时间:2023-03-02 15:05:26
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇无功功率补偿范例。如需获取更多原创内容,可随时联系我们的客服老师。
关键词:无功补偿;配电系统;电容器
由于现代企业采用大量的感应电动机和变压器等感性负荷,特别是近年来大功率可控硅的应用,供电系统除供给有功功率外,还需供给大量无功功率,使发电和输配电设备的能力不能充分利用,无功功率对供电系统及工厂内部配电系统都有极不良影响,从节约电能和提高电能质量出发,都必须考虑改善功率因数措施。为此,必须提高用户的功功率因数,减少对电源系统的无功需求量
1无功补偿的总原则
无功补偿的总原则:全面规划,合理布局,分散补偿,就地平衡,降低损耗提高质量,满足需求,可靠保证。无功补偿方式制定时,应全面分析本系统的无功电力需求量,以确定最优的补偿量与最优的补偿方式。
我国在《电力系统电压和无功电力技术导则)中规定质功补偿与电压调节应按以下原则进行:
1.1总体平衡与局部平衡相结合,即要满足全网的总无功平衡,又要满足分支线的无功平衡。
1.2电力补偿与用户补偿相结合,供电部门在电源点进行补偿与用户自身用电设备进行补偿,两者实现理想配合。
1.3分散补偿与集中补偿相配合,以分散补偿为主。
1.4降损与调压相结合,以降损为主。
2无功补偿装置
无功补偿装置主要有同步调相机,并联电容器,静止补偿器等。
2.1同步调相机
同步调相机也叫同步补偿机,它实际上是接在电网上不带机械负载的同步电动机,专门用来调节电网功率因数或用在长距离输电线路中提高电压的稳定性,假若忽略同步补偿机的损耗,按电动机惯例写出其电势方程如下,
可见,I超前U90°,纯粹是直轴电流,即I=Id,并且电枢反应磁势起去磁作用。此时,补偿机从电网吸取超前的无功功率(也可以说成是向电网输出滞后的无功功率),相当于是接在电网上的电容。在过励磁运行时,它向系统供给感性无功功率而起无功电源的作用,同步补偿机容量可以很大,并且无功功率易于平滑调节。在需要提高电网功率因数时,调节同步补偿机使其在过励状态下运行,由电网吸取电容性无功功率 (或说成是向电网发出电感性无功功率)。当电网轻载时,调节同步补偿机使其在欠励状态下运行,由电网吸取电感性无功功率,这就相当于是在线路中接入了感性负载,从而可以保持受电端电压不变。由于实际运行的需要和对稳定性的要求,欠励磁最大容量只有过励磁容量的50%-65%,装有自动励磁调节装置的同步补偿机,能根据装设地点电压的数值平滑改变输出(或吸取)无功功率,进行电压调节。有强励磁装置时,系统故障下能调整系统电压,从而提高系统的稳定性。但由于同步补偿机是旋转机械,运行维护比较复杂,满负荷时有功功率损耗为额定容量的1.5%―5%,容量越小,百分值越大,所以小容量的每KVA容量投资费用大,故同步补偿机宜大容量使用,在我国一般用在枢纽变电所。
2.2静止电容器和静止补偿器
静止电容器一般都采用并联电容器的方法进行人工补偿,电力电容器具有投资省,有功功率损耗小,运行维护方便,故障范围小,装设容量灵活,即可集中使用,又可分散装设来就地供应无功功率,以降低网络电能损耗等优点。为了在运行中调节电容器的功率,可将电容器连接成若干组,根据负荷的变化,分组投入或切除,可控硅投切型电容器补偿装置就可以实现补偿功率的调节。
电容器的缺点是当通风不良或因电网高次谐波造成电容器过负荷使运行温度过高时,易出现外壳鼓肚、漏油,甚至爆炸和引起火灾。因此,规定电容器组应独立设室。为便于管理维护,多采用集中固定补偿,若补偿前功率因数为COS,补偿后提高到,则补偿所用电力电容器容量应为kyar
上式是按平均负荷计算的所需补偿容量,也有按最大负荷PmaxΣ进行计算的。如果按 PmaxΣ计算所需补偿的无功功率Qc,则当P< maxΣ,时,将出现过补偿现象。为了取得较好的补偿效果,按平均负荷计算是合适的,以免所选电容过多。补偿电力电容器多接成三角形,因每个电容器的无功容量为Qcl=ωC1U2,当容量一定时,电压高电容可以小。只有当电容器额定电压低于网络电压时,才考虑接成星形。电容器组还应单独装设控制、保护和放电设备。电容器组的放电设备必须保证在电容器与电网的联接断开时,放电一分钟后电容器组两端的残压在65V以下,以保证人身安全,一般1000V以上的电容器组用电压互感器作为放电设备。
静止补偿器是近年来的一种动态无功功率补偿装置,它是将电力电容器与电抗器并联起来使用,电容器发出无功功率,电抗器吸收无功功率,两者结合,再配以适当的调节装置,能够平滑地改变输出(或吸收)无功功率的静止补偿器,能满足动态无功补偿的需要,与同步补偿机比较,运行维护简单,功率损耗小,能做到分相补偿,以适应不平衡的负荷变化,对于冲击负荷有较强的适应性,在我国电力系统中得到了广泛应用。
3无功补偿方式
无功补偿就补偿方式来说分为高压补偿和低压补偿,高压补偿通常是在变电所高压侧进行,对补偿点前端的无功功率进行补偿,对后端的负载及线路起不到补偿作用,低压补偿可直接补偿配电线路和负载的无功功率,补偿效果较为理想。
3.1高压补偿,高压补偿主要是针对变电所主变压器和一些高压负荷,可集中补偿也可分散补偿,补偿装置独立设室,保证通风良好,充分发挥补偿装置的效率。因此应根据负荷的变化,安排、设计好变电所的无功补偿容量,运行中在保证电压合格和无功补偿效果最佳的情况下,尽可能使电容器投切开关的操作次数减少。
3.2低压补偿,低压补偿有集中补偿,分散补偿和就地补偿。
集中补偿是将电容器装设在用户专用的变电所内,对无功进行统一补偿,对负荷比较集中,距离变电所近,无功补偿容量较大的场合采用较为合适。优点是可以补变电所母线、受电线路的无功损耗,负荷变化能对母线电压起一定的调节作用,便于管理、维护、操作及集中控制。缺点是它只减少装设点以上线路和变压器因输送无功功率所造成的损耗,而不能减少用户内部通过低压线路向用电设备输送无功功率所造成的损失。
分散补偿是将电容器组按低压配电网的无功负荷分布分组装设在相应的母线上,或者直接与低压干线相连接,形成低压、电网、内部的多组分散补偿方式,适合负荷比较分散的补偿场合。分散补偿的优点是对分散的用户,有利于无功负荷的就地平衡,减少配电网络和配电变压器中无功电流的损耗和电压的损失,使线损显著降低,负荷不变的条件下增加网络的输出容量。缺点是装设的电容器无法分组,则补偿容量无法调整,运行中可能出现过补偿或欠补偿,补偿设备的利用率较集中补偿方式低,安装分散,给维护管理带来不便。
就地补偿是就地补偿用电设备(主要是电动机)所消耗的无功功率,将电容器组直接装在用电设备旁边,与用电设备的供电回路并联,以提高供电系统的功率因数,从而获得明显的降损效益。优点是无功电流与附近的用电设备相互交换,不流向网络其它点,在网络中无功电流的无功损耗和电压损耗小,被补偿网络最经济,在配电设备不变的情况下可增加网络的供电容量,导线截面可相应减少,适应性好。缺点是对于电网内公用负荷与集中补偿和分散补偿相比,补偿相同容量的无功负荷所需的补偿电容器总容量和补偿装置总数量增加,投资增大,补偿装置利用率较低。
4无功补偿容量的配置
变电所安装电容器,其主要作用是补偿变压器的无功损耗及配电线路前段的无功负荷及无功损耗,同时可以进行调压。变电所电容器的补偿容量按主变压器额定容量的10%-15%来配置,根据变电所的负荷性质和调压要求,确定合理的无功补偿容量。
配电线路是电力网的重要组成部分,配电线路上电容器容量的确定,应按
最大限度地降低无功损耗的原则来考虑,要根据无功负荷情况采取分散补偿的方式进行补偿。
参考文献
[1]《工厂供电设计》李宗纲,刘玉林,施慕云,韩春生等著,吉林科学技术出版社.
