时间:2023-03-07 15:20:08
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇控制管理论文范例。如需获取更多原创内容,可随时联系我们的客服老师。
关键词锅炉房/计算机控制/供暖
AbstractDiscussestherequirementsformonitoringandmanagementofthescopesfromboilerhousesforheating,steam-waterandwater-waterheatexchangers,smallscaleheatingnetworkstolargescaledistrictheating,therelatedhardwareconfigurationandtheapproachestorealisetherequiredfunctions.
Keywordscomputercontrol,heating,boiler
5.1供暖热水锅炉房内监测与控制的主要目的应为:
·提高系统的安全性,保证系统能够正常运行;
·全面监测并记录各运行参数,降低运行人员工作量,提高管理水平;
·对燃烧过程和热水循环过程进行有效的控制调节,提高锅炉效率,节省运行能耗,并减少大气污染。
对于热水锅炉,可将被监测控制对象分为燃烧系统和水系统两部分分别进行讨论。整个计算机监测控制管理系统可按图5-1形式由若干台现场控制机(DCU)和一台中央管理机构成。各DCU分别对燃烧系统、水系统进行监测控制,中央管理机则显示并记录这两个系统的在线状态参数,根据供热状态况确定锅炉、循环泵的开启台数,设定供水温度及循环流量,协调各台DCU完成各监测控制管理功能。
5.1.1燃烧系统监测与控制
对于链条式热水锅炉,燃烧过程的控制主要是根据对产热量的要求控制链条速度及进煤挡板高度,根据炉膛内燃烧状况及排烟的含氧量及炉膛内的负压度控制鼓风机、引风机的风量,从而既根据供暖的要求产生热量,又获得较高的燃烧效率。为此需要监测的参数有:
·排烟温度:一般使用铜电阻或热电偶来测量;再配之以相应的温度变送器,即可产生4~20mA或0~10mA的电流信号,通过DCU的模拟量输入通道AI即接入计算机。
·排烟含氧量:目前较多采用氧化锆传感器,可以对0.1%~21%范围内的高温气体的含氧量实现较精确的测量,其输出通过变送器后亦可转换为4~20mA或0~10mA电流信号。
·空气预热器出口热风温度:同上述测温方法。
·炉膛、对流受热面进出口、省煤器出口、空气预热器出口、除尘器出口烟气压力:测点可根据具体要求增减,一般采用膜盒式或波纹管式微压差传感器,再通过相应的变送器变为4~20mA或0~10mA电流信号,接入DCU的AI通道。
·一次风、二次风风压,空气预热器前后压差:测量方法同上。
·挡煤板高度测量:通过专门的机械装置将其转换为电阻信号,再变成标准电流信号,送入DCU的AI通道。
·供水温度及产热量:由水系统的DCU测出后通过通讯系统送来。
燃烧系统需要控制调节的装置为:
·炉排速度:由可控硅调压,改变直流电机转速
·挡煤板高度:控制电机正反转,通过机械装置带动挡板运动
·鼓风机风量:调鼓风机各风室风阀或通过变频器调风机转速
·引风机风量:调引风机风阀或通过变频器高风机转速
为了监测上述调节装置是否正常动作,还应配置适当的手段测试上述调节装置的实际状态。炉排速度和挡煤板高度可通过适当的机械机构结合霍尔元件等位置探测传感器来实现,风机风量的调节则可以通过风阀的阀位反馈信号或变频器的频率输出信号得到。
燃烧过程的控制调节主要包括事故下的保护,启停过程控制,正常的燃烧过程调节三部分。
·事故保护:这主要是由于某种原因造成循环水停止或循环量过小,以及锅炉内水温太高,出现汽化。此时最重要的是恢复水的循环,同时制止炉膛内的燃烧。这就需要停止给煤,停止炉排运行。停止鼓风机,引风机。DCU接收水温超高的信号后,就应立即进入事故处理程序,按照上述顺序停止锅炉运行,并响铃报警,通知运行管理人员,必要时还可通过手动补入冷水排除热水,进行锅炉降温。
启停控制:启动点火一般都是人工手动进行,但对于间歇运行的锅炉,封火暂停机和再次启动的过程则可以由DCU控制自动进行。封火过程为逐渐停止炉排运动,停掉鼓风机,然后停止引风机。重新启动的过程则是开启引风机,慢慢开大鼓风机,随炉温升高慢慢加大炉排进行速度。
正常运行调节:正常运行时的调节主要是使锅炉出口水温度维持在要求的设定值,同时达到高燃烧效率,低排烟温度,并使炉膛内保持负压。这时作为参照的测量参数有炉膛内的温度分布、压力分布、排烟含水量氧量等。锅炉的给煤量可以通过炉排速度和挡煤板高度(即煤层厚度)确定,鼓风机则可以根据空气预热器进出口空气的压差判断其相对的变化,此时可以调整控制量有炉排速度、煤层厚度(调整挡煤矿板高度)、鼓风机转速、各风室风阀、引风机转速或风阀。上述各调节手段与各可参照的测量参数都不是单一的对应关系,因此很难用如PID算法之类的简单控制调节算法。目前,控制调节效果较好的大都采用"模糊控制"方法或"规则控制"法,都是根据大量的人工调节运行经验而总结出的调节运行方法。
当燃烧充分时,锅炉的出力主要取决于燃煤量,因此锅炉出口水温的控制主要靠炉排速度及煤层厚度来调节,煤层厚度与煤种有很大关系,炉膛内燃烧状况可以通过炉膛内温度分布及煤层风阻来确定。燃烧充分时炉膛内中部温度最高,炉排尾部距挡渣器前煤已燃尽,温度降低。鼓风机则应根据进煤量的增减而增减送风量,同时通过观测排烟的含氧量最终确定风量是否适宜。引风机则可根据炉膛内负压状态决定运行状态,维持炉内微负压,从而既保证煤的充分燃烧,又不会使烟气和火焰外溢。根据如上分析,可采用如下调节规则:
每h一次,根据炉膛内温度分布调整煤层厚度及炉排速度,最高温度点后移,则将炉排速度降低5%,同时将挡煤板提高5%,当最高温度点前移时,则将炉排速度提高5%,同时将挡煤板降低5%。
每2h一次:若出水温度高于设定值2℃以上,则将炉排速度降低5%,若出水温度低于设定值2℃以上,则将炉排速度加大5%,加大和减小炉排速度的同时,还要相应地将鼓风机转速开大或减小。当采用风阀调整鼓风量时,则调阀,观察空气预热器前后压差使此压差增大或减少10%。
每15min一次:若排烟含氧量高于高定值,则适当减少鼓风同风量(降低转速或关小风阀),若低于高定值,则增加鼓风机风量。
每15min一次:若炉膛负压值偏小(或变为正压),加大引风机转速或开大风阀,若负压值偏大,则降低引风机风量。
以上调节规则中,所谓"合理的炉膛温度分布"取决于锅炉形式及测温传感器安装位置,需通过具体运行实测分析后,给出"合理","最高温度前移","最高温度后移"的判据,然后将其再写入DCU控制逻辑中。同样,排烟含氧量的设定值,含氧量出现偏差时对鼓风机风量的修正等参数也需要在锅炉试运行后,根据实际情况摸索,逐步确定。当然这几个修正量参数也可以在运行过程中通过所谓"自学习"的方法得到,在这里不做过多的讨论。
5.1.2锅炉房水系统的监测控制
锅炉房水系统的计算机监测控制系统的主要任务是保证系统的安全性;对运行参数进行计量和统计;根据要求调整运行工况。
·安全性保证:保证主循环泵的正常运行和补水泵的及时补水,使锅炉中循环水不会中断,也不会由于欠压缺水而放空。这是锅炉房安全运行的最主要的保证。
·计量和统计:测定供回水温度和循环水量,以得到实际的供热量;测定补水流量,以得到累计补水量。供热量及补水量是考查锅炉房运行效果的主要参数。
·运行工况调整:根据要求改变循环水泵运行台数或改变循环水泵转速,调整循环流量,以适应供暖负荷的变化,节省运行电费。
图5-2为由2台热水锅炉、4台循环水泵构成的锅炉房水系统示意图。图中还给出建议的测量元件和控制元件。
2台锅炉的热水出口均安装测温点,从而可了解锅炉出力状况。为了了解每台锅炉的流量,最好在每台锅炉入口或出口安装流量计,一般可采用涡街式流量计。涡街式流量计投资较高,可以按照图5-2那样在锅炉入口调节阀后面安装压力传感器,根据测出的压力p3,p4与锅炉出口压力p1之压差,也可以间接得到2台锅炉间的流量比例。2台锅炉入口分别安装电动调节阀来调整流量,可以使在2台锅炉都运行时,流量分配基本一致,而当低负荷工况下1台锅炉停止或封火,循环水泵运行台数也减少时,自动调节流量分配,使运行的锅炉通过总流量的90%以上,封火的锅炉仅通过总流量的5%~10%,仅维持其不至于过热。
图5-2锅炉房水系统原理及其测控点
温度传感器t3,t4,t5和流量传感器F1一起构成对热量的计量。用户侧供暖热量为,GF1cp(t3-t4),其中GF1为用流量F1测出的流量。锅炉提供的热量则为GF1cp(t3-t5),二者之差是用于加热补水所需要的热量。长期记录此热量并经常对其作统计分析,与煤耗量比较,既可检查锅炉效率的变化,及时发现锅炉可能出现的问题,与外温变化情况相比较,则又可以了解管网系统的变化及供热系统的变化,从而为科学地管理供暖系统的运行提供依据。
泵1~4为主循环泵。压力传感器p1,p2则观测网路的供回水压力。安装4台泵时的一般视负荷变化情况同时运行2台或3台水泵,留1台或2台备用。用DCU控制和管理这些循环水泵时,如前几讲所述,不仅要能够控制各台泵的启停,同时还应通过测量主接触器的辅助触点状态测出每台泵的开停状态。这样,当发现某台泵由于故障而突然停止运行时,DCU即可立即启动备用泵,避免出现因循环泵故障而使锅炉中循环水停止流动的事故。流量传感器F1也是观察循环水是否正常的重要手段。当外网由于某种原因关闭,尽管循环水泵运行,但流量可以为零或非常小,此时也应立即报警,通过计算机使锅炉自动停止,同时由运行值班人员立即手动开启锅炉的旁通阀V4,恢复锅炉内的水循环。
泵5,6与压力测量装置p2,流量测量装置F2及旁通阀V3构成补水定压系统,当p2压力降低时,开启一台补水泵向系统中补水,待p2升至设定的压力值时,停止补水。为防止管网系统中压力波动太大,当未设膨胀水箱时,还可设置旁通阀V3来维持压力的稳定。长期使一台补水泵运行,通过调整阀门V3来维持压力p2不变。补水泵5,6也是互为备用,因此DCU要测出每台泵的实际启停状态,当发现运行的泵突然停止或需要启动的泵不能启动时,立即启动另一台泵,防止系统因缺水而放空。流量计F2用来计算累计的补水量,它可以是涡街流量计,也可以采用通常的冷水水表,或有电信号输出的水表。
5.1.3锅炉房的中央管理机
如图5-1所示,可采用一台中央管理计算机与各台DCU连接,协调整个锅炉房及热网的运行调节与管理。中央机主要工作任务为:
·通过图形方式显示燃烧系统、水系统及外网系统的运行参数,记录和显示这些参数的长期变化过程,统计分析耗热量、补水量、外温及供回水温度的变化。
·根据外温变化情况,预测负荷的变化,从而确定供热参数,即循环水量及泵的开启台数、供水温度、锅炉运行台数。将这些决定通知相应的DCU产生相应原操作或修改相应的设定值。负荷的预测可以根据测出的以往24h的平均外温w来确定:
(5-1)
式中为Q0设计负荷,t0为设计状态下的室外温度,Q为预测出的负荷。考虑到建筑物和管网系统的热惯性,采用时间序列的方法来预测实际需要的负荷,可能要更准确些。
式(5-1)中的负荷尽管每h计算一次,但由于是取前24h的平均外温,因此它随时间变化很缓慢。每hQ的变化ΔQ仅为:
(5-2)
其中tw,τ-tw,τ-24为两天间同一时刻温度之差,一般不会超过5℃,因此ΔQ的变化总是小于Q的1%,所以不会引起系统的频繁调节。
根据预测的负荷可以确定锅炉的开启台数Nb:Nb≥Q/q0,其中q0为每台锅炉的最大出力。由此还可确定循环水泵的开启台数。
要求的总循环量G=max(Q/(Δt·cp)Cmin),其中Gmin为不产生垂直失调时要求的最小系统流量,Δt为设定的供回水温差。由于多台泵并联时,总流量并非与开启台数成正比,因此可预先在计算机中预置一个开启台数成正比,因此可预先在计算机中预置一个开启台数与流量的关系对应表,由此可求出要求的运行台数。
·分析判断系统出现的故障并报警。锅炉及锅炉房可能出现的故障及由计算机进行判断的方法为:
--水冷壁管或对流管爆管事故此时补水量迅速增加,炉膛内温度迅速下降,排烟温度下降,炉膛内温度迅速下降,排烟温度下降,炉膛内压力迅速由负压变为正压。
--水侧升温汽化事故此时锅炉热水出口温度迅速提高,接近达到或超过出口压力对应的饱和温度。
--锅炉内压力超压事故测出水侧压力突然升高,超过允许的工作压力;
--管网漏水严重测了水侧压力降低,补水量增大;
--锅炉内水系统循环不良测出总循环水量GF1减少很多,压差p3-p1或p4-p1加大;
--除污器堵塞测出总循环水量GF1减少,当阀门V1、V2全开时压差p3-p2、p4-p2仍偏小,说明压力传感器p2的测点至循环水泵入口间的除污器的堵塞。
--炉排故障测出的炉排运动速度与设定值有较大差别;
--引风机、鼓风机、水泵故障相应的主接触器跳闸,或所测出的空气压差或水循环流量与风机、水泵的设计状况有较大出入。
利用计算机根据上述规则及实测运行参数不断进行分析判断,即可及时发现上述事故或故障,并立即采取报警和停炉等相应的措施,从而防止事故的进一步扩大或故障转化为事故,提高运行管理的安全性。
5.2蒸汽-水和水-水换热站的监测与控制
对于利用大型集中锅炉房或热电厂作为热源,通过换热站向小区供热的系统来说,换热站的作用就同上一节的供暖锅炉房一样,只是用热交换器代替了热水锅炉。
图5-3为蒸汽-水换热站的流程及相应的测控制元件。水侧与图5-2一样,控制泵5、6及阀V2根据p2的压力值补水和定压;启停泵1~4来调整循环水量;由t2,t3及流量测量装置F1来确定实际的供热量。与锅炉房不同的是增加了换热器、凝水泵的控制以及蒸汽的计量。
蒸汽计量可以通过测量蒸汽温度t1、压力p3和流量F3实现,F3可以选取用涡街流量计测量,它测出的为体积流量,通过t1和p3由水蒸气性质表可查出相应状态下水蒸气的比体积ρ,从而由体积流量换算出质量流量。为了能由t和p查出比体积,要求水蒸气为过热蒸汽。为此将减压调节阀移至测量元件的前面,如图5-3中所示,这样即使输送来的蒸汽为饱和蒸汽,经调节阀等焓减压后,也可成为过热蒸汽。
