挤出成型凭着工艺简单,而且加工周期短、效率高,与其他加工方法相比,更广泛地应用于工业化生产中。木塑复合材料采用的主要连接方式有以下三种:胶接、焊接和机械连接。机械连接有连接件连接、钢钉连接和复合材料专用螺钉连接,相关实验表明,螺钉连接的木塑构件可以进行多达十次的拆装[7]。

2.3其它性能

木塑复合材料同时具有耐磨、耐腐蚀、防水和尺寸稳定性好等优点。在制造过程中加入阻燃剂,可使木塑复合材料具有一定的阻燃性,因此,可将其应用在具防火要求的公共家具设计中。此外,木塑制品本身同时具有可回收性、良好的经济性和环保性。比如在北京奥运会的工程建设中[8],就大量利用了这种环保的木塑复合材料(图7)。

3木塑公共家具设计实践

3.1木塑露天桌椅

在加工过程中添加了阻燃剂的木塑复合材料具有优良的阻燃性能,适用于公共场所。这里把木塑复合材料设计成长短不一的条状板,以点、线、面的概念,构成木塑露天桌椅(图8)。整套桌椅统一采用金属作为底架,条状木塑板作为面板材料,营造出空间环境的整体感。在材料上,木塑复合材料的凹凸肌理与金属的精致肌理形成对比,木塑复合材料的温暖感与金属的冷峻感形成视觉感受上的对比。同时,不同色彩的金属与木塑复合材料的组合也可呈现出不同的视觉效果(图9),为人们的公共场所营造出温暖、清新、自然的现代感。在结构上,零件之间采用可拆装的螺钉连接,既方便安装,又可以降低运输成本。另外,玻璃下层可置菜单或广告单(图10),便于现代商业化宣传。

3.2木塑书架

这款供图书馆使用的六层双柱双面木塑书架(图11),在外观造型上,立柱部分处理成深色,旁板和层板处理成浅色,进行深浅色彩搭配,以塑造书架的平衡感。立柱设计成四面均带凹槽的结构,用于旁板的嵌入,既方便使用时的安装,同时使凹凸肌理成为一种装饰。立柱顶部的装饰件采用模压技术制成,可标准化批量生产。在加工工艺上,书架的立柱、旁板和层板均采用挤出成型工艺进行生产,利用木塑复合材料的凹凸肌理完成立柱与旁板、旁板与搁板的搭接(图12),减少了五金连接件的使用。在功能上,结合人体工效学原理,考虑到旁板横向凹凸肌理的需要和挤出成型工艺中幅面的限制,将旁板设计成多段拼搭结构,根据书籍的尺寸大小,其凹凸肌理按照比例进行合理设计,利于层板的高度调节,方便图书馆中不同尺寸大小的图书摆放。此外,旁板的双面凹凸肌理设计,使相邻两书柜柜体共用同一块旁板,一方面可根据室内空间的大小对书架数量进行调整,满足其在功能上的延伸,同时可充分利用空间资源,有效降低生产成本。

3.3等候椅与花坛

据调查,生活中等候场所(如火车站候车厅)的候车椅大部分为金属材质,这种材质虽强度较高,但因候车场所一般人流量比较大,对家具的耐久性自然要求比较高,金属表面掉漆以及生锈等后期维护工作并不易进行。并且金属制等候椅常给人冰冷的视觉感受,其舒适性也有待提高。相比较而言,木塑复合材料继承了木材和塑料的双重性质,具有温和自然的视觉和触觉感受,且它的强度并不逊于金属。因此可将其运用于人流量比较大的公共场所,进行如下设计。这款木塑休息椅(图13)删繁就简,没有多余的装饰,造型简洁。等候椅底部为金属支架,椅面为木塑材料组成的等腰梯形。等腰梯形的座面设计是为了便于使用者根据空间大小来调节休息椅的长度(图14),利用等腰梯形的特性,休息椅的长度延伸可以更显自然。在色彩上,木塑复合材料在生产过程中通过增加着色剂可以造出各种色彩的产品,这款公共场所的休息椅正是运用这一特性,设计出彩虹般色彩的椅子,为等候场所增添几分色彩和乐趣。结构上采用螺钉连接。此外,设计的配套花坛(图15),既可以给等候场所带来几分自然的气息,还保护了座椅的端面。花坛的数量可根据场所需要自由调整(图16)。

4结语

第2篇

GB/T1447的Ⅱ型试样,在测试σT1、σT2时,试样宽度为25mm,对0°纤维、0°纤维占多的复合材料或碳纤维等高性能纤维复合材料,破坏载荷较大,经常导致加强片脱落致使无法继续加载,增加测试的难度。GB/T3354、ISO527-5和ASTMD3039,试样宽度为15mm,对于一些织物增强复合材料,由于织物的尺寸效应对测试结果有较大影响。上述各试验方法均使用端部加强片,加强片的目的是试图以最小的应力集中将来自夹头的载荷分布到试样上。然而设计不当的加强片界面将使破坏发生在邻近加强片的部位,导致非常低的测试强度值。胶接加强片的胶粘剂对结果的影响远大于加强片的角度。成功的设计是采用足够韧性的胶粘剂而不是加强片的角度[4]。GB/T1458和ASTMD2290无法测得泊松比和σT2,得到的σT1值离散较大。综上,对0°纤维、0°纤维占多的复合材料或碳纤维等高性能纤维复合材料,建议按GB/T3354、ISO527-5和ASTMD3039试验,对性能较低或一些织物增强复合材料,建议采GB/T1447的Ⅱ型试样,按GB/T1447试验。