摘要:无功率补偿装置在矿山企业应用非常广泛,笔者首先分析了影响供配电系统的功率因数以及电网的无功补偿方式,阐述了无功功率补偿容量的确定以及矿山企业中无功功率补偿设备的选用。
0引言
随着采掘机械化的发展,矿山开采的产量大幅度提高,使得工作面电气设备总容量、单机功率明显加大,供电距离加长,用电设备自身无功功率损耗的存在造成井下电网功率因数较低。因此,在矿山开采供电系统中提高功率因数,补偿无功功率以降低电能消耗是十分重要的,采用无功功率自动补偿装置的目的,就是减少井下供配电系统的线路损耗和变压器的有功损耗。提高供配电系统的功率因数,降低采矿的电力成本。
1影响功率因数的主要因素
1.1电感性设备和电力变压器按负载性质分,所有用电设备可以抽象为电阻性、电感性和电容性3种,正是由于电感性和电容性用电设备的存在,才使得功率因数发生变化。实际矿山企业中,电容性设备并不多见,大量的电感性设备,例如异步电动机、感应电炉、交流电焊机等设备是无功功率的主要消耗者。据统计,在工矿企业所消耗的全部无功功率中,异步电动机的无功消耗占了60%~70%。而异步电动机空载运行时所消耗的无功功率又占到电动机总无功消耗的60%~70%。因此,要改善异步电动机的功率因数就要尽量防止电动机的空载运行并尽可能提高负载率。一般而言,电力变压器消耗的无功功率约为其额定容量的10%~15%,它的空载无功功率约为满载时的35%左右。所以,为了改善电力系统和企业的功率因数,变压器同样不应空载运行或长期处于低负载率运行状态。
1.2供电电压的影响当供电电压高于额定值的10%时,由于磁路饱和的影响,无功功率将增长很快,据分析统计,供电电压为额定值的110%时,无功功率将增加35%左右。而供电电压低于额定值时,无功功率反而相喧减少而使功率因数有所提高。当然,电压降低会影响电气设备的正常工作,所以,应采取措施使电力系统的供电电压尽可能保持稳定。
1.3电网频率波动的影响电网频率的波动也会影响异步电动机和电力变压器的正常工作状态,从而改变无功功率的大小,影响电力系统的功率因数。一般说来,当系统频率下降时,发电机发出的无功功率将会减少,变压器和异步电动机所需的无功功率将会增加,整个系统的无功功率将会略有增加。但频率稳定和调整措施主要在发电厂内部进行,与一般矿山企业关系不大。
2电网的无功补偿
2.1集中补偿集中补偿分为高压集中补偿和低压集中补偿两种方式。高压集中补偿是将电容器组装没在工厂变配电所的6~10kV母线上,这种补偿方式只能补偿6~10kV母线以前线路的无功功率,而母线后厂内线路的无功功率得不到补偿,所以补偿效果较差,优点是投资少、便于集中运行维护,这种补偿方式在大中型企业应用较为普遍。
2.2随机补偿随机补偿就是根据个别用电设备对无功的需要量将单台或多台低压电容器组分散的与用电设备并接,它与用电设备共用一套断路器。通过控制装置与电动机同时投切。随机补偿适用于补偿个别容量大且连续运行的异步电动机,其优点是用电设备运行时无功补偿投入,用电设备停运时,补偿设备也退出,不会造成无功倒送,而且不需要频繁调整补偿容量。具有投资少、占位小、安装容易、配置方便灵活、使用维护方便、事故率低等优点。
2.3随器补偿随器补偿是指将低压电容器通过开关接在变压器二次侧,以补偿变压器空载运行时无功功率的补偿方式。变压器空载或轻载运行时,由于励磁引起的无功损耗所占比重很大,此种方式的优点是能有效地补偿变压器的无功损耗,且接线简单,维护管理方便,在小型矿山企业应用较多。
3无功功率补偿容量的确定
3.1集中补偿容量的计算用户功率因数低的原因主要是电感性负荷过大所致,因此需要并联电容器或同步补偿机进行补偿。设某矿山企业负荷情况为有功功率Py、无功功率Pw1、视在功率Ps1、功率因数为cosφ1,现要求在有功功率Py不变的条件下,将功率因数由cosφ1提高到cosφ2,功率因数提高后,负荷情况变为:有功功率Py、无功功率Pw2、视在功率PR2最大负荷时,系统需要的无功补偿容量Pb按式(1)计算:
Pb=Pwl-Pw2=Py(tanφ1-tanφ2)(1)
式中:Py为有功功率(kW);Pb为无功补偿容量(kvar)。
3.2单负荷就地补偿容量的选择据国外相关资料介绍,如果考虑异步电动机的负荷率、极对数等因素的影响,补偿容量可估算如下:设异步电动机额定容量为Pe则补偿容量取Pb=(1/4~1/2)P,为宜。按此选取补偿容量,一般不会出现过补偿,而且功率因数可以补偿到0.90以上,特别是对于空载电流较大和负载率较低的电动机效果更佳,因而在节能技术上应用较为广泛。对于空载电流较小和负载率较高的电动机,可根据电动机极数不同,选取不同的补偿容量,一般而言,极数越多,需要的补偿容量越大,亦可按式(2)计算:
Pb≤UeIO×10-3(2)
式中:Pb为无功补偿容量(kvar);Ue为电动机额定电压(V);IO为电动机空载电流(A)。
4矿山企业中无功功率补偿设备的选用
由前面无功功率和电压的关系可以看出系统中选择无功功率补偿设备最终调整的是系统电压,合理地配置系统的无功功率可以将系统的电压偏移控制在要求的范围内。
4.1发电机发动机是唯一的有功功率电源,是最基本的无功功率电源。发电机在额定状态下运行时,可发出无功功率。
QGN=SGNsimφN=PGNtanφN
式中SGN、PGN、φGN分别为发电机的额定视在功率,额定有功功率和额定功率因数。发电机不但可向系统提供一定的无功功率,在进相运行时有可能吸收系统一定的过剩无功功率。但发电机进相运行时,定子端部漏磁增加,定子端部温升会限制发电机的功率输出,不同类型、结构、容量和冷却方式的发电机要根据现场试验来确定进相运行的容许范围。此外在并列运行的发电厂中调整个别发电机的无功出力,这还可能同无功功率的经济分配相矛盾。所以大型系统中发电机一般只作辅助调压措施。
4.2同步调相机它相当于空载运行的同步电动机。在过励磁状态下向系统供给感性功率,欠励磁状态吸收系统感性功率,但在欠励磁状态时的容量只有过励磁容量的50%~65%,它的有功功率损耗较大,在满负荷时约为额定容量的1.5%~5%,容量越小百分值越大。小容量投资费用较大,另外其为旋转设备不易维护。
4.3并联电容器并联电容器供给的无功功率Qc与所在节点电压U的平方成正比,即
QC=U2/Xc
式中,XC=1/ωC为并联电容器的容抗。因节点电压下降时,它供给系统的无功功率将减少。因此当系统发生故障或其它原因电压下降时,电容器无功输出的减少将导致电压继续下降。换言之,电容器的无功功率调节性能比较差。但他的投资费用小,运行时功率损耗亦小,约为额定容量的0.02%以下。另外它无旋转部分维护方便又可集中或分散装设,还可连结成若干组,配以功率因数测量控制装置,实现分组投入或切除,可进行无功功率的不连续调节。
【关键词】电力系统 无功功率 补偿技术
1 前言
我国市场经济的发展,推动了各行各业飞速的发展,特别是电力行业的发展更为迅速。电力系统中无功功率补偿技术,作为专门调节电网运行中无功功率的分布技术,其作用越来越显著。电力系统中无功功率的补偿装置能够提高系统以及负载的功率因素,同时还能降低设备之间功率的耗损,稳定系统运行时的电压,从而为用户提供高质量的电能。
2 电力系统无功功率补偿概述
2.1 我国电力系统无功功率补偿方式
(1)同步调相机;早期无功补偿的装置中,同步调相机是其中最为典型的一种。同步调相机虽能够完成动态的补偿;但其响应的速度慢,且对其的运行、维护较为复杂。目前,电力系统中使用该装置进行无功功率的补偿已较为少见。
(2)并补装置;无功补偿的领域中并联电容器是应用最为广泛的一种无功补偿装置,但该装置中电容补偿仅针对固定无功进行补偿。并补装置采用的是电容分组投切且能够更好的应用于监测负载无功动态的变化;但该装置属于有级无功调节中的一种,无法满足无功平滑无级调节。
(3)并联电抗器;我国目前所使用的电抗器多为固定容量。电力系统中主要用此将容性负荷吸收,并抑制系统中的过电压。并联电抗器也可用来抑制系统中的谐波;其中,抑制谐波次数超过5次时,电抗率的取值应在4%-6%之间;当抑制3次及其以上时,需去13%才能满足抑制要求。
2.2 无功功率补偿中存在的问题
电力系统运行过程中,采用以上几种无功补偿方式,在其补偿工作中取得一定的效果。但同时也存在一些问题,从而影响到电网运行的安全和可靠。