实际上还可以通过测量凝水量来确定蒸汽流量。如果凝水箱中两个液位传感器L1、L2灵敏度较高,则可在L2输出无水信号后,停止凝水排水泵,当L2再次输出有水信号时,计算机开始计时,直到L1发出有水信号时,计时停止,同时启动凝水泵开始排水。从L2输出有水信号至L1开始输出有水信号间的流量可以用重量法准确标定出,从而即可通过DCU对这两个水位计的输出信号得到一段时间内的蒸汽平均质量流量,代替流量计F3,并获得更精确的测量。当然此处要求液位传感器L1、L2具有较高灵敏度。一般如浮球式等机械式液位传感器误差较大,而应采取如电容式等非直接接触的电子类液位传感器。
加热量由蒸汽侧调节阀V1控制。此时V1实际上是控制进入换热器的蒸汽压力,从而决定了冷凝温度,也就确定了传热量。为改善换热器的调节特性,可以根据要求的加热量或出口水温确定进入加热器的蒸汽压力的设定值。调整阀门V1使出口蒸汽压力p3达到这一设定值。与直接根据出口水温调整阀门的方式相比,这种串级调节的方式可获得更好的调节效果。
供水温度t3的设定值,循环泵的开启台数或要求的循环水量的确定,可以同上一节一样,根据前24h的外温平均值查算供热曲线得到要求的供热量,并算出要求的循环水量。供水温度的设定值t3,set可由调整后测出的循环水量G、要求的热量Q及实测回水温度t2确定:
t3,set=t2+Q/(cp·G)
随着供水温度t3的改变,t2也会缓慢变化,从而使要求的供水温度同时相应地改变,以保证供出的热量与要求的热量设定值一致。
对于一次网为热水的水-水换热站,原则上可以按照完全相同的方式进行,如图5-4。取消二次供水侧的流量计F1,仅测量高温热水侧的流量F3,再通过即可和到二次侧的循环水量,一般高温水温差大,流量小,因此将流量计装在高温侧可降低成本。测量高温水侧供回水压力p3、p4可了解高温侧水网的压力分布状况,以指导高温侧水网的调节。
调整电动阀门V1改变高温水进入换热器的流量,即可改变换热量。可以按照前述方法确定二次侧供水温设定值,由V1按此设定值进行调节。在实际工程中,高温水网侧的主要问题是水力失调,由于各支路通过干管彼此相连,一个热力站的调整往往会导致邻近热力站流量的变化。另外,高温水侧管网总的循环水量也很难与各换热站所要求的流量变化相匹配,于是往往造成外温降低时各换热站都将高温侧水阀V1开大,试图增大流量,结果距热源近的换热站流量得到满足,而距热源远的换热站流量反而减少,造成系统严重的区域失调。解决这种问题的方法就是采用全网的集中控制,由管理整个高温水网的中央控制管理计算机统一指定各热力站调节阀V1的阀位或流量,各换热站的DCU则仅是接收通过通讯网送来的关于调整阀门V1的命令,并按此命令进行相应的调整。高温水侧面管网的集中控制调节。将在一下节中详细介绍。
5.3小区热网的监测与调节
小区热网指供暖锅炉房或换热站至各供暖建筑间的管网的监测调节。小区热网的主要问题也是冷热不均,有些建筑或建筑某部分流量偏大,室内过热,而另一些建筑或建筑的另一部分却由于流量不足而偏冷。这样,计算机系统的中心任务就是掌握小区各建筑物的实际供暖状况,并帮助维护人员解决冷热不均问题。
测量各户室温是对供暖效果最直接的观测,但实际系统中尤其是对住宅来说,很难在各房间安装温度传感器。比较现实的方法就是测量回水温度,根据各支路回水温度的差别,就可以估计出各支路所负责建筑平均室温的差别。如果各支路回水温度调整到相同值,就意味着各支路所带散热器的平均温度彼此相同,因此可以认为室温也基本相同。一般住宅的回水温度测点可选在建筑热入口中的回水管上。对于大型建筑,可选在设备夹层中几个主要支路的回水干管上。
要解决冷热不均问题就需要对系统的流量分配进行调整,在各支路上都安装由计算机进行自动调节的电动调节阀成本会很高,同时一旦各支路流量调节均匀,在无局部的特殊变化时,系统应保持冷热均匀的状态,不需要经常调整。因此可以在各支路上安装手动调节阀,通过计算机监测和指导与人工手动调节相配合的方法实现小区供暖系统的调节和管理。为便于人工手动调节,希望各支路的调节阀有较准确的开度指示。目前国内推广建研院空调所等几个单位研究开发流量调配阀,有准确的阀位指示,阀位可锁定,并提供较准确的阀位-阻力特性曲线,采用这种阀门将更易于计算机指导下的人工调节。
根据上述讨论,计算机系统要测出各支路的回水温度,并将其统一送到供暖小区的中央管理计算机中进行显示、记录和分析。测出这些回水温度的方法有如下两种方式:
集中十余个回水温度测点设置1台DCU。此DCU仅需要温度测量输入通道。再通过专门铺设的局部网或通过调制解调器经过电话线与小区的中央管理联接。当这十几个温度相互距离较远时,温度传感器至DCU之间的电缆的铺设有时就有较大困难,温度信号的长线传输亦会有一些干扰等影响。这种方式仅在建筑物较集中、每一组联至一台DCU的测温点相距不太远时适用。
采用内部装有单片机的智能式温度传感器,可以连接通讯网通讯或通过调制解调器搭用电话线连至中央管理计算机。这样,可以在距测点最近的楼道墙壁上挂上一台带有调制解调器的温度变送器,通过一根电缆接至回水管上的温度传感器,再通过一根电缆搭接邻近电话线。目前这类设备每套价格可在1000~1500元人民币之间。如果每1000~3000m2建筑安装一个回水温度测点,则平均每m2供暖建筑投资在0.50~1元间。
小区的中央管理计算机采集到各点的回水温度后,可在屏幕上通过图形方式显示,使运行管理人员对当时的供热状况一目了然。还可根据各支路间回水温度的差别计算各支路阀门需要的调整量。对于一般的带有阀位指示的调节阀,这种分析只能采用某种基于经验的规则判断法,下面为其一例:
找出温度最高的10%支路的平均温度max,温度最低的10%支路和的平均温度min,全网平均回水温度。
若max-min<3℃,不需要再做调节。
若max->2℃,将温度最高的10%支路阀门都关小,与相比温度每高1℃关小3%5~%;
若max-<-2℃,将温度最低的10%支路阀门都开大,与相比温度每高1℃开大3%~5%;
根据上面的分析结果,计算机显示并打印出需要调节的支路及其调节量。运行管理人员根据计算机的输出结果到现场进行手动调节。在供暖初期每3天左右进行一次这种调节。一般经过6~8次即可使一个小区基本实现均匀供热。
采用流量调配阀时可以使调节效率更高,效果更好。此时需要将现场各流量调配阀的实际开度、流量调配阀的开度-阻力特性性能曲线及小区管网的连接关系图输入中央管理计算机,有专门的算法可以根据调整阀门后回水温度的变化情况识别出管网的阻力特性及热用户的热力特性,从而可较准确地给出各流量调本阀需要调整的开度[4],每次调整后,调整人员需将实际上各调节阀的调整程度输入计算机。计算机进而计算了下一次需要的调整量,像这样一次高速可间隔2~5d。模拟分析与实验结果表明,一般只要进行3~4次调节,即可使各支路的回水温度调整到相互间差值都在3℃以内,实现较好的均匀供热[8]。
目前,许多供热公司和有关管理部门开始提出装设热量计,以按照实际供热量收供暖费,各种采用单片计算机的热量计相应出台。这种热量计多是由一台转子式流量计和两台温度传感器配一台单片计算机构成。转子式流量计每流过一个单元流量即发出一个脉冲,由单片机测出此脉冲,得到流量,再乘以当时测出的供回水温差,即可行到相应的热量,由单片要对此热量值进行累计和其它统计分析就成为热量计。目前的单片机稍加扩充就可以具有通讯功能,通过调制解调器将它与电话线连接,就能实现热量计与小区供暖的中央管理机通讯。这样,不但各用户的用热量能够及时在中央管理机中反映,各用户的回水温度状况还能随时送到中央管理计算机中,从而可以对网的不平衡发问进行分析,给出热网的调节方案。这样,将热量计、通讯网与小区中央管理计算机三者结合,就可以全面实施小区热网的热量计量、统计与管理、运行调节分析三部分功能,较好地解决小区热网的运行、管理与调节。
1|2|3
5.4热电联产的集中供热网的计算机监控管理
热电联产的集中供热网可以分成两部分:热源至各热力站间的一次网,热力站至各用户建筑的二次网。后者的控制调节已在前几节讨论,本节讨论热源至各热力站间的一次网的监控管理。
一次网有蒸汽网和热水网两种形式,对于蒸汽网,各热力站为前面讨论过的蒸汽-热水换热站,一次网的管理主要是各热力站蒸汽用量的准确计量,这在前面也已讨论。下面主要研究热水网的监测控制调节。
若忽略热网本身的惯性,则系统各时刻和热力站换热量之和总是等于热源供出的总热量,此外各热力站一次网循环水量之和又总是等于热源循环泵的流量,不论是冷凝式、抽汽式还是背压式热电厂,其输出到热网的热量都不是完全由各热力站的调节决定,而是由热电厂本身的调节来决定,取决于进入蒸汽-水换热器的蒸汽量。由于热电厂控制调节输出热量时很难准确了解各热力站对热量的需求,同时还要兼顾发电的要求,不能完全根据各热力站需要的热量调整,于是热源供出的热量就很难与各热力站实际需求的热量之和一致,这样,就导致控制调节上的一些矛盾。
为简单起见,假设热电厂向蒸汽-水加热器送入固定的蒸汽量Q0,如图5-5,若此热量大于各热力站需要的热量,则各热力站二次侧调节纷纷关小。以减小流量。由此使总流量相应减少,导致供回水温差加大。如果电厂维持蒸汽量Q0不变则各热力站调节阀的关小并不能使总热量减少,而只是根据网的特性及各热力站调节特性的不同,有的热力产流量减少的多,使得供热量有所减少;有的热力站流量减少的幅度小,则供热量反而电动阀加。同样,如果Q0小于各热力站需要的总热量时,各热力站的调节阀纷纷开大,使流量增加,由此导致供回水温差减小。热力站1,2可能由于热量增大的幅度大于水温降低的幅度,供热量的需求得以满足,但由于流量增大,泵的压力降低,干管压降又减小,导致3,4的资用压头大幅度下降,阀门开大后,流量也增加不多,甚至还要下降,这样,供热量反而减少。由此可见在这种情况下各热力站对一次侧阀门的调节实际是对各热力站之间的热量分配比例的调节,而不是对热量的调节,如果各热力站都是这样独立地根据自己小区的供热需求进行调节,而热电厂又不做相应的配合,则整个热网不可能调整控制好。实际上热电厂也会进行一些相应的调节,例如发现t供升高时会减少蒸汽量,t供降低时会增加蒸汽量,但Q0总是不可能时刻与各热力站总的需求量一致,上述矛盾是永远存在的。
因此,就不宜对各个热力站按照第5.1、5.2节中的讨论的,根据外温独立调节。既然各热力站一次侧阀门的调节只解决热量的分配比例,那么对它们的调节亦应该根据对热量的分配比例来调节。一种方式是如果认为供热量应与供热面积成正比,则测出每个热力站的瞬时供热量,根据各热力站的供热面积,计算每个热力站的单位面积q。对q偏大的热力站关小调节阀,对q偏小的则开大调节阀,这样不断修正,直至各热力站的q相同为止。再一种方式则是认为各散热器内的平均温度相同,房间的供热效果就相同。由于散热器的平均温度等于二次侧的供回水平均温度,因此可以各热力站二次侧供回水平均温度调整成一致目标,统一确定热力站二次侧供回水平均温度的设定值,根据此设定值与实测供回水平均温度确定开大或关小一次侧调节阀。按照这一思路,对各热力站的调节以达到热量的平均分配为目的,以实现均匀供热。热电厂再根据外温变化,统一对总的供热量进行调整,以保证供热效果并且不浪费热量。由于整个热网所供应的建筑物效果并不浪费热量。由于整个热网所供应的建筑物均处在同一外温下,因此,一旦系统调整均匀,对各热和站调节阀的调整很少,热源的总的供热以数随外温改变,各热力站的调节阀则不需要随外温而变化,只当小区二次系统发生一些变化时才需要进行相应的调节。
要实现这种调节方式,就必须对全网各热力站的调节阀实行集中统一的控制调节。可以在每个热力站设一台DCU现场控制机,测量一、二次侧的水温、压力、流量及二次侧循环泵状态,并可控制一次侧电动调节阀。通过通讯网将各热力站连至中央管理计算机。由于热力站分布范围很大,通讯距离较过远,这时的通讯可通过调制解调器搭用电话线,也可以随着供热干管同时埋设通讯电缆,使用双绞线按照电流环方式通讯。中央管理机不断采集各热力站发送来的实测温度、压力、流量,定期计算热力站发送来的实测温度、压力、流量,定期计算热力站发送来的实测温度的设定值与和各热力站实测值的比较,直接命令各热力站DCU开大/关小电动调节阀。各热力站二次侧回水温度的变化是一惯性很大且缓慢的过程,因此应采有0.5~1h以上的时间步长进行调节,以防止振荡。
除对热网工况进行高速外,计算机控制系统还应为保证系统的安全运行做出贡献。当热力站采用直连的方式,不使用热交换器时,最常见的事故就是管道内超压导致散热器胀裂,DCU可直接监视用户的供回水管压力,发现超压立即关闭供水阀,起到保护作用。无论直连还是间连网,另一类严重的事故就是一次网漏水。严重的管道漏水如不能及时发现并切断和修复,将严重影响供热系统和热电厂的运行。根据各热力站DCU监测的一次网供回水压力分布,还可以从其中的突然变化判断漏水事故及其位置,这对提高热网的安全运行有十分重要的意义,这类系统压力分析与事故判断的工作应属于中央管理机的工作内容。
5.5参考文献
1温丽,锅炉供暖运行技术与管理,北京:清华大学出版社,1995。
2陆耀庆主编,实用供热空调设计手册,北京:中国建筑工业出版社,1993。
3李祚启,集中供热管理微机自控优化系统,建设电子论文选编,北京:中国建筑工业出版社,1994。
4江亿,集中供热网控制调节策略探讨,区域供热,1997,(2)。
5江亿,城市集中供热网的计算机控制和管理,区域供热,1995(5)。
6YiJiang,Faultdetectionanddiagnosisindistrictheatingsystem.Pan-pacificsymposiumonbuildingandurbanenvironmentalconditioninginAsia.Nagoya,Japan,1995,..
7YiJiang,teal.Leakageandblockagedetectioninwaternetworkofdistrictheatingsystem,ASHRAETrans.,1996,102Pt1.