2剪切

GB/T3355、ISO14129和ASTMD3518均利用±45°层合板拉伸试验,得到复合材料面内剪切响应,该试验方法具有测试试样简单、不需要夹具以及采用引伸计进行应变测试的特点。并已证明和其他剪切试验方法的模量测试具有良好的一致性。尽管很多人认为试样的应力状态可能不“纯”,但它的响应确实模拟了结构层合板中的实际应力状态和铺层相互的作用,对于设计者来说是比较实用的[4]。GB/T3355、ISO14129和ASTMD3518仅适用±45°均衡对称铺层的层合板试样。在整个工作段存在面内正应力分量,且在自由边界处存在着复杂的应力场,因此所计算的破坏剪应力值并不是材料的剪切强度值。特别是在大变形时,随着应变的增加导致纤维方位逐渐变化,逐渐偏离纤维方位假设。ISO14129和ASTMD3518都规定在5%剪应变时终止试验,以5%剪应变时的剪应力作为极限剪切强度,GB/T3355-2005对此没有规定,在新修订的GB/T3355中已作了相应的修改。ASTMD5379和我国标准《聚合物基复合材料剪切性能V型缺口梁试验方法》(报批稿),有一比较突出的优点,不仅可测得G12、τ12,通过改变试样的方向,还可测得G21、G13、G23、G31和G32。从图2试样的剪力图和弯矩图可以看出,试样工作区处于恒剪力而弯矩为零的区域,V型缺口影响沿加载方向的剪应变,使剪应力分布更加均匀。剪力分布的均匀度为材料正交各向异性的函数,在[0/90]ns类型层合板上已经获得最佳的所有面内剪切结果[4]。然而试样工作段处于恒剪力而弯矩为零仅是理想状态,实际情况是夹具对试样施加的是分布载荷,它会对剪应变的分布和正应力分量产生影响,该影响对[90]n、含±45°铺层试样特别不利[4]。加载过程中可能发生试样的扭转,扭转影响强度,特别是模量的试验结果。GB/T28889、ASTMD7078与ASTMD5379有很多相似之处。GB/T28889、ASTMD7078大大改善了ASTMD5379对[90]n、含±45°铺层试样特别不利的状况。加载过程中的扭转,特别是试样两边螺栓的扭力不一致时,对试验结果有较大影响。试样缺口处的宽度达31mm,对某些层合板,难以加载至破坏的现象时有发生。ISO15310要求有特殊的试验夹具,加载点定位困难,不适合于获取剪切强度数据。ASTMD4255要求有特殊的试验夹具,结果易受试样加工缺陷影响,所得的数据离散较大。ASTMD5448的试样为纤维缠绕圆管,试样制备的费用高,端部夹持处存在应力集中,容易造成在夹持区内破坏。GB/T1450.1、JC/T773和ISO14130仅能测得层间剪切强度,不能测得剪切响应。GB/T1450.1试样型式存在应力集中,所得的数据离散较大。综上,测G12、τ12时,建议按GB/T3355、ISO14129、ASTMD3518和ASTMD5379试验,并在5%剪应变时终止试验;测[0]ns、[0/90]ns层合板的剪切参数时,按ASTMD5379试验;测[90]ns、含±45°铺层或织物增强层合板剪切参数时,按GB/T28889、ASTMD7078试验。

3压缩

除试样加工影响外,受试样几何尺寸、对中和夹具的影响,采用不同的方法,所测得的压缩强度是不同的。其中夹具设计和加工精度尤为重要,夹具的过度约束可能遏制某些实际的破坏模式,导致测试值偏高;但如没有合适的约束,会发生试样端部开花、屈曲等破坏,导致测试值偏低。所有标准仅给出夹具的型式,没有规定夹具的材质、尺寸、加工精度等细节,因此使用者需根据经验、摸索等设计加工合适的夹具。GB/T3856、GB/T5258、ISO14126和ASTMD3410圆锥形剪切加载夹具存在试样安装和应变测量难度较大的问题。GB/T3856没有规定在测试过程中判别试样是否弯曲或屈曲,且试样宽度仅为6mm,对一些材料存在尺寸效应,影响测试结果。GB/T5258和ISO14126给出了端部加载夹具,该夹具仅适用低性能的材料,如短纤维复合材料、连续纤维复合材料较弱的方向。GB/T3856和GB/T5258没有规定模量的取值范围,期望修订时增加。GB/T5258和ISO14126的联合加载以及ASTMD6641的联合加载,试验方法依赖于试样与夹具间的高摩擦系数。GB/T1448要求试样厚度为4mm以上,更适合面外压缩性能测试。综上,测定面内压缩强度σc1和σc2时,建议采用剪切加载方式,按GB/T5258、ISO14126和ASTMD3410进行试验;测定面外压缩强度σc3时,按GB/T1448进行试验。

4层间拉伸

复合材料层间拉伸的国外标准并不多,较为成熟的标准方法有ASTMD7291。我国尚没有制订测定层间拉伸模量E3的标准,GB/T4944仅能测定层间拉伸强度,不能测定E3。因此,期望制定测定E3的国家标准,或在修订GB/T4944时增加测定E3。

5结论和建议

第3篇

现行生产工艺有几大类:

1)将制备好的氧化物陶瓷颗粒与自熔性金属合金粉末混合后(按一定比例)用油压机或等静压压制成工艺所需的形状,用高于自熔性金属合金熔点的温度下,进行烧结;

2)将制备好的氧化物陶瓷颗粒与自熔性金属合金粉末混合烧结,是利用自熔性金属合金与氧元素结合能力的差异,将金属从其氧化物中置换出来,形成氧化物陶瓷/铁基耐磨复合材料;

3)将自熔性金属合金熔液熔渗到陶瓷预制体多孔之中。上述方法只能生产小型复合材料块,无法将复合材料复合到需要耐磨的部位,运用到矿山机械、粉碎设备上难度很大。此工艺经济性稍差。

2研究方向

氧化物陶瓷铁合金复合材料性能优良,但与大型结构件复合复合困难,制备过程比较复杂。虽然,现有工艺解决了一些问题,在制作单个氧化物陶瓷铁合金复合材料上等研究取得了一定的进展,在实际应用领域但仍未开发出适合实际的产品。因此,需要研究开发出适合的新型制备工艺。我们主要研究方向是如何将复合材料复合到需要耐磨的部位,运用到矿山机械、粉碎设备上,重点在能降低成本、实现大规模生产进行研究探讨。

3实施方法

1)合金耐磨预制件制成工艺:将氧化物陶瓷颗粒与自熔性合金粉末按比例用机械进行充分混合,依据用户产品结构不同设计不同的模具,在油压机下将合金耐磨预制件压制制成特定形状,如柱状、条状、块状、蜂窝状等;

2)冶金工艺:将耐磨预制件置于用泡沫、塑料等高分子有机材料制作的实体模具内用真空冶金铸造工艺进行复合铸造。利用金属母液的温度将合金耐磨预制件烧制成型并与合金耐磨预制件形成冶金结合面。该工艺设备投资小、工艺简单、金属母体与耐磨预制件冶金结合面良好。