电力行业电力系统中无功功率补偿技术的应用,仍采用的是就地补偿的原则。在无功补偿过程中,虽能改善功率因素,但电能的耗损仍未得到解决。电力系统中不允许进行无功的倒送;尤其是负荷低谷时,若进行无功倒送,则会出现电压过高的现象[2]。部分无功补偿装置无功的投切量主要依靠电压来确定,而线路电压水平主要是根据电力系统运行情况而定,因此,在进行补偿时常会出现欠补或过补等现象。
3 电力系统无功功率补偿技术改进的策略
针对目前我国电力系统无功功率补偿中存在的问题,因此,要加大电力系统无功功率补偿技术的改进,其具体策略主要从以下几方面进行。
3.1 静止无功发生器
电力系统中静止无功发生器,亦称静止同步补偿器,该补偿装置主要采用的是自换向变流器[3],主要是根据电压电源的逆变技术滞后和超前无功完成无功的补偿。静止无功发生器调节的速度较快,无需大容量电容或电感等储备,且谐波的含量较小,同容量之间的占地面积较小。此外,在电力系统欠压的条件下,其无功调节的能力较强,是新兴的无功补偿装置,其前景较为广阔。
3.2 智能控制策略中晶闸管投切电容器
电力系统无功功率补偿技术中,将微处理器应用到晶闸管投切电容器中,能够完成较为复杂的控制及检测任务,并实现动态无功功率的补偿。控制器是智能控制策略中晶闸管投切电容器补偿装置最为核心的部件,晶闸管投切电容器能够完成无功功率因素的测量和分析,使其能够有效的控制无触点开关之间的投切。另外,该装置还能显示并存贮功率因素、欠压或过压等参数。
3.3 综合潮流控制器
电力系统无功功率补偿技术中综合潮流控制器,主要是将晶闸管换流器中电压串联并叠后加入到输电线电压中,保持其幅值及相角能够随时变化,确保线路有功与无功功率之间准确的调节,从而提升电力系统输送的能力和阻尼系统的振荡[4]。综合潮流控制器对电力系统进行无功的补偿看,主要来源于装置本身产生和控制而得到的,而不是通过提供或消耗有功功率得来的。近年来,电力系统中综合潮流控制器使其发展的方向,该技术对电网的规划、建设以及运行均具有重要的意义。
3.4 电力有源滤波器
电力系统无功功率补偿技术改进策略中,电力有源滤波器主要采用的是瞬时的滤波形成技术,该技术响应速度较快,能对无功功率以及变化谐波进行动态补偿。且在补偿过程中,电网阻抗的参数对其影响小。电力有源滤波器交流电路主要有电流型以及电压型两类,但较为实用的是电压型。电力有源滤波器与补偿对象连接的方式上看,可分为串联型和并联型,且并联型使用较为广泛。
4 结束语
电力系统中无功功率补偿技术的广泛应用不仅能够减少污染、节约成本,而且还能提高电网运行的经济以及社会效益,改善电压的质量。但由于无功功率补偿技术存在一定的问题,因此,在运行过程中应根据实际情况进行改进,使无功补偿技术的作用充分发挥,从而确保电网运行的安全和可靠。
参考文献
[1] 刘晓东.浅析电力系统无功功率补偿技术[J].科技致富向导,2012,21(32):156-157.
[2] 宁锐.电力系统无功补偿技术探讨[J].中国科技纵横,2013,10(1):38-39.
[3] 曾妍.浅议电力系统无功功率补偿技术[J].中国新技术新产品,2013, 25(2):138-139.
[4]曾妍.研究电力系统无功功率补偿技术[J].科技风,2010,25(23):240-241.
关键词:无功功率补偿装置, 功率因数, 补偿方式
中图分类号:TM933文献标识码: A
我公司现有35KV变电站1座,总装机容量63MVA,下设6KV低压配电室7座,其中400V 低压配电室23处。现变电站内基波无功补偿容量为10Mvar,在正常运行过程中无功补偿的投切依据仅依靠功率因数进行投切,对无功的浪费较大。为扭转由于无功的大量浪费,造成有功功率的大量损失,在2003年经过与北京电力科学院电力电子公司的协商,在满足补偿我公司炼钢生产过程中产生的感性无功的前提下新上一套容量为60Mvar的无功动态补偿装置,通过近两年的运行经验来看,补偿效果良好,功率因数指标能够控制在0.85~0.92之间。在此有必要就无功补偿装置的选择方面做一下简单的介绍(以低压无功补偿装置为例)。
众所周知合理的选择无功补偿装置,可以做到最大限度的减少网络的损耗使电网质量提高,反之如选择和使用不当,可能造成供电系统电压波动,谐波增大和有功功率的大量损耗等诸多因素,危害电网的安全运行。
一、低压无功功率补偿装置,一般采用自动补偿方式。按投切方式可进行如下分类:
1、延时投切方式
这种投切依靠于传统的接触器动作,当然用于投切电容的接触器是专用。它具有抑制电容的涌流作用。延时投切的目的在于防止电容不停的投切,导致供电系统振荡,这一危险情况的出现。这种补偿方式是通过补偿装置的控制器,检测供电系统的物理量,来决定电容器投切的这个物理量,这种物理量可以是功率因数或无功电流或无功功率,是我们常用的一种补偿方式。
2、瞬时投切方式
瞬时投切方式是电力电容器件与数字技术综合的技术结晶。即我们所说的动态补偿,实际就是在半个周波至1个周波内完成采样计算,在下个周期到来前,控制器已经发出控制信号了,通过脉冲信号通知投切执行元件,即晶闸管导通。投切电容器组大约20-30毫秒内完成一个全部动作,作为一种新的补偿装置有着广泛的应用前景。
其动作原理是当控制器采集到需要补偿的信号发出一个指令(投入一组或多组电容器的指令)此时由触发脉冲去触发晶闸管导通,相应的电容器组也就并入线路运行。晶闸管的导通条件必须满足其所在相的电容器端电压为零,以避免涌流造成元件的损坏,也就是说电力电子器件控制的无功投切是无涌流投切;当控制指令撤消时,触发脉冲随即消失,晶闸管零电流自然关闭,关断后的电容器电压为线路电压交流峰值,必须由放电电阻尽快放电,以备电容用以投入。用于控制电容器投切的元器件可以用单相晶闸管、并联的双向晶闸管,也可选适合容性负荷的固态接触器。元件的耐压及额定电流要选择合理。这种补偿方式其最主要的制约因素是用于投切控制的元器件的散热方式及冷却方式。我公司现上无功动态补偿装置的冷却方式选用水冷内循环,各晶闸管的运行温度能够控制在40~50℃之间。
在低压无功功率补偿装置的应用方面,选择延时速是瞬时的补偿方式。要依电网的状况所定。首先要对所补偿的方式性质有所了解,对负荷较大且变化较快的工况。如电焊机、电动机的方式应采用瞬时的补偿方式;对于相对稳定的负荷可采用延时补偿方式,也可使用瞬时的补偿方式。一般电焊工作时间均在几秒钟以上。电动机启动也在几秒钟以上。而瞬时补偿的响应时间在几十毫秒。按40ms考虑则从40ms到5秒钟之内是一个相对稳态过程,瞬时补偿能完成这一过程。
二、无功功率补偿控制器
无功功率补偿控制器按照采样方式可分为三类,即功率因数型、无功功率型、无功电流型。选择哪一种物理控制方式实际上就是对无功功率控制器的选择。控制器是无功补偿装置的指挥系统,是进行采样运算、发出投切信号、参数设定、测量、元件保护等功能的一个核心装置。现在对上述所说的三种补偿装置简单的进行一下介绍:
1、功率因数型控制器。
功率因数用cosφ表示,它表示有功功率在线路中所占的比例。当cosφ=1时,就是说明线路中没有无功损耗,提高功率因数并减少无功功率和无为有功功率的损耗是这类控制器的最终目标,这种控制方式也是传统的方式,采样控制较易实现。这种采样方式在运行中既要保证系统稳定和无振荡现象出现,又要兼顾补偿效果。对于这种补偿方式很重要的一点就是如何进行参数设定,只能在现场视具体情况将参数整定在一个较好的状态下进行工作,既使参数调整的较好,也无法弥补这种补偿方式自身的缺陷,尤其是在负荷较重的环境中,例如:设定投入门限cosφ=0.95(滞后)此时工作环境为重负荷,既使此时的无功损耗很大。无功缺额很大,再投电容器组也不会出现过补偿。但cosφ只要不小于0.95,控制器就不会再有补偿指令,也就不会有电容器投入。故不推荐使用这种补偿方式。
2、无功功率(无功电流)型控制器。
这种方式可完善的解决功率因数型的缺陷,一个良好设计的无功型控制器,它是智能化的,有很强的适应能力,能兼顾线路的稳定性、检测和无功补偿的效果,并能对补偿装置进行完善的保护及检测。这种补偿装置可实现如下功能:
四象限操作、自动和手动切换、自识别各路电容器组的功率,可根据负荷自动调节切换时间,具有谐波过压报警及保护,可防止线路发生谐振,具有过电压保护、低电流报警,可检测所补偿系统的电压、电流畸变率,显示电容器功率、显示cosφ、U、I、S、P、Q及频率。