关键词:砌体结构裂缝控制措施
1裂缝的性质
引起砌体结构墙体裂缝的因素很多,既有地基、温度、干缩,也有设计上的疏忽、施工质量、材料不合格及缺乏经验等。根据工程实践和统计资料这类裂缝几乎占全部可遇裂缝的80%以上。而最为常见的裂缝有两大类,一是温度裂缝,二是干燥收缩裂缝,简称干缩裂缝,以及由温度和干缩共同产生的裂缝。
温度裂缝
温度的变化会引起材料的热胀、冷缩,当约束条件下温度变形引起的温度应力足够大时,墙体就会产生温度裂缝。最常见的裂缝是在砼平屋盖房屋顶层两端的墙体上,如在门窗洞边的正八字斜裂缝,平屋顶下或屋顶圈梁下沿砖(块)灰缝的水平裂缝,以及水平包角裂缝(包括女儿墙)。导致平屋顶温度裂缝的原因,是顶板的温度比其下的墙体高得多,而砼顶板的线胀系数又比砖砌体大得多,故顶板和墙体间的变形差,在墙体中产生很大的拉力和剪力。剪应力在墙体内的分布为两端附近较大,中间渐小,顶层大,下部小。温度裂缝是造成墙体早期裂缝的主要原因。这些裂缝一般经过一个冬夏之后才逐渐稳定,不再继续发展,裂缝的宽度随着温度变化而略有变化。
干缩裂缝
烧结粘土砖,包括其它材料的烧结制品,其干缩变形很小,且变形完成比较快。[KG-*2]只要不使用新出窑的砖,一般不要考虑砌体本身的干缩变形引起的附加应力。[KG-*2]但对这类砌体在潮湿情况下会产生较大的湿胀,而且这种湿胀是不可逆的变形。[KG-*2]对于砌块、灰砂砖、粉煤灰砖等砌体,随着含水量的降低,材料会产生较大的干缩变形。〖KG-*2〗如砼砌块的干缩率为0.3~0.45mm/m,它相当于25~40℃的温度变形,可见干缩变形的影响很大。轻骨料块体砌体的干缩变形更大。干缩变形的特征是早期发展比较快,如砌块出窑后放置28d能完成50%左右的干缩变形,以后逐步变慢,几年后材料才能停止干缩。但是干缩后的材料受湿后仍会发生膨胀,脱水后材料会再次发生干缩变形,但其干缩率有所减小,约为第一次的80%左右。这类干缩变形引起的裂缝在建筑上分布广、数量多、裂缝的程度也比较严重。如房屋内外纵墙中间对称分布的倒八字裂缝;在建筑底部一至二层窗台边出现的斜裂缝或竖向裂缝;在屋顶圈梁下出现的水平缝和水平包角裂缝;在大片墙面上出现的底部重、上部较轻的竖向裂缝。另外不同材料和构件的差异变形也会导致墙体开裂。如楼板错层处或高低层连接处常出现的裂缝,框架填充墙或柱间墙因不同材料的差异变形出现的裂缝;空腔墙内外叶墙用不同材料或温度、湿度变化引起的墙体裂缝,这种情况一般外叶墙裂缝较内叶墙严重。
1.3温度、干缩及其它裂缝
对于烧结类块材的砌体最常见的为温度裂缝,面对非烧结类块体,如砌块、灰砂砖、粉煤灰砖等砌体,也同时存在温度和干缩共同作用下的裂缝,其在建筑物墙体上的分布一般可为这两种裂缝的组合,或因具体条件不同而呈现出不同的裂缝现象,而其裂缝的后果往往较单一因素更严重。另外设计上的疏忽、无针对性防裂措施、材料质量不合格、施工质量差、违反设计施工规程、砌体强度达不到设计要求,以及缺乏经验也是造成墙体裂缝的重要原因之一。如对砼砌块、灰砂砖等新型墙体材料,没有针对材料的特殊性,采用适合的砌筑砂浆、注芯材料和相应的构造措施,仍沿用粘土砖使用的砂浆和相应的抗裂措施,必然造成墙体出现较严重的裂缝。
2砌体裂缝的控制
2.1裂缝的危害和防裂的迫切性
砌体属于脆性材料,裂缝的存在降低了墙体的质量,如整体性、耐久性和抗震性能,同时墙体的裂缝给居住者在感观上和心理上造成不良影响。特别是随着我国墙改、住房商品化的进展,人们对居住环境和建筑质量的要求不断提高,对建筑物墙体裂缝的控制的要求更为严格。由于建筑物的质量低劣,如墙体裂缝、渗漏等涉及的纠纷或官司也越来越多,建筑物的裂缝已成为住户评判建筑物安全的一个非常直观、敏感和首要的质量标准。因此加强砌体结构,特别是新材料砌体结构的抗裂措施,已成为工程量、国家行政主管部门,以及房屋开发商共同关注的课题。因为这涉及到新型墙体材料的顺利推广问题。
2.2裂缝宽度的标准问题
实际上建筑物的裂缝是不可避免的。此处提到的墙体裂缝宽度的标准(限值),是一个宏观的标准,即肉眼明显可见的裂缝,砌体结构尚无这种标准。但对钢筋砼结构其最大裂缝宽度限值主要是考虑结构的耐久性,如裂缝宽度对钢筋腐蚀,以及外部构件在湿度和抗冻融方面的耐久性影响。我国到现在为止对外部构件(墙体)最危险的裂缝宽度尚未作过调查和评定。但根据德国资料,当裂缝宽度≤0.2mm时,对外部构件(墙体)的耐久性是不危险的。
对砌体结构来说,墙体的裂缝宽度多大是无害呢?这是个比较复杂的问题。因为它还涉及到可接受的美学方面的问题。它直接取决于观察人的目的和观察的距离。对钢筋砼结构,裂缝宽度>0.3mm,通常在美学上是不能接受的,这个概念也可用于配筋砌体。而对无筋砌体似乎应比配筋砌体的裂缝宽度标准放宽些。但是对于客户来讲二者是完全一样的。这实际上是直观判别裂缝宽度的安全标准。
3现有控制裂缝的原则和措施
长期以来人们一直在寻求控制砌体结构裂缝的实用方法,并根据裂缝的性质及影响因素有针对性的提出一些预防和控制裂缝的措施。从防止裂缝的概念上,形象地引出“防”、“放”、“抗”相结合的构想,这些构想、措施有的已运用到工程实践中,一些措施也引入到《砌体规范》中,也收到了一定的效果,但总的来说,我国砌体结构裂缝仍较严重,纠其原因有以下几种。
3.1设计者重视强度设计而忽略抗裂构造措施
长期以来住房公有制,人们对砌体结构的各种裂缝习以为常,设计者一般认为多层砌体房屋比较简单,在强度方面作必要的计算后,针对构造措施,绝大部分引用国家标准或标准图集,很少单独提出有关防裂要求和措施,更没有对这些措施的可行性进行调查或总结。因为裂缝的危险仅为潜在的,尚无结构安问题,不涉及到责任问题。
3.2我国《砌体规范》抗裂措施的局限性
我认为这是最为重要的原因。《砌体规范》GBJ3-88的抗裂措施主要有两条,一是第5.3.1条:对钢砼屋盖的温度变化和砌体的干缩变形引起的墙体开裂,可采取设置保温层或隔热层;采用有檩屋盖或瓦材屋盖;控制硅酸盐砖和砌块出厂到砌筑的时间和防止雨淋。未考虑我国幅原辽阔、不同地区的气候、温度、湿度的巨大差异和相同措施的适应性。二是第5.3.2条:防止房屋在正常使用条件下,由温差和墙体干缩引起的墙体竖向裂缝,应在墙体中设置伸缩缝。从规范的温度伸缩缝的最大间距可见,它主要取决于屋盖或楼盖的类别和有无保温层,而与砌体的种类、材料和收缩性能等无直接关系。可见我国的伸缩缝的作用主要是防止因建筑过长在结构中出现竖向裂缝,它一般不能防止由于钢砼屋盖的温度变形和砌体的干缩变形引起的墙体裂缝。
由此可见,《砌体规范》的抗裂措施,如温度区段限值,主要是针对干缩小、块体小的粘土砖砌体结构的,而对干缩大、块体尺寸比粘土砖大得多的砼砌块和硅酸盐砌体房屋,基本是不适用的。因为如果按照砼砌块、硅酸盐块体砌体的干缩率0.2~0.4mm/m,无筋砌体的温度区段不能越过10m;对配筋砌体也不能大于30m。在这方面,国外已有比较成熟的预防和控制墙体开裂的经验,值得借鉴:一是在较长的墙上设置控制缝(变形缝),这种控制缝和我国的双墙伸缩缝不同,而是在单墙上设置的缝。该缝的构造既能允许建筑物墙体的伸缩变形,又能隔声和防风雨,当需要承受平面外水平力时,可通过设置附加钢筋达到。这种控制缝的间距要比我国规范的伸缩缝区段小得多。如英国规范对粘土砖为10-15m,对砼砌块及硅酸盐砖一般不应大于6m;美国砼协会(ACI)规定,无筋砌体的最大控制缝间距为12-18m,配筋砌体控制缝间距不超过30m。二是在砌体中根据材料的干缩性能,配置一定数量的抗裂钢筋,其配筋率各国不尽相同,从0.03%~0.2%,或将砌体设计成配筋砌体,如美国配筋砌体的最小含钢率为0.07%,该配筋率又抗裂,又能保证砌体具有一定的延性。
关于在砌体内配置抗裂钢筋的数量(含钢率)和效果,是普遍比较关注的问题。因为它涉及到用钢量和造价的增幅问题。
4防止墙体开裂的具体构造措施建议
本文在综合了国内外砌体结构抗裂研究成果的基础上,结合我国当前的具体情况,提出的更具体的抗裂构造措施。它是对“防”、“放”、“抗”的具体体现。笔者认为这些措施可根据具体条件选择或综合应用。该措施已反映到我院为大庆油田砌块厂编制的《砼砌块建筑构造图集》中。
4.1防止混凝土屋盖的温度变化与砌体的干缩变形引起的墙体开裂,宜采取下列措施
4.1.1屋盖上设置保温层或隔热层;
4.1.2在屋盖的适当部位设置控制缝,控制缝的间距不大于30m;
4.1.3当采用现浇混凝土挑檐的长度大于12m时,宜设置分隔缝,分隔缝的宽度不应小于20mm,缝内用弹性油膏嵌缝;
4.1.4建筑物温度伸缩缝的间距除应满足《砌体结构设计规范》BGJ3-88第5.3.2条的规定外,宜在建筑物墙体的适当部位设置控制缝,控制缝的间距不宜大于30m。
4.2防止主要由墙体材料的干缩引起的裂缝可采用下列措施之一:
4.2.1设置控制缝
4.2.1.1控制缝的设置位置
(1)在墙的高度突然变化处设置竖向控制缝;
(2)在墙的厚度突然变化处设置竖向控制缝;
(3)在不大于离相交墙或转角墙允许接缝距离之半设置竖向控制缝;
(4)在门、窗洞口的一侧或两侧设置竖向控制缝;
(5)竖向控制缝,对3层以下的房屋,应沿房屋墙体的全高设置;对大于3层的房屋,可仅在建筑物1-2层和顶层墙体的上述位置设置;
(6)控制缝在楼、屋盖处可不贯通,但在该部位宜作成假缝,以控制可预料的裂缝;
(7)控制缝作成隐式,与墙体的灰缝相一致,控制缝的宽度不大于12mm,控制缝内应用弹性密封材料,如聚硫化物、聚氨脂或硅树脂等填缝。
4.2.1.2控制缝的间距
1对有规则洞口外墙不大于6mm;
2对无洞墙体不大于8m及墙高的3倍;
3在转角部位,控制缝至墙转角的距离不大于4.5m;
4.2.2设置灰缝钢筋
1在墙洞口上、下的第一道和第二道灰缝,钢筋伸入洞口每侧长度不应小于600mm;
2在楼盖标高以上,屋盖标高以下的第二或第三道灰缝,和靠近墙顶的部位;
3灰缝钢筋的间距不大于600mm;
4灰缝钢筋距楼、屋盖混凝土圈梁或配筋带的距离不小于600mm;
5灰缝钢筋宜采用小螺纹钢筋焊接网片,网片的纵向钢筋不小于25,横筋间距不宜大于200mm;
6对均匀配筋时含钢率不少于0.05%;局部截面配筋,如底、顶层窗洞上下不小于38;
7灰缝钢筋宜通长设置,当不便通长设置时,允许搭接,搭接长度不应小于300mm;
8灰缝钢筋两端应锚入相交墙或转角墙中,锚固长度不应小于300mm;
9灰缝钢筋应埋入砂浆中,灰缝钢筋砂浆保护层,上下不小于3mm,外侧小于15mm,灰缝钢筋宜进行防腐处理;
10当利用灰缝钢筋作砌体抗剪钢筋时,其配筋量应按计算确定,其搭接和锚固长度尚不应小于75d和300mm;
11不配筋的外叶墙应设控制缝,控制缝间距不宜大于6m;
12设置灰缝钢筋的房屋的控制缝的间距不宜大于30m。
4.2.3在建筑物墙体中设置配筋带
1.在楼盖处和屋盖处;
2.墙体的顶部;
3.窗台的下部;
4.配筋带的间距不应大于2400mm,也不宜小于800mm;
5.配筋带的钢筋,对190mm厚墙,不应小于2ф12,对250~300mm厚墙不应小于2ф16,当配筋带作为过梁时,其配筋应按计算确定;
6.配筋带钢筋宜通长设置,当不能通长设置时,允许搭接,搭接长度不应小于45d和600mm;
7.配筋带钢筋应弯入转角墙处锚固,锚固长度不应小于35d和400mm;
8.当配筋带仅用于控制墙体裂缝时,宜在控制缝处断开,当设计考虑需要通过控制缝时,宜在该处的配筋带表面作成虚缝,以控制可预料的裂缝位置;
9.对地震设防裂度≥7度的地区,配筋带的截面不应小于190mm×200mm,配筋不应小于410;
10.设置配筋带的房屋的控制缝的间距不宜大于30m;
4.3也可根据建筑物的具体情况,如场地土及地震设防裂度、基础结构布置型式、建筑物平面、外形等,综合采用上述抗裂措施。
参考文献
〔1〕肖亚明,砌体结构裂缝与控制问题研究综述,第三届全国工程学术会议论文集,1994
关键词:建筑节能;建筑噪声;传热系数;隔声量;围护结构
1前言
众所周知,能源问题是当前世界各国普遍重视的问题。在全世界总的能源消耗中,建筑能耗约占25%~40%。近年来,我国的建筑节能工作已进入全面实施阶段,随着一系列关于建筑节能的国家法规及地方标准的颁布和实施,整个建筑行业从业人员不仅从观念上对建筑节能有了一定的重视,而且在具体工作中取得了一定成果。使建筑节能在理论研究和实践操作上均获得了一定效果。但是,与世界发达国家相比,还有相当大的差距。关于建筑节能,我们尚有许多工作要做。
同时,随着我国的社会和城市建设到了一个飞速发展的时期,人们开始对影响我们工作、生活的一个重要问题——噪声问题投入更大的关注,噪声问题已经成为可持续发展战略中的一个重要环节。从我国目前的整体状况来看,我国的建筑声环境长期以来未能得到应有的重视。而建筑噪声控制工作在整个建筑行业中也处于起步阶段,往往是建筑噪声出现后,进行噪声治理,而对于建筑噪声的防护和控制,虽有一定的理论研究成果和方法。但在实践操作上并不普及。
本文试浅谈在夏热冬冷地区(以湖南地区为例)建筑设计中综合考虑建筑节能与建筑噪声的一些技术手段,借此对建筑节能与建筑噪声控制的实践操作产生积极的现实意义和实用价值。
2从理论上谈谈建筑节能与建筑噪声控制的原理和措施
节能方面,湖南省属于夏热冬冷地区,不论从冬季保温还是夏季隔热方面,建筑能耗构成主要是通过围
