时间:2023-03-10 15:01:53
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇钢纤维混凝土技术论文范例。如需获取更多原创内容,可随时联系我们的客服老师。
1.钢纤维混凝土性能
钢纤维混凝土是在普通混凝土中掺入乱向分布的短钢纤维所形成的一种新型的多相复合材料。这些乱向分布的钢纤维能够有效地阻碍混凝土内部微裂缝的扩展及宏观裂缝的形成,显著地改善了混凝土的抗拉、抗弯、抗冲击及抗疲劳性能,具有较好的延性
1.1新拌钢纤维混凝土性能
钢纤维有一个像砂皮般粗糙的表面,使它与水泥浆体的黏结较为牢固,可减少塌边现象。论文大全。一般情况下,钢纤维混凝土坍落度值比相应的普通混凝土小20 mm,经摊铺机振动,即表现出与普通混凝土一样的黏聚性。
1.2硬化后钢纤维混凝土性能
(1)有研究表明[3],钢纤维掺量为30~50 kg/m3时,钢纤维混凝土的弯拉强度比普通混凝土提高约15%~35%,且与钢纤维的掺量成正比。(2)抗冲击性冲击强度反映混凝土在冲击荷载作用下的抗裂性能。将重8 kg的钢球从25 cm高度自由落下冲击经标准养护28 d的标准试件,当试件裂缝大于0.3mm时,记录的冲击次数即为冲击强度。文献表明[3],钢纤维混凝土抗冲击性能随钢纤维掺量增加而提高。钢纤维掺量为30~50 kg/m3时,与普通混凝土相比,其抗冲击性能可提高3~5倍。(3)抗干缩开裂性能试验在工地上进行,在养护28 d水泥稳定碎石基层上浇筑普通混凝土板和钢纤维掺量为50 kg/m3的混凝土板,用碘弧灯强光和风扇强风来加快试板失水,随时观察裂缝产生的时间。与普通混凝土相比[3],钢纤维混凝土裂缝产生时间迟,裂缝产生数量少。这表明钢纤维混凝土用于路面可以延长混凝土面板缩缝间距。(4)耐磨性耐磨性试验采用TNS-04水泥胶砂耐磨试验机。试验前将尺寸为15 cm×15 cm×7 cm的试件在60℃烘箱中烘至恒重,然后在水泥胶砂试验机上磨削50转,磨损面积为0.012 5 m2。计算试件单位面积磨损量,以此作为标准来描述混凝土耐磨性。在混凝土中掺钢纤维可显著提
高其耐磨性能。与普通混凝土相比,钢纤维混凝土耐磨性能提高了24.2%[3]。
2.钢纤维混凝土的应用
钢纤维混凝土在工程中的实际应用始于上世纪70年代,由美国Battele公司开发的熔抽钢纤维技术为钢纤维混凝土的应用提供了条件。此后在加拿大、英国、瑞典、日本等国家也迅速进行这方面的应用研究。我国是从上世纪70年代着手对钢纤维混凝土进行材料力学性能的实验研究,1989年颁布《钢纤维混凝土试验方法》(CECS13: 89),1992年颁布《钢纤维混凝土结构设计与施工规程》(CECS38:92), 2004年颁布《纤维混凝土结构技术规程》(CECS38: 2004)。目前纤维混凝土在结构工程、铺面工程、地下结构及其他特种结构工程等领域得到了比较广泛的应用。
在结构工程方面,那些对抗拉、抗剪、抗弯拉强度和抗裂、抗冲击、抗疲劳、抗震、抗爆等性能要求较高的工程部位,若采用钢纤维混凝土会得到较高的抗拉强度、断裂韧性和抗疲劳等性能。例如在梁柱节点中,已有实验证明钢纤维混凝土梁柱节点与普通混凝土梁柱节点相比,在强度、刚度、耗能能力和梁钢筋粘结锚固方面有较大的改善,采用钢纤维混凝土梁柱节点的框架与普通钢筋混凝土框架相比,结构的延性提高57%,耗能能力提高130%,循环次数提高15%,在框架梁柱节点采用钢纤维混凝土可替代部分箍筋,既改善了节点区的抗震性能,又解决了节点区钢筋过密、施工困难等问题。论文大全。
铺面工程包括公路路面、机场道面、桥面、工业地面及屋面等。因钢纤维混凝土有着优良的抗拉,抗弯、抗裂、抗疲劳、抗冲击、抗收缩、韧性好等一系列物理力学性能,因此,在铺面工程领域中得到较广泛应用。论文大全。文献[4]过恩施州318国道某路段的路面设计对比,采用素混凝土路面,路面板厚度为25cm;采用层布式混杂纤维混凝土路面,路面板厚度为仅为16 cm。
地下结构所用的钢纤维混凝土一般为钢纤维增强喷射混凝土,它具有诸多特点,强度高(抗拉、抗弯、抗剪);抵抗冲击、爆炸和震动的性能高;韧性好;抗冻、耐热与耐疲劳性能好;抗裂性能强;即使构件已产生微小裂缝,也会因钢纤维继续抗拔而使韧性大为提高。
3.总结
钢纤维混凝土具有优异的特性,使其广泛应用于各个工程领域,但其本身存在的问题,也抑制了它的应用。(1)钢纤维造价普遍较高,国产的性能相对较低,难以大规模使用;(2)钢纤维混凝土的增强机理至今也还不是很清楚,现行的几种分析理论,如复合理论和纤维间距理论都并不完善。复合理论忽略了纤维复合带来的耦合效应,纤维间距理论忽略了纤维自身的耦合作用,都有应用局限性,需待进一步的研究和探讨。(3)目前对钢纤维混凝土的研究多集中在物理性能方面,对于化学性能方面(比如耐久性)的研究相对较少。(4) 钢纤维混凝土与普通混凝土相比,在相对较低的水泥用量情况下,钢纤维混凝土具有较高的抗折强度和耐磨性能、良好的抗冲击性能和抗裂性能,非常适合在重载交通路面工程和对耐久性要求严格的工程中应用。
参考文献
[1]时宗滨,齐巧男. 浅谈纤维混凝土的应用[J]. 黑龙江交通科技,2008(6).
[2]蒋应军,刘海鹏等.钢纤维混凝土性能与施工工艺研究.[J].混凝土,2008(8).
[3]焦楚杰,孙伟等.中含量钢纤维高强混凝土施工工艺优选[J].建筑技术,2004(1).
[4] 海庆,朱继东等.层布式混杂纤维对混凝土抗弯性能的改善及其在路面设计中的应用[J].混凝土与水泥制品, 2003(4): 41-43.
[论文摘要]钢纤维混凝土是一种新型的复合建筑材料,其物理和力学性能优于普通混凝土,通过介绍钢纤维增强混凝土的基本理论,阐述钢纤维混凝土在多个领域工程中的应用。
钢纤维混凝土(Steel Fiber Reinforced Concrete,简写为SFRC)是在普通混凝土中掺入适量短钢纤维而形成的可浇筑、可喷射成型的一种新型复合材料。它是近些年来发展起来的一种性能优良且应用广泛的复合材料。其中所掺的钢纤维是用钢质材料加工制成的短纤维,常用的有:切断型钢纤维、剪切型钢纤维、铣削型钢纤维、熔抽型钢纤维等。钢纤维在混凝土中主要是限制混凝土裂缝的扩展,从而使其抗拉、抗弯、抗剪强度较普通混凝土有显著提高,其抗冲击、抗疲劳、裂后韧性和耐久性有较大改善,使原本属于脆性材料的混凝土变成具有一定塑性性能的复合材料。
一、钢纤维增强混凝土的基本理论
(一)复合力学理论
复合力学理论是以连续纤维复合材料理论为基础,结合钢纤维在混凝土中的分布特点形成的。该理论是将复合材料视为以纤维为一相,基体为另一相的两相复合材料。
(二)纤维间距理论。纤维间距理论又称纤维阻裂理论,是1963年由J.P.Romualdi和J.B.Batson提出来的。该理论根据线弹性断裂力学理论解释纤维对裂缝发生和发展的约束作用,认为欲增强混凝土这种本身带内部缺陷的脆性材料的抗拉强度,必须尽可能地减少内部缺陷的尺寸,提高韧性,降低裂缝尖端的应力强度因子、减少裂缝尖端的应力集中作用,故在裂缝处用纤维连接,受拉时跨越裂缝的纤维将荷载传递给裂缝的上下表面,使裂缝处材料仍能继续承载,这样,因裂缝的出现孔边应力集中程度就缓和,随着桥接裂缝纤维数目的增多,纤维间距越小,缓和裂缝尖端应力集中程度越大,对裂缝尖端产生的反向应力场也越大,当纤维数量增加到密布于裂缝时,应力集中就会消失,进一步表明纤维的阻裂效应,即在复合材料结构形成和受力破坏的过程中,有效地提高了复合材料受力前后阻裂引发与扩展的能力,达到钢纤维对混凝土增强与增韧目的。
(三)界面应力传递的剪滞理论。钢纤维混凝土中钢纤维周围的水泥基体结构与自身结构是不相同的,即在钢纤维与基体之间存在着界面层。钢纤维混凝土的性能主要取决于混凝土基体性能、钢纤维含量以及它们之间的界面特性。假定界面是一层厚度可以忽略的薄层,但具有一定的力学性能。当荷载作用于钢纤维混凝土时,荷载一般先施加于低弹性的基体,然后通过纤维-基体的界面,把一部分荷载传递给高弹模的纤维,使纤维和基体共同承担荷载,从而起到增强的作用。
二、钢纤维混凝土的应用
钢纤维混凝土作为一种新型复合材料,以其优良的抗拉、抗弯、阻裂、耐冲击、耐疲劳、高韧性等物理力学性能,目前已被广泛应用于建筑工程、水利工程、公路桥梁工程、公路路面和机场道面工程、铁路公程、管道工程、内河航道工程、防暴工程和维修加固工程等各个专业领域。
(一)水利工程