由以上功能可以看出其控制功能非常强大。由于是无功型控制器,也就能够将补偿装置的效果发挥到极至。此时既使在重负荷的情况,负荷发出的无功功率已经相当大,那怕cosφ已达到0.99(滞后)也可根据要求再投入一组,使补偿效果达到最佳。
3、动态补偿的控制器
关键词:电网;无功补偿;方法
中图分类号:F407.6文献标识码: A
许多用电设备均是根据电磁感应原理工作的,如配电变压器、电动机等,它们都是依靠建立交变磁场才能进行能量的转换和传递。为建立交变磁场和感应磁通而需要的电功率称为无功功率,因此,所谓的“无功”并不是“无用”的电功率,只不过它的功率并不转化为机械能、热能而已;因此在供用电系统中除了需要有功电源外,还需要无功电源,两者缺一不可。 在功率三角形中,有功功率P与视在功率S的比值,称为功率因数cosφ,其计算公式为:cosφ=P/S。在电力网的运行中,功率因数反映了电源输出的视在功率被有效利用的程度,我们希望的是功率因数越大越好。这样电路中的无功功率可以降到最小,视在功率将大部分用来供给有功功率,从而提高电能输送的功率。
1影响功率因数的主要原因
(1)大量的感性设备,如异步电动机等设备是无功功率的主要消耗者。异步电动机的无功消耗占了60%~70%;而在异步电动机空载时所消耗的无功又占到电动机总无功消耗的60%~70%。所以要改善异步电动机的功率因数就要防止电动机的空载运行并尽可能提高负载率。
(2)变压器消耗的无功功率一般约为其额定容量的10%~15%,它的空载无功功率约为满载时的1/3。因而,为了改善电力系统和企业的功率因数,变压器不应空载运行或长期处于低负载运行状态。
(3)供电电压超出规定范围也会对功率因数造成很大的影响。当供电电压高于额定值的10%时,由于磁路饱和的影响,无功功率将增长得很快,据有关资料统计,当供电电压为额定值的110%时,一般无功将增加35%左右。当供电电压低于额定值时,无功功率也相应减少而使它们的功率因数有所提高。但供电电压降低会影响电气设备的正常工作。所以,应当采取措施使电力系统的供电电压尽可能保持稳定。
2无功补偿的一般方法
无功补偿通常采用的方法主要有3种:低压个别补偿、低压集中补偿、高压集中补偿。简单介绍这3种补偿方式的适用范围及使用该种补偿方式的优缺点。
(1)低压个别补偿。低压个别补偿就是根据个别用电设备对无功的需要量将单台或多台低压电容器组分散地与用电设备并接,它与用电设备共用一套断路器。通过控制、保护装置与电机同时投切。随机补偿适用于补偿个别大容量且连续运行(如大中型异步电动机)的无功消耗,以补励磁无功为主。低压个别补偿的优点是:用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,因此不会造成无功倒送。具有投资少、占位小、安装容易、配置方便灵活、维护简单、事故率低等优点。
(2)低压集中补偿。低压集中补偿是指将低压电容器通过低压开关接在配电变压器低压母线侧,以无功补偿投切装置作为控制保护装置,根据低压母线上的无功负荷而直接控制电容器的投切。电容器的投切是整组进行,做不到平滑的调节。低压补偿的优点:接线简单、运行维护工作量小,使无功就地平衡,从而提高配电变压器利用率,降低网损,具有较高的经济性,是目前无功补偿中常用的手段之一。
(3)高压集中补偿。高压集中补偿是指将并联电容器组直接装在变电所的6~10kV高压母线上的补偿方式。适用于用户远离变电所或在供电线路的末端,用户本身又有一定的高压负荷时,可以减少对电力系统无功的消耗并可以起到一定的补偿作用;补偿装置根据负荷的大小自动投切,从而合理地提高了用户的功率因数,避免功率因数降低导致电费的增加。同时便于运行维护,补偿效益高。
3采取适当措施,设法提高系统自然功率因数
提高自然功率因数是不需要任何补偿设备投资,仅采取各种管理上或技术上的手段来减少各种用电设备所消耗的无功功率,这是一种最经济的提高功率因数的方法。
(1)合理使用电动机。
(2)提高异步电动机的检修质量。
(3)采用同步电动机:同步电动机消耗的有功功率取决于电动机上所带机械负荷的大小,而无功功率取决于转子中的励磁电流大小,在欠励状态时,定子绕组向电网"吸取"无功,在过励状态时,定子绕组向电网"送出"无功。因此,对于恒速长期运行的大型机构设备可以采用同步电动机作为动力。异步电动机同步运行就是将异步电动机三相转子绕组适当连接并通入直流励磁电流,使其呈同步电动机运行,这就是"异步电动机同步化"。
(4)合理选择配电变压器容量,改善配电变压器的运行方式:对负载率比较低的配电变压器,将其负载率提高到最佳值,从而改善电网的自然功率因数。
4无功电源
电力系统的无功电源除了同步电机外,还有静电电容器、静止无功补偿器以及静止无功发生器,这4种装置又称为无功补偿装置。除电容器外,其余几种既能吸收容性无功又能吸收感性无功。同步电机。同步电机中有发电机、电动机及调相机3种。
(1)同步发电机。同步发电机是唯一的有功电源,同时又是最基本的无功电源,当其在额定状态下运行时,可以发出无功功率: Q=S×sinφ=P×tgφ
其中:Q、S、P、φ是相对应的无功功率、视在功率、有功功率和功率因数角。
发电机正常运行时,以滞后功率因数运行为主,向系统提供无功,但必要时,也可以减小励磁电流,使功率因数超前,以吸收系统多余的无功。
(2)同步调相机。同步调相机是空载运行的同步电机,它能在欠励或过励的情况下向系统吸收或供出无功,装有自励装置的同步电机能根据电压平滑地调节输入或输出的无功功率,这是其优点。但它的有功损耗大、运行维护复杂、响应速度慢,近来已逐渐退出电网运行。
(3)并联电容器。并联电容器补偿是目前使用最广泛的一种无功电源,由于通过电容器的交变电流在相位上正好超前于电容电压,滞后于电感电压,由此可视为向电网提供无功功率: Q=U/Xc其中:Q、U、Xc分别为无功功率、电压、电容器容抗。
并联电容器本身功耗很小,装设灵活,节省投资;由它向系统提供无功可以改善功率因数,减少由发电机提供的无功功率。
(4)静止无功补偿器。静止无功补偿器是由晶闸管所控制投切电抗器和电容器组成,由于晶闸管对于控制信号反应极为迅速,而且通断次数也可以不受限制。当电压变化时静止补偿器能快速、平滑地调节,以满足动态无功补偿的需要,同时还能做到分相补偿;对于三相不平衡负荷及冲击负荷有较强的适应性;但由于晶闸管控制对电抗器的投切过程中会产生高次谐波,为此需加装专门的滤波器。
(5)静止无功发生器。它的主体是一个电压源型逆变器,由可关断晶闸管适当的通断,将电容上的直流电压转换成为与电力系统电压同步的三相交流电压,再通过电抗器和变压器并联接入电网。适当控制逆变器的输出电压,就可以灵活地改变其运行工况,使其处于容性、感性或零负荷状态。 与静止无功补偿器相比,静止无功发生器响应速度更快,谐波电流更少,而且在系统电压较低时仍能向系统注入较大的无功。
5结束语
分析了影响功率因数的主要因素,并提出了提高功率因数的几种方法,讨论了目前所通用的几种无功电源及其特点。探讨了功率因数对广大供电企业的影响以及提高功率因数所带来的经济效益和社会效益。
关键词:电网无功功率补偿无功电源
许多用电设备均是根据电磁感应原理工作的,如配电变压器、电动机等,它们都是依靠建立交变磁场才能进行能量的转换和传递。为建立交变磁场和感应磁通而需要的电功率称为无功功率,因此,所谓的"无功"并不是"无用"的电功率,只不过它的功率并不转化为机械能、热能而已;因此在供用电系统中除了需要有功电源外,还需要无功电源,两者缺一不可。
在功率三角形中,有功功率P与视在功率S的比值,称为功率因数cosφ,其计算公式为:
cosφ=P/S=P/(P2+Q2)1/2
在电力网的运行中,功率因数反映了电源输出的视在功率被有效利用的程度,我们希望的是功率因数越大越好。这样电路中的无功功率可以降到最小,视在功率将大部分用来供给有功功率,从而提高电能输送的功率。
1影响功率因数的主要因素
(1)大量的电感性设备,如异步电动机、感应电炉、交流电焊机等设备是无功功率的主要消耗者。据有关的统计,在工矿企业所消耗的全部无功功率中,异步电动机的无功消耗占了60%~70%;而在异步电动机空载时所消耗的无功又占到电动机总无功消耗的60%~70%。所以要改善异步电动机的功率因数就要防止电动机的空载运行并尽可能提高负载率。
(2)变压器消耗的无功功率一般约为其额定容量的10%~15%,它的空载无功功率约为满载时的1/3。因而,为了改善电力系统和企业的功率因数,变压器不应空载运行或长期处于低负载运行状态。