护结构(墙、屋顶、楼板、门和窗)的传热及空气渗透。关于围护结构的传热,与围护结构的传热系数(K[W/m2·K])紧密相关,而解决空气渗透在于增强建筑的密闭性,密闭主要是在门窗这一块,门窗要有很好的气密性。噪声控制方面,主要考虑建筑围护结构的隔声,为使所设计建筑达到允许的噪声标准,必须使围护结构具有足够的隔声性能,以防止来自外界的噪声干扰。同时,建筑的密闭性对建筑隔声也有明显的影响,墙体等围护结构上的孔洞(例如门窗缝隙等)会使其隔声性能明显下降。
因此,在建筑围护结构中采用传热系数较低而又可提高围护结构隔声量的材料(例如离心玻璃棉等)或构造,可取得节能和隔声两方面的效果。另一方面,虽然增强窗的气密性与减少围护结构的孔洞、缝隙面积是不同的概念,但是,对建筑密闭性的要求使其在构造上具有某些相近的措施。
其他某些建筑设计相关方面,例如建筑绿化也同样在节能和隔声两方面有着积极的含义和作用。建筑绿化可起改善局部热气候;调节空气湿度;降低城市噪声污染;防止灰尘侵袭等作用。
由此可见,在建筑设计中采取某些综合考虑建筑节能与建筑噪声控制的技术手段从理论上说具有可行性及现实意义。本文综合考虑的途径主要从围护结构的材料和构造方式上着手,并思考建筑绿化的作用。下面从具体细节上讨论。
3可综合考虑节能和隔声的围护结构
可综合考虑节能和隔声的围护结构主要有外墙,外门、窗等,下面谈谈在这些围护结构的构造和材料的选取上具体如何兼顾节能和隔声。
3.1外墙。现阶段湖南地区建筑外墙以240厚粘土空心砖为主,分层增加约20~60厚膨胀聚苯板或聚苯颗粒保温砂浆等材料形成外墙保温构造以满足整个建筑节能设计要求。而砖墙本身面密度大,隔声较好,240厚砖墙双面抹灰的计权隔声量达到54.5dB,完全能满足建筑隔声要求。但建筑外墙有提倡使用加气混凝土砌块的趋势,这种材料虽导热系数较低,约0.2~0.3,可很大程度上降低墙体传热系数。但其隔声性能不如砖墙,200厚加气混凝土墙双面抹灰的计权隔声量为44.5dB,这与其面密度有关(质量定律)。此时,若只采用200或240厚加气混凝土砌块外墙自保温则可能在某些情况下难以达到隔声要求,须采取增加其他材料或设空气层等构造措施来提高隔声量。在设计中应注意此类情况。
3.2门窗
3.2.1外窗
a.窗墙比:不同朝向的窗墙比的大小对能耗有很大影响(由于外窗的传热系数一般来说比外墙小很多,影响护结构的综合传热)。随着窗墙面积比的增大,外窗的传热系数要求更小,以达到相近的节能效果。不同朝向、不同平均窗墙面积比的外窗传热系数见表1。
同样,窗墙比对护结构的综合隔声能力也是有很大影响的。窗户的隔声性能不好,如果窗户的面积不大,隔声性能与窗面积大、隔声性能非常好的窗几乎差不多(见表2)。
由此可见,在适当范围内减小窗墙比可使节能和隔声均更易满足要求。
b.窗体材料:节能方面,湖南地区窗框材料木、塑料、断热铝合金优于钢、铝合金(见表3)。但木、塑料非现代建筑所青睐,断热铝合金由于造价较高,使得铝合金成为应用最为广泛的窗框材料,同时采用复合层玻璃(如中空玻璃窗)等方法提高窗的节能效果。
隔声方面,同济大学声学研究所对于不同的窗框材料的隔声性能做了测试,可从其实测结果得出结论:铝合金窗框与塑钢窗框在1KHz以下,两者隔声量基本接近,但铝合金窗框在中高频隔声性能优于塑钢窗。而关于玻璃,我们知道可以单纯增加玻璃厚度来提高隔声量。但在实际应用中,往往使用复合层玻璃来替代,可以取得窗扇重量大为减轻的优点。在随复合层玻璃的变化,隔声性能的数据对比中,可以得出一个很有实用意义的结果,即在玻璃+空气层+玻璃的复合层中,单层玻璃的厚度宜控制在4~6mm,空气层厚度约在10mm左右。经过对比,若节能设计时的采取相近的中空玻璃参数,可以取得节能和隔声两方面的效果。
c.双层窗:双层窗对节能和隔声都有利,双窗的间距受到建筑物外墙厚度的限制,可供采用的间距一般为10cm左右。实验测量表明,双窗间隔10cm的计权隔声量为33dB。在双窗间隔作吸声处理后,其隔声量达36dB。隔声效果较好,而双层普通玻璃窗的节能效果可见表3,而从造价来说,双层窗的工程造价约为复合玻璃窗的50%。
3.2.2住宅外门及阳台门
湖南地区住宅外门及阳台门在节能设计中可采用多功能户门(具有保温、隔声、防盗等功能)及夹板门等。夹板门一般中间填充玻璃棉或矿棉等作为保温材料,而玻璃棉或矿棉等同时也是吸声材料,节能设计中应用较多的如:双层金属门板,中间填充15mm厚玻璃棉板,可考虑适当增加填充厚度来提高隔声量。而门的密缝处理对于门的隔声也有很大影响,在防止空气渗透上也能起一定作用。
4建筑绿化
建筑绿化在节能上的含义及作用已是众所周知的,而利用绿化减弱噪声,也是常用的噪声控制方法。
4.1节能方面,绿化可以调节温度,尤其是降低夏季温度,树木枝叶形成浓荫可以遮挡太阳辐射和地面、墙面和相邻物的反射热。经过测试,夏季林地及草坪的气温与普通场地气温比较,平均降温值约为2.5~3℃。而西墙外有绿化的房间的室温低于无绿化的房间约3℃,同时在11~16时段内的升温速率有绿化房间也明显优于无绿化房间。不同的建筑绿化布置方法对节能均能起到一定效果。如:临街绿化,楼间绿化,楼旁绿化,建筑本体绿化等。
4.2减噪方面,在噪声源与建筑之间的大片草坪或是种植由高大常绿乔木与灌木组成的足够宽度且浓密的绿化带,是减弱噪声干扰的措施之一。值得注意的是,运用绿化来防止和减少噪声对建筑的干扰时,应考虑到噪声的衰减量随植物配置方式、树种及噪声的频率范围的变化而变化。一般来说,绿化对于低频噪声的隔声能力优于高频;混植林带的隔声能力优于纯植林带;而植物本身的吸声能力,一般以叶面粗糙、面积大、树冠浓密的为强。在建筑绿化布置方法上,临街绿化对减噪的作用较大。在道路边设置1.8~2.4m宽的灌木绿带+6m宽的大乔木绿带,其隔声量可达8~10dB。
湖南地区的植物基本属于常绿植物,以香樟最为常见,香樟属于常绿乔木,一般来说,可形成浓密的树冠及浓荫,在建筑绿化中以香樟与灌木绿带的结合布置较为普遍,设计得当,在节能与减噪方面均能产生效果和作用。
参考文献:
[1]柳孝图.建筑物理.中国建筑工业出版社,2000.
[2]项端祈.实用建筑声学.中国建筑工业出版社,1992.
[3]房志勇.建筑节能技术.中国建材工业出版社,1998.
一、寿险公司内部控制制度的定义及内容
寿险公司内部控制是指寿险公司的一种自律行为,为了实现经营目标,控制经营风险,确保投保人利益,保证经营活动的合法、合规,以全部业务活动为控制客体,对其实行制度化管理和控制的机制、措施和程序的综合。
寿险公司内部控制主体是指对寿险公司内部控制承担直接和间接作用的单位和个人,包括董事会及高级管理层等公司领导层、内审部门、保险监督管理部门和外部审计机构以及公司的所有员工。寿险公司内部控制的客体是寿险公司的全部经营管理活动。所要达到的目标是确保国家法律、法规和行政规章的执行和实施;保证寿险公司谨慎、稳健的经营方针能够贯彻执行;识别、计量、控制寿险公司经营风险和资金运用风险,确保公司稳健运营;保证公司资产的安全,各项报表、统计数字的真实性和及时性;偿付能力符合监管要求;提高工作效率,按质按量完成公司的各项工作任务等。寿险公司内部控制采取的手段不是通过一些单独的、狭义的管理制度来达到,而是一个涵盖寿险公司经营各环节的有特定目标的制度、组织、方法、程序的制度体系。因此,其采取的手段不是孤立的,而是有机联系在一起的,构成了整个寿险公司经营管理的基础。寿险公司内部控制制度设计要遵循合法、全面、有效、系统、预防、制衡、权责明确以及激励约束的原则。寿险公司内部控制制度由控制环境、风险评估、控制活动、信息与沟通以及监控等五个要素构成。根据这五个要素,寿险公司内部控制应该包括组织机构、决策、执行、监督和支持保障等系统,每一个系统又包括许多子系统,它们共同构成了寿险公司内部控制制度体系。
二、国内外寿险公司内部控制制度发展情况
(一)国外寿险公司内部控制制度发展情况
从企业追求利润最大化和持续经营等目标的角度看,建立管控经营风险的内部控制制度体系是寿险运行经营的前提和基础。国外寿险业在经过长时间的发展以后,充分认识到偿付能力对保险公司持续经营的重要性,因此,寿险公司在坚持稳健经营的前提下,建立了较为完善的内部控制制度体系,并成为寿险公司风险管控的第一道防线和重要组成部分。具体来说:
1.政府监管促进了寿险公司内部控制制度的建设
从国际上政府监管与寿险公司内部控制制度建设的关系来看,保险监管者一个非常有效的监管方法就是督促保险公司完善其内部控制制度,完善的内部控制制度是实施以偿付能力监管为核心监管制度的基础和前提。从偿付能力监管的第一个层次来看,保险公司的内部控制制度建设涵盖产品开发、销售、承保、理赔、投资等保险经营的全过程,其中重点包括人力资源、业务、财务、资产、负债、费用、法律以及信息技术管理等方面。
国际保险监管官协会在其有关保险监管核心原则中,将内部控制作为单独的一项原则提出,该原则指出,保险监管机构应当可以监管经董事会核准和采用的内部控制制度,在必要时要求其加强内控;可以要求董事会进行适度的审慎监管,如确立承保风险的标准、为投资和流动性管理确立定性和定量的标准。监管者有权要求保险公司董事会、高级管理人员对公司进行适当地控制和谨慎地进行各项工作。在欧盟,这些工作主要是通过一个相当普通的要求来实现的,即要求董事和管理者进行“良好而谨慎的管理”,而“适当的控制”则包括保险公司设立识别和控制承担风险和再保险的各种衡量指标。
随着加拿大和美国的动态偿付能力测试(dynamicsolvencytesting,DST)的发展,促进了寿险公司内控制度的建设。动态财务分析包括监测保险公司对将来可能发生的负面不利变动情况的抵御能力,这些是通过分析在许多种假设组合下对现金流量的变化进行预测得到的。动态财务分析(dynamicfinancialanalysis)报告由保险公司指定精算师负责,此报告被视为指定精算师与董事会和管理人员进行交流的一种工具,这样可以使风险更明确,并且有利于制定适当的策略以减少和管理风险。而且这一专业报告的特点是由指定精算师个人签署,并以个人的专业责任对其负责。指定精算师有责任从专业角度保证报告合乎要求。由精算师协会制定精算实践标准,以提高这些报告的一致性,确保重要的事项包含于报告中。英国的监管部门现在要求保险公司内部的指定精算师(在专业指导中)对该公司进行动态财务分析,并且及时向公司的董事会及监管部门汇报动态财务分析结果。
2.将内部控制纳入公司整个风险管理体系中
国外许多公司在实际经营中将内部控制纳入公司整体风险管理体系,构建了专门的风险管理部门或者由专门的部门负责相应的公司内部和外部风险的管理。通过对比分析加拿大宏利人寿保险公司和台湾地区国泰人寿的风险管理组织框架。可以看出,两公司采取了两种不同形式的内部控制和风险管理的组织架构和模式。加拿大宏利人寿保险公司设有首席风险官和专门的风险管理部门,而国泰人寿则采取了专门业务部门负责特定风险管理和内部控制的模式。两种模式都对公司面临的内部和外部风险进行全面的风险管理。从国外寿险公司内部控制和风险管理的实践看,尽管不同公司采取的风险管理模式存在一定的差异,但是其内部控制一般都是通过完善的制度设计和有效实施机制来完成的。
3.制定了完善的内部控制制度体系
国外许多寿险公司都建立了规范和齐全的内部控制标准,将内部控制标准融入到流程设计和流程改造中,大量地进行员工培训和教育,将内部控制标准深入到所有员工的日常工作和行为中,以降低寿险公司的经营风险,规避一些非正常商业行为的发生,维护公司良好的社会形象和股东利益。在岗位设置上,与国内寿险公司相比,国外寿险公司的最大特点是在于制度化的岗位设置。每一项工作实行程序化的控制,根据业务经营的程序进行岗位设置,需要什么岗位以及每一岗位的职责是什么都非常清楚,并做到重要岗位相互分离和监督制衡。同时,国外寿险公司非常重视内部控制制度的执行力度,建立了较为完善的激励约束机制。例如对于某一岗位的人员,一般年初会根据制度的要求明确应该完成的工作任务,同时提出完成任务存在的困难,在公司满足完成工作目标的条件后,对于达到目标的员工给予奖励,对未能完成任务的员工加以惩罚。
4.形成了比较完善的权限管理制度
国外寿险公司强调权力和责任间的制衡性。组织机构、管理部门和业务管理岗位间相互监督,彼此制约的特征十分明显。公司内部强调行政和业务双向管理,讲求制度第一、权力第二。重要职能与关键岗位的设立也存在一定的制衡。公司总经理在行政管理上,可行使直接决策权,但在涉及风险选择和业务决策上,却需要业务垂直管理的部门决策。同时,配备专职核保、核赔人员,实行承保与理赔职责分离,展业与核保分离;建立承保和理赔人员的分级授权制度,规定各级承保和理赔人员的授权范围和职责。同时,重视授权工作并严格权限管理。在核保权、核赔权、核单权、查询权、报账权、法人授权等日常权限管理中,比较广泛地使用双签制度,虽然在某种程度上影响效率,但可增加透明性和少出差错。
5.注重发挥内部稽核的监控职能
国外寿险公司一般在总公司设有独立的稽核部门,直接对公司董事会负责,定期或者不定期地对下属单位的内控制度执行情况采取不事先通知或随机查询的方式,重点多是权限的控制和执行情况,制度建设是否完备,财务制度和会计规则是否有效执行等。
(二)国内寿险公司内部控制制度发展情况及存在问题