钢纤维混凝土在水利工程中的应用比较广泛,主要将其用于受高速水流作用以及受力比较复杂的部位,如溢洪道、泄水孔、有压疏水道、消力池、闸底板和水闸、船闸、渡槽、大坝防渗面板及护坡等。这些部位对混凝土材料自身的抗拉强度、抗剪强度以及抗裂性能的要求都比较高,也正发挥了钢纤维混凝土的自身优势。我国在实际工程中应用的有:三峡工程、小浪底水利枢纽工程、三门峡泄水排砂底孔等工程。以上工程都获得了较为满意的效果,并取得了较好的经济效益。
(二)建筑工程。钢纤维混凝土在建筑工程中的影响越来越广泛,一般应用于房屋建筑工程、预制桩工程、框架节点、屋面防水工程、地下防水工程等工程领域中。如抗震框架节点中使用钢纤维混凝土,能代替箍筋满足节点对强度、延性、耗能等方面的要求,而且还能提供类似于箍筋约束混凝土的作用,并解决节点区钢筋挤压使混凝土难于浇注的施工问题;钢纤维混凝土还具有良好的抗裂性,可使构件在标准荷载下处于弹性阶段而不裂,不出现应力的重分布;用钢纤维混凝土制成的自防水预应力屋面板,不仅提高了自防水预应力屋面板的抗裂性能,同时也减少了纵向预应力筋的配筋率,提高了结构的耐久性。钢纤维混凝土在建筑中的应用实例有:福州东方大厦、沈阳市急救中心站综合楼、江苏省丹阳市中医院、辽阳市食品公司办公楼等工程。
(三)道路和桥梁工程。钢纤维混凝在道路和桥梁工程方面,主要广泛应用于路面、桥梁、机场跑道等工程中,包括新建及修补工程。钢纤维混凝土较普通混凝土有较好的韧性,抗冲击、抗疲劳性。它可使面层厚度减少,伸缩缝间距加长,使用性能提高,维修费用减低,寿命延长。面层较普通混凝土可减少30-50%,公路伸缩缝间距可达30-100m,机场跑道的伸缩缝间距可达30m。用于路面及桥面修补时,其罩面厚度仅为3-5cm。在实际工程中有:北京东西环路立交桥、沪杭高速公路成渝公路、大足朱溪大桥、广州解放大桥等工程中都采用了钢纤维混凝土解决工程难题,使用效果较好,经济效益显著。
(四)铁路工程。在铁路工程方面,钢纤维混凝土主要用于预应力钢纤维混凝土铁路轨枕、双块式铁路轨枕及抢修铁路桥面防水保护层中。铁路工程承受较大的荷载、较高的速度和数万次的振动,所以要求混凝土必须具有较高的强度、较高的抗冲击性及较大的塑性。这正好利用了钢纤维混凝土的抗冲击性及较好的塑性。建成的工程有:沈阳铁路局长达线维修工程、柳州铁路局黔桂铁路铺设工程、南昆铁路隧道工程和西安安康铁路椅子山隧道等工程土。钢纤维混凝土的应用,使维修工作量大为减少,并提高了线路的使用寿命,效果良好。
(五)港口及海洋工程。钢纤维混凝土在海洋工程中的使用主要是钢纤维混凝土的腐蚀问题,所以有待进一步研究,但在日本和挪威的使用经验是令人鼓舞的。日本钢铁俱乐部采用钢纤维混凝土作钢管桩防腐层,在海水中浸泡10年,钢纤维混凝土防腐完好,钢管表面无锈蚀,仍有金属光泽。挪威将钢纤维混凝土用于北海海底输气管道的隧道衬砌、Forsmark核电站海底核废料库的支护、海洋平台后张预应力管道孔的封堵以及码头混凝土受海水腐蚀部位的修补等。我国江苏石舀港码头的轨道梁工程中也使用了钢纤维混凝土。
除了上述领域外,还有很多钢纤维混凝土的应用的实例,如承受重级工作制造工业厂房和仓库地面、薄壁蓄水结构、预制板、离心管、污水井、游泳池、耐火混凝土和耐火材料、抗爆结构、各类建筑物和构筑物的修补、补强加固、抗震加固等。
三、结束语
钢纤维混凝土具有普通混凝土不具有的优点,且具有良好的经济效益,其在民用建筑楼地面、公路路面、预制构件水利工程、港口码头、机场跑道和停机坪、桥梁隧道以及各种构筑物等方面的应用前景将是十分广阔的前景。
参考文献:
建筑行业中级职称论文字数
每个刊物的字数都是不一样的,要是发省级刊物的话一般字数在2000字到3000字之间不等,一般多数在2500字左右
建筑行业中级职称论文
建筑施工行业技术研究
随着我国经济的发展,我国的建筑行业也在发展。建筑施工技术作为建筑业发展的力量和源泉对建筑业的发展起着举足重要的作用。随着现代科学技术的进步,我国的建筑施工行业也在逐步走向科技创新之路,在原有建筑施工行业技术发展的基础上,一些新的建筑施工行业技术被引进,本文首先来分析建筑施工的原有技术,然后再次基础上简单的介绍几种建筑施工行业新技术。
近些年来,我国在建筑施工行业发展水平不断提高,已经初具了解决工程建设过程中出现的各种复杂问题和矛盾的水平,在推动我国经济持续、快速、健康发展的过程中发挥了重要作用。从我国建筑业出炉的一批一批规模大、结构牢、水平精湛的建筑物中,足以窥见我国建筑行业技术发展的进步,本文主要来探讨建筑施工行业技术研究。
1.传统的建筑行业施工技术
在建筑行业中,传统的建筑施工技术主要有桩基技术和基坑支护技术两种,下面我们分别来看。
1.1 桩基技术应用
桩基技术作为我国建筑施工行业的一种传统技术,在建筑施工行业发挥了不可替代的作用。桩基技术主要有预制桩和灌注桩两种。在混凝土施工中由于预制桩技术产生的噪音较为严重,所以,预制桩的使用范围较为狭小。最常用的桩基技术是灌注桩技术。灌注桩技术施工方式较为灵活,不但可以自行设计桩长、桩径以及数量,而且可以满足不同地质地貌的施工。在我国建筑行业中,其使用范围比较广,利用率比较高,但是灌注桩技术由于受自身桩径和桩攀的限制,其使用也存在着一定的缺陷。克服此种缺陷主要运用桩侧后注浆技术和桩底注浆技术。
1.2 基坑支护技术的应用
近些年来,随着我国高层建筑物的不断增多,基坑支护技术应用的较为广泛,因为高层建筑中必须做好建筑深基础的施工,否则,建筑物的质量很难保证。基层支护技术适应了这一要求,解决了高层建筑深基础施工难度大这一问题。基层施工是一个复杂系统的整体工程,施工时要综合考虑到挡土、防水、降土、挖土等多种因素,所以在施工时要综合考虑施工技术、施工环境以及施工安全等各个方面。我国采用的基坑支护技术主要有逆作拱墙技术和土钉墙技术两种。逆作拱墙技术主要适用于土壤较软的地层,主要运用分层挖土的方法。土钉墙技术适用于低水位的非软土层,实现在分层开挖基础上的分层支护。
2. 建筑行业施工新技术的引进
从上面分析可以看出,虽然我国的建筑施工技术在原有的基础上有了很大进步,但其总体水平仍然比较低,存在着这样或那样的缺陷,具体表现如下:缺乏技术创新,对技术的创新力度不够。由于市场经济体制的不完善加上传统思想的影响,许多新技术不被引进,没有引起建筑行业足够的重视,导致建筑施工行业技术创新缓慢或缺乏技术创新。企业缺乏创新人才,加上企业技术创新的动力不足,导致建筑行业科研成果转化率较低。随着我国建筑业的发展,各种新技术被不断引进,譬如高强度高性能混凝土技术、深基坑支护技术、钢结构技术等等,下面我们来具体研究一下几种建筑行业新技术。
2.1 清水混凝土施工技术
随着我国人口的快速增长,个人占用的空间日益缩小,在这种情况下,高层建筑应运而生并得到了充分发展。高层建筑施工主要以钢筋混凝土结构、清水混凝土施工技术为主。清水混凝土技术作为建筑行业的一门新技术将原始浇筑面直接作为装饰性表面,不但使用方便,而且可以加快施工速度,降低成本,保持高层建筑的稳定性,为我国建筑行业的发展开辟了新的道路。
2.2 钢纤维砼的施工技术
随着我国经济的发展以及人们生活品味的不断提高,人们对建筑的艺术感觉越来越重视。为了满足人们对建筑艺术效果的需求,在建筑行业中引进了钢纤维砼的施工技术。钢纤维砼的施工技术通过在普通砼中掺入适量钢纤维,两种原料拌合而成的一种复合材料,不仅增强了砼构件的抗裂能力、抗剪能力,而且克服了砼抗拉强度低的缺点,增强砼的耐延性。此外,钢纤维砼具有较好的能量吸收能力,抗冲击能力很强,所以利用钢纤维砼的施工技术建设出来的高层建筑不但质量可靠,而且具有很好的平面感和立体感,给人们一种视觉冲击力,满足了人们对艺术效果的追求。
2.3 防水材料的施工技术
科学技术和建筑行业的发展使得防水材料的施工技术被广泛应用于建筑施工。随着防水施工向冷作业方向发展,防水材料中出现了许多高效弹性材料,譬如高分子卷材、新型防水涂料以及密封膏等等,这些材料运用于建筑施工,使得建筑施工的机械化水平不断提高。建筑防水技术分为对屋面的防水和对墙外的防水两种。对屋面的防水会采用聚合物水泥基复合涂膜施工,这种技术关键在于做好基层、板缝以及节点处理。涂料时一定要做到仔细认真、涂抹方向要做到相互垂直;对于墙外防水一般采用加气砼砖墙施工技术。两种技术综合运用,提高了我国建筑施工水平,有效预防了水渗漏以及裂缝等公害的出现。
3. 结语
市场经济是市场在资源配置中起基础性作用的经济,竞争性是市场经济运行的内在动力和源泉。建筑施工是建筑企业在激烈的市场竞争中立于不败之地的法宝,所以,任何一个建筑企业都要从自身的优势出发,从企业的可持续发展出发,不断研发创新建筑行业施工技术,提高企业的竞争力,推动企业健康持续的发展。
参考文献
[1] 赵文胜. 谈建筑施工企业新技术开发和应用管理. 科学之友,2009.