4工艺过程

1)将粒径为8目的氧化物陶瓷颗粒10%、粒径为30目的氧化物陶瓷颗粒39%、粒径为60目的氧化锆陶瓷颗粒48%与自熔性铁基合金粉末7%,使用水溶性树脂4%机械混合均匀得混合物,放入油压机中用模具压制成型然后放入80°C的烘箱中烘干得到耐磨预制件;

2)将耐磨预制件在800℃的箱式炉中进行排胶;

3)将排胶后的耐磨预制件涂抹硬钎剂;

4)将涂抹硬钎剂的耐磨预制件置于用泡沫、塑料等高分子有机材料制作成为与要生产铸造的零件结构、尺寸完全一样的实体模具内;

5)实体模具经过浸涂强化涂料并烘干后,装入真空造型砂箱中排列好做好浇铸口,然后用干石英砂埋好,经三维振动台振动埋实;

第4篇

土木工程学科的发展,在很大程度上依赖于性能优异的新材料新技术的应用和发展。在已有结构的加固改造领域,不仅要求材料经济美观、便于施工,且要求施工后的结构承载力能够明显提高。而FPR复合材料以其优异的力学性能和广泛的适用性发挥着越来越重要的作用。

FRP(fiberreinforcedplastics)复合材料主要有碳纤维(CFRP)、芳纶纤维(AFRP)及玻璃纤维(GFRP)等,其材料形式主要有片材、棒材和型材。FRP的共同优点是:轻质高强、高弹模、抗疲劳、耐腐蚀耐久性能好、热膨胀系数低等。另外,FRP复合材料可以节省材料、自由裁剪、施工方便且速度快,虽然其前期投资较大,但维护成本低,经济效益明显。因此,FRP(片材)复合材料在土木结构加固工程中应用潜力巨大。

1、FRP复合材料的基本特性

随着增强纤维材料的发展,碳纤维、芳纶纤维及玻璃纤维已经成为当前结构工程中加固补强的重要材料。一些典型的FRP(片材)复合材料的基本力学性能见下表。

FRP复合材料的性能各异,在拉伸强度及拉伸模量方面,玻璃纤维和芳纶纤维一般比碳纤维低1/3左右;在断裂延伸率方面,芳纶纤维一般是碳纤维的2倍左右,玻璃纤维一般比碳纤维高70%左右;在韧性、抗冲击性能方面,芳纶纤维和玻璃纤维要比碳纤维好得多;在抗碱腐蚀方面,芳纶纤维和玻璃纤维则不如碳纤维好。关于其它方面的性能差异,这里不再赘述。

2、FRP复合材料在结构加固工程中应用领域

2.1民用建筑、桥梁及工业厂房

FRP复合材料因其优异的力学性能,在民用建筑及工业厂房的加固中应用很多,主要有:①梁加固。加固的作用包括抗弯和抗剪。在进行抗弯加固时,FRP复合材料的纤维方向与梁的轴向一致,一般贴在梁的受拉侧,已提高梁的承载能力。据有关试验得出,只要该梁不是超筋梁,贴一层AK-60可以提高承载力30%左右,贴两层可以提高40%左右;在进行抗剪加固时,FRP复合材料的纤维方向与梁的轴向垂直;②板加固。一般对于板的加固净空要求比较高,而且加固后不影响其外观,所以用厚度很薄且柔软的FRP复合材料进行加固是一种理想的选择;③柱加固。芳纶纤维布、玻璃纤维布是比较理想的柱加固材料。因为它们的弹模小,相对于碳纤维(弹模235Gpa),其延性较好;并且,在进行棱角打磨时一般只需要10mm左右,一般不需打磨,而碳纤维则需要30mm左右,若采用芳纶纤维就可以节约很多工时。

2.2地铁、隧道

因地铁和隧道是一种在地下工作的结构,所以它的受力与地面结构是不一样的。在洞顶和洞侧,它都有土压力的作用,而且也有净空的要求,所以进行裂缝修补时,传统的加固方法不可行,而用芳纶纤维布(不导电)进行加固维修就可以满足它的各方面要求,因为在地铁或隧道的拱顶或侧壁的裂缝一般是多向且不规则的,这就要求修复材料必须具有良好的抗剪性能,而且还是一种不导电的材料,所以芳纶布在隧道地铁工程中是一种最佳的选择。

2.3烟囱、水塔

由于烟囱水塔这样向高空发展的结构,加固维修特别困难,传统加固方法(如扩大截面法、粘钢法)基本上很难解决这样的问题,而采用轻质高强、耐腐蚀、耐久性能都很好的复合材料(尤其是芳纶纤维)进行加固,就是一种很好的方法。

3、几种加固方法的比较

3.1扩大截面法

这种加固方法是通过增大受力面积来提高结构的承载力,一般用在一些较小且对净空没要求不高的结构中。这种方法虽然具有成本较低的优点,但是增加了原结构的自重,同时减小了净空,工期长,有很大的局限性。目前,在较大的工程中很少用。

3.2粘钢法

在用钢板加固时,一般将钢板贴在被加固的结构受力部位的外边缘,同时封闭粘贴部位的裂缝和缺陷,约束混凝土的变形。粘钢法加固的特点:①既可提高结构强度,又可提高刚度;②适应结构(钢结构)又粘又铆,适应节点加固;③延伸率大,适应冲击、振动结构加固;④钢板表面处理要求严格,粘结面易生锈;⑤厚钢板端点处应力集中,混凝土易剥离。

由上述可知,采用这种方法加固必须注意几点:①对钢板的尺寸要求很严格。抗弯时宜薄点,以保证它和原结构的变形协调;抗剪时不仅宜厚点,而且在锚固时应使端部钢板延伸到应力较小区,防止应力集中造成对结构承载力的损害;②贴完后,必须对钢板边缘裂缝进行处理;③还要对钢板进行防腐处理,这也是一项长期的任务。所以其造价很高,而且它的使用范围还有一定的局限性,一般只用在刚度要求很严格的地方。

3.3FRP复合材料法

FRP复合材料法加固的特点:①高强度、高弹模,厚度薄、重量轻;②材料可任意长度,任意交叉,适应任意曲面和任意形状结构;③耐腐蚀,抗疲劳性能好;④施工简便,与混凝土结合密实;⑤材料防潮要求严格,且不宜加固节点区域。