(3)供电电压超出规定范围也会对功率因数造成很大的影响。
当供电电压高于额定值的10%时,由于磁路饱和的影响,无功功率将增长得很快,据有关资料统计,当供电电压为额定值的110%时,一般无功将增加35%左右。当供电电压低于额定值时,无功功率也相应减少而使它们的功率因数有所提高。但供电电压降低会影响电气设备的正常工作。所以,应当采取措施使电力系统的供电电压尽可能保持稳定。
2无功补偿的一般方法
无功补偿通常采用的方法主要有3种:低压个别补偿、低压集中补偿、高压集中补偿。下面简单介绍这3种补偿方式的适用范围及使用该种补偿方式的优缺点。
(1)低压个别补偿:
低压个别补偿就是根据个别用电设备对无功的需要量将单台或多台低压电容器组分散地与用电设备并接,它与用电设备共用一套断路器。通过控制、保护装置与电机同时投切。随机补偿适用于补偿个别大容量且连续运行(如大中型异步电动机)的无功消耗,以补励磁无功为主。低压个别补偿的优点是:用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,因此不会造成无功倒送。具有投资少、占位小、安装容易、配置方便灵活、维护简单、事故率低等优点。
(2)低压集中补偿:
低压集中补偿是指将低压电容器通过低压开关接在配电变压器低压母线侧,以无功补偿投切装置作为控制保护装置,根据低压母线上的无功负荷而直接控制电容器的投切。电容器的投切是整组进行,做不到平滑的调节。低压补偿的优点:接线简单、运行维护工作量小,使无功就地平衡,从而提高配变利用率,降低网损,具有较高的经济性,是目前无功补偿中常用的手段之一。
(3)高压集中补偿:
高压集中补偿是指将并联电容器组直接装在变电所的6~10kV高压母线上的补偿方式。适用于用户远离变电所或在供电线路的末端,用户本身又有一定的高压负荷时,可以减少对电力系统无功的消耗并可以起到一定的补偿作用;补偿装置根据负荷的大小自动投切,从而合理地提高了用户的功率因数,避免功率因数降低导致电费的增加。同时便于运行维护,补偿效益高。
3采取适当措施,设法提高系统自然功率因数
提高自然功率因数是不需要任何补偿设备投资,仅采取各种管理上或技术上的手段来减少各种用电设备所消耗的无功功率,这是一种最经济的提高功率因数的方法。
(1)合理使用电动机;
(2)提高异步电动机的检修质量;
(3)采用同步电动机:同步电动机消耗的有功功率取决于电动机上所带机械负荷的大小,而无功功率取决于转子中的励磁电流大小,在欠励状态时,定子绕组向电网"吸取"无功,在过励状态时,定子绕组向电网"送出"无功。因此,对于恒速长期运行的大型机构设备可以采用同步电动机作为动力。
异步电动机同步运行就是将异步电动机三相转子绕组适当连接并通入直流励磁电流,使其呈同步电动机运行,这就是"异步电动机同步化"。
(4)合理选择配变容量,改善配变的运行方式:对负载率比较低的配变,一般采取"撤、换、并、停"等方法,使其负载率提高到最佳值,从而改善电网的自然功率因数。
4无功电源
电力系统的无功电源除了同步电机外,还有静电电容器、静止无功补偿器以及静止无功发生器,这4种装置又称为无功补偿装置。除电容器外,其余几种既能吸收容性无功又能吸收感性无功。
(1)同步电机:
同步电机中有发电机、电动机及调相机3种。
①同步发电机:
同步发电机是唯一的有功电源,同时又是最基本的无功电源,当其在额定状态下运行时,可以发出无功功率:
Q=S×sinφ=P×tgφ
其中:Q、S、P、φ是相对应的无功功率、视在功率、有功功率和功率因数角。
发电机正常运行时,以滞后功率因数运行为主,向系统提供无功,但必要时,也可以减小励磁电流,使功率因数超前,即所谓的"进相运行",以吸收系统多余的无功。
②同步调相机:
同步调相机是空载运行的同步电机,它能在欠励或过励的情况下向系统吸收或供出无功,装有自励装置的同步电机能根据电压平滑地调节输入或输出的无功功率,这是其优点。但它的有功损耗大、运行维护复杂、响应速度慢,近来已逐渐退出电网运行。
③并联电容器:
并联电容器补偿是目前使用最广泛的一种无功电源,由于通过电容器的交变电流在相位上正好超前于电容器极板上的电压,相反于电感中的滞后,由此可视为向电网"发?quot;无功功率:
Q=U2/Xc
其中:Q、U、Xc分别为无功功率、电压、电容器容抗。
并联电容器本身功耗很小,装设灵活,节省投资;由它向系统提供无功可以改善功率因数,减少由发电机提供的无功功率。
④静止无功补偿器:
静止无功补偿器是由晶闸管所控制投切电抗器和电容器组成,由于晶闸管对于控制信号反应极为迅速,而且通断次数也可以不受限制。当电压变化时静止补偿器能快速、平滑地调节,以满足动态无功补偿的需要,同时还能做到分相补偿;对于三相不平衡负荷及冲击负荷有较强的适应性;但由于晶闸管控制对电抗器的投切过程中会产生高次谐波,为此需加装专门的滤波器。
⑤静止无功发生器:
它的主体是一个电压源型逆变器,由可关断晶闸管适当的通断,将电容上的直流电压转换成为与电力系统电压同步的三相交流电压,再通过电抗器和变压器并联接入电网。适当控制逆变器的输出电压,就可以灵活地改变其运行工况,使其处于容性、感性或零负荷状态。
与静止无功补偿器相比,静止无功发生器响应速度更快,谐波电流更少,而且在系统电压较低时仍能向系统注入较大的无功。
关键词 无功功率;补偿装置;设计选用
中图分类号TM715 文献标识码A 文章编号 1674-6708(2013)86-0132-02
0引言
由于电网中大量非线性负载的使用,造成了系统电压升降、电能损失、功率因数降低、谐波干扰等问题,严重危及电力系统的安全经济运行。国家“十二五”规划明确指出,将“依托信息、控制和储能等先进技术,推进智能电网建设”,而电能质量和功率因数是智能电网的重要因素。世界各国对电力用户的用电功率因数都有要求,并按功率因数的高低给予奖惩。因此,合理选用无功功率补偿装置对电力系统有着重要的意义。
1 补偿原理
造成功率因数低的主要原因是电网中的感性负荷,其无功电流相位滞后电压90度,由于容性负荷的无功电流相位超前电压90度,与感性无功电流的相位差180度,因此可用容性无功电流抵消感性无功电流,缩小功率因数角。一般情况下,可用电容器来补偿负荷产生的无功电流。电容器价格便宜,易于安装,到目前为止仍是我国主要的无功补偿器件。
2 无功功率补偿方式的选择
根据投切容量的变化可分为稳态补偿和动态补偿。稳态补偿主要是安装固定容量补偿负载变化相对稳定的补偿方式,多采用并联电容器进行。将电容器组与负载并接,同时投切。优点:投资和线路损耗减少、安装容易、维护简单、故障率低等。
动态补偿则根据负载的变化随时切换补偿量进行补偿,动态补偿装置用于急剧变动的冲击负荷,如炼钢炉等,主要由补偿器件电抗器和电容器、控制器、投切开关等组成,控制器采集电网的电压、电流量等参数,进行运算,再根据参数设定值发出投切指令。投切开关器件主要有一代普通交流接触器、二代电力电子元件(如晶闸管、绝缘栅双极型晶体管)、三代复合开关(将可控硅与接触器并接)。电力电子元件控制,应用较广泛 。复合开关具有可控硅过零投切的优点,又具有接触器无功耗的优点,是较先进的控制方式[1-2]。投切开关参数选择应遵守《低压并联电容器装置使用技术条件》(DL/T 842-2003)标准的规定,否则很易损坏。该标准规定: 对于半导体开关电器和复合开关电器,额定电流(有效值)应不小于2.5倍单组电容器额定电流选取。机械开关电器额定电流额定电流(有效值)应不小于2倍单组电容器额定电流选取。
并联电容器装置的设备选型应遵守《并联电容器装置设计规范》GB50227-95的要求,根据电网谐波水平、补偿容量及扩建规划等因素进行确定。
施耐德公司针对低压配电系统中的谐波污染程度的不同,提供了不同的无功补偿方案,根据如下公式选择:a= Gh /Sn 。a-谐波污染率,Sn-变压器视在功率,Gh-产生谐波设备的视在功率(整流/变频、中/高频、电弧炉、电焊机等)[3]。
4结论
无功补偿是电网优质、安全、经济运行的一项重要技术措施。本文重点对电容补偿的容量计算、容量修正、补偿方式选择进行了探讨,并通过大量的工程验证了实效性,仅供同行们在以后的设计中参考。
参考文献
[1]田艳兵.矿山井下供电系统无功功率因数与节能[J].煤矿机械,2010,6.