[2] 周云. 现代建筑工程技术研究与应用. 华南理工大学学报,2007.
[3] 赵志绪. 我国建筑施工技术的进步与展望[J]. 施工技米,2009.
看了“建筑行业中级职称论文字数”的人还看:
1.工程类中级职称论文字数要求
2.2017年中级职称论文字数
3.2017年建筑中级职称论文
【关键词】市政建设;桥梁铺装;钢纤维混凝土;施工应用
引言:混凝土原料在桥梁施工中的应用十分广泛,尤其是在近现代,科学技术的不断进步推动了混凝土技术的创新与改进,钢纤维混凝土就因此而生。钢纤维混凝土在原有混凝土的基础上特地加入了提取的优质钢元素,钢纤维元素使得原有混凝土的物理属性得到了扩展与提升,混凝土的延展度与抗压力也得到了改进。因此,在桥梁施工中使用这种新颖的混凝土,可以提高桥梁的抗压力与耐磨性能,还可以在一定程度上降低高负荷车辆对桥梁铺装层的冲击力度,减少桥梁的压力提高使用寿命。
一、具有钢纤维特质的混凝土的优势分析
1.1提高了桥面的抗变压能力
钢纤维混凝土作为一种新型的复合型材料,其所添加的短钢纤维可以起到阻止混凝土内部裂缝的产生,对于在混凝土内已经产生的大型裂缝,其又可以起到相应的阻滞与治愈作用。钢短纤维可以使得桥梁整体的密度降低,即使桥面长时间处于高负荷状态,其也能够科学合理的分担所受的压力,整体桥面也不会轻易变形,这就是良好的抗变压与收缩能力的体现。
1.2促进了桥面抗冲击能力的发展
在新型的混凝土中加入了特别提取的钢纤维元素,可以使其具备更加良好的抗冲击性能。良好的抗冲击能力可以在桥梁工程受到一定的冲击后仍保持着主体结构的稳定,保证了桥梁整体的正常使用。据资料显示,钢纤维混凝土的抗冲击能力是一般混凝土材料的50-100倍,其本身的密度也较小,而韧性却很高。
二、在桥梁施工中应用新型混凝土的成功案例
2.1工程概况
在京津高速公路天津段建设工程中,K3+591中桥为正交部分的桥梁,在其的上部结构部分采用的是16m的预应力空心板梁。而在这段桥梁的主要中心位置,外侧主要采用的是SA级的钢筋混凝土土墙式的护栏。在桥面上则通常会利用10cm厚的场c40防水混凝土作铺层。在整个桥面系中,主要包括的有桥面的现浇部分、桥面的沥青混凝土铺装部分、伸缩缝、搭板桥头位置部分、护栏、水力系统以及其他的照明设施及标识。
2.2新型混凝土在桥梁施工中的运用
在该工程的建设中,工作人员在普通混凝土的横截面加入了0.5%到1%不等的钢纤维元素,这样就会使得桥梁桥面道路的厚度会超过正常桥梁施工道路的50%以上,这样就确保了桥面的坚硬程度。这种复合形式的配置可以设置为多层结构,使得桥面道路的稳定性得到进一步的提高。同时在施工中应用钢纤维混凝土,还可以提高桥面的承压能力,促进其整体性能的发展。其密度较小的特性还在一定程度上减轻了桥梁的自重,起到平衡的作用。同时在桥梁项目建设的过程中,钢纤维混凝土的应用还会大大改善桥梁的结构特征,推动桥梁的结构朝着轻便化、跨度大的方向发展。
三、桥梁铺装施工中钢纤维混凝土的施工分析
3.1施工前的准备工作
在整体施工前,首先是要对施工步骤与施工工艺有个全面清晰的了解与认知。在进行桥面铺装施工工作前,测量人员首先需要先把整体桥面按照10米划分为不同断面,并要确保每个断面不少于四点,这样才便于对桥梁顶面进行细致的测量。测量完毕并收集好一切数据后,可申请进一步的验收,验收合格后才可正式施工。
其次,如何选择最合适的钢纤维材料投入到混凝土中进行施工,这也是一个十分重要的问题。一般来说,我国大多数的市政桥梁建设最常用的是哑铃型钢纤维作为原材料。这种类型的钢纤维具有较强的粘性以及较为稳定的结构层。在施工过程中,施工人员方可通过改变钢纤维本身的表面与形状来调节其与混凝土基体之间的粘连性能,来更好的投入使用。
3.2中下梁面与平面层的施工技术
在桥面铺装施工中,桥梁的中下梁面以及其平面层是一块重要的施工区域,施工人员应在积极了解现场的施工情况后选择合理的施工技术。
在本工程中,工程师选择的是型号为d10mm,间距为85cm×75cm的钢筋段,因此其植入整体层与铺装层的长度大致为7m与8m。为了确保行车车辆的轮胎安全,还需将露出部分的钢筋折弯植入整体层中。
3.3标高带与钢筋网的施工技术
在安装相应的模板时,应注意选用角钢作为所需材料。角钢的摆放位置也是经过特定的程序调整的,大致的位置为距离滚筒适宜的距离,阴角必须正面朝上,其底部需要用水泥砂浆进行填补。分布角钢的测点需定时,定量以及定距离的合理设置。最后同时需要注意的是做好相应的,科学的防裂措施。
3.4钢纤维混凝土的搅拌与运输
新型混凝土的搅拌与运输工艺是桥梁桥面建设中重要的一个阶段之一。事实证明,在对这种新型的混凝土进行搅拌时,最佳选用的是强制型的搅拌机。在搅拌阶段,也须控制搅拌的数量不能超过搅拌机承受的额定数量。这种搅拌操作技术会对混凝土在桥面铺装施工中的使用性能产生一定的作用。因此,在搅拌过程中,可以采用二次投料三次搅拌的方法实施,对投料的次序与方法也要按照要求执行,这样才能确保钢纤维在混凝土基体内的均匀分布。在投入物料方面,为了达到快捷精准的目标,可以采用电子计数方式进行投料,若遇到有锈蚀或者含有硬块的钢元素,则应不予应用。在对钢纤维混凝土进行运输操作时,应采用合格的混凝土拌合车,这可以有效的防止混凝土在运输过程中下沉现象。
3.5摊铺与振捣施工技术
在桥梁桥面的具体建设中,摊铺与振捣技术是其中一个十分重要的阶段。因此,在施工中使用混凝土前,必须要先对桥面作个完整全面的冲洗,铺装地层较薄的应采用泥水浆进行冲洗。摊铺工作就是在此基础上才得以展开,当搅拌车将混凝土材料运输到指定施工场地后,就要开始卸料,在卸料过程中需要快速转动,将材料充分搅拌。卸料工作完成后,工作人员就要使用铁铲来进行整体的铺平工作。
四、结语
总的来说,钢纤维混凝土以其密度小、抗压力强、耐磨性好等特性在市政桥梁的施工中发挥出了十分重要的作用,其不仅可以进一步改进桥梁铺装的技术,增加施工桥梁的使用性能,还能减少建设成本,节约施工原料与资源,并对环境起到一定的保护作用。同时,笔者建议施工人员还应积极的在使用钢纤维混凝土的过程中,创新施工技术,从而才能促进桥梁施工的科学发展。
参考文献:
[1]李春雨,殷艳春,张德刚.论钢纤维混凝土在市政桥梁桥面铺装施工中的应用[J].中小企业管理与科技(下旬刊),2014-06-25.
关键词:钢纤维混凝土;施工技术;路桥工程;应用
Abstract: along with the development of market economy in China and city modernization, the quickening of the process of road and bridge project has also made by leaps and bounds development. People for the bridge engineering quality construction, construction schedule, cost control and so on all aspects of attention and demand more and more. In this case, new building materials and new construction technology research and development and application, has become an essential means to solve these problems. High fiber reinforced concrete, as a kind of new type composite materials, the application of road &bridge construction in more and more widely.