在目前的FRP材料加固市场中,碳纤维占的比例最多。碳纤维是一种导电、易发生脆性破坏的材料,可以承受很大的静载,但在绝缘性要求很高的电气化铁路、地铁及隧道工程中,不宜采用;同为高强高弹模的芳纶纤维不存在这样的局限,能经常承受冲击载荷,芳纶纤维的极限破坏形式为塑性破坏,而且还是它的优势所在,其在抗剪方面也有很大的优势,在加固墩子时一般也是利用它优异的抗剪性能,但芳纶纤维在裁剪时须用专门的陶瓷剪刀。

4、FRP复合材料的选择

4.1环境影响

在高碱度和湿度的地区,宜选择碳纤维复合材料,不宜选择玻璃纤维复合材料;在温度变化较大的地区,玻璃纤维的热膨胀系数与混凝土相似,宜选择玻璃纤维;玻璃纤维和芳纶纤维是良好的绝缘体,而碳纤维是可导电体,为避免钢筋的潜在电流腐蚀,碳纤维材料不应与钢筋直接接触。

4.2荷载影响

对于经常承受冲击或振动荷载的结构,应优先选择芳纶纤维和玻璃纤维复合材料,它们的韧性、抗冲击性能都比碳纤维复合材料好;对于要求耐蠕变和疲劳的结构,应优先选择碳纤维复合材料,碳纤维材料耐蠕变和疲劳的能力比芳纶纤维和玻璃纤维材料好得多。

4.3保护层影响

保护层的厚度和类型应根据FRP复合材料的要求选择。对环境的抗力(如潮湿、温度、冲击、曝晒等)、施工现场抗力、人为破坏的抗力等,应采取有效的保护措施,以免使FRP复合材料的力学性能减退。保护层通常采用两种方法:①在FRP复合材料外加厚树脂胶层,提供有弹性的保护层;②在FRP复合材料外粉抹一层高强水泥砂浆,保护FRP复合材料不受损害。

第5篇

金属层状复合材料是由多层金属复合而成的,其通过将多层金属板经过叠压而形成,相对于颗粒增强复合材料,层状复合材料的制造工艺相对简单,同时能够达到工业应用的要求,随着科技的进步,金属层状复合材料已经由原来的双层发展到现今的多层金属材料复合,同时在制造的过程中,对于不同层板之间层板组分的合理选择以及选用相应的加工工艺,能够生产出符合工业特性要求的金属层状复合材料。通过使用金属层状复合材料能够有效地减少对于贵金属材料的使用,以较少的材料投入达到改善材料特性的目的,对于降低生产成本以及减少资源的浪费有着非常重要的意义。

2金属层状复合材料的生产工艺

2.1金属层状复合材料生产中的固-固相复合法

金属层状复合材料中的固-固相复合法是一种在上世纪30年代就发展起来的加工工艺,其主要原理是将两种或多种已经成型的板材通过叠加或者是轧制的方法使其能够形成多层复合的方式,从而使这种复合板材能够达到所需的性能要求。其中,复合板材所采用的轧制方法主要有热轧和冷轧两种,采用轧制的方法生产的复合板材具有生产成本较低、生产迅速以及成本板材的精度较高等优点,通过与现有的钢铁生产工艺及生产装备相结合能够实现大规模的生产,利用轧制法可复合的金属种类很多,但轧制复合往往需要进行表面处理和退火强化处理等工艺,板型控制困难,轧件易边裂,易形成脆性金属化合物,且道次轧制变形量大,需要大功率的轧机。

2.2金属层状复合材料生产中的爆炸复合法

此种方法的主要原理是通过使用炸药作为主要的能源,从而将多种金属材料复合焊接成一体的加工工艺,采用此种加工工艺的优点是生产出来的板材具有很高的产品适应性且保留了复合材料原料的一些特性,同时生产的板材结合界面的结合强度较高,能够使得其在后续的加工过程中保持较为良好的加工特性,同时对于金属层状复合材料的大小以及形状等都具有很强的可调性且对生产设备要求较低,缺点是生产过程中会产生巨大的噪音从而不利于生产的连续进行。

2.3金属层状复合材料生产中的爆炸-轧制复合法

此种方法结合了固-固生产法中的轧制法以及爆炸法中的一些优点,通过使用此种方法可以使得金属层状复合材料板能够生产的尺寸更大、厚度更薄、长度更长以及更细的复合金属材料,从而使得金属材料的性能克服了单一工艺中所存在的一些问题。

2.4金属层状复合材料生产中的扩散焊接法

金属层状复合材料经过多年的发展,已经具有多种生产工艺及加工技术,扩散焊接是一种对在金属层状复合材料的复合加工中常用的技术,其能够进行多同种或不同种材料进行复合。在加热到母材熔点0.5~0.7的温度时,在尽量使母材不出现变形的程度下加压,使母材紧密接触,利用界面出现的原子扩散而实现结合的方法。

2.5金属层状复合材料生产中的液-固相复合法

此种方法的原理是将一种(液相)的金属材料通过多种不同的方式均匀的浇铸在其他一种固态金属材料的表面,并依靠两种金属材料表面之间所产生的一定的反应来使两者之间出现结合,并在液态金属凝固后对其进行压力加工。

2.5.1直接浇铸复合法

直接浇铸复合法的制造工艺如下:首先需要将两块在内侧涂抹有剥离剂的钢板进行相应的叠合,并将两块钢板四周进行焊接后放入盛有金属液的铸模中,待到周围的液态金属凝固后进行一定的轧制,轧制完成后将焊接的钢板四周的焊缝去掉,从而可以得到分离后的两块液固复合板,在进行金属层状复合材料板的生产过程中如果做好对于加工温度的把控可以使得复合材料板具有较高的复合强度。此种方法操作方便、由于无需使用过多的机械设备以及其他附加工艺,因此,其加工成本较低,可以应用从而进行批量化生产,不足之处是由于需要将固态的金属板放置于高温下的液态液中待其凝固,在这一过程中,由于两者金属材料熔点的不同会使得高温的液态金属会对固态金属的表面造成一定程度的熔损,从而会对生产出来的金属层状复合材料板的质量造成一定的影响。双流铸造法又被称为双浇法,其主要是通过使用两种液态金属同时开始进行铸造,其主要利用的是两种合金之间的熔点差,通过将低熔点的合金首先浇注在一种特殊的扁模具中,而后通过将模具内的抽板进行一定的提升,其后再将高熔点的合金浇注在抽板提升后所留下的空位中,从而得到所需要的复合金属材料,使用此种方法需要做好时机的把控,特别是在金属液的浇注速度方面更是需要注意,从而使两层金属界面结合良好且界面稳定是比较严格的。