关键词: 无功功率补偿; 控制方式选择; 经济效益
中图分类号: TM761+.1 文献标识码: A 文章编号: 1009-8631(2011)02-0047-02
1 无功功率补偿控制概述
1.1无功功率的产生和影响
在交流电力系统中,发电机在发有功功率的同时也发无功功率,它是主要的无功功率电源;运行中的输电线路,由于线间和线对地间的电容效应也产生部分无功功率,称为线路的充电功率,它和电压的高低、线路的长短以及线路的结构等因素有关。电能的用户(负荷)在需要有功功率(P)的同时还需要无功功率(Q),其大小和负荷的功率因数有关;有功功率和无功功率在电力系统的输电线路和变压器中流动会产生有功功率损耗(ΔP)和无功功率损耗(ΔQ),也会产生电压降落(ΔU)。无功功率在输电线、变压器中的流动会增加有功功率损耗和无功功率损耗以及电压降落;由于变压器、高压架空线路中电抗值远远大于电阻值,所以无功功率的损耗比有功功率的损耗大,并且引起电压降落的主要因素是无功功率的流动。
1.2无功补偿的作用
无功补偿可以收到下列的效益:①提高用户的功率因数,从而提高电工设备的利用率;②减少电力网络的有功损耗;③合理地控制电力系统的无功功率流动,从而提高电力系统的电压水平,改善电能质量,提高了电力系统的抗干扰能力;④在动态的无功补偿装置上,配置适当的调节器,可以改善电力系统的动态性能,提高输电线的输送能力和稳定性;⑤装设静止无功补偿器(SVS)还能改善电网的电压波形,减小谐波分量和解决负序电流问题。对电容器、电缆、电机、变压器等,还能避免高次谐波引起的附加电能损失和局部过热。
1.3无功补偿装置
除发电机和输电线外的无功电源主要有:①并联电容器组是一种静态的无功补偿装置。用它进行的补偿称为并联电容补偿。②同步调相机;③静止无功补偿器。后两者属于动态的无功补偿装置。
另外,在远方水电站和坑口火电厂等的出线母线上,长距离输电线的两侧线路上,以及长距离输电线的开关站等地方接有并联电抗器,也是一种无功补偿装置。用其进行的补偿称为并联电抗补偿。远方电站出口母线上的并联电抗器主要是吸收发电机所发的无功功率,以使发电机能运行在合理的功率因数下而又避免无功的长距离输送。长距输电级上配置的并联电抗器,主要是吸收线路空载和轻载时的充电功率,使沿线电压分布合理并降低工频稳态和暂态过电压。
鉴于电力生产的特点,用户用电功率因数的高低对发、供、用电设备的充分利用、节约电能和改善电压质量有着重要影响。为了提高用户的功率因数并保持其均衡,以提高供电用双方和社会的经济效益,特制定功率因数的标准值与功率因数调整电费。如表一。
2 补偿方式的选择
2.1 个别补偿
即在用电设备附近按其本身无功功率的需要量装设电容器组,与用电设备同时投入运行和断开,也就是再实际中将电容器直接接在用电设备附近。
适合用于低压网络,优点是补偿效果好,缺点是电容器利用率低。
2.2分组补偿
即将电容器组分组安装在车间配电室或变电所各分路出线上,它可与工厂部分负荷的变动同时投入或切除,也就是再实际中将电容器分别安装在各车间配电盘的母线上。
优点是电容器利用率较高且补偿效果也较理想(比较折中)。
2.3集中补偿
即把电容器组集中安装在变电所的一次或二次侧的母线上。在实际中会将电容器接在变电所的高压或低压母线上,电容器组的容量按配电所的总无功负荷来选择。
优点:是电容器利用率高,能减少电网和用户变压器及供电线路的无功负荷。
缺点:不能减少用户内部配电网络的无功负荷。实际中上述方法可同时使用。对较大容量机组进行就地无功补偿。
3 控制方式的选择
3.1个别补偿的控制方式
3.1.1 启动不频繁的设备
启动不频繁的设备可选择空气自动开关、熔断器作为保护设备
3.1.2启动较频繁的设备
启动较频繁的设备可选择FKA系列智能复合开关(投切间隔时间大于30s)、TSC动态投切开关。选型如表2、表3.
3.2分组补偿、集中补偿的电力电容器柜
装置中使用了交流接触器、投切专用交流接触器、可控硅功率模块、固态继电器、复合固态继电器等作为并联电容器的投切开关,由于并联电容器的投切开关对装置的性能具有决定性的影响,因而合理的选择投切开关就显得十分重要。
3.2.1交流接触器和投切专用交流接触器
交流接触器是传统的低压补偿并联电容器的投切开关,优点是成本低、控制简单、使用方便,缺点是投切时会产生较大的涌流和过电压,其大小与感性负载的大小(如变压器的短路容量)、阻抗、电容器的容量,交流接触器的性能有关。切除时易产生电弧,触点易于烧毁、寿命较短,不适用于频繁投切的场合。
电容器投切专用交流接触器是为了减轻涌流对交流接触器的影响而设计的,其与普通交流接触器的不同之处是将普通接触器触点加以改善,配上抑制投切电流的电阻,采用并联开关分步投切的方法,先合上带电阻的开关再合上不带电阻的开关来减少投切过程中产生的涌流和过电压。由于其只能降低投切过程中产生的涌流和过电压,并不能从根本上解决问题,在电容器容量相对较大时,仍然会产生很大的涌流,因而其应用仍然受到一定的限制。
由于上述两种交流接触器在应用于低压并联电容器投切时存在着不可克服的涌流问题和触点的烧蚀问题,对电容器和装置的寿命有较大的影响,所以其在电容器投切领域的应用越来越少,正逐步被功率电子开关所替代。但由于其价格低廉,在某些技术要求较低、电网波形畸变严重不适于应用电力电子开关的场合仍有使用,需安排人巡查、定时更换。
3.2.2 可控硅开关、固态继电器
反并联可控硅开关加上具有过零检测功能的驱动电路,即成为一个典型的具有“零压差”投入,零电流退出功能的电力电子投切开关,具有较高的dV/dt和dI/dt承受能力,可有效的抑制电容器投入时的浪涌电流和过电压的产生及退出时的拉弧电流。常规的做法是将反并联的可控硅模块外部配装专用的触发线路板。
投切专用的固态继电器是将上述开关的反并联的可控硅模块及外部配装专用的触发线路板的全部器件以固态继电器的标准封装形式封装在一个壳体内,内置阻容吸收,故结构紧凑,综合成本较低,外形上有方型或长条型以适合不同用户的联接需要。具有体积小、耐蚀防潮、安装使用方便等特点,是目前可控硅开关的常用封装形式。
上述两种电力电子投切开关的工作原理完全相同,都是以具有零检测功能的触发电路控制反并联的可控硅无触点开关。优点是投切电容器时“零压差"投入、零电流切除,实现无涌流或小涌流投切,提高了电容器寿命,无触点无拉弧,开关速度高、反应时间快,干扰小、体积小、耐腐蚀,寿命长、可靠性高,易于与计算机接口、适用于智能型无功控制器或配电综测仪对电网进行动态无功补偿和远程控制。另外可方便地实现单相分相补偿或三相共补。缺点是工作中功耗较大,使用时需加装散热器,成本也比适用交流接触器高许多。但由于其性能优越,应用者众多。
3.2.3复合投切开关、复合固态继电器
交流接触器投切开关压降小、发热少,但涌流大、寿命短,电力电子投切开关涌流小、寿命长,但压降高、功耗大、需要散热,各有优缺点。能否整合它们的优点,优势互补,制造出具有“零压差”投入、零电流切除、低压降保持特性的投切开关,科技人员采用电力电子开关负责控制电容器的投入和切除,交流接触器负责保持电容器投入后的接通的方法制造出了复合投切开关。这种投切开关同时具备了交流接触器和电力电子投切开关的优点,不但抑制了涌流,避免了拉弧,而且功耗较低,不再需要配备笨重的散热器和冷却风扇。尤其是复合固态继电器将复合投切开关集成一体,体积小、重量轻、性能优良,是低压无功自动补偿装置中并联补偿电容器的理想投切开关。
4补偿容量测量与计算
4.1测量方法
采用双钳相位表测量(以单相为例)A相电流、电压值以及电流电压角,譬如电流53A、电压224V、电压超前45°,则:
总功率S=I*U=53*224=11.87(kW)
有功功率P=I*U*COSΦ=53*224*COS45°=8.393(kW)
无功功率Q=I*U*SINΦ=53*224*SIN45°=8.393 (kva)
若将功率因数由目前的0.707分别提高到0.9和1需要并联多少千乏电容器, Q1=P*SINΦ/ COSΦ=8.393*0.43/.09=4.06(kva)
ΔQ=8.393-4.06=4.333(kva)
故:提高到0.9和1需要并联4.333和8.393千乏电容器,由上式可知功率因数由0.707提高到0.9需要4.333千乏功率因数由0.9提高到1需要4.06千乏。这说明功率因数由低提高到高投入容量较小,而由较高水平提高到更高则投入容量大。所以,要合理选择功率因数提高的水平。