Keywords: steel fiber concrete; Construction technology; Bridge project; application
中图分类号:TU74文献标识码:A 文章编号:
钢纤维混凝土,因为自身具备的诸多优势而成为目前路桥施工中不可替代的新型建筑材料。钢纤维混凝土在路桥施工中的应用,对于提高工程质量,提升施工效率,降低生产成本等方面都做出了巨大贡献。笔者就钢纤维混凝土施工技术在路桥工程中的应用,提出一些自己浅显的看法,希望与同行交流分享。
一、钢纤维混凝土概述
(一)钢纤维的性能
钢纤维都具备很高的抗拉强度,且在被加工成不同变截面形状后,可以从很大程度上增加其与水泥基材之间的握裹力。目前我国市场上,可供选择的钢纤维产品很多,可以根据实际施工项目的具体情况选择不同性能的钢纤维。钢纤维按照制造方式不同,可分为切断钢纤维、剪切钢纤维、切削钢纤维和熔抽钢纤维。这四种材料分别具备不同的性能和特点。
1.切断钢纤维
切断钢纤维主要是对钢纤维表面做变形处理,目的是改善钢纤维的力学性能,增强钢纤维与水泥砂浆的界面之间的粘结性能。
2.剪切钢纤维
剪切钢纤维主要是由冷轧薄板加工而成。冷轧薄板按照一定的厚度和宽度经过剪切后,具备比切断钢纤维更良好的与水泥砂浆的粘结性能。
3. 切削钢纤维
切削钢纤维主要是由管钢锭或者厚钢板加工而成。加工后的切削钢纤维不仅强度大大好于原材料,与水泥混凝土的粘结性也较好。
4. 熔抽钢纤维
熔抽钢纤维的强度受熔钢成分和热处理条件的限制,强度各异。且它表面的氧化层大大降低了它与混凝土的粘结性能。
(二)路桥工程中钢纤维混凝土原料选择及配比
1.水泥的选择问题
在路桥工程中,水泥是钢纤维混凝土的主要原料。为了考虑路桥工程中的混凝土应该具备索性小、强度高、抗冻和抗磨性能好的特点,我们通常选择硅酸盐水泥作为钢纤维混凝土的原料。
2.水和外掺剂的相关问题
钢纤维混凝土施工中,通常选用饮用水为原料,并能够通过控制水与外掺剂在施工中的配比来使混凝土达到具备高强度和高密实度的效果。在水灰比较低的情况下,可以通过减水剂或者塑化剂来调节混凝土的强度;在竣工日期紧迫的情况下,可以通过添加早强剂来控制竣工时间;在需要增强混凝土抗冻性的情况下,并通过加气剂来进行调节。
3.钢纤维混凝土施工中的配合比问题
钢纤维混凝土的施工,应该按照配合比设计来完成。在施工中应该以混凝土抗折强度作为首要参考,来控制钢纤维的掺入量、水泥标号和水灰比等。通过这些主要因素的优化和调整,提高钢纤维的质量和可用性。
(三)路桥工程中钢纤维混凝土的施工技术问题
1.搅拌技术方面的问题
在施工中,要通过搅拌来确保钢纤维混凝土在混凝土基体中均匀分布。在施工中通常选择反锥式或者强制式搅拌机作为搅拌设备,按照水泥、粗集料、钢纤维的顺序进行充分均匀的搅拌。其中要注意的是钢纤维要分三次投入,干拌均匀后加水,然后再设备搅拌。搅拌时间控制在两分至三分之间。
2.浇注和振捣方面的问题
在浇注钢纤维混凝土的过程中,要保证浇注作业不间断进行,且浇注接头不明显。我们通常选用平板振动器进行振捣,并在振捣过程中使钢纤维呈纵向条状集束排列,以保证混凝土边角严密。
3.钢纤维混凝土运输方面的问题
由于钢纤维混凝土在运输过程中容易因为钢纤维下沉而导致坍落或气量损失等问题出现,致使钢纤维混凝土不均匀,因此我们在选择搅拌场地的时候就要充分考虑如何减少混凝土运输的问题。同时,在运输过程中还要注意做好防护措施,例如选择合适的运输装备,控制好运输时的温度等,以避免影响混凝土质量,给整个工程带来损失。
二、钢纤维混凝土在道路施工中的应用
(一)在新建全截面钢纤维混凝土路面中的应用
全截面采用钢纤维混凝土的路面,与传统混凝土路面相比,无论是路面厚度,还是钢纤维用量都大大减少,是节省成本,提高质量的最佳方法。采用钢纤维混凝土技术时,同行双车道路面不设纵缝,横缝间距控制在20-50之间。
(二)在新复合式钢纤维混凝土路面中的应用
复合式路面通常分为双层式和三层式两种。双层式路面钢纤维混凝土的铺设量大概控制在五分之二至五分之三之间。
三层式复合路面是俗称“汉堡式”结构,既上下两层是钢纤维混凝土层,中间夹普通混凝土层。这种路面虽然结构合理,但是施工复杂,因此多应用在机械化铺设程度较高的地区。
(三)在钢纤维混凝土罩面中的应用
施工人员可以通过在旧混凝土路面上罩上一层钢纤维混凝土来修复破损路面。根据路面破损程度由高到低,可以分别用结合式、直接式和分离式三种罩面方式。
1.结合式是指罩面层与旧混凝土结为一体,共同构成路面结构,整体发挥作用。
2.分离式是指罩面层不与旧混凝土结合,中间隔着一个隔离层,各自发挥作用。
3.直接式是指直接在旧水泥混凝土面层上加铺罩面层。
(四)在多年冻土地区抗冻方面的作用
钢纤维混凝土路面在多年冻土区的应用,能够很好地维持冻土冷热平衡,提高路面抗冻能力。
三、钢纤维混凝土在桥梁施工中的应用
(一)在桥面铺装方面的应用
钢纤维混凝土桥面铺装层的采用,对于增强桥面的抗裂性、提高桥面的耐久性和提升桥面的舒适度等方面,都有很大帮助。于此同时,钢纤维混凝土桥面铺装层对于增强桥梁刚度、减少铺装厚度、提高桥梁承重能力、降低结构自重等方面也具有独特的优势。
(二)在桥梁上部承重荷载部位的应用
采用钢纤维混凝土作为主拱圈,能够提高结构的受力能力、防止结构变形,减轻自重,从而使桥梁的跨度增大,重量减轻。与此同时,还能起到美化桥梁外观,减少建筑用料的作用。在提高了桥梁质量的同时还大大降低了施工成本。
(三)在局部加固方面的应用
桥梁墩台和桥面等部位由于长期载重,容易产生裂缝和表层剥落现象。通过向这些部位喷射钢纤维混凝土,可以改善局部结构的整体性和抗震性。
(四)在加强钢筋混凝土桩方面的应用
钢纤维混凝土在桩顶或者桩尖等局部位置的应用,能够增强桩的穿透力,减少锤击次数,提高打击速度。
结束语:
钢纤维混凝土作为一种新型水泥基复合材料,在路桥工程中的实际使用效果已经得到了大量实践的验证。它在提高路桥使用性能、保证工程施工质量、降低工程造价等方面的优势也显现的越来越明显。接下来我们要做的,是将钢纤维生产技术进一步的提高和完善,使这种新型材料更科学更合理更广泛地应用到路桥工程中去,从而促进我国路桥工程建设的进一步发展。
参考文献:
[1]黄承逵,赵国藩.纤维混凝土研究和工程应用的进展[A].第十二届全国混凝土及预应力混凝土学术交流会论文集[C],2003.
[2]李国华,晏道雄,王治全.建议钢纤维混凝土在路桥施工中技术应用分析[J].城市建设与商业网点,2009(28).
[3]郭艳华.钢纤维混凝土增韧性能研究及韧性特征在地下结构计算中的应用[D].西南交通大学,2008.