我国有关内部控制的行政规定起步较晚,1996年12月财政部了《独立审计具体准则第9号内部控制和审计风险》,其中将内部控制定义为:内部控制是指企业为了保证业务活动的有效进行,保证资产的安全和完整,防止、发现、纠正错误与舞弊,保证会计资料的真实、合法、完整而制定和实施的政策与程序,由控制环境、会计系统和控制程序构成。很明显,它是基于当时占主导地位的内部控制结构理论,它的目标定位较低,局限于会计查弊纠错,忽视了提高经营效果和效率也应是内部控制的重要目标,况且它是从审计的角度用来对企业内部控制作出评价的。
1999年11月颁布、2000年7月实施的《会计法》明确提出各单位应当建立健全本单位内部会计监督制度,要求会计工作中职务分离,对重大事项决策与执行程序,财产清查和定期内部审计等进行内部控制,它是我国第一部体现了内部控制要求的法律,对我国内部控制理论和实践产生了巨大的推动作用。财政部于2001年6月22日推出了《内部会计控制规范基本规范》,这是我国第一部从企业自身管理角度出发制定的内部控制规范。
我国有关金融企业的内部控制制度的行政规章推出也较晚,1997年5月16日,中国人民银行颁布了《加强金融机构内部控制的指导原则》,这是我国第一部有关金融企业内部控制的监管文件。它对我国金融机构加强内部控制建设起到了历史性的作用,但是由于其内容与国际上主流的内部控制理论上存在一定的差距,且其内容不够全面和完整。2002年,根据国内金融业的发展情况,中国人民银行对这一文件进行了修改和完善。
为防范经营风险,建立健全保险公司内部控制制度,促进保险事业的稳步、健康发展,1999年8月5日,中国保监会制定了《保险公司内部控制制度建设指导原则》。该原则颁布之后,国内各寿险公司按照其要求制定了相关的内部控制制度,并按照业务发展要求和监管要求,不断完善内部控制制度体系。2002年3月,保监会颁布了《保险公司高级管理人员任职资格管理规定》,以加强对保险公司高级管理人员的管理,保障保险公司的稳健经营,2003年7月又对该规定进行了修改。2004年4月保监会颁布了《保险资金运用风险控制指引(试行)》,以规范保险资金运用,完善风险控制机制,推动保险公司、保险资产管理公司进一步加强保险资金运用管理,有效防范投资风险。
尽管保险监管部门颁布了一些有关寿险公司内部控制制度建设的规章,许多寿险公司也在内部控制制度方面进行了大量的探索与创新,但目前在建设和实施方面还存在许多问题,主要表现在以下几个方面:
1.对内部控制制度重视不够
部分寿险公司还没有将内部控制制度建设作为头等大事来抓,没有站在影响公司生存发展的战略高度上重视公司内部控制机制建设,重业务轻内控仍然是某些寿险公司的“通病”。部分寿险公司对内部控制的认识还停留在比较原始的阶段,认为内部控制就是内部监督,把内部控制看作是一本本的手册、各种文件和制度;也有的企业把内部成本控制、内部资产安全控制等视为控制;有的企业甚至对内部控制的认识还未理性化,没有意识到内部控制给公司带来的利益;有些内部控制制度对部分分支机构的管理者缺乏必要的约束和监管,难以保证会计和统计数据的真实性和准确性,内部稽核和外部审计制度形同虚设,削弱了内部控制制度的监督效率,增加了保险公司经营风险和保险监管的难度和成本。实际上,目前在保险市场经常发生的分支机构违法违规行为,反映出上级公司仍然存在着以保费规模论英雄,以规模为发展目标的经营指导思想。存在这种问题的原因主要在于外部环境对国内寿险公司强化内部控制标准的要求不高,导致公司并不关心内部控制标准对公司能够带来的经济及社会利益,公司认为所谓的走“球”似的路线能够帮助公司获得期望的利益,而没有考虑到由于内部控制失效对公司造成的损害可能是致命的。
2.内部控制目标过于简单化和形式化
目前,国内寿险公司的内部控制目标仅仅局限于查错纠弊、会计资料的真实合法和保证业务活动的有效进行等方面。这与国外COSO的目标定位相比有相当大的差距,缺乏动态性和前瞻性。对内部控制的目标往往单纯从会计、审计的角度出发,关注的范围仅仅局限于企业作业层的控制,甚至有些公司把内部控制仅仅理解为内部牵制,还没有形成对内部控制系统、整体的把握。另外,缺乏对内部控制的前瞻性思考,往往过多地考虑先行条件的限制,侧重于对内部控制的准则、条例的制定与修改,使目标流于形式。主要表现:一是制度内容相对陈旧,不能客观地反映保险市场的实际情况;二是制度要求相对滞后,不能及时地跟进监管法规的相关规定;三是内控指标比较单调,缺乏对违规经营行为的全面真实反映功能问题,侧重于静态控制,不能对经营过程进行实时监控和预警;四是内控技术手段落后,基本上没有全面运用现代信息技术手段识别、检索、汇集、分析和处理信息资料,及时发出有效监控指令;五是内控处理措施乏力,一些保险机构内控部门由于受主客观因素的影响,对内控检查发现的违规问题,往往采取避重就轻的办法进行象征性地处理,导致内控处理措施乏力。
3.内部控制环境有待改善
内部控制作为由管理当局为实施各项管理目标而建立的一系列规则、政策和组织实施程序,与公司治理结构及管理是密不可分的。由于目前国内还没有颁布专门的保险公司治理结构指引,寿险公司治理结构按照一般股份公司的要求来设置。尽管各寿险公司相应地设置了独立的股东大会、董事会和监事会以及各专门的委员会,制定了专门的议事规则,但是在实际工作中,监事会、董事会的监控作用严重弱化,其内涵和经营机制距离有效的法人治理结构要求还有很大的距离,个别寿险公司甚至存在着严重的缺陷,企业未能从根本上建立起符合企业发展需要的公司治理机制。在组织架构和岗位设置方面,存在着没有严格按照业务运作程序设置部门、岗位设置职责不清等方面的问题。在企业文化方面,由于许多国内寿险公司成立时间较短,企业文化建设关注不够,在内部控制制度建设和实施中还没有发挥出其应有的作用。
4.财务控制作用有待加强
现在财务核算或管理软件已经获得了极大的普及,各个层次或功能的财务管理或核算软件能够帮助财务人员提高效率和确保核算数据的正确性和及时性。但是,寿险公司的基础财务管理水平与管理层对财务数据的要求有一定的差距,财务控制的作用发挥有限。一些寿险公司在管理过程中,财务控制并没有起到监管及控制业务风险的作用,而是流于形式或者只是为了完成必要的程序;许多内部控制常用的工具和技术,如预算管理、内部控制标准、财务预警机制等并没有在寿险公司内部得到运用。
5.激励约束机制不健全
我国企业内部控制的一个薄弱环节就是激励约束机制不够健全、有效。制度可能是好的,但由于考核和检查主体缺位或者没有认真地进行考核,只是搞形式、走过场。因此,无论内部控制制度多么先进、多么完善,在没有有效控制、考核的情况下,都很难发挥出它应有的作用。目前寿险公司内部控制制度实施中缺乏有效的激励约束机制,对违反规定的人员没有明晰的处罚条款,执行主体缺位,使得各项内部控制制度运行效果不理想。例如寿险公司制定了相应的授权审批制度,但由于缺乏及时高效的内部信息传递机制,难以及时发现和制止越权行为。
6.内部审计功能发挥有限
由于有关文件只提供指导性意见,各公司在制度落实上主要依靠自律。许多公司虽然有较为健全的内部控制制度,但是各项内部控制制度落实不到位,制度执行的自觉性和执行效果却大打折扣,存在着制度上写的是一套,做的是另一套的现象。这其中的原因在于内部审计功能发挥有限,尽管国内各寿险公司总公司设立了独立的稽核部门,但是由于长期以来形成的观念以及组织、人事制度和权限等方面的原因,内部审计部门的人员相对比较少,仅仅从事一些必要的离任审计和常规审计,没有充分发挥公司内部审计的职能。
三、寿险公司内部控制制度未来发展趋势
内部控制理论与实践的产生和发展已经有了很长一段历史,随着企业内外部环境的变化,经营者应该以全新的经营理念赋予其中,内部控制将会发生一场深刻变革。随着国际金融业经营环境的日趋复杂,国际寿险业面临的风险因素也发生了较大变化,寿险业面临的主要风险由承保风险转向投资风险,资产负债匹配风险日益受到重视。展望未来,国际寿险业风险管理表现出以下发展趋势:(1)风险管理理论创新和技术进步将对风险管理实践起到巨大的推动作用;(2)风险管理的模式将不断创新,全面风险管理模式将会逐步成为寿险公司风险管理的主流模式。(3)风险管理技术和方法的通用性将不断增强。在寿险业风险管理发展的趋势影响下,寿险公司内部控制的未来发展将会呈现出以下趋势:
1.企业全面风险管理将成为寿险公司内部控制制度发展的未来方向
企业全面风险管理的思想是基于风险因素之间的相关性,从宏观上抓住了企业内部各种风险之间的关联关系。企业全面风险管理不仅重视资产负债管理和整体运营风险管理,更重视通过投资组合优化管理和资源优化分析的风险预算方法来提高企业的盈利能力和竞争力。企业全面风险管理强调寿险公司风险的全面性,要求对寿险公司运作的各个环节进行全面的分析和调查,利用全面风险管理模型能够将寿险公司许多潜在的风险加以量化,并根据每项风险对企业危害的大小及其相关性来制定相应策略。从内部控制和风险管理的关系看,全面风险管理作为一种全新的风险管理方法,涵盖了寿险公司内部控制的所有内容。因此,寿险公司内部控制的未来发展也将随着这种模式的不断实施而不断创新和发展。在寿险公司内部控制的未来变革中,人们将更多地把风险管理的职能赋予内部控制,内部控制也将逐步成为企业风险预测、评估和控制的重要手段和途径。
2.风险评估将成为未来企业内部控制建设的重要内容
由于社会公众和股东越来越关注风险评估,越来越多的企业信奉企业全面风险管理(Enterprise-wideRiskManagement,ERM),人们期望贯穿组织的所有风险都能得到持续的和规范化的管理,对战略、财务和经营等风险全面考虑。在内部控制未来的变革中,人们将更多的把风险管理的职能赋予内部控制,而内部控制也将逐渐成为企业风险预测、评估、控制的主要手段和途径,风险评估将成为内部控制制度建设的重要内容。企业在设计和评估内部控制时,将会充分考虑风险识别和评估问题,例如公司面临风险的性质和程度、公司可承受风险的程度和类型、风险发生的可能性、公司减少事故的能力及对已发生风险的影响、实施特殊风险控制的成本以及从相关风险管理中获取的利益等。
3.信息和沟通在内部控制中的地位将更加突出
知识经济时代,知识将成为最重要的经济资源,获取、共享和利用知识的能力将成为寿险企业生存和成长的关键因素。不论是获取、共享知识,还是利用知识,都需要信息与沟通系统作为载体。信息与沟通是否良好,决定着寿险公司能否及时收集到大量的内部和外部信息,能否实现信息在企业各层次、各部门之间迅速地传递和交流,能否率先在已有信息的基础上进行知识创新,占领市场制高点,获得发展的先机。对于寿险公司而言,建立一个统一、高效、开放的信息与沟通系统,是其他一切内部控制的运行平台,将成为寿险公司内部控制制度成功实施的关键。
4.人力资源将成为内部控制制度建设成功的关键和重点
在日益激烈的市场竞争中,寿险公司的竞争优势将主要取决于其人才技术优势和组织管理优势,而不是传统的资金和资源优势。实际上,组织管理优势也需要通过有效的人才配备才能发挥出来。企业内部控制制度的实施是由人来执行的,有了严密的企业内部控制制度,而无相应素质和品行的人去执行,内部控制依然会落空,因此企业员工的文化素质和道德修养的高低是企业内部控制有效与否的重要因素。在知识经济时代,人力资源将成为企业中最核心的要素,人的主观能动性决定了人力资源发挥作用的程度,一切内部控制制度都将围绕这一点进行。不断变化的市场环境要求企业要迅速作出反应,迫使企业减少管理层次,进行分散决策,丰富工作内容,留给员工更多的自主空间。寿险公司只有通过主动的建立和加强良性的控制环境,引导、激励人们正确地履行责任,实现公司的目标,将外来的压力变成人们内生的动力,充分发挥人力资源的主观能动作用。
「参考文献
1.傅安平著,《寿险公司偿付能力监管》,中国社会科学出版社,2004.5.
2.中国保险监管管理委员会编著,《国际保险监管研究》,中国金融出版社,2003.6.
3.王一佳等著,《寿险公司风险管理》,中国金融出版社,2003.10
4.宋健波著,《企业内部控制》,中国人民大学出版社,2004.2
5.王福新著,《中国寿险业偿付能力风险评价》,经济科学出版社,2004.4
在分析蓄冰系统优化控制的基础上,提出了基于专家系统的新方法。该算法的数学基础是运筹学的目标规划,通过一系列简化而成为一个整数规划问题,进而提出标准运行模式的概念,并由专家系统方法建立外温等影响热负荷的因素与标准运行模式的对应关系,这个关系是统计的和动态的。
关键词:优化控制整数规划标准运行模式专家系统方法
Abstract
Putsforwardamethodbasedamethodbasedontheexpertsystemafteranalyzingtheoptimizingcontroloficestoragesystems.Themathematicalbaseofthesolutionisobjectprogramminginoperationalresearch,throughaseriesofsimplifyingitbecomesanintegralprogrammingproblem.Givesstandardrunningmodels.Therelationshipisstatisticalanddynamic.