2.5.2钎焊法

钎焊法的主要原理是通过利用浸润的液态金属相凝固使两种金属焊合一起的技术方法。此种方法的加工工艺简单、操作方便,能够方便、快捷的完成异种金属之间的结合,其缺点是在钎焊结合部位的硬度不高,从而使得复合材料板出现小孔、夹渣、偏析等缺陷。

3金属层状复合材料中的表面工程技术

电镀主要是通过溶液中所含有的金属离子在导电的情况下聚集到电极中的阴极中并均匀的覆盖在阴极的表面使其形成能够与基体牢固相结合的镀覆层的过程。经过多年的发展,电镀已经成为了现今工业生产中的重要组成部分。除了电镀外,在材料表面工程处理中还具有刷镀、化学镀以及热喷涂、化学气相沉积法、物理气相沉积等多种表面处理技术,以上这些技术都各有优缺点,应当根据金属材料表面的特性需要适合的技术。

4金属层状符合材料的发展展望

随着科技的进步以及越来越多的新技术被应用于材料生产工艺中,现今,在金属层状复合材料的生产过程中主要有电磁成型复合、自蔓延高温合成焊接技术、激光熔覆技术、超声波焊接技术以及喷射沉积复合技术等。采用以上这些技术能够使得金属复合材料性能更高以及生产更为简单方便。

5结束语

第6篇

关键词:保温材料屋面

上海锦秋加州花园是由香港远东发展有限公司投资兴建的一个大型住宅小区,其最大的建筑特点是引入美国加州小别墅建筑理念,采用外形充满浪漫情调的异形屋面形式(圆拱型屋面)。但这给屋面保温层的施工带来了诸多麻烦,对保温材料的热工性能、耐久性以及经济性提出了更高的要求。

该工程共分4期,一期工程已于1997年底建成并投入使用,其屋面保温采用的方案是:10cm厚普通混凝土+2cm厚砂浆十5cm厚珍珠岩保温板+2.5cm厚砂浆。该方案存在的缺陷是:

(1)保温材料耐久性不好

(2)施工程序复杂,施工速度太慢

(3)保温材料热绝缘系数较小(仅为0.75m2.K/w),达不到《上海市新型墙体材料试点小区节能住宅建筑热工设计暂行规定》对屋面保温材料热工性能的规定(该规范要求屋面保温材料热绝缘系数不小于0.9lm2,K/W)

(4)珍珠岩板保温工程经济性不良。此外,该工程在保温层上钉2层彩色防水瓦防渗,要求保温层具有良好的可钉性。但该方案中砂浆层性脆,可钉性达不到要求。为此,建设单位迫切要求对这一保温方案进行技术改进,克服上述缺陷。基于目前这一课题的普遍性,我们承担了这一课题的研究攻关任务。

2.高性能复合屋面保温材料的试验研制

《屋面工程技术规范》(GB50207-94)将目前普遍使用的屋面保温层分为松散材料保温层(主要有膨胀珍珠岩、膨胀蛭石等)、板状材料保温层(主要有高分子材料泡沫板、膨胀珍珠岩板等)和整体保温层(主要有水泥膨胀珍珠岩、沥青膨胀珍珠岩等)。总结上述各种保温材料在上海各类建筑工程中的实际应用效果,我们发现:由于与之相应的施工工艺的局限性以及这些材料固有的缺陷,使上述各种保温材料往往达不到《屋面工程技术规范》提出的技术要求:“屋面保温材料应具有吸水率低、表观密度和导热系数较小,并有一定强度。”综合目前国外屋面保温材料的发展动向以及高分子保温材料和混凝土技术的新成果,尤其是考虑到陶粒混凝土具有质轻、保温、耐久性和可钉性好的优点,我们发现采取“高分子保温材料板十高性能陶粒混凝土”技术路线可实现规范对屋面保温材料的各项技术要求,而且可加快施工进度,并取得良好的经济效益。

2.1试验用原材料及其性能

(1)高分子保温材料板:根据异形屋面特点、尺寸以及屋面工程对保温层热绝缘系数的要求在上海某化工厂定制。这种材料密度为20kg/m3,导热系数0.04lW/(m.K),其吸水率为3%,耐水性良好,并具有一定的塑性和强度。

(2)陶粒:常州产粘土陶粒。其筒压强度为4.3MPa,堆积密度为525kg/m3,颗粒表观密度为890kg/m3,空隙率为41%,吸水率为8.2%。

(3)细骨料(A料):为提高经济性,并贯彻执行上海市政府关于综合利用工业废料的有关政策,选用一种工业废渣代替陶砂。这种废渣除颗粒级配不理想外,其它性能均满足《轻集料混凝土技术规程》(JGJ51-90)对轻细集料的要求。

(4)水泥:上海水泥厂产425#矿渣硅酸盐水泥。

(5)掺合料(B料):一种微细工业废料粉。适量掺入可改善陶粒混凝土施工性能和耐久性,尤其可提高混凝土拌和物的稠度。

(6)冷拔钢丝:直径为4mm的冷拔钢丝。

(7)特种纤维(C料):适量掺入可显著提高陶粒混凝土的抗拉强度,防止在结构突变部位产生裂缝。

(8)高效减水剂(D料):一种引气型高效萘系减水剂。

2.2高性能复合保温材料的研制

2.2.1高性能复合保温层的组成方案

参照《上海市新型墙体材料试点小区节能住宅建筑热工设计暂行规定》对屋面保温材料热工性能的规定,再根据建设单位提出的要求以及我们选用的材料的性能,我们提出的高性能复合保温材料组成方案为:5cm厚高分子材料保温板+3.5cm厚高性能陶粒混凝土,其中高性能陶粒混凝土的配制是关键。