关键词:早高强喷射混凝土;纤维;硅灰;减水剂
中图分类号:TU528.31文献标识码:A 文章编号:
引言:
喷射混凝土与钢架、锚杆等共同构成隧道工程复合式衬砌的初期支护结构。喷射混凝土由于其喷射厚度薄、密实性较差、直接与围岩接触、受地下环境影响严重等因素,成为初期支护耐久性难以保证的关键原因,进而导致隧道工程衬砌一直处于相对保守、经济性差的较低水平[1]。近年来,关于隧道单层衬砌的研究和应用也逐渐被人们所重视。这些都对喷射混凝土的力学和耐久性能提出更高的要求,早高强喷射混凝土的研究日益凸显其重要性。
1.早高强喷射混凝土的性能要求
1.1较高的早期强度:《铁路隧道锚喷构筑法技术规范》规定喷射混凝土24 h立方体抗压强度不得小于5 Mpa[2]。早高强喷射混凝土对早期强度要求较高,目前国外对隧道单层衬砌中喷射混凝土的24 h强度要求不小于8 Mpa。本次配合比设计研究要求喷射混凝土24 h单轴抗压强度不低于8 Mpa。
1.2较高的后期强度:目前国内外广泛使用的喷射混凝土强度要求在15~30 Mpa之间,远低于普通混凝土C40~C60的要求。较高的后期强度对保证支护结构的安全性至关重要。本次配合比设计研究要求喷射混凝土强度等级为C40。
1.3较高的围岩粘结强度:《锚杆喷射混凝土支护技术规范》对喷射混凝土与围岩间的粘结力有如下要求:Ⅰ、Ⅱ级围岩不应低于0.8 Mpa,Ⅲ级围岩不应低于0.5 Mpa。与围岩间的粘结强度是保证初期支护质量的关键因素。本次配合比设计研究要求喷射混凝土与围岩间的粘结强度Ⅰ、Ⅱ级围岩不低于1.8 Mpa,Ⅲ、Ⅳ级围岩不低于1.0 Mpa[3]。
2.早高强喷射混凝土原材料要求
2.1水泥:优先采用硅酸盐水泥和普通硅酸盐水泥,水泥强度等级不应低于32.5 MPa。选用广东骏马水泥厂生产的P.O 42.5级水泥。
2.2速凝剂:喷射混凝土宜优先采液体速凝剂,在使用前,应做与水泥的适应性试验及水泥净浆凝结效果试验,初凝不大于5 min,终凝不大于10 min[2]。选用湖北大冶 JS- 2 型高效速凝剂,减少回弹防止砼脱落。
2.3粗集料:采用坚硬耐久的卵石或碎石粗集料,级配宜采用连续级配,最大粒径不应大于15 mm,当使用碱性速凝剂时,严禁使用或夹杂碱活性集料。
2.4细集料:采用坚硬耐久的粗砂或中砂,细度模数Mx在2.5~3.5之间。
2.5减水剂:为满足高强度的要求,在普通喷射混凝土的基础上加入减水剂,本设计选用蒙城生产的 UEA低碱型高效减水剂(聚羧酸系),减少收缩和回弹,降低水灰比。
2.6纤维:钢纤维可以提高喷射混凝土的早期强度和后期强度,聚丙烯纤维可以有效减少微裂缝的产生,本设计采用双掺钢纤维和聚丙烯纤维的方法。采用武汉新途工程纤维制造有限公司生产的CW03- 05/30- 600和CW- 05/30- 1000型钢纤维,两端弯曲长度在30mm,直径在0.50mm,长径比为60 抗拉强度为600和1000 MPa 所用钢纤维符合美国标准ASTMA820的要求。
2.7硅灰:选用挪威埃肯硅灰公司生产的比表面积为645m2/g 减少混凝土干缩和徐变,降低水化热,减少喷射混凝土的回弹,提高混凝土的后期强度。
2.8水:喷射混凝土用水应符合混凝土拌合用水标准(JGJ-63)规定水中不应含有影响水泥正常凝结与硬化的有害杂质,一般应采用饮用水。
3.早高强喷射混凝土配合比设计步骤[4]
(1) 粗集料最大粒径的选择
粗集料的最大粒径不得大于喷射系统输料管道最小截面直径的1/3~2/5,亦不宜超过一次喷射厚度的1/3 由于工地使用的喷射机输科管内径为 Dmm (50mm ),因此粗集料的最大粒径 D/3(16mm) 一般喷射混凝土粗骨料连续级配,直径最好小于10mm。
(2) 砂率的确定
(3) 水泥用量的选择
(4)速凝剂用量计算
(5)水灰比的计算
(6)用水量的计算
(7)钢纤维、聚丙烯纤维和硅灰的掺量采用正交实验的方法予以确定。
(8)最优配合比
本次早高强喷射混凝土配合比正交设计确定的最终配比为:砂率0.5,水泥用量412kg/m3,用水量170kg/m3,钢纤维掺量28kg/m3,聚丙烯纤维掺量1.85kg/m3,速凝剂掺量4%,减水剂掺量0.7%。
4.早高强喷射混凝土性能试验
本部分试验将早高强喷射混凝土与未添加纤维、减水剂和硅灰的普通喷射混凝土进行性能试验对比。
4.1 抗压强度试验
实验分别对比了两种喷射混凝土的1d、3d、7d、14d、28d立方体抗压强度,结果见图1。
图1 各龄期抗压强度对比
由图1可知,早高强喷射混凝土的1d、3d、7d、14d、28d抗压强度分别比普通喷射混凝土提高了66.7%、37.9%、33.2%、33.5%和27.7%。
4.2 粘结强度试验
试验分别对比了不同龄期两种喷射混凝土与围岩的粘结强度,见图2。
由图2可知,早高强喷射混凝土1d、3d、7d、14d、28d的粘结强度分别比普通喷射混凝土提高了51.7%、53.2%、66%、50.4%和39.8%。
4.3 抗渗等级试验
对两种喷射混凝土的抗渗性能进行了对比试验,结果见表1。
表1 抗渗性对比
由表1可知,普通喷射混凝土的最大深水深度为11.9cm,而早高强喷射混凝土的最大深水深度仅为4.8cm,降低了59.6%,普通喷射混凝土的最小渗透系数为1.84×10-9cm/s,而早高强喷射混凝土的最大渗透系数为0.52×10-9cm/s,这说明在喷射混凝土中加入钢纤维、聚丙烯纤维和硅灰能明显改善喷射混凝土的抗渗性能。
5.结论
(1)双掺钢纤维和聚丙烯纤维能够明显改善喷射混凝土的早期强度和后期强度,能提高喷射混凝土的抗渗性能。
(2)在喷射混凝土中添加减水剂和硅灰能够明显改善喷射混凝土的工作性能、力学性能和耐久性能。
参考文献:
[1]肖明清,孙文昊. 考虑环境作用的复合式衬砌结构设计方法探讨[J].铁道工程学报;2010,1(1),55~59.
[2]中华人民共和国行业标准.铁路隧道锚喷构筑法技术规范(TB10108-2002).北京:中国铁道出版社,2003.
关键词:房屋混凝土结构裂缝 控制“抗”“放”结合
一、前言
房屋混凝土结构裂缝为建筑工程中的重要技术难题和质量通病,不仅有碍美观,而且会损伤结构,影响建筑的正常使用及耐久性,某些裂缝甚至会影响房屋结构承载力的极限状态,严重威胁结构的安全可靠性,以下简要分析如何控制房屋混凝土结构裂缝。
二、混凝土结构的裂缝的类型和危害
根据裂缝发生的原因,混凝土结构裂缝可分为荷载裂缝及非荷载裂缝。正常情况中,非荷载裂缝和荷载裂缝都不会影响建筑物的可靠性,裂缝最大的危害在于大大降低了混凝土抗渗性,进而对建筑物正常使用和长期耐久性产生不好的影响。而非荷载裂缝所造成的危害更加显著,因为混凝土结构的荷载裂缝常常是非贯穿性的,但非荷载裂缝如温度裂缝、收缩裂缝,最终往往形成贯穿裂缝,对混凝土的抗渗造成更大影响。[1]
三、房屋混凝土结构裂缝控制原则
“抗”、“放”结合原则。“抗”、“放”结合原则是王梦铁先生从事多年的混凝土结构裂缝控制理论研究,再依据大量的工程实践经验,所总结出的裂缝控制原则。其中。“抗”是在混凝土自收缩较小和温度变化较小阶段,运用极慢速受力时混凝土极限拉伸应变较大的能力,来抵抗混凝土内部所受的拉力以避免裂缝发生。而“放”是在混凝土自收缩较大和温度变化较大阶段,释放混凝土内部受到的应力来避免产生收缩裂缝照此原则,所有非荷载变形裂缝控制措施基本上都属于“抗”或“放”的措施。
四、房屋混凝土结构裂缝控制措施
房屋混凝土结构裂缝的类型以及现存问题,经初步研究,笔者认为可以采取以下几方面措施:
1.混凝土结构裂缝的材料控制
严格控制原材料质量及技术标准,选择低水化热水泥,粗细骨料含泥量应尽可能少(1-1.5%以下)。若条件允许,应优先选择收缩性小或微膨胀性的水泥。骨料在大体积混凝土中一般占混凝土绝对体积80%-83%,选择线膨胀系数小、表面清洁无弱包裹层、岩石弹模较低、级配良好的骨料。砂除了满足骨料规范要求,还应恰当放宽细粉或石粉含量,砂中石粉比例在15%-18%之间合适。粉煤灰与水泥颗粒细度相当,烧失量小,含碱量和含硫量低,需水量小,均可掺于混凝土中使用。引气剂同高效减水剂复合使用对减少胶凝材料用量和大体积混凝土单位用水量,改善新拌混凝土工作度,提高硬化混凝土的变形、热学、力学、耐久性等性能有着极其重要的作用,也是混凝土往高性能化发展所不可或缺的重要组分。
2.混凝土结构裂缝的配筋控制
配筋是控制混凝土裂缝的主要手段之一,对于荷载力引发的裂缝主要依靠配筋来控制。配筋控制裂缝的主要方式是规定指标和控制裂宽 [2]。对于连续式板不应采用分离式配筋,应选择上下两层(包括受压区)连续的配筋;对拐角处楼板应配上下两层放射筋,孔洞处设加强筋;对混凝土梁腰部增设构造钢筋,其直径8~14mm,间距约200mm,视情况而定。[3]
3.设置后浇带
减轻和防止超长混凝土结构的温度收缩裂缝需设变形缝,考虑建筑效果则不希望设缝。因为设缝会有双柱、双梁、双墙,平面布局受限,同时影响立面造型,除有竖向变形缝盖板外,还有两根外排雨水立管,因此,施工后浇带法应运而生。施工后浇带又分为后浇收缩带、后浇沉降带和后浇温度带。施工后浇带是建筑物(包括基础和现浇砼梁板部位)在结构施工的预留宽缝,待主体完成,将后浇带用高标号膨胀混凝土补齐,这种宽缝就不存在了,既在整个结构施工解决了楼房不均匀沉降,又可以不设变形缝。设置后浇带可以抵抗和控制收缩应力、温度应力,是目前常用的一种方法,利用了混凝土早期收缩量大的特点,其思路“以放为主”,主要是断开结构来释放早期混凝土所产生的应力,以减少裂缝的出现[4]。
4.无缝施工
游宝坤[5]提出UEA无缝设计施工新技术。其原理是于结构收缩应力最大的地方给于大的膨胀应力。具体方法:一般在后浇缝处设加强带。带的两侧架设密孔铁丝网,带宽2M,防止不同配比的混凝土进入加强带内。施工时,先浇带外的小膨胀混凝土(掺入10-12%UEA),到加强带时,改用大膨胀混凝土(掺入14-15%UEA),此处混凝土强度比两侧的混凝土高0.5个等级。如此连续浇注,实现无缝施工。
5.钢纤维控制
吴斌[6]指出:钢筋加钢纤维混凝土双掺结构的裂缝设计对控制混凝土结构裂缝效果很明显。钢纤维对加固混凝土结构是整体的、三维全截面且各向同性的,无论在混凝土中哪个部位,钢纤维皆能起到加固作用。而混凝土裂缝产生主要由于在变形作用或外部荷载时,混凝土内部的微裂会进一步延伸、贯穿及贯通,变成截面断裂。而钢纤维各向同性分布的特点很好地阻挡了混凝土内部微裂的贯通。
6.混凝土结构裂缝的施工控制
混凝土结构裂缝控制的设计、材料措施及结构措施是否发挥效用,完全取决于合理、规范、精心的施工组织和操作,所以,一定意义上,施工控制则是混凝土结构裂缝控制中的最关键措施,同时也是必要条件。
6.1混凝土进场控制
为保证混凝土配比、组成不发生变化,确保浇筑后有良好均质性,混凝土进场应严格把关,照规定取样检测。而泵送混凝土,每车混凝土都应有同样的坍落度,不允许超过设计要求、发生大的波动。坍落度不足,禁止随意加水,以确保混凝土配比和组成保持不变。
6.2混凝土浇筑、振捣
采取分块或分层浇筑,设置合理的施工缝,减少每次浇筑的蓄热量,防止水化热积聚,降低温度应力。选择二次振捣法,在浇筑和第一次振捣后20~30min再进行二次振捣。振捣时间均匀一致以表面泛浆合适,间距均匀,以振捣力波同范围重叠1/2为宜,要求分层浇注,分层流水振捣,需保证上层混凝土于下层初凝前结合紧密。回避纵向施工缝、提高结构抗剪性和整体性能。振捣的操作技术常常不受重视,过分振捣有碍混凝土均匀性,振捣不足则不能保证混凝土应有密实度,应恰到好处。混凝土浇筑时的分层浇筑厚度不应超出300mm,加快混凝土散发热量,使热量均匀分布;混凝土的坍落度应在14±2cm内。
6.3抹压和养护
抹压和养护是避免混凝土早期微缺陷及塑性裂缝最有效的方法。抹压可在一定程度上愈合混凝土凝结前形成的塑性收缩裂缝。大风或炎热环境下,抹压操作后应及时进行氧化,不然得不到好的塑性裂缝控制效果。普通混凝土,浇筑完毕应满足一到两周的养护要求,可大幅降低混凝土的干燥收缩,且尽量减少浇筑完毕同养护的时间间隔,避免出现塑性收缩裂缝。
五、小结
房屋混凝土结构裂缝的控制是一种全过程控制,不仅仅是养护的问题,前期的结构设计、材料的合理选着和材料的优化配比 、规范合理的施工等都是预防和控制裂缝的非常重要的手段,而最重要的则是建设主管方的指导思想。
参考文献
[1]张雄主编.混凝土结构裂缝防治技术.北京:化学工业出版社,2006.6.