4.2 根据电度表及负荷工作时间计算方法
已知:某工厂有功功率月耗电量15000kWh,月平均功率因数为0.65,30天日平均负荷工作时间为6小时。欲把功率因数提高到0.95,需配多大容量电容器。
平均有功功率P=15000/30*6=83.33kW
无功功率Q=P*tgφ=83.33*1.169=97.42(kav)
功率因数提高到0.95时,S=P/COSφ=83.33/0.95=87.72KVA
Q=S*SINφ=87.72*0.31=27.2(kva)
故补偿电容量ΔQ=97.42-27.2=70.22(kva)
5 无功补偿投资与经济效益
以上述为例,选择20kva,380V,50Hz电容器6只(每千乏10元),控制器一只(约700元),FKA系列智能复合开关6只(每只300元),控制屏一个(约1200元),共计4900元,每月无功功率调整电费15000*0.6*0.15=1350(元)
投资回收期(月)=4900/1350=4(月)
一般来说无功补偿投资回收期应小于2年为宜。
结语
随着电力电子技术的迅猛发展,造价低廉,控制精度高,稳定性好的可控硅开关、固态继电器、复合固态继电器将不断面世,为无功功率补偿的应用提供了更好的前景。大力推广无功功率补偿技术必将为企业带来良好的经济效益和创建节约型社会做出贡献。
参考文献:
[1] 钱平主编.交直流传动控制系统[M].北京:高等教育出版社,2007.
[2] 黄坚主编.自动控制原理极其应用[M].北京:高等教育出版社,2001.
[3] 刘春华主编.工业企业电器调整手册[M].北京:冶金工业出版社,2001.
关键词:无功优化 ;无功补偿 ;非线性 ;网损电压质量 ; 无功功率
Abstract: in recent years, with the further improvement of power grid, industrial and agricultural production of electricity continues to expand the scale, with the growing consumption and changes in the structure of power, the power supply and demand more and more prominent. The power supply is forcing people in loss reduction and energy saving more articles. According to the people of the operation characteristics of power network, consume no power transmission process point of view, the wattless power compensation. Power system reactive power optimization and compensation is to improve the system operating voltage, reduce the loss of network, an effective means to improve the level of system stability. Based on the current domestic reactive power optimization and compensation are summarized, makes some discussion and Research on the present there is no power compensation and optimization problems, for reference.
Keywords: no reactive power optimization; wattless power compensation; nonlinear; voltage quality of network loss; wattless power
中图分类号: TM7文献标识码:A文章编号:
前言
众所周知,电力网在运行时,电源供给的无功功率是电能转换为其他形式能的前提,它为电能的输送、转换创造了条件。没有它,变压器就不能变压与输送电能,没有它,电动机的旋转磁场就建立不起来,电动机就无法转动。为此,我们根据用电设备消耗无功的多少,在负荷较集中、无功消耗较多的地点增设了无功电源点,使无功的需求量就地得到解决,这样不但减少了无功传输过程中造成的能量损耗和电压降落,而且提高了供用电双方和社会的经济效益,可谓一举两得。本文主要从以下内容简述1:无功补偿技术作用;2:无功功率补偿装置;3:无功优化和补偿的原则和类型;4:以及无功补偿带来的经济效益。
1.无功功率补偿的作用1.1、改善功率因数:根据国家水电部,物价局颁布的“功率因数调整电费办法”规定三种功率因数标准值,为此我们改善无功,提高功率因数。
(1)高压供电的用电单位,功率因数为0.9以上。(2)低压供电的用电单位,功率因数为0.85以上。(3)低压供电的农业用户,功率因数为0.8以上。
1.2、降低系统的能耗:
设R为线路电阻,ΔP为原线路损耗,ΔP为功率因数提高后线路损耗,则线损减少
比原来损失减少的百分数为式中,
补偿后,为分析方便,可认为U≈U,则由(2)式知,
当功率因数从0.8提高至0.9时,通过上式计算,可求得有功损耗降低17%左右。在输送功率P= 3UIcosφ不变情况下,cosφ提高,I相对降低,设为补偿前变压器的电流,为补偿后变压器的电流,铜耗分别为,;铜耗与电流的平方成反比,即
由于P=P,认为U≈U时,即 可知,功率因数从0.8提高至0.9时,铜耗相当于原来的80%。1.3、减少了线路的压降由U = (PR + QX)/U知,当补偿无功Q后,使Q减少,线路电压降明显减少。从另一个方面考虑,由于功率因素的提高,线路传送电流小了,系统的线路电压损失相应减小,有利于系统电压的稳定(轻载时要防止超前电流使电压上升过高),有利于大电机起动。
2.无功功率补偿装置及无功补偿中存在问题
近年来,随着国民经济的跨越式发展,电力行业也得到快速发展,特别是电网建设,负荷的快速增长对无功的需求也大幅上升,也使电网中无功功率不平衡,导致无功功率大量的存在。
2.1在实际的无功补偿工作中也存在一些问题:2.1.1补偿方式问题:目前很多电力部门对无功补偿的出发点就地补偿,不向系统倒送无功,即只注意补偿功率因素,不是立足于降低系统网的损耗。2.1.2.谐波问题:电容器具有一定的抗谐波能力,但谐波含量过大时会对电容器的寿命产生影响,甚至造成电容器的过早损坏;并且由于电容器对谐波有放大作用,因而使系统的谐波干扰更严重。2.1.3.无功倒送问题:无功倒送在电力系统中是不允许的,特别是在负荷低谷时,无功倒送造成电压偏高。2.1.4.电压调节方式的补偿设备带来的问题:有些无功补偿设备是依据电压来确定无功投切量的,线路电压的波动主要由无功量变化引起的,但线路的电压水平是由系统情况决定的,这就可能出现无功过补或欠补。2.2目前,我国电力系统无功功率补偿主要采用以下几种方式:2.2.1.同步调相机:同步调相机属于早期无功补偿装置的典型代表,它虽能进行动态补偿,但响应慢,运行维护复杂,多为高压侧集中补偿,目前很少使用。2.2.2.并补装置:并联电容器是无功补偿领域中应用最广泛的无功补偿装置,但电容补偿只能补偿固定的无功,尽管采用电容分组投切相比固定电容器补偿方式能更有效适应负载无功的动态变化,但是电容器补偿方式仍然属于一种有级的无功调节,不能实现无功的平滑无级的调节。2.2.3.串联电抗器:目前所用电抗器的容量是固定的,除吸收系统容性负荷外,用以抑制过电压。但主要是抑制谐波,当谐波5次以上时,电抗率需取4%-6%,当需抑制谐波3次以上,电抗率需取13%。以达到抑制谐波要求。