2.2.2高性能陶粒混凝土的配制

(1)工程对陶粒混凝土的技术性要求

28d抗压强度达到CLl5等级,干密度不大于1250kg/m3,陶粒混凝土屋面不能开裂,异型屋面陶粒混凝土施工不使用模板。

(2)高性能陶粒混凝上的配制

锦秋加州花园采用“圆拱型”屋面型式,这种屋面型式坡度大,结构上又有突变部位,上浇薄层陶粒混凝土,并使之达到上述技术要求,对配合比设汁提出了新的要求。按照《轻集料混凝土技术规程》(JG51-90)设计的陶粒混凝土(代号为ES-1)无法实现上述目标,为此我们利用现代高性能混凝土和纤维混凝土技术的有关成果进行优化设计和反复试配,配制了2组代号分别为ES-2和ES-3(用于结构突变部位)的高性能陶粒混凝土,满足了工程要求。上述3组陶粒混凝土的配合比及有关性能见表1。

2.3样板工程试验研究

为了对我们设计的施工方案和研制的高性能复合屋面的保温材料进行检验和评估,进行了样板工程的试验研究。样板工程的结构尺寸和形状与实际房型一模一样,浇筑样板工程的屋面结构层并养护至规定龄期后,在结构层上面进行保温层的试验研究。试验研究内容共分3部分:

(1)对施工方案的可操作性、工作效率以及对工程质量的影响等因素进行综合分析,并对其加以改进和完善

(2)按现场施工条件完成屋面保温层的施工,并测定其有关性能

(3)从技术性和经济性两方面对新老屋面的保温方案进行对比研究。

2.3.l施工方案的确定

根据实际施工操作顺序,我们设计了施工方案,通过对现场施工遇到的问题进行研究,并考虑施工工艺对保温材料性能的影响,对方案进行了补充和完善,最终采用方案如下

(1)用特殊材料和特殊工艺高效快速固定保温板,保温板错缝布置,可防裂并加快浇筑陶粒混凝土速度

(2)在保温板上绑扎冷拔钢丝,并使冷拔钢丝从保温板上垫起3cm,固定冷拔钢丝网,使之与保温板形成一个整体,可改善施工质量

(3)严格按规范对陶粒进行预湿处理,严格控制砂率大小及外加剂掺量,按规范和我们研制的配合比浇筑陶粒混凝土

(4)48h后洒水养护14d。

2.3.2新老屋面保温方案对比研究

我们制定的新屋面保温方案为:10cm厚普通混凝土(第1层)+5cm厚高分子材料保温板(第2层)+3.5cm厚高性能陶粒混凝土(第3层)。新老保温方案的耐久性优劣已为实践和研究所证实,因此本文主要对这2个保温方案的热工性能和经济性进行对比研究.

工程应用举例

通过样板工程的试验研究,保温材料的配制得到“了优化,施工工艺得到了改进,香港远东发展有限公司对我们的试验结果非常满意,同意在锦秋加州花园二期屋面工程采用这项科研成果。锦秋加州花园二期屋面工程总建筑面积为29705m2,要求在10~11月完成施工。上海l0~11月份阴雨天气比较多,施工难度较大,但由于我们选用的材料具有很好的耐水性,可以克服阴雨天气给施工带来的不利影响,因此施工单位在45d内就完成了29705m2的屋面保温工程施工任务。而按老方案进行屋面保温工程施工,至少需要75d才能完成施工任务(据一期工程推算)。达到规定龄期后,经质检部门鉴定,该屋面保温工程各项性能指标均达到或超过有关规范规定的数值。

结论

(1)本项目采用新保温方案,使上海锦秋加州花园二期屋面保温工程取得了良好的技术经济效果。

第7篇

关键词:复合材料,细观结构,有效属性,均质化

 

0引言

复合材料是由两种或两种以上组分材料组成的新材料, 根据不同的需要,可以选取不同的组分材料和细观结构来优化材料的性能,在航空航天、建筑、交通等领域得到越来越广的应用。为了预测复合材料的宏观力学属性,人们提出了许多的方法。早期主要以解析模型为主,如Eshelby等效夹杂法[1]、微分法[2]、Mori-Tanaka法[3]等,这些方法只考虑了复合材料结构的一些基本信息,而忽略了复合材料内部的结构特征,计算精度和适用范围有限。随着计算机技术的发展,数值法得到了广泛的应用,如通用元胞法[4-5]和有限元方法[6-8],其方法通常是对复合材料细观结构的“代表性体积元”(RVE)进行力学分析,进而获得其宏、细观力学性能。数值法很好地考虑了复合材料细观结构特征,预测精度较高。

对于高填充比和填充颗粒尺寸跨度大的复合材料,如固体推进剂[9],建模时为了使RVE具有代表性,模型中通常包含数百个颗粒,数值法预测这类材料的有效属性时前处理变得异常困难。毕业论文,有效属性。为了解决这一问题,B. Banerjee[10]利用一种递归算法预测了复合材料PBX9501的有效弹性属性,但是该算法所采用的正交化网格并不能很好的反映颗粒的边界。毕业论文,有效属性。K. Matous[11]在进行固体推进剂损伤分析时,通过Mori-Tanaka方法将基体与小尺寸颗粒均质化为一种混合物。毕业论文,有效属性。

本文将不同尺寸类型的颗粒分别与基体进行均质化,提出一种预测复合材料有效弹性模量的多步骤方法。利用多步法计算了不同填充分数和组分模量比复合材料的有效弹性属性,并与全尺寸有限元计算结果进行了对比。

1多步骤法

高填充分数和颗粒尺寸跨度大的复合材料细观结构RVE通常很大,如图1所示。多步法将预测有效弹性属性的过程分为几个步骤,首先将小颗粒与基体视为一种混合物,利用有限元或细观力学等均质化方法计算出其有效属性后,再把它当成一种新的基体,如此反复,直至计算出整个代表性体积元的有效属性,过程如图2所示。在每一步计算过程中,与基体相混合的颗粒种类越多,计算精度也越高,同时计算模型也越大。多步法计算过程中,参与混合的颗粒体积分数通过下式计算得到:

(1)

其中,为颗粒在“混合物”中的体积分数,,为参与均质化的颗粒和基体体积分数。

图1 复合材料“代表性体积元”

Fig .1 RVE of composite

图2 多步法预测复合材料宏观有效属性过程

Fig.2 Progression of propertyprediction of multi-step method for composite

2均质化方法

2.1有限元法

利用有限元方法预测复合材料有效属性时,首先在将“代表性体积单元”进行网格剖分,再施加周期性边界条件模拟均匀介质的力学行为。周期边界条件表示为

(2)