[2]富文权,韩素芳主编.混凝土工程裂缝预防与控制.北京:中国铁道出版社,2007.5.
[3]王铁梦.工程结构裂缝控制的综合方法.施工技术,2000,29(5):5-9.
[4]艾长东,孙巍.混凝土结构裂缝的控制. 油气田地面工程,2005,24(3):56.
关键词:活性粉末混凝土;箱梁;抗弯性能;剪力滞效应;裂缝;变形
中图分类号:U448.35 文献标志码:A
0 引 言
活性粉末混凝土(Reactive Powder Concrete,RPC)作为超高性能混凝土(Ultra High Performance Concrete,UHPC)的一种,具有强度高、韧性大和耐久性能优异等特点,且在热养护条件下几乎没有收缩,在长期荷载作用下的徐变也很小(仅为普通混凝土的1/10左右)[1]。RPC的工程应用可望解决普通混凝土桥梁所面临的结构自重过大、跨越能力受限和耐久性不足等问题,其应用研究已引起土木工程界的极大关注并已应用到一些人行桥和中、小跨径的车行桥中[2-3],在大跨桥梁中的应用研究也已逐步开展[4-6]。此外,混凝土箱梁结构以其良好的空间受力性能在桥梁工程中应用广泛,而RPC箱梁非常适于构成大跨混凝土桥梁的主梁,因此RPC箱梁亦具有良好的应用前景。在大跨混凝土箱梁桥中,除纵向预应力筋外,一般还在腹板和顶板分别配置竖向抗剪和横向抗弯的预应力筋而形成箱梁内的三向预应力体系。顶板内存在的横向预应力对箱梁纵向抗弯性能的影响目前鲜见研究。
文献[7]提出了钢筋RPC梁正截面抗裂计算公式,建议截面抵抗矩塑性影响系数可取为1.65(矩形截面)和1.90(T形截面);文献[8]进行了3根钢筋RPC矩形截面梁的抗弯性能试验并提出了相应的正截面承载力计算公式,将受压区RPC的应力分布等效为矩形应力图形计算;文献[9]基于有限元分析结果建立了RPC梁的正截面承载力计算公式,将受压区混凝土应力近似为三角形分布;文献[10]对预应力RPC的T形梁进行了试验研究,提出了预应力RPC的T形梁开裂弯矩和极限弯矩的计算方法,并建议预应力RPC的T形梁的塑性系数γ=1.53;文献[11]通过6根钢筋RPC矩形截面梁抗弯性能试验研究,建立了考虑截面受拉区拉应力贡献的正截面承载力计算公式和反映钢筋RPC梁自身受力特点的刚度及裂缝宽度计算方法;文献[12]对铁路预应力RPC箱梁进行了使用荷载下受力性能的试验研究;文献[13]对跨径为24 m的预应力RPC梁进行了试验,梁中除了预应力筋外没有配其他钢筋,其混凝土抗压强度达到了207 MPa,极限挠度达到了480 mm。目前各国学者对RPC梁的正截面受力性能进行了较多研究,但主要针对T形梁和矩形截面梁,对RPC箱梁的研究很少且均未涉及箱梁顶板横向预应力对梁抗弯性能的影响。基于此,本文通过对2片预应力RPC箱梁进行受弯试验,研究预应力RPC箱梁的正截面抗弯性能及横向预应力对其抗弯性能的影响。
1 试验概况
1.1 试件制作
共制作2片截面尺寸相同的预应力RPC箱梁,梁编号分别为A1和A2,截面尺寸如图1所示。梁长5.0 m,计算跨径4.76 m,梁高500 mm,顶板宽600 mm,顶板厚70 mm,腹板厚60 mm,腹板高350 mm,底板宽400 mm,底板厚80 mm。在梁端部设置150 mm厚的横隔板。为研究横向预应力对抗弯性能的影响,试验梁A2跨中纯弯区段顶板布置了8根间距为150 mm的后张横向预应力筋,见图2。
试验梁采用的RPC中水泥、硅灰、石英砂、减水剂的配合比为1.00∶0.25∶1.4∶0.072,水胶比为0.20,钢纤维体积掺量为2%。水泥采用P.O 52.5普通硅酸盐水泥;石英砂粒径为0.4~0.6 mm;采用可溶性树脂型高效减水剂,其掺量(质量分数)为2%,减水率为25%;钢纤维采用镀铜光面平直钢纤维,其直径为(0.16±0.005) mm,长度为(12±1) mm,抗拉强度大于2 000 MPa,体积掺量为2%。试验梁浇筑完成后采用塑料薄膜覆盖其表面,在实验室条件下对其进行自然养护。试验梁浇筑时预留100 mm×100 mm×100 mm的立方体试块和100 mm×100 mm×400 mm的棱柱体试块,用于测
图2 试验梁A2立面及配筋(单位:mm)
Fig.2 Elevation and Reinforcement of Test Beam A2 (Unit:mm)试RPC的抗压强度、劈裂强度和弹性模量,测试结果见表1,其中配筋率包含纵向预应力筋。张拉龄期为50 d,试验龄期为120 d。
试验梁A1底板纵向布置5根直径16 mm的HRB400钢筋及6根Φ15.2预应力钢绞线;顶板纵向布置10根直径10 mm的HRB400钢筋,横向布置间距150 mm、直径10 mm的HRB400钢筋;腹板每侧纵向布置4根间距100 mm、直径8 mm的HRB335钢筋;沿梁长布置间距100 mm、直径12 mm的HRB400箍筋,试验梁配筋情况如图2所示。梁A2除在跨中纯弯区段顶板横向不配置普通钢筋及仅布置8根间距为150 mm、直径16 mm的HRB400钢筋作为横向预应力筋外,其余配筋情况与试验梁A1一致,横向预应力筋两端加工成丝杆以形成螺丝端杆锚具进行锚固。钢筋的力学性能如表2所示。
1.2 应变测点布置
试验梁上布置如图3所示的应变测点。顶板和腹板底部布置的纵向平均应变计(标距为300 mm的引伸仪)用来测量纵向预应力张拉时的应变变化;顶板布置的横向混凝土应变片用来测量横向预应力张拉时的应变变化;跨中截面布置纵向混凝土应变片和纵向、横向平均应变计用来测量试验过程中的应变变化。
1.3 预应力张拉及测试
每片试验梁底部布置6根后张法预应力钢绞线,采用金属波纹管成孔,通过BM-3锚具进行锚固。试验梁浇筑50 d后张拉,采用力传感器测量张拉力并测试张拉过程中各测点应变。纵向预应力筋张拉后进行横向预应力筋张拉,参考目前箱梁桥的工程实际,顶板内的横向预压应力目标值按3 MPa控制。
为保证混凝土预压应力分布均匀,在横向预应力筋两端锚具下布置如图3所示刚度较大的钢垫板。预应力张拉后,采用高性能灌浆料对纵向和横向预应力筋孔道进行灌浆,灌浆时留取70.7 mm×70.7 mm×70.7 mm的立方体试块并进行同条件养护,试验前的强度测试结果如表1所示。试验后,凿开预应力筋管道发现灌浆质量良好。
纵向、横向预应力张拉后、外荷载施加前各测点应变实测结果见表3,记受压为“-”,受拉为“+”。试验梁A1,A2跨中截面上、下缘纵向预应力(由实测应变乘以实测弹性模量得到)分别为2.25,2.71,-10.98,-10.84 MPa;顶板内的横向预应力为-2.95 MPa。
1.4 加载方式与测试内容
试验加载装置如图4所示。两点对称加载,加载点均距跨中400 mm, 每一加载点处千斤顶下设
有分配梁将荷载直接传至腹板,采用力传感器控制加载大小。加载过程中的测试内容为:
(1)挠度测试。在跨中、加载点及支座处布置位移传感器,获取试验梁的荷载-挠度曲线。
(2)裂缝观测。加载过程中对裂缝的发展和宽度进行测量。
(3)应变测试。利用跨中截面顶板粘贴的纵向应变片和纵向、横向平均应变计测试不同位置的应变。
采用分级加载,试验梁开裂前以25 kN为一级加载至近开裂荷载,然后以10 kN为一级加载直至混凝土开裂。梁开裂后,以25 kN为一级加载,每级加载完持荷3 min,接近极限荷载时以3 mm为一级进行位移控制加载,当出现顶板混凝土压碎时认为其达到破坏,随后开始卸载。2 试验结果与分析
2.1 试件破坏形态及裂缝分析
梁A1加载到155 kN时(荷载值为一侧千斤顶下的测力计读数,下文同),在跨中纯弯区段出现竖向裂缝;继续加载,在剪弯区段出现斜裂缝,裂缝宽度和长度均随荷载增大而增加,靠近一侧加载点处的1条竖向裂缝逐渐延伸到翼缘板形成临界裂缝。加载至496.5 kN时,顶板形成不规则的贯通裂缝,顶板混凝土压碎而破坏,试验梁破坏时裂缝形态如图5(a),(b)所示。梁A2加载至157 kN时,在跨中纯弯区段出现竖向裂缝;继续加载,其裂缝开展和荷载变化与试验梁A1相似,当加载至503.9 kN时,顶板处混凝土压碎并在顶板形成贯通的横向裂缝,破坏时裂缝形态如图5(c),(d)所示。横向预应力的施加对试验梁的破坏形态没有明显影响。
试验梁RPC内的钢纤维使裂缝分布密集且裂缝间距较小,梁A1,A2裂缝分布如图6,7所示。弯曲裂缝在纵向钢筋处的裂缝间距约为50 mm,如表4所示。试验梁最大裂缝宽度随荷载的变化如图8所示。相同荷载下,2片试验梁的最大裂缝宽度相近。
式中:ωmax为不考虑钢纤维影响的普通钢筋混凝土受弯构件的最大裂缝宽度,可按照《混凝土结构设计规范》(GB 50010―2010)计算;βcw为裂缝宽度的钢纤维影响系数,宜通过试验确定;λf为钢纤维含量特征值,λf=ρflf/df,ρf为钢纤维体积率,lf为钢纤维长度,df为钢纤维直径或等效直径,本文试验中取λf=1.5。