Keywords:optimizingcontrolintegralprogrammingstandardrunningmodelexpertsystemmethod
0引言
蓄冰系统常见的控制策略有制冷机优先、蓄冰罐优先、均匀融冰和优化控制等。优化控制是指提出一经济性目标函数,然后在一定的约束条件下求解以使该目标函数达到最小值的方法。
清华大学建筑技术科学系于1997年推出了一套蓄冰系统优化控制算法,笔者在该算法的基础上作了进一步研究。
1优化控制算法基本思路及在工程应用中存在的主要问题
1.1基本思路
①温度预测:根据历史数据和天气预报(最高温和最低温)预测第二天的24h温度曲线。
②负荷预测:根据历史数据在每日供冷开始前预测当天的负荷曲线。
③负荷优化分配:建立负荷优化的数学模型,用单纯的型法求解。
1.2存在的主要问题
①上述优化优化控制给出的逐时负荷分配结果常常使制冷机承担的负荷值逐时变化较大,导致制冷机启停频繁。这不仅造成运行管理不便,而且由于制冷机的启停带来的供冷量突然变化使得控制系统的稳定性下降。
②不易准确实测负荷。
③负荷预测过程中的大量矩阵运算,影响控制系统的可靠性。
2优化控制算法的数学模型的分析和简化
2.1负荷优化分配的数学模型
设用户k时刻的负荷为qk,其中制冷机负担qrk,蓄冰罐负担qik,冷冻机出力qrk的费用为R(qrk),蓄冰罐出力qik费用为I(qik),则全天的运行费M为
(1)
优化的目标是从经济性考虑全天的运行M最小化,优化的约束条件是:
0≤qrk≤qrkmax0≤qik≤qikmax
qrk+qik=qk(2)
其中qrkmax为冷冻机k时刻的最大制冷能力;qikmax为蓄冰罐k时刻的最大融冰供冷能力。
进一步分析,按电价结构、用户负荷、系统性能给出具体目标函数:
(3)
qikmax=r
假设蓄冰罐k时刻的最大融冰供冷能力与剩冰成线性关系:
(4)
其中ak是制冷机单位供冷负荷的费用;bk是冰罐单位冷负荷的费用;c,d是蓄冰罐k时刻的最大融冰供冷能力与剩冰之间的线性关系的两个常量,可根据蓄冰罐的融冰特性曲线求得;常量r是制冷机的最大制冷能力。
可见,优化负荷分配的数学模型是一个线性规划问题。求解上述线性规划问题的结果即可得到各时刻冷冻机和蓄冰罐分别负担的冷负荷qrk,qik。
2.2线性规划问题的多解性
上述问题为线性规划问题,其经典求解方法是单纯型法。例:某地电价结构如表1所示。
表1某地电价
时段8:00~11:0011:00~18:0018:00~22:0022:00~8:00
电价/元/kWh1.20.81.20.3
共3台制冷机,总最大出力1000kW,蓄冰总量8000kWh。
供冷时间为8:00~17:00,逐时负荷和由单纯型法求得的逐时负荷分配表2。
表2由单纯型法求得的制冷机和蓄冰罐的逐时负荷分配
时段8:00~9:009:00~10:0010:00~11:0011:00~12:0012:00~13:0013:00~14:0014:00~15:0015:00~16:0016:00~17:00
电价/元/kWh1.21.21.20.80.80.80.80.80.8
负荷/kW80010001400180020002200240020001400
qik/kW70040011008001000120014001000400
Qrk/kW100600300100010001000100010001000
上述给出的解,使制冷机在上午的运行负荷从100kW,变为600kW,后为300kW,不断变化。
但进一步分析发现,表3所示的负荷分配也是方程的一个解,但单纯型法没给出。
表3由优化方程得出的制冷机和蓄冰罐的逐时负荷分配
时段8:00~9:009:00~10:0010:00~11:0011:00~12:0012:00~13:0013:00~14:0014:00~15:0015:00~16:0016:00~17:00
负荷/kW80010001400180020002200240020001400
qik/kW50070010008001000120014001000400
qrk/kW333333334100010001000100010001000
我们还能发现上述方程的很多解。其实只要保证上午8:00~11:00制冷机供冷1000kW,而其余的负荷由融冰来承担,这样的分配就是优化方程的一个解。可见上述问题有无穷多个解。
常规的线性规划问题一般只有惟一解,但这里的优化方程有无数个解。这是因为我们所研究的线性规划问题有其特殊性:电价结构分段,而非逐时不同,从而导致在很多程度上,制冷机的出力可以在同一个电价段内进行平移,而不影响经济性。
比较优化方程的无数人解,可分出其"优劣"。
在上例中,制冷机的出力(kW)逐时为333,333,334,1000,1000,1000,1000,1000,1000是一个最优解,这个解对应的逐时的运行方式为:前3h1台制冷机全工况、后6h3台制冷机全工况运行。
2.3规划的改进全工况运行
如果从数学的角度分析上述例子,可以在原有的线性规划问题中地加下述约束:
qr9=qr10=qr11,qr12=qr13=qr14,qr15=qr16=qr17
3数学模型的离散近似解:标准运行模式
3.1数学模型的离散近似解
改进的数学模型用单纯型法求解,就能得到一个较满意的解。但如果从工程的角度考虑,有一个全新的解决之道,即离散近似解的解决方法。
从工程的角度看,把qrk求解准确到小数点后多少位并不重要。把qrk限制为制冷机最大出力的0,1/10,1/5,3/10,2/5,1/2,3/5,7/10,4/5,9/10,1等就已足够了,更为简单的处理是将qrk限制为冷机最大出力的0,1/4,1/2,3/4,1,或0,1/3,2/3,1,对经济性影响较小。
如果在新的规划总是中,把逐时的制冷机出力限制在若干个点上,就成了线性整数规划问题。由于解的可能组合并不多,因而完全可以采用试算法求解:把所有的可能组合代入整数规划的函数中,符合要求的就是要求的解。
为叙述方便,以qrk限制制冷机最大出的0,1/4,1/2,3/4,1作进一步的讨论。以上一个实例分析所有可能的组合有5×5×5=125种。求解时只要遍历所有这些可能就可以选择到需要的解。
3.2标准运行模式
引进标准运行模式的概念,就可以使问题更加简化。
就上述例子,qrk限制为制冷机最大出力的0,1/4,1/2,3/4,1,共有125种可能的运行方式,我们把每一种运行方式称为一个运行模式,而标准运行模式就是运行模式的一个子集,如表4所示。
表4不同运行模式
8:00~11:0011:00~14:0014:00~17:00
模式1000
模式2001/4
模式301/41/4
模式401/41/2
模式501/21/2
模式601/23/4
模式703/43/4
模式803/41
模式9011
模式101/411
模式111/211
模式123/411
模式13111
以上这些模式对应于负荷从小到大时运行模式的更替。原有125种可能,而表3中给出的仅为13种,它的特殊性在于每一种模式对应于一定负荷范围内的最经济(或接近最经济)的运行方式。也就是说考虑经济性的情况下,原有的125种可能性变成了10余种。
标准运行模式是这样一个解集:在运行模式中去掉大量的不可能是最经济的模式,由剩下的模式所构成的解集。
日逐时负荷千变万化,然而对应的运行模式却仅有10余种。显然每一种运行模式都要对应一组千变万化的日逐时负荷分布。这种对应关系可以通过"典型总负荷"来说明。从另一角度看,可以把日逐时负荷分布按运行模式进行分类。
可以定量地分析上述的标准运行模式的划分是否最佳,从而对其进行一定的修改。
4初值条件到运行模式的统计的对应关系--计算机专家系统方法的应用
4.1离散化和对应关系
有了标准运行模式的概念,就可以直接建立室外最高温和最低温与标准运行模式(运行方案)的对应关系。
以北京的夏季供冷为例,假设最高温度tmax∈[28,42],最低温度tmin∈[18,35]。注意tmax>tmin。则这样的[tmax,tmin]组合共有2000余种。
如果假设逐时负荷决定于该日最高温和最低温,每一种可能的组合[tmax,tmin]惟一地对应于某一逐时负荷图,某一逐时负荷图又对应标准运行模式。
4.2统计的动态的对应关系
上述的对应关系基于这样的假设:负荷决定于室外最高温和最低温。而实际上系统负荷除主要与室外温度有关外,还与天气阴晴、建筑物的使用情况、建筑内的人员情况,甚至与星期几和季节等因素有关。如果把这些相关因素成是一个随机的变量,这些因素会导致负荷的波动,使得室外温度和负荷的对应关系呈现一种概率的现象,最终使得室外温度与最佳运行模式的对应关系带有一种统计性。
由于制冷机、蓄冰槽等设备本身在长期使用中性能会慢慢改变,建筑物的功能也会变化,因此对应关系是动态的。
以上的分析完成了整个工作的一半,应用专家系统方法建立外温、星期等与运行模式之间的对应关系是整个工作的另一半,此处不作介绍。
参考文献
1王勇,蓄冰系统优化控制研究:[硕士学位论文]。北京:清华大学,1997
2郑大钟,线性系统理论。北京:清华大学出版社,1990
所谓财务管理的控制从后台走向前台,实际就是要强调事前的控制。从连锁企业整个的营运过程来看,财务控制就是要从源头控制住营运资金。
营运资金包括投资资金、流动资金、货币资金。
一、投资资金的风险控制
投资资金的风险控制首先要看总成本,成本太高将影响盈利和增大经营压力。其次要考虑投资资金筹措方式的选择风险。当银行从计划银行向商业银行的转变,及政府推行公平竞争原则,使连锁企业的投资资金筹措方式发生变化。为了规避企业筹措投资资金的财务风险,应把握好四点。
第一,职工集资款用于投资资金,成本最高,风险最大。若投资失败会导致直接的政治风险,引发不安定事件发生。
第二,银行资金的借贷必须考虑有足够的偿还能力,并且具有可支配的抵押物,商业房产的按揭方式应充分利用。
第三,连锁企业的改制是吸引投资资金的好方法,但要选择经营状况良好的企业。扩大经营规模需要进一步扩大投资时,通过变革连锁企业的企业制度来引入投资资金是中国连锁企业应争取的方向。在连锁企业本身的发展中,应摒弃关门主义,实现更大空间的资源共享和资金的运用。但要注意个人所享有的投资股份不应平均分摊给每个职工,而应更多地集中在高级管理层以增强高级管理层的稳定性及效益回报率。
第四,流通企业的负流动资金(厂方资金)转入投资资金,必须控制在保证对供应商切实付款的前提下,否则会导致企业的经营危机。
二、流动资金的管理与控制
流动资金的控制可从三方面来进行。
1、商品采购计划资金的控制。
流动资金的控制要从商品的采购计划开始,即要控制住商品采购的计划资金。目前我国许多连锁企业商品采购无计划,导致对流动资金的无序滥用,财务部缺少对于流动资金的有效控制。
财务管理部门对商品采购计划资金的控制着重在以下几个方面:
第一,商品采购计划的制定与批准必须反映财务部门的资金管理要求、资金保证的要求和资金效益的要求。
第二,商品采购计划只有在财务部门作出相配合的资产供应计划时,才能付诸执行。
第三,财务管理部门对商品采购资金的控制和保证的重点是主力商品、季节性商品和促销商品,并对这些商品在商品采购计划中制定出财务控制指标,即销售量、毛利率和周转率等。
2、商品存货的管理是对流动资金进行控制的重点。从经济学的定义上说,规模的经济性其实质就是加速库存商品的周转率。
第一,合理控制进货与存货的比例。
进货量大或一次性订货量大可以降低进货成本,但如果由此转成的存货没有在一定的时间里销售出去,其存货成本超过了进货订货时的成本,大批量进货和订货也是不经济的。因此财务管理必须对大批量进货和订货造成的存货增加进行审批与控制。这种控制必须是制度化的,即制定大批量进货和订货的数量界限及审批制度。
第二,合理确定门店的订货量。
如果门店订货量太大(好销商品经常断挡导致),流动资金就会在门店这一环节沉淀下去,财务部要与采购部一起制定门店的订货标准,即最小的订货量、最小的订货金额。一般的门店存货量是其销量的1.5倍-2倍。如配送中心效率高的话,则可实行零库货。上海可的便利店公司所使用的电脑自动配货系统使门店平均库存量从26万元下降到10万元,商品周转天数从15天下降到7天。
第三,强化统一配送,控制社会协力配送。
在尽可能条件下采取统一配送,控制社会协力配送。采取统一配送可以减少门店的商品库存量,加速商品周转,从商品库存成本上来分析,减少了门店商品库存就等于减少了商品库存空间,并可将库存空间转化为营业空间。以上海地区为例,门店每平方米日租金是2-3元,而配送中心每平方米日租金是0.5元,采取统一配送可降低租金6倍。当连锁店店铺数不断增加时,这种成本的节约是巨大的。由此,配送中心的规模效益也会充分显现出来。
对社会的协力配送必须严格控制,如不加以控制,从表面看似乎降低了配送中心的营运成本,但由此会增加以下几方面的营运成本。
其一,门店每天要接待大量的供货商直送商品,而无暇顾及店铺的管理,从而增加了管理成本。
其二,店铺管理受干扰导致销售业绩不理想,无形中增加投资成本和降低了流动资金运作的效率。
其三,供货商与门店的不规范行为(如堆头指定与改变、赠品的随意支配、回扣的收受、商品发票的违规性走单、先来后到、后来先到)会大量发生,由此使社会协力配送可能成为连锁企业不被人注意的出血点。在确定总部配送和社会协力两种配送方式时,关键是成本的取舍,当总部的配送中心已能被店铺的发展消化成本时,可采取总部配送方式,而当这种成本还不能消化,或者配送能力不足时,后一种方式是权宜的选择。这种选择可以说是中国社会化配送中心缺乏造成的。
第四,关于大型综合超市和仓储式商场不设配送中心的认识:
(1)大规模店铺本身就有规模的存货空间;
(2)最小的订单对供货商也是合理与经济的,因为有大量的销售作为支撑;
(3)运作系统的科学化和商效化。
3、商品经营方式的管理
增加经销商品比重,降低代销商品比重,会大大提高连锁企业的盈利率,这里不是单纯地体现连锁企业的资金实力,而是流通功能上的一种责任,经销商品的比重上升,买断经营就成为一种主要的商品经营方式。财务管理对买断商品的控制,主要体现在两个方面:
第一,商品买断后,贷款是否能按照约定的期限付款,这必须在资金上作出充分的准备,否则会影响商品的供应,特别是高周转率商品。一般来说,知名品牌商品都会对延期付款作出迅速反应。
第二,对买断商品的盈利率,财务管理部门要作出资金的运作分析。如商品买断后,盈利率低于提前付款或约期付款的资金成本,就一般不能进行商品的买断,财务部门要对采购部门的商品买断时间和买断商品的品种选择进行严格的控制,为决策提供分析的依据。
4、负流动资金的合理运用
负流动资金是连锁企业对供货商商品资金变现后在一定期限内的合理运用。从某种意义上说,连锁店的店铺是一架商品变现的机器,而总部对这些变现资金的运用是企业利益的根本所在,也是连锁企业在规模发展上的资金保证。
连锁企业对商品销售后的货币资金减去企业在一定的期限内投入的流动资金后,其结余部分就是可运用的负流动资金,负流动资金的运用控制:
(1)确定商品购入资金。对供应商付款资金,银行还贷、发展资金和投资资金的合理比例。
(2)转为投资资金的负流动资金要控制好投资方向、投资项目投资回报率和投资的安全性。
(3)当连锁企业的店铺发展受到市场条件的制约后,负流动资金运用的主要方向是转为投资资金,此时引进从事投资经营的高级专业人才是保证连锁企业提高经营业绩的关键。
(4)按销售额实绩以及款项返还总部的时间数量,做好流动资金使用计划,让资金动起来,暂时不动的资金也是在计划中的。
三、货币资金的管理与控制
对连锁企业来说,商品销售后,商品资金就转化成货币资金。加强对货币资金管理,是保证连锁企业的经营成果和资金运作开始又一轮良性循环的关键。
1、门店收银环节的控制
在门店的收银环节上,财务管理控制的目标是与商品价格相符的现金的完整收受。因此,财务部门要制定控制收银环节的标准制度,并配备相应工具,如现金缺损率、收银企业程序、伪钞识别器等。