其中,为RVE的边长,,为施加于边界上的位移载荷。假定平面应变情况下,通过有限元方法计算得到的细观应力、应变场为和,对其进行体积平均得到平均应力(有效应力)和平均应变(有效应变)

(3)

(4)

其中,,为平均应力和平均应变,,为单元平均应力和单元平均应变,为单元数,为单元体积。则二维杨式模量和泊松比计算如下

(5)

(6)

三维杨式模量和泊松比可通过上式转化得到[12]

(7)

(8)

2.2 Mori-Tanaka方法

解析法中,由于Mori-Tanaka方法计算简单,同时在一定程度上考虑了复合材料中夹杂之间的相互作用,成为预测复合材料有效属性的有效工具,对于多相复合材料,其体积和剪切模量可表示为[13]

(9)

(10)

式中,,,,,,分别为体积模量和剪切模量,为体积分数,下标和0分别代表第相颗粒与基体, 为相的数目。杨式模量和泊松比为

(11)

(12)

由(9)-(10)可知,Mori-Tanaka法只考虑了颗粒体积分数,而忽视了复合材料中颗粒的形状、大小及分布等结构特征。

3计算结果

考虑三相颗粒增强复合材料,各组分为各向同性弹性材料,具体组成及力学参数如表1所示。计算中,颗粒体积分数为40%~70%, 颗粒1与颗粒2之间的体积比为1:1.8。迭代法预测该复合材料的有效弹性模量分两个步骤,每一步分别用有元法(FEM)或Mori-Tanaka(MT)方法计算,计算结果与全尺寸RVE的有限元和Mori-Tanaka计算结果进行对比,全尺寸模型颗粒总数为90,每个单步中颗粒数为50。毕业论文,有效属性。四种多

步法与全尺寸有限元计算结果如图3所示

表1 复合材料组分参数

Tab.1 Parameters of composite constituents

 

第8篇

英文名称:Acta Materiae Compositae Sinica

主管单位:

主办单位:北京航空航天大学;中国复合材料学会

出版周期:双月刊

出版地址:北京市

种:中文

本:大16开

国际刊号:1000-3851

国内刊号:11-1801/TB

邮发代号:

发行范围:国内外统一发行

创刊时间:1984

期刊收录:

CA 化学文摘(美)(2009)

CBST 科学技术文献速报(日)(2009)

Pж(AJ) 文摘杂志(俄)(2009)

EI 工程索引(美)(2009)

中国科学引文数据库(CSCD―2008)

核心期刊:

中文核心期刊(2008)

中文核心期刊(2004)

中文核心期刊(2000)

中文核心期刊(1996)

中文核心期刊(1992)

期刊荣誉:

Caj-cd规范获奖期刊

联系方式

期刊简介

《复合材料学报》为北京航空航天大学和中国复合材料学会主办的学术性科技期刊(双月刊,200 多页/期)。本刊主要刊载我国复合材料基础研究和应用研究方面具有创造性、高水平和具有重要意义的最新研究成果的论文。刊载范围: 纤维、织物、颗粒或晶须增强聚合物基、金属基、陶瓷基等复合材料(包括:结构、功能、生物、电子、建筑等复合材料)的制备、性能、设计等,以促进国内外复合材料研究领域的学术交流及先进复合材料的推广应用。

第9篇

关键词:复合材料;教学改革;实训环节;教学方法

为了克服传统灌输式、填鸭式教学模式的弊端,积极响应教育部的高校本科生教学模式改革号召,专注于培养动手能力强、理论结合实践、高水平、综合素质的新世纪人才,许多高校的诸多专业课程都在进行教学模式改革。我校材料科学与工程专业为宽口径的大专业,主要培养无机非金属材料方向的毕业生。《复合材料》作为本专业的一门必修课,这门课程涵盖知识点很多,包括聚合物基复合材料、金属基复合材料和陶瓷基复合材料等各个领域的基础知识、制备工艺和实际应用[1]。该课程对于扩大学生的专业知识面、提升学生的专业知识和实践技能具有重要的理论指导作用。针对目前该课程教学中存在的一些问题,本文提出了《复合材料》教学改革的一些方案和措施。

1课程的主要内容和培养目标

《复合材料》是材料科学与工程专业本科生的基础课、必修课,也是本科毕业生从事材料、复合材料等相关工作、科研、工程应用的必备课程。本课程主要讲授常见复合材料的分类、加工制备技术及应用背景,如聚合物基复合材料、金属基复合材料、陶瓷基复合材料、水泥基复合材料和纳米复合材料等。在毕业设计、科研实践中掌握上述几种复合材料的制备及工艺技术,是材料类专业毕业生能够胜任本专业工作的基础和保障。这门课程的培养目标是理解复合材料的界面优化设计及界面作用机理,掌握复合材料的种类和制备工艺方法。了解复合材料界面及性能测试表征方法,学会分析材料研究和生产中的复合材料如金属基、聚合物基、陶瓷基、水泥基复合材料及纳米复合材料的成分、组织形貌和结构性能,并能够适当的调整配方或改进制备工艺最终实现目标所需的力学性能或特殊功能。

2教学中发现的问题

《复合材料》课程内容繁多,涉及三大类材料金属、无机非金属和聚合物的配方、加工、性能及应用,涉及到大量的增强材料、基体材料制备工艺参数和配方,使得学生难于寻找重点内容,学习起来很难抓住重点,接收效果差。另外,学生也不清晰自己将来所面对的就业方向。因此,很有必要让学生自己动手查阅感兴趣的复合材料及相关产品,增强对某一材料产品及其知名企业的了解。在加深对这门专业课的认识和理解的同时,知道自己感兴趣的行业和就业方向[2-3]。这门课程一般期末考试成绩权重大于80%,平时成绩占的比重很小。因此,学生缺乏主动的学习意识,学生对于琐碎繁杂的知识点理解起来也很吃力,上课时容易产生懈怠的情绪、玩手机、精神溜号等现象。多年的教学经验发现:学生期末时候考前突击,只会应付期末考试,只求分数不求甚解,学生对知识的掌握不扎实、不系统,影响后续课程的学习效果和专业技能的培养。学生虽然经过突击性理论学习,但是仍然缺乏专业的实践、应用能力,不能学以致用。学生往往考完试后再问就什么也答不上来,遇到一些实际应用问题也不能马上想起课本上的理论知识体系。这些现象的根本原因在于学生缺少对知识点所对应的实践、范例的了解。