《纤维混凝土结构技术规程》(CECS 38:2004)中规定当钢纤维混凝土强度等级高于CF45时,对于采用高强度(抗拉强度不小于1 000 MPa)异形钢纤维的受弯构件,可取βcw=0.5。根据试验数据分析结果,对于采用高强度镀铜光面平直钢纤维时的RPC,建议取βcw=0.4,结果比较见图8。
参照式(1),假定平均裂缝间距lfm跟ωfmax有类似的计算公式,即
lfm=lm(1-βflλf)
(2)
式中:lm为不考虑钢纤维影响的普通钢筋混凝土受弯构件的平均裂缝间距,可按《混凝土结构设计规范》(GB 50010―2010)计算;βfl为钢筋钢纤维混凝土构件平均裂缝间距的钢纤维影响系数。
基于试验梁平均裂缝间距的实测结果,对于采用高强度镀铜光面平直钢纤维时的RPC,计算时可取βfl=0.4。
2.2 荷载-挠度曲线
连续采集的试验梁截面荷载-跨中挠度曲线见图9,试验梁破坏点的荷载及挠度见表5。从图9可以看出:在跨中挠度达到其极限变形的约80%之前 ,梁A1,A2的荷载-跨中挠度曲线基本重合,极限
承载力相近。虽然梁A2顶板因横向预应力的施加使其处于双轴受压状态,但施加的2.95 MPa横向预压应力较小,仅为RPC棱柱体抗压强度94 MPa的3.1%,根据文献[14]可知,在此应力比下其双轴抗压强度约为单轴抗压强度的1.05倍,故顶板横向预应力对构件这一过程的受力及截面承载能力的影响不明显。在预应力筋屈服后采用位移控制加载,故顶板处混凝土压碎时(图9中的D1,D2点),荷载突然降低至图9中的E1,E2点,梁A1荷载下降33.2%,挠度增长3.9%;梁A2荷载下降15.6%,挠度增长1.1%,可见横向预应力使梁破坏时的脆性有所改善。对图9中的E1,E2点之后进行卸载。梁A1,A2均具有良好的变形能力,跨中最大挠度(图9中的D1,D2点)分别为98,101.7 mm,均超过梁计算跨径的1/50。
2.2.1 延性分析
试验梁为同时配有预应力筋和非预应力筋的部分预应力混凝土梁,预应力筋和非预应力筋的屈服不可能同步,非预应力筋一般先进入屈服状态。若沿用传统的极限位移与屈服位移之比来定义结构的延性不太明确,因此这里采用Naaman等[15]建议的基于能量的延性指标定义,即
式中:μ为构件的延性指标;Etol为总能量,Etol=Eel+Epl,Eel为弹性能量,Epl为塑性能量,其值可根据图10所示结构的荷载-挠度(P-Δ)曲线所包围的相应部分面积确定。
图10中,P1,P2,P3,Pu和Δ1,Δ2,Δ3,Δu分别为混凝土开裂、普通钢筋屈服、预应力筋屈服和混凝土梁破坏时所对应的荷载及挠度。
由式(3)所确定的梁A1和A2的延性指标分别为3.81和3.92。可见,顶板横向预应力的施加使顶板混凝土的横向变形受到约束而导致梁的延性有所提高,梁A2顶板内施加2.95 MPa的横向预压应力(仅为RPC棱柱体抗压强度94 MPa的3.1%)后,其延性较梁A1提高2.9%。
2.2.2 挠度计算
混凝土开裂前的弹性工作阶段(图9中的OA段),全截面参与工作,取截面的短期抗弯刚度Bfs=EcI0,其中,I0为换算截面惯性矩。
截面开裂到普通钢筋屈服阶段(图9中的AB段),其刚度随弯矩的增大而减小,参照《纤维混凝土结构技术规程》(CECS 38:2004),受拉区开裂后其短期抗弯刚度Bfs可按式(4)计算,即
Bfs=Bs(1+βBλf)
(4)
式中:Bs为不考虑钢纤维影响的普通钢筋混凝土受弯构件的短期刚度,可按《混凝土结构设计规范》(GB 50010―2010)计算;βB为构件短期抗弯刚度的钢纤维影响系数,宜通过试验确定。
基于试验结果,对于采用高强度镀铜光面平直钢纤维时的RPC,可取βB=0.2。
RPC开裂和普通钢筋屈服时的挠度计算结果见表6,计算值与试验值吻合良好。
2.3 开裂弯矩及极限弯矩计算
2.3.1 RPC本构关系
本文采用的RPC受压和受拉时应力-应变关系(图11)分别如式(5),(6)[11]所示,即
荷载试验值和计算值;tf3,tf4分别为受拉普通钢筋屈服时挠度试验值和计算值;tp5,tp6分别为抗弯承载力时荷载试验值和计算值。
式中:σc,σt分别为RPC的压应力和拉应力;εc,εt分别为RPC相应的压应变和拉应变;ft为RPC的抗拉强度;ε0,εt0分别为与峰值压应力对应的应变和峰值拉应力对应的应变;εcu,εtu分别为RPC的压、拉极限应变;各特征点应变可取值为[10-11]ε0=0.003,εt0=0.000 2,εcu=0.004 5;εtu=3εt0。
2.3.2 开裂弯矩计算
预应力混凝土受弯构件的开裂弯矩Mcr为
Mcr=(σ+γmft)W0
(7)
式中:σ为梁底缘的预压应力;W0为换算截面对截面受拉边缘的弹性抵抗矩;ft可取为劈裂强度的75%[13];γm为受拉塑性系数,可根据文献[11]可取γm=1.38。
试验梁A1,A2计算结果见表6,计算值与试验值吻合良好。
2.3.3 极限弯矩计算
极限状态时截面的应变、应力分布见图12,其中,bt,bf,bb分别为箱梁顶板、腹板和底板宽度,tt,tb分别为箱梁顶板、腹板和底板高度,xc,xt分别为受压区和受拉区高度,εy,εp分别为顶板达到极限压应变εcu时受拉区普通钢筋和预应力筋对应的应变,k为系数,α,β均为受压区等效矩形应力图块换算系数,fpy,fsy分别为预应力筋和非预应力筋的屈服强度。考虑受拉区混凝土参与工作,且受压区和受拉区的应力分布均采用等效矩形应力图块。根据受压区-混凝土应力合力大小和作用点位置不变的原则,可确定受压区等效矩形应力图块换算系数α,β分别为0.9和0.75;为简便计算,假定极限状态时受拉区的拉应力均匀分布并取抗拉强度fft=kft。
当达到极限状态且中性轴位于顶板时,则有
αfcbtβxc=fft[bt(tt-xc)+2bftf+bbtb]+
fpyAp+fsyAs
(8)
Mu=fpyAphp+fsyAshs-αfcbtβ2x2c/2+Mt
(9)
受拉区混凝土的抗弯能力Mt为
Mt=fft[bbtb(h-tb/2)+2bftf(h-tb-tf/2)+
bt(t2t-x2c)/2]
(10)
式中:Mu为截面的极限抗弯能力;,Ap,As分别为预应力筋和非预应力筋截面积;hp,hs分别为受拉区预应力筋和普通钢筋重心到顶板的距离;h为箱梁高度;fft=0.5ft[10]。
计算结果见表6,计算值与试验值吻合较好且略偏安全。就本文试验梁而言,受拉区混凝土拉应力对截面抗弯承载能力的贡献约为8%。
2.4 顶板应变
加载过程中实测跨中截面顶板应变的横向分布如图13所示。由图13可以看出,箱梁顶板内存在较明显的剪力滞效应。
式中:Be为翼缘板的有效分布宽度;B为翼缘板的实际宽度;t为翼缘板的平均厚度;σmax为翼缘与腹板相交处的最大正应力;ρ′f为受压翼缘有效分布宽度系数;z为沿跨长方向的坐标;x为沿横断面宽度方向的坐标。
根据式(5)可知,RPC受压的应力-应变关系将应变分布转化为相应的应力分布后,可计算加载过程中受压翼缘的有效分布宽度系数ρ′f(图14)。由图14可见:荷载在300 kN以内时,梁A1受压翼缘的有效分布宽度系数ρ′f变化较小,其值在0.85左右;荷载超过300 kN以后,受压区混凝土逐渐进入明显的塑性状态并在各测点间发生应力重分布,致使剪力滞效应逐渐减弱,受压翼缘的有效分布宽度系数逐渐增大至极限状态时的0.91;梁A2顶板内因有横向预应力的存在,使得翼缘板内的纵向应变在整个受力过程中沿横向的分布较均匀,剪力滞效应不明显,其受压翼缘的有效分布宽度系数较梁A1的大且基本稳定在0.96左右。这主要是由于梁A2内横向预应力的约束作用对箱梁顶板的纵向正应力有一定的卸载作用所致[16]。
通过梁跨中截面顶板布置的纵向、横向平均应变计所测纵向、横向应变可获得顶板处混凝土的横向变形系数(图15)。由图15可见:受拉普通钢筋屈服前,梁A1的横向变形系数变化较小,其值约为0.16,受拉普通钢筋屈服后,其值逐渐增大至极限状态时的0.25;梁A2的横向变形系数在预应力筋屈服前基本保持在0.10左右,其后逐渐减小至极限状态时的0.06,横向预应力对顶板横向变形的约束明显且随横向变形的发展,约束作用逐渐加强。
3 结 语
(1)预应力RPC箱梁具有良好的变形能力,其极限变形可超过跨径的1/50。
(2)预应力RPC箱梁裂缝密集,平均裂缝间距较小,正常使用阶段的裂缝宽度和短期刚度可参照《纤维混凝土结构技术规程》(CECS 38:2004)中的相应公式计算,其中的钢纤维影响系数βB分别取0.4和0.2。
(3)提出了预应力RPC箱梁正截面抗裂和抗弯承载能力计算公式,计算结果与试验值吻合良好。
(4)箱梁顶板的横向预应力对截面抗弯承载力的影响较小,但会使受压区混凝土的应变分布更加均匀,从而使箱梁顶板受压的剪力滞效应明显减弱并增加构件的延性。