2、控制门店销售款项的回笼:
在我国目前的银行管理体制和管理效率下,不可能做到门店的销售款项向总部的及时回笼,财务部门必须高度认识到,在连锁企业统一核算的经营体制下,销售款项不能沉淀在门店,要迅速回笼到总部,这关系到企业资金的运作效率,意义十分重大。
财务管理对门店销售款项回笼的控制,主要可以从四个方面进行:
(1)指定销售款项解缴的银行,选择高效率服务好的银行,连锁企业有对商业银行很大的选择权,是财务部门控制货币资金的一种手段。
(2)制定销售款项解缴银行的时间。
(3)制定销售款项划缴总部的金额、时间和方式。
(4)制定严格的违反销售款项解缴银行和划缴总部的惩罚制度。
四、付款的管理与控制
对供应商商品的付款标准是什么,是困扰连锁企业的一道难题,也是连锁企业与供应商、连锁企业内部采购部门与财务部门产生矛盾冲突的焦点。
1、建立对供货商的标准付款制度
对连锁企业来讲,对供应商的付款标准主要由财务部门来制定,并进行管理与控制。
遗憾的是我们更多看到的是,在许多连锁企业中财务部门往往成为采购部门决定付款的出纳机,财务管理失去了对付款的控制。因此,建立标准的付款制度是财务管理的重要环节。
商品的贡献率与周转率是付款的基本标准
商品的贡献率=商品的销售比例×商品的毛利率
商品的周转率=商品销量/商品的品种总数
公式中的商品可以是商品总数也可以是单品,在确定对商品的付款标准时,一般都以单品为计数,这样才是可操作的,同时也能符合连锁企业单品管理的要求。
2、付款的审核
在确定对供应商付款后,对付款的审核是财务管理控制十分重要的一环。
(1)审核供应商的开票价与合同价是否一致(这种不一致往往大量发生,特别是在厂商直送门店的商品上)。
(2)审核发票是否规范(否则增值税无法抵扣)。
(3)审核发票价格。
(4)审核厂商的费用是否预扣下来。
关键词:负载串联谐振;频率跟踪;延时补偿
1概述
逆变电路根据直流侧储能元件形式的不同,可划分为电压型逆变电路和电流型逆变电路。电流型逆变器给并联负载供电,故又称并联谐振逆变器。电压型逆变器给串联负载供电,故又称串联谐振逆变器。
串联谐振逆变器在感应加热领域应用非常广泛,图1是它的基本原理图。它包括直流电压源,开关S1~S4和RLC串联谐振负载。
由于设计的是电压型负载高频逆变器,而达到高频,则要减小开关损耗。减小开关损耗的方法之一就是采用零电流开关。对于串联RLC电路,只有在LC串联谐振时,使得流过电阻R的电流iR和加在RLC两端的电压URLC同步,才能达到零电流开关要求。为此在全桥电路控制方式中,我们选取双极性控制方式。即开关管Sl和S3,S2和S4同时开通和关断,其开通时间不超过半个开关周期,即它们的开通角小于180°。
2逆变控制电路的设计
控制电路原理框图如图2所示。从图2可以看出,逆变电路可以工作在他激和自激两种状态。当逆变电路工作在他激状态时,控制信号从他激信号发生器发出,电路工作频率固定,由他激信号发生器控制。当逆变电路工作在自激状态时,电路的输出电流信号经过电流互感器采样,通过波形变换把正弦波变成方波,然后方波信号经单稳态电路防止干扰,接着送到频率跟踪电路,使得开关管的工作频率能够跟踪电流反馈信号。工作在自激状态时,逆变电路的工作频率由负载本身的固有频率决定。本电路中逆变电路的工作频率由放电负载和变压器漏感组成的串联谐振电路的自然频率决定。
2.1限幅、整形和单稳态电路
如图3所示,从电流互感器CT取出的反馈信号,通过电阻R6引入控制电路。引入控制电路的信号跟负载电流的大小,电流互感器的变比以及取样电阻R6的大小有关。在实际应用中,这个引入控制电路的信号可能会超过CMOS的最大工作电压而导致器件的损坏,因而有必要在这个信号后面加一个限幅电路。二极管D1及D2就起到这个作用。电流反馈信号近似正弦波,经过D1及D2和比较器以后,就变成了有正负的方波信号,经过D4把负的部分去掉,整形成占空比为50%的方波信号。
图4
电路在工作过程中不可避免地受到各种各样的外部干扰,加上其本身元器件的分布参数,使得电流反馈信号并不是理想的波形。由于后级电路的锁相环用的是边沿触发,如果前面的方波信号不好,会导致后级频率跟踪电路跟踪失败,从而导致了电路无法正常工作。所以,在电路中必须加入一个具有特定功能的电路,将有干扰的波形重新整形,然后输入后一级电路。单稳态触发器就实现这种功能,它在外部脉冲的作用下,输出具有特定宽度和幅值的矩形脉冲,经过一定时间,又自动回复到初始状态。
2.2频率跟踪电路
由电路的负载特性分析可知,电路的负载不是固定的负载。当电压升高,功率增大以后,负载固有的自然谐振频率会发生改变。这个时候如果逆变电路工作在开环状态下,由于电路的工作频率偏离了负载的自然谐振点,这就使得电路的输出功率不能随着直流母线电压的升高而同步升高,输出功率达不到要求。因此,必须使得逆变电路工作在闭环状态,实现频率的自动跟踪。
频率跟踪电路如图4所示。电路启动的时候,先开控制电路,此时电流反馈信号没有建立,逆变电路不能工作在自激状态。在图4中,控制电路开机后,电流反馈信号为0,比较器U1B输出为高电平,电子开关4066导通,Vcc通过R8与RP1分压以后供给4046的压控振荡器输入端,这个电压用来控制压控振荡器的频率,调节RP1,就可以得到他激电路所需要的频率。一般都把他激信号发生器的输出频率调得跟负载的自然谐振频率相差不大,这样有利于电流反馈快速建立,让逆变电路尽快进入自激工作状态。
在主电路开机时,可控整流电路输出电压调得比较低,这时候电流反馈信号比较小,随着直流母线电压慢慢升高,电流反馈信号逐步增大。在这个信号经过半波整流以后得到的直流电平(C2上的电压)没有超过R6两端电压以前,电路还是工作在他激状态。当电流反馈信号达到一定的值使得C2上的电压超过了R6两端电压以后,比较器U1B输出为低电平,把4066关断,RP1分压为0,没有办法通过二极管影响压控振荡器,这样压控振荡器的电压就由低通滤波器提供,逆变器工作在自激状态。由于电容C3的存在,使得电路在他激转自激的过程中,能够平稳地过渡,不至于出现压控振荡器输入为0的情况。
当逆变器工作在自激状态,其工作频率随着负载自然谐振频率的变化而变化。此时从前面的单稳态电路引入电流反馈信号,让锁相环输出的方波频率跟踪输出电流的频率。在这种状态下,锁相环的控制框图如图5所示。相位比较器PC2输出为两个信号的相位差,经过低通滤波器(LPF)以后,得到了反映两个输入信号上升时间差的直流电压,然后送入压控振荡器(VCO),将VCO的输出信号分频以后(信号的1/2分频是为了使得信号的占空比能严格达到50%),延迟td时刻送到PC2中,与电流反馈信号进行相位比较。PC2进入锁相工作以后,电流反馈信号和延迟电压驱动信号的上升沿就被锁相至同步。
2.3延迟补偿电路
在自激信号发生器的设计过程中,没有考虑电路信号传输中的延时。实际上控制电路、驱动电路以及芯片都有延时,因此,电路的延时不能忽略。延时导致负载的输出电压滞后于输出电流δ角度,负载工作于容性状态,如图6所示。由于存在延时,工作在容性状态时的开关管软开关条件就被破坏了,导致开通损耗大大增加。图7是控制信号的补偿电路。
当输入到R,L,C上的电压与电阻R上的电流波形有相位差时,通过调节Rp,使iR与输入电压同步。
3实验结果和波形分析
3.1频率跟踪电路的输入输出波形
频率跟踪电路的输入、输出波形如图8所示。
3.2延时补偿电路的波形
延时补偿电路的波形如图9所示。图中3个波形自上而下分别是图7延时补偿电路中结点2,3,4的波形。其中的t为放电时间,通过改变变阻器Rp可以调节放电时间t的快慢。
3.3开关管S4两端与负载R两端的电压波形
图10波形中,上面的波形是S4两端的电压,下面的是电阻两端的电压,S4与电阻两端的电压同相,此时电感电容串联谐振。但是,仔细观察两个波形可以发现,两个波形之间在过零点有些毛刺。其原因可以从图11得到说明。
图11中下面两个波形是S1及S2的驱动波形,可以发现他们之间存在死区。理论上,如果S1,S3与S2,S4的驱动波形为互补的话,则电阻R的电压与输入RLC两端的电压在LC发生串联谐振时应该是没有相位差的。由于驱动波形并非理想,所以造成电阻R的电压与输入RLC两端的电压并非完全没有相位差。
从图12中可以看出4046芯片跟踪,但是由于芯片和电路存在延时等原因,uRLC与4046的脚14波形之间存在相位差,而且很明显是滞后的。
1仿形运动分析
对于仿形加工,仿形仪压偏量的大小影响加工的稳定性和精度。在仿形加工中总要设定一个预期的压偏量,仿形过程中实际压偏量越接近预期压偏量,仿形稳定性和精度就越高,反之,仿形稳定性和精度就越低。
图1和图2是仿形过程中模型型面、仿形速度及压偏量的关系曲线图,图1a,图2a为沿仿形方向截得的模型表面轮廓曲线图,两轮廓基本相同,图1b、图2b为与之对应的仿形仪压偏量变化图,但速度不同。仿形过程中预期压偏量为400μm。分析图1和图2的实验结果,可以得到如下结论:
·平面仿形精度高于曲面仿形,且仿形精度受仿形速度的影响较小;
·曲面过渡越平缓,实际的压偏量越接近预期压偏量,仿形精度也越高;曲面过渡越剧烈,实际压偏量偏离预期压偏量的值越大,精度就越低;
·曲面仿形速度对仿形精度的影响较大,在同样的曲面上,仿形速度越大,仿形精度越低;
·模型曲面上的形状急剧变化处,如棱角、直壁、边缘等处,仿形仪压偏量变化很大,严重时会造成不正常的离模现象。
2仿形控制的改进方法
仿形加工过程中,在模型曲面过渡平缓的位置时,可以采用较高的仿形速度,而当仿形头在接近模型曲面变化剧烈的位置时,通过特殊控制方法使之减速,这时仿形头的速度较低,惯性较小,这样就可以使超调和欠调减小到最低限度,进而提高仿形加工的稳定性和精度。同时也可提高仿形加工的效率。
1)软减速电位线法
在仿形过程中,在模型棱角部分、曲面急剧变化等特殊位置附近设置软减速电位线(图3)。当仿形头在软减速线控制范围中时,以较低的速度进行仿形加工,其余均采用较高的理想仿形速度。以XOZ平面扫描,Y方向周期进给仿形方式为例进行讨论。软减速电位线的节点用Point来表示:
structPoint{
floatX;∥节点的X方向坐标
floatY;∥节点的Y方向坐标
}P[n];∥N个节点
根据模型的特点,输入num≤n个节点坐标,就可以确定软减速电位线的位置。考虑到模型型面的复杂程度,可以最多设置m条软减速电位线。下面讨论中软减速电位线个数取为m,节点个数取为n。软减速电位线用Line表示:
structLine{
structP[n]∥软减速电位线的节点
floatrg;∥软减速电位线的控制范围
}L[m];∥m条软减速电位线
2)自记录控制法
在仿形加工过程中,利用自记录控制法,记录第一次扫描路径中模型表面的形状急剧变化处,如直壁、边缘、折角等的位置。在以后的扫描路径中,遇到这些位置,仿形速度提前降低,进而避免仿形仪压偏量的大幅度波动,提高仿形加工稳定性和精度。该控制方法针对的模型有一定局限性,比较适合图3中的在某方向截面有类似性的模型,但其程序实现较为简单,并且实际中的模型也多为此种情况。
当然,也可以边仿形边记录模型表面的特殊位置,即把新的特殊位置按一定格式(该格式应与仿形方式相对应,以便于查找)插入到记录点的序列中去,并且始终检查本采样周期记录点处压偏量的变化情况,当其实时值与预定压偏量的差值小于某设定值时,便认为该记录点处的模型表面情况已平缓,进而把该记录点剔除。该过程要占用相当的CPU时间,由于该控制模块嵌在伺服控制模块中,为中断执行方式,所以会对控制过程产生一定影响,比如数据采集的速度。程序实现也较复杂。
在此,仍以XOZ平面扫描、Y方向周期进给仿形方式为例。记录采用偏差控制,仅记录第一次仿形路径上的特殊位置。在仿形过程中,当实际仿形压偏量Dact与预期压偏量Ddes的偏差|Dact-Ddes|≥Dlim(其中Dlim是预定的偏差量),则记录该位置点。为了避免记录点记录得过密,而占用过多内存,且在实际应用上不具意义,通过实验人为设定一个最大记录距离,当本采样点与前一记录点的距离小于该最大距离时,该点不作为被记录点。利用链表结构有利于节省内存,且便于记录和查找,可节省时间。记录点用以下Learn表示
structLearn{
floatX;∥记录点的位置
intDir;∥减速的方向
structlearn*next;
};
该控制方法的程序实现见图5、图6。其中Fdir为仿形方向,Flg为减速标志,Xact为实时的仿形头位置。
3实验
对这两种控制方法进行实验,仍采用图1、2中的模型截面进行仿形,理想仿形速度为2000mm/min,低速度为1000mm/min。在“软减速电位线法”中,两条软电位线对应于截面的节点分别在X,Y=10mm和X,Y=75mm处,控制范围为20mm,仿形过程中记录实时压偏量变化情况,得到图7的压偏量与位置关系图。通过分析可以得出,在0~10mm、30~75mm及最终路径上,虽采用较高速度,但由于模型型面变化较为平缓,压偏量波动较小。在10~30mm、75~95mm型面变化较为剧烈的特殊位置上,由于采用了低速度,压偏量波动情况明显好于图2中的情况。在“自记录控制法”中,预定的偏差量为50μm,记录压偏量波动情况,会得到同图7极为类似的图形,在此不再赘述。
4结束语
1)实验证明,利用“软减速电位线法”和“自记录控制法”可以较好地解决由于模型表面形状带来的仿形加工不稳定问题,提高了仿形加工精度,同时也提高了仿形加工的效率;
关键词:温湿度独立控制新风高温冷源
1引言
从热舒适与健康出发,要求对室内温湿度进行全面控制。夏季人体舒适区为25ºC,相对湿度60%,此时露点温度为16.6ºC。空调排热排湿的任务可以看成是从25ºC环境中向外界抽取热量,在16.6ºC的露点温度的环境下向外界抽取水分。目前空调方式的排热排湿都是通过空气冷却器对空气进行冷却和冷凝除湿,再将冷却干燥的空气送入室内,实现排热排湿的目的。现有的热湿联合处理的空调方式存在如下问题。
(1)热湿联合处理的能源浪费。由于采用冷凝除湿方法排除室内余湿,冷源的温度需要低于室内空气的露点温度,考虑传热温差与介质输送温差,实现16.6ºC的露点温度需要约7ºC的冷源温度,这是现有空调系统采用5~7ºC的冷冻水、房间空调器中直接蒸发器的冷媒蒸发温度也多在5ºC的原因。在空调系统中,占总负荷一半以上的显热负荷部分,本可以采用高温冷源排走的热量却与除湿一起共用5~7ºC的低温冷源进行处理,造成能量利用品位上的浪费。而且,经过冷凝除湿后的空气虽然湿度(含湿量)满足要求,但温度过低,有时还需要再热,造成了能源的进一步浪费与损失。
(2)难以适应热湿比的变化。通过冷凝方式对空气进行冷却和除湿,其吸收的显热与潜热比只能在一定的范围内变化,而建筑物实际需要的热湿比却在较大的范围内变化。一般是牺牲对湿度的控制,通过仅满足室内温度的要求来妥协,造成室内相对湿度过高或过低的现象。过高的结果是不舒适,进而降低室温设定值,通过降低室温来改善热舒适,造成能耗不必要的增加;相对湿度过低也将导致由于与室外的焓差增加使处理室外新风的能耗增加。
(3)室内空气品质问题。大多数空调依靠空气通过冷表面对空气进行降温除湿,这就导致冷表面成为潮湿表面甚至产生积水,空调停机后这样的潮湿表面就成为霉菌繁殖的最好场所。空调系统繁殖和传播霉菌成为空调可能引起健康问题的主要原因。另外,目前我国大多数城市的主要污染物仍是可吸入颗粒物,因此有效过滤空调系统引入的室外空气是维持室内健康环境的重要问题。然而过滤器内必然是粉尘聚集处,如果再漂溅过一些冷凝水,则也成为各种微生物繁殖的最好场所。频繁清洗过滤器既不现实,也不是根本的解决方案。
(4)室内末端装置的问题。为排除足够的余热余湿同时又不使送风温度过低,就要求有较大的循环通风量。例如每平方米建筑面积如果有80W/m2显热需要排除,房间设定温度为25ºC,当送风温度为15ºC时,所要求循环风量为24m3/hr/m2,这就往往造成室内很大的空气流动,使居住者产生不适的吹风感。为减少这种吹风感,就要通过改进送风口的位置和形式来改善室内气流组织。这往往要在室内布置风道,从而降低室内净高或加大楼层间距。很大的通风量还极容易引起空气噪声,并且很难有效消除。在冬季,为了避免吹风感,即使安装了空调系统,也往往不使用热风,而通过另外的暖气系统通过采暖散热器供热。这样就导致室内重复安装两套环境控制系统,分别供冬夏使用。