2.2.4.基于智能控制策略的晶闸管投切电容器(TSC)补偿装置将微处理器用于TSC,可以完成复杂的检测和控制任务,从而使动态补偿无功功率成为可能。TSC补偿装置操作无涌流,跟踪响应快,并具有各种保护功能,值得大力推广。2.2.5.静止无功发生器(SVG)静止无功发生器(SVG)又称静止同步补偿器(STATCOM),是采用GTO构成的自换相变流器,通过电压电源逆变技术提供超前和滞后的无功,进行无功补偿,若控制方法得当,SVG在补偿无功功率的同时还可以对谐波电流进行补偿。
3 无功优化和补偿的原则和类型
3.1无功优化和补偿的原则
全面规划,合理布局,分级补偿,就地平衡,具体内容如下。
总体平衡与局部平衡相结合,既要满足全网的总无功平衡,又要满足分线、分站的无功平衡。
其一,集中补偿与分散补偿相结合,以分散补偿为主,这就要求在负荷集中的地方进行补偿,既要在变电站进行大容量集中补偿,又要在配电线路、配电变压器和用电设备处进行分散补偿,目的是做到无功就地平衡,减少其长距离输送。
其次,要确定合适的补偿点。无功负荷补偿点一般按以下原则进行确定:
1)根据网络结构的特点,选择几个中枢点以实现对其他节点电压的控制;
2)根据无功就地平衡原则,选择无功负荷较大的节点。
3)无功分层平衡,即避免不同电压等级的无功相互流动,以提高系统运行的经济性。
4)网络中无功补偿度不应低于部颁标准0.7的规定。
3.2 根据补偿原则,确定无功补偿容量
按照上述的基本原则,根据无功在电力系统中的去向,确定几种主要的补偿方式及其容量。
变电站高压集中补偿:这种补偿是在变电站10(6)kV母线上集中装设高压并联电容器组,用以补偿主变的空载无功损耗和线路漏补的无功功率。目前,在农网上,除了大宗用户外,县局基本上采用这种补偿。比如:某县各变电站在未进行人工补偿以前cosφ= 0.85,根据功率因数(0.85)调整电费标准,每月罚款为月总电费的2.5%,经过各站装设了电容器补偿后,平均cosφ=0.9,每月电费减少0.5%,一年下来,功率因数节约电费约为60万元,为企业增加了效益。
随线补偿:将电容器分散安装在高压配电线路上,主要补偿线路上的无功消耗,还可以提高线路末端电压,改善电压质量。其补偿容量一般遵循"三分之二"原则,即补偿容量为无功负荷的三分之二,而电压降为U = (PR + QX)/Ue。
例1:一条10kV线路,长为5km,导线型号LGJ-70,其中g = 0.46W/km,X0 = 0.411Ω/km,所带负荷200 + j150,在线路末端补偿QC= 100kvar,求线路损耗和电压降。
①求线路上的损耗
补偿前:P1 = 3×I2R = 3×(2002 + 1502)/102×5×0.46 = 4313W。
补偿后:P2 = 3×I2R = 3×[2002 +(150 - 100)2]/102×5×0.46 = 2933W。
则一年少损失电量:A = (P1 - P2)T×10-3 = (4313 - 2933)×365×24×10-3 = 12089kWh。
②求电压降
补偿前:U = (PR + QX)/U = (200×0.46×5 + 150×0.411×5)/10 = 77V。
补偿后:U = (PR + QX)/U = [200×0.46×5 + (150 - 100)×0.411×5] /10 = 56V。
所以补偿后电压由9.92kV提高到9.94kV,改善了电压质量。
以上两个算例,充分说明了,补偿带来的经济效益,以及对国家电网稳定起的作用,对节能减排做的贡献。
3.3 随器补偿
将电容器安装在配电变压器低压侧,主要补偿配电变压器的空载无功功率和漏磁无功功率。一般情况下,农网配变负载率较低,轻载或空载时,无功负荷主要是变压器的空载励磁无功,因此配变无功补偿容量不易超过其空载无功,否则,在配变接近空载时可能造成过补偿,所以应按式Qb ≤ I0%Se/100(其中:I0%是空载电流百分数,从手册中可查出,Se是变压器的额定容量),但对于工业用户的变压器补偿,因其负荷率高,补偿时应从提高变压器出力的角度考虑。
例2:某县良种场有一台变压器Se = 80kVA,cosφ= 0.8,带一抽水用电动机Pe = 75kW,P = Se×cosφ = 80×0.8 = 64kW < 75kW,可见变压器处于超载运行,若提高cosφ的方法提高变压器出力,设拟增cosφ = 0.95,则P = 0.95×80 = 76kW > 75kW,由公式Qb = P×tgφ可知,应补偿无功Qb = 25kvar。
这个算例告诉我们,补偿无功,提高功率因素,对有功的贡献,可以提高变压器的承担负荷的能力,节约能源。3.4 随电动机补偿
将电容器直接并联在电动机上,用以补偿电动机的无功消耗。据运行统计,县级农网中约有60%的无功功率消耗在电动机上,因此,搞好电动机的无功补偿,使其无功就地平衡,既能减少配电线路的损耗,同时还可以提高电动机的出力。一般对7.5kW以上电动机进行补偿时,确定容量应按QC ≤ 3UeI0。另外,对于排灌所带机械负荷较大的电动机,补偿容量可适当加大,大于电动机的空载无功,但要小于额定无功负荷,即Q0 ≤ QC ≤ Qe。
例3:涉县自来水公司,一条线路长1km,导线型号LGJ-70,其中g = 0.46W/km,X0=0.411Ω/km,带一抽水用电动机Pe = 95kW,实用负荷为100 + j60,由于长期超载,在电动机上补偿无功QC = 30kvar,求补偿前后线路的损耗和电动机的出力。
视在功率S=(1002+602)1/2= 116.26kVA
①求线路上的损耗
补偿前:P1 = 3×I2R = (1002 + 602)/0.382×1×0.46 = 43.32kW。
补偿后:P1 = 3×I2R = [1002 + (60 - 30)2]/0.382×1×0.46 = 34.72kW。
P1 - P2 = 43.32 - 34.72 = 8.6 kW,则一年少损失电量8.6×24×365 = 75.33MWh。
②求电动机出力
补偿前:PN = 95kW < 100kW,电动机处于超载运行。
补偿后:PN = 112kW > 95kW,电动机运行正常,提高了电动机的出力。
3.5 低压集中补偿
在低压母线上装设自动投切的并联电容器成套装置主要补偿变压器本身及以上输电线路的无功功率损耗,而在配电线路上产生的损耗并未减少,因此,补偿不宜过大,否则变压器轻载或空载运行时,将造成过补偿,补偿容量应以变压器额定容量的30%至40%确定,即:Qb = (0.3 - 0.4)SN,或从提高功率因数的角度考虑Qb = P(tgφ1 - tgφ2),其中tgφ1 、tgφ2是补偿前后功率因数角的正切值。
4 补偿后带来的经济效益
从电压质量上来说,如例1,末端电压由9.92kV提高到9.94kV,保证了产品质量,给用户带来了直接经济效益。
从降损节能上来说,降低了电能损耗,减少了电费的支出,同样给用户带来经济效益。如例3,年节能7.533万kWh,按电价0.5857元/kWh,年节约电费7.533×0.5857=4.4万元。
从提高变压器的处理上来说,由于减少了无功电流,所以提高了变压器的出力。如例2,良种场若不是进行无功补偿,变压器长期处于超载运行,会因长期过热而烧坏变压器,而新安装一台变压器(100kVA),需投资1.3万元,但经过补偿,只需要投资近1000元就解决了变压器超载运行的问题,给良种场增创了1.2万元的经济效益。
结语
总之,无功补偿不仅能改善农网功率因数和电压质量,而且可以使无功负荷就地平衡,提高农网的经济运行水平,同时降低电费支出,减轻工农业生产的负担,所以进行无功补偿是利国利民的好事,我们应下决心去抓,真正让用户得到实惠。
参考文献
[1]戴朝波,雷林绪,林海雪.晶闸管投切电容无功补偿角型接线方案研究[J].电工技术杂志,2001(3)
[2]靳龙章、丁毓山.电网无功补偿实用技术[M]. 北京:中国水利水电出版社,1997
[3]孙成宝、李广泽.配电网实用技术[M].北京:中国水利水电出版社,1997
[4]陈珩.电力系统稳态分析[M].北京:水利电力出版社,1995
[5]姜齐荣,等.新型静止无功发生器[J].清华大学学报,自然科学版,1997(7)
[6]王正风,洪梅,王凤霞. 无人变电站中无功优化软件的设计和研究[J]. 电力建设,2001,22(5):14~17