3《复合材料》课程的教学改革措施

3.1以工业产品、科研信息为导向,加深学生对不同类型复合材料的深入理解

本课程涉及到金属基、聚合物基、陶瓷基、水泥基复合材料及纳米复合材料等理论方面的内容,理论较深奥、知识面广、内容概念复杂,学生在学习过程中会遇到许多问题。在教学中充分考虑到知识面的拓宽和不同复合材料应用之间的相互关系,注重产品应用开发为导向,对复合材料的理论配方、制备工艺、性能要求、开发新产品的思路等方面的进行强化,在保持课程系统性的前提下,对一些次要的偏理论的内容适当删减。着重对近期出现的新型复合材料在结构材料和功能材料领域的应用实例进行介绍。通过引入实际产品和工业化生产问题,促进学生深入理解每种复合材料的基础知识和应用前景[4]。将目前与课程有关的科研动态带入课堂,让课程有足够的吸引力。如讲述通过介绍阻燃电缆护套料配方及工艺让学生深入聚合物基复合材料的加工原理和应用场合;通过介绍现有的锂电池正极材料让学生了解碳基复合材料以及纳米复合材料的应用;还有近期Science、Nature等顶级期刊发表的最新纳米尺度金属的伪弹性、功能材料,碳纳米管、石墨烯的微观尺度研究及其在复合材料、功能材料中的最新应用。这些科研实例的讲解可以激发学生的科研热情,调动学生的学习积极性。

3.2以查找和阅读期刊文献为导向,培养学生的主动学习意识

每一章节都给学生布置一定数量的关键词、主题词,让学生去期刊网或外文电子资源网站查阅相关章节关键词的期刊论文或发明专利,填写文献资料统计表。每个学生都要在课堂讲解文献,学生需要提问互动。通过这种能力培养,加深学生对某一复合材料的了解同时,也锻炼学生的查阅文献能力、阅读能力和课堂表达能力,发挥互动、让更多同学参与到课题讨论中,从兴趣和讨论中掌握复杂的知识点。“学生讲,教师听”的这种新模式可以增加教学互动效果,课堂上适当增加学生汇报文献、专利的内容,可以增进师生的相互交流、相互影响。这种方法可以活跃课堂气氛,加深学生对所学知识的理解,激发学生的创新意识和独立思考能力,显著提高课程的教学效果。培养学生一丝不苟、精益求精的学习和科研精神。

3.3增加学生的课外实训环节,让学生到实验室动

手参与复合材料的设计和制作除了课堂教学以外,还可以以材料生产和应用中的实际问题出发,培养学生的动手实践能力和团队协作意识。增加学生的课外实训环节,培养学生从发现问题、提出问题到解决问题的能力,真正意义摆脱课本的死知识[5]。要求老师到实验室亲自指导,让学生到实验室亲自动手参与某些复合材料的设计制备,要求每组学生实践不少于7个工作日,自己动手完成一个小实验,在课堂上互相交流自己的所学、所做、所感,是如何将文献知识转化为直接的功能或结构材料并实现其应用价值。让学生亲手参与实验设计和制作可以提高学生的主动性,再次回到课堂后能够更深刻听讲,认识到课本上基础知识的重要性。逐渐培养学生从提出问题,到寻找解决问题思路,最终解决问题的能力。实训结束后最终以实验报告形式上交并考核。这种实训环节可以在培养学生的应用技能的同时,培养学生团队协作意识,激发学生的课外学习热情。加强学生对知识的理解,提高对课本知识的应用能力,避免“读死书、死读书”。

4《复合材料》课程的教改考核及预期效果

该课程在增加课堂文献讲解、答辩和课外实训环节后,期末考核时弱化期末考试成绩的比重,侧重上课过程中文献讲解、答辩和课外实训的考核,即增加平时成绩的权重。具体成绩比例可以调整如下:(1)期末考试分数:占考核总成绩的50%。(2)文献调研、讲解、讨论环节分数:每名学生不少于两次文献调研、讲解、讨论,共计占总成绩的30%,其中文献整理情况10%、课堂讲解10%和回答问题10%。加分条件:学生查阅参考文献可以查阅英文文献,考察学生对英文文献的理解,根据实际情况给予加分0.5~1分;课堂讲解文献后能够准确回答课堂老师或同学提出所有问题的学生得满分。(3)课外实训环节分数:两次实验占总成绩的20%,其中两次实训过程中的动手实验及实验报告各占10%。通过在《复合材料》课程教学中增加文献讲解和课外实训环节进行教改,改革后的保守目标是:100%学生能系统掌握查阅期刊文献和发明专利的方法,并且能够读懂科技论文的核心研究思想和理论内涵;90%的学生应能掌握课程重点知识,熟悉课本知识中的某种复合材料的制备方法和应用实例;20%学生能掌握英文期刊文献的查阅能力并且能够读懂英文文献含义,具备书写科研论文的基本素质和功底。上述比例都以学生总数为基数,各部分不互相独立,存在相互重叠。希望通过任课教师和学生的共同努力,最终实现由大学的应试教育到应用型人才培养的转变。

5结语

作为一门材料类专业本科生的必修课,《复合材料》对于增加学生的知识面和了解专业方向具有重要作用。因此,这门课程的学习效果影响毕业生的综合素质和专业技能。作者针对平时教学中的一些问题,如上课死气沉沉,学生玩手机,期末考试突击复习等现象提出了一系列教改方法,主要是增加课堂上的工业产品、科研信息吸引学生的兴趣,增加文献讲解、答辩环节和课后的实训环节来弱化期末考试成绩的权重,这样来督促学生主动学习并且能够活跃课堂互动,通过课外实训环节提高学生的实践技能和对基础知识的应用能力。通过教师和学生的共同努力实现由应试教育到应用型人才培养的转变,进一步提升毕业生的专业技能和综合素质。

参考文献

[1]周曦亚.复合材料[M].北京:化学工业出版社,2005:1-225.

[2]马庆宇.复合材料概论课程教学改革初探[J].石家庄职业技术学院学报,2011,23(4):53-55.

[3]杨继年,丁国新,王周锋,等.《复合材料概论》课程的教学设计与实践[J].广州化工,2015,43(3):167-168.

[4]张俊珩,李婷,程娟,等.《复合材料》课程教学改革探索与实践[J].广东化工,2015,42(22):197-199.

相关文章
相关期刊