(5)输配能耗的问题。为了完成室内环境控制的任务就需要有输配系统,带走余热、余湿、CO2、气味等。在中央空调系统中,风机、水泵消耗了40~70%的整个空调系统的电耗。在常规中央空调系统中,多采用全空气系统的形式。所有的冷量全部用空气来传送,导致输配效率很低。
此外,随着能源问题的日益严重,以低品位热能作为夏季空调动力成为迫切需要。目前北方地区大量的热电联产集中供热系统在夏季由于无热负荷而无法运行,使得电力负荷出现高峰的夏季热电联产发电设施反而停机,或者按纯发电模式低效运行。如果可以利用这部分热量驱动空调,既省下空调电耗,又可使热电联产电厂正常运行,增加发电能力。这样即可减缓夏季供电压力,又提高能源利用率,是热电联产系统继续发展的关键。由于空调负荷在一天内变化显著,与热电联产电厂提供热能并不是很好匹配,如何实现有效的蓄能,以协调二者的矛盾也是热能使用当中存在的问题。
综上所述,空调的广泛需求、人居环境健康的需要和能源系统平衡的要求,对目前空调方式提出了挑战。新的空调应该具备的特点为:
加大室外新风量,能够通过有效的热回收方式,有效的降低由于新风量增加带来的能耗增大问题;
减少室内送风量,部分采用与采暖系统公用的末端方式;
取消潮湿表面,采用新的除湿途径;
不用空气过滤式过滤器,采用新的空气净化方式;
少用电能,以低品位热能为动力;
能够实现高体积利用率的高效蓄能;
从如上要求出发,目前普遍认为温湿度独立控制系统可能是一个有效的解决途径。
2温湿度独立控制空调系统
空调系统承担着排除室内余热、余湿、CO2与异味的任务。研究表明:排除室内余热与排除CO2、异味所需要的新风量与变化趋势一致,即可以通过新风同时满足排余湿、CO2与异味的要求,而排除室内余热的任务则通过其他的系统(独立的温度控制方式)实现。由于无需承担除湿的任务,因而可用较高温度的冷源即可实现排除余热的控制任务。对照前言中现有空调系统存在的问题,温湿度独立控制空调系统可能是一个有效的解决途径。温湿度独立控制空调系统中,采用温度与湿度两套独立的空调控制系统,分别控制、调节室内的温度与湿度,从而避免了常规空调系统中热湿联合处理所带来的损失。由于温度、湿度采用独立的控制系统,可以满足不同房间热湿比不断变化的要求,克服了常规空调系统中难以同时满足温、湿度参数的要求,避免了室内湿度过高(或过低)的现象。
温湿度独立控制空调系统的基本组成为:处理显热的系统与处理潜热的系统,两个系统独立调节分别控制室内的温度与湿度,参见图1。处理显热的系统包括:高温冷源、余热消除末端装置,采用水作为输送媒介。由于除湿的任务由处理潜热的系统承担,因而显热系统的冷水供水温度不再是常规冷凝除湿空调系统中的7ºC,而是提高到18ºC左右,从而为天然冷源的使用提供了条件,即使采用机械制冷方式,制冷机的性能系数也有大幅度的提高。余热消除末端装置可以采用辐射板、干式风机盘管等多种形式,由于供水的温度高于室内空气的露点温度,因而不存在结露的危险。处理潜热的系统,同时承担去除室内CO2、异味,以保证室内空气质量的任务。此系统由新风处理机组、送风末端装置组成,采用新风作为能量输送的媒介。在处理潜热的系统中,由于不需要处理温度,因而湿度的处理可能有新的节能高效方法。
图1温湿度独立控制空调系统
在温湿度独立控制空调系统中,采用新风承担排除室内余湿、CO2、室内异味,保证室内空气质量的任务。一般来说,这些排湿,排有害气体的负荷仅随室内人员数量而变化,因此可采用变风量方式,根据室内空气的湿度或CO2浓度调节风量。由于仅是为了满足新风和湿度的要求,如果人均风量40m3/hr,每人5平方米面积,则换气次数只在2~3次/hr,远小于变风量系统的风量。这部分空气可通过置换送风的方式从下侧或地面送出,也可采用个性化送风方式直接将新风送入人体活动区,参见图2。
图2个性化送风
而室内的显热则通过另外的系统来排除(或补充)。由于这时只需要排除显热,就可以用较高温度的冷源通过辐射、对流等多种方式实现。当室内设定温度为25℃时,采用屋顶或垂直表面辐射方式,即使平均冷水温度为20℃,每平米辐射表面仍可排除显热40W/m2,已基本可满足多数类型建筑排除围护结构和室内设备发热量的要求。由于水温一直高于室内露点温度,因此不存在结露的危险和排凝水的要求。此外,还可以采用干式风机盘管通入高温冷水排除显热。由于不存在凝水问题,干式风机盘管可采用完全不同的结构和安装方式,参见图3。这可使风机盘管成本和安装费大幅度降低,并且不再占用吊顶空间。这种末端方式在冬季可完全不改变新风送风参数,仍由其承担室内湿度和CO2的控制。辐射板或干式风机盘管则通入热水,变供冷为供热,继续维持室温。与变风量系统相比,这种系统实现了室内温度和湿度的分别控制。尤其实现了新风量随人员数量同步增减。从而避免了变风量系统冬季人员增加,热负荷降低,新风量也随之降低的问题。与目前的风机盘管加新风方式比较,免去了凝水盘和凝水排除系统。彻底消除了实际工程中经常出现问题的这一隐患。同时由于不再存在潮湿表面,根除了滋生霉菌的温床,可有效改善室内空气品质。由于室内相对湿度可一直维持在60%以下,较高的室温(26℃)就可以达到热舒适要求。这就避免了由于相对湿度太高,只得把室温降低(甚至到20℃),以维持舒适要求的问题。既降低了运行能耗,还减少了由于室内外温差过大造成的热冲击对健康的危害。
3新风处理方式
温湿度独立控制空调系统中,需要新风处理机组提供干燥的室外新风,以满足排湿、排CO2、排味和提供新鲜空气的需求。前言已阐述了现有的低温露点除湿的热湿联合处理方式所带来的问题,如何采用其他的处理方式排除室内的余湿,如何处理出非露点的送风参数,如何实现对新风有效的湿度控制是新风处理机组所面临的关键问题。
图4转轮除湿方式
采用转轮除湿方式,是一种可能的解决途径,参见图4。用硅胶、分子筛等吸湿材料附着于轻质骨料制作的转轮表面。待除湿的空气通过转轮的一部分表面,空气中的部分水分被吸附于表面吸湿材料,实现除湿。吸了水的转轮部分旋转到另一侧与加热的再生空气接触,放出水分,使表面吸湿材料再生,再进行下一个循环。吸湿过程接近等焓过程,减湿加热后的空气可进一步通过高温冷源(18℃)冷却降温,从而实现温度与湿度的独立控制。但转轮除湿的运行能耗难以与冷凝除湿方式抗衡。从热能利用效率看,图4所示的转轮除湿机除掉的潜热量与耗热量之比一般难以超过0.6,同时高温冷源还要提供1.1~1.2倍于空气除热总量的冷量。这样就无法与采用低温热源(约90℃)、COP可达0.7,冷却温度可达30℃的吸收制冷机相比。即使采用多级热回收方式,热能利用效率仍难以提高到与吸收制冷机抗衡。此外,还有转轮的除湿空气与再生空气间的渗透问题,这似乎是很难解决的工艺问题。转轮除湿机热能利用效率低的实质是除湿与再生这两个过程都是等焓过程而非等温过程,转轮表面与空气间的湿度差和温度差都很不均匀,造成很大的不可逆损失,这可能是由转轮结构本身决定的很难克服的缺陷。
再一种除湿方式是空气直接与具有吸湿的盐溶液接触(如溴化锂溶液、氯化锂溶液等),空气中的水蒸气被盐溶液吸收,从而实现空气的除湿,吸湿后的盐溶液需要浓缩再生才能重新使用。因此,溶液式除湿与转轮式除湿机理相同,仅由吸湿溶液代替了固体转轮。由于可以改变溶液的浓度、温度和气液比,因此与转轮相比,这一方式还可实现对空气的加热、加湿、降温、除湿等各种处理过程。改善吸湿式空气处理方式的关键就是变等焓过程为等温过程,吸收或补充空气与吸湿介质间传质产生的相变潜热,从而减少这一过程的不可逆损失。由于转轮是运动部件,很难在转轮内部接入能够吸收热量或提供热量的换热装置,这种方法实现起来在工艺上有很大困难。采用溶液吸湿,可以使空气溶液接触表面同时作为换热表面,在表面的另一侧接入冷水或热水,实现吸收或补充相变热的目的,从而实现接近等温的吸湿和再生过程;还可以采用带有中间换热器的溶液空气热湿交换单元,参见图5。由溶液泵作为动力使溶液循环喷洒在塔板上与空气进行湿交换,同时溶液的循环回路中还串联一个中间换热器,吸收湿交换过程中产生的热量或冷量。通过控制调节中间换热器另一侧的水温水量,就可使空气在接近等温状态下减湿或加湿。溶液和水之间是交叉流,不可能实现真正的逆流,但如果单元内溶液的循环量足够大,空气通过这样一个单元的湿度变化量又较小时,其不可逆损失可大大减少。
图5热湿交换单元模块图6自带热泵的溶液热回收型新风机组
可以将图5所示的多个单元模块构建各种不同的空气处理流程,图6为热泵驱动的溶液热回收型新风机[1],热泵的制冷量用于降低除湿溶液的温度从而提高其除湿性能,热泵的排热量用于溶液的浓缩再生。图7给出了一种以热源作为驱动能源的溶液除湿新风处理系统[2],由再生器统一制备的浓溶液送入各个新风机组中,利用溶液的吸湿性能实现新风的处理处理过程。溶液的蓄能密度很大(高于冰蓄冷),从而降低了对于持续热源的需求,除湿与再生可以分别运行。由于在除湿过程中,采用室内排风蒸发冷却等冷却手段,可以降低对溶液浓度的要求,因此可以采用低品位的热能作为驱动能源,如城市热网的热水、热泵冷凝器的排热、热电联产系统的排热等等。溶液具有杀菌、除尘作用,可以起到净化空气的作用。除了消除冷凝表面,避免霉菌滋生外,采用溶液式空气处理方式还可以有效解决空气中可吸入颗粒物的消除[3]。使用溶液式空气处理方式,粉尘颗粒却可以被有效地带入溶液中。通过合理的设计溶液与空气接触的塔板形式,就可在获得优良的传热传质效果的同时获得好的除尘效果。溶液中的灰尘可通过溶液过滤器捕捉收集,更换和清洗溶液过滤器远比更换和清洗空气过滤器容易。对于大颗粒粉尘,进入溶液式空气处理器后会导致堵塞,因此应在入口安装粗效过滤器进行捕捉收集。这一般比较容易并不易造成对空气的二次污染。
a.溶液热回收新风机b.再生器
图7热水再生的溶液除湿新风处理系统
4高温冷源的制备
由于潜热由单独的新风处理系统承担,因而在温度控制(余热去除)系统中,不再采用7ºC的冷水同时满足降温与除湿的要求,而是采用约18ºC的冷水即可满足降温要求。此温度要求的冷水为很多天然冷源的使用提供了条件,如深井水、通过土壤源换热器获取冷水等,深井回灌与土壤源换热器的冷水出水温度与使用地的年平均温度密切相关,我国很多地区可以直接利用该方式提供18ºC冷水。在某些干燥地区(如新疆等)通过直接蒸发或间接蒸发的方法获取18ºC冷水。
即使采用机械制冷方式,由于要求的压缩比很小,根据制冷卡诺循环可以得到,制冷机的理想COP将有大幅度提高。如果将蒸发温度从常规冷水机组的2~3ºC提高到14~16ºC,当冷凝温度恒为40ºC时,卡诺制冷机的COP将从7.2~7.5提高到11.0~12.0。对于现有的压缩式制冷机、吸收式制冷机,怎样改进其结构形式,使其在小压缩比时能获得较高的效率,则是对制冷机制造者提出的新课题。图8是三菱重工(MHI)微型离心式高温冷水机组[4]的工作原理,采用“双级压缩+经济器”的制冷循环形式和传热性能优异的高效传热管,优化设计离心式压缩机叶轮和轴承,不仅突破了离心式冷水机组难以小型化的误区,而且还具有非常高的性能系数COP。图9示出了利用该微型离心式冷水机组制备高温冷水时的性能计算值。从图中可以看出:当冷冻水进、出水温度为21/18ºC、冷却水进、出水温度为37/32ºC时,其COP=7.1,在部分负荷条件下或冷却水温度降低时,其性能则更为优越。
图8微型离心式高温冷水机组图918ºC高温冷水机组的性能曲线
5温湿度独立控制系统工程案例
采用溶液式空调系统去除潜热负荷的温湿度独立控制空调系统安装在北京某办公楼[2],如图10(a)所示。该工程2003年3月开始施工,至10月工程竣工。建筑面积约2000m2,共5层,建筑高度18.6m。该示范工程的温湿度独立控制空调系统由溶液除湿/再生系统、电压缩制冷机及城市热网组成,参见图10(b)。溶液系统处理新风,承担新风负荷和室内潜热负荷,夏季电压缩制冷机制备的18ºC冷冻水承担室内显热负荷,城市热网的热水夏季供给溶液系统用于溶液的浓缩再生,冬季供给室内采暖。空调系统的全年运行测试结果表明:该系统可提供健康、舒适的室内环境;夏季,溶液系统的综合能效比可达1.5,再生效率0.85;冬季,溶液式新风机的全热回收效率约为50%。在现有的电价和热价水平下,该温、湿度独立控制空调系统的运行费仅为常规电压缩制冷空调系统的60~70%,具有很好的节能潜力与应用前景。同时,溶液式空调系统可采用低温热源驱动,为低品位热源的利用提供了有效途径,对降低空调电耗,改善城市能源供需结构,解决楼宇热电联产系统的负荷匹配问题都可起到重要作用。
a.建筑照片b.温湿度独立控制空调系统原理
图10示范工程概况
在清华大学超低能耗示范建筑[5]中,采用热电联产废热驱动的溶液除湿系统处理新风承担建筑的潜热负荷,处理后的干燥新风通过置换通风方式与个性化送风方式送入室内;采用电动制冷机制备18ºC冷水去除建筑的显热负荷,冷水送入室内辐射板与干式风机盘管中。此外,这种系统还在上海建研院的节能示范楼[6]中试运行。新疆某办公楼、南京某住宅小区的空调也是温湿度控制的空调形式。更多的试点工程的不断尝试,将为我国的建筑环境控制探索出一条新的更完美的解决方式。
6结论
本文分析了现有热湿联合处理方式的空调系统存在的问题,继而提出热湿分开、独立处理的空调运行策略:采用新风去除室内的余湿、承担室内空气质量的任务,采用高温冷源去除室内的余热。分析了温湿度独立控制空调方式对室内末端装置、制备高温冷源的要求与影响,并重点介绍了基于溶液除湿的新风处理机组,给出了温湿度独立控制系统的应用实践工程。与目前普遍使用的风机盘管加新风方式或全空气方式相比,基于溶液除湿方式的温湿度独立控制系统的特点可总结如下:
适应室内热湿比的变化。温湿度独立控制系统分别控制房间的温度和湿度,能够满足建筑热湿比随时间与使用情况的变化,全面控制室内环境。并根据室内人员数量调节新风量,因此可获得更好的室内环境控制效果和空气质量。
末端方式不同。可采用辐射式末端或者干式风机盘管吸收或提供显热,采用置换通风等方式送出干燥的新风去除显热,冬夏共用同样的末端装置。
不再需要低温冷冻水。整个系统只需要18℃的冷水,这可通过多种低成本的和节能的方式提供,降低了运行能耗。
采用溶液除湿方式处理新风,可有效的控制室内湿度。溶液采用低温热量(60℃)驱动。使利用城市热网夏季供应热量驱动空调,也可使制冷用热泵的热端排热得到应用。同时,浓溶液还可以高密度蓄存,从而使热量的使用与空调的使用不必同时发生。这对降低空调电耗,改善城市能源供需结构,解决热电联产系统的负荷匹配问题都可起到重要作用。
采用溶液吸湿完成空气除湿。无论在新风处理机还是风机盘管处,都不存在凝水,根除了霉菌,军团菌等病菌的滋生条件,溶液本身具有杀菌除尘作用,增强了系统健康安全性。采用溶液与空气直接接触,由溶液捕捉空气中的可吸入颗粒物,再通过溶液过滤器去除,避免了中效过滤器清洗,更换的一系列问题。
参考文献
1.刘晓华,李震,江亿.溶液全热回收装置与热泵系统结合的新风机组.暖通空调,2004,34(11):98-102
2.陈晓阳.溶液式空调系统的应用研究,硕士学位论文,清华大学,2005
3.张伟荣,曲凯阳,刘晓华,常晓敏.溶液除湿方式对室内空气品质的影响的初步研究.暖通空调,2004,34(11):114-117
4.MitsubishiHeavyIndustries,LTD.Highefficientchiller"MicroTurbo"isthebestsuitedforbuildingenergyefficiency,TheFirstBuildingenergyefficiencyForuminTsinghuaUniversity.Mar22-25,2005,TsinghuaUniversity,Beijing,China