参考文献:
References:
[1] RICHARD P,CHEYTEZY M.Reactive Powder Concrete with High Ductility and 200-800 MPa Compressive Strength[J].ACI Special Publication,1994,144:507-518.
[2]BLAIS P Y,COUTURE M.Precast,Prestressed Pedestrian Bridge-worlds First Reactive Powder Concrete Structure[J].PCI Journal,1999,44(5):60-71.
[3]BRIAN C,GORDAN C.The Worlds First Ductal Road Bridge Shepherds Gully Creek Bridge,NSW[C]//Concrete Institute of Australia.Proceedings of the 21st Biennial Conference of the Concrete Institute of Australia.Brisbane:Concrete Institute of Australia,2003:1-11.
[4]陈昀明,陈宝春,吴炎海,等.432 m活性粉末混凝土拱桥的设计[J].世界桥梁,2005(1):1-4,16.
CHEN Yun-ming,CHEN Bao-chun,WU Yan-hai,et al.Design of a 432 m Span Reactive Powder Concrete Arch Bridge[J].World Bridges,2005(1):1-4,16.
[5]王 飞,方 志.大跨活性粉末混凝土连续刚构桥的性能研究[J].湖南大学学报:自然科学版,2009,36(4):6-12.
WANG Fei,FANG Zhi.Performance Research on Long-span RPC Concrete Continuous Rigid Frame Bridge[J].Journal of Hunan University:Natural Sciences,2009,36(4):6-12.
[6]任 亮.基于高性能材料的千米级跨径混凝土斜拉桥力学性能研究[D].长沙:湖南大学,2013.
REN Liang.The Study of Super-long Span Concrete Cable-stayed Bridge Based High Performance Materials[D].Changsha:Hunan University,2013.
[7]万见明,高 日.活性粉末混凝土梁正截面抗裂计算方法[J].建筑结构,2007,37(12):93-96.
WAN Jian-ming,GAO Ri.Calculating Method of Crack-resistant Capacity of Reactive Powder Concrete Beam[J].Building Structure,2007,37(12):93-96.
[8]王兆宁.活性粉末混凝土矩形截面配筋梁抗弯性能研究[D].北京:北京交通大学,2008.
WANG Zhao-ning.Research on Flexural Behavior of Reactive Powder Concrete Rectangular Beam with Steel Bars[D].Beijing:Beijing Jiaotong University,2008.
[9]王文雷.RPC预应力梁相关设计参数研究[D].北京:北京交通大学,2006.
WANG Wen-lei.The Research of Design Coefficients About RPC Prestressed Beam[D].Beijing:Beijing Jiaotong University,2006.
[10]杨 剑,方 志.预应力超高性能混凝土梁的受弯性能研究[J].中国公路学报,2009,22(1):39-46.
YANG Jian,FANG Zhi.Research on Flexural Behaviors of Prestressed Ultra High Performance Concrete Beams[J].China Journal of Highway and Transport,2009,22(1):39-46.
[11]郑文忠,李 莉,卢姗姗.钢筋活性粉末混凝土简支梁正截面受力性能试验研究[J].建筑结构学报,2011,32(6):125-134.
ZHENG Wen-zhong,LI Li,LU Shan-shan.Experimental Research on Mechanical Performance of Normal Section of Reinforced Reactive Powder Concrete Beam[J].Journal of Building Structures,2011,32(6):125-134.
[12]余自若,阎贵平,唐国栋,等.铁路RPC箱梁抗弯性能试验研究[C]//中国土木工程学会.先进纤维混凝土试验・理论・实践――第十届全国纤维混凝土学术会议论文集.北京:中国土木工程学会,2004:89-95.
YU Zi-ruo,YAN Gui-ping,TANG Guo-dong, et al.Experiment Study on Behaviors of Railway RPC Box Girder Bridge Under Flexural Loading[C]//China Civil Engineering Society.Advanced Fiber Reinforced Concrete Test,Theory,Practice ― Proceedings of the Tenth National Conference on Fiber Reinforced Concrete.Beijing:China Civil Engineering Society,2004:89-95.
[13]FORTNER B.Materials:FHWA Gives Superior Marks to Concrete Bridge Girder[J].Civil Engineering,2001,71(10):17.
[14]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2003.
GUO Zhen-hai,SHI Xu-dong.Reinforced Concrete Theory and Analyse[M].Beijing:Tsinghua University Press,2003.
[15]NAAMAN A E,JEONG S M.Structural Ductility of Concrete Beams Prestressed with FRP Tendons[C]//TAERWE L.Non-metallic(FRP) Reinforcement for Concrete Structures.London:Taylor & Francis,Inc.,1995:379-386.
关键词:建筑工程;混凝土施工技术;分析
引言
近年来,随着人们生活水平的提高,建筑工程的建设标准也在不断的提高,正因为如此,建筑施工技术也要不断的进行革新和改善。在建筑施工中,混凝土施工技术其中应用比较广泛的技术,而且,在不断发展过程中出现了越来越多的新技术、新材料,对混凝土施工技术的发展以及应用空间也进行了提升,因此,也更好的促进了我国建筑行业的快速发展。混凝土在施工中可塑性非常好,能够和钢筋进行非常牢固的结合,而且在整体性能方面非常好,强度非常大,最为重要的是其施工成本非常低,在使用时间方面也非常长,因此,受到了建筑施工单位的广泛关注。建筑行业在发展过程中,新技术不断出现,混凝土材料也在不断发生着变化,因此,混凝土施工技术发生了很大的变化,为了能够更好的改善工程的质量,施工技术的强化工作非常重要。文章对混凝土施工技术中出现的问题进行了分析,并且针对出现的问题提出了强化措施,希望能够促进建筑行业取得更好的发展。
1 建筑工程施工建设中所采用的混凝土施工方法
1.1 基础施工
在建筑工程中,地基的施工会应用到混凝土施工技术。在对地基进行挖掘时,要采取由浅入深的方法,在施工过程中要先开始深基础施工,然后进行浅基础施工,这样能够对地基施工周边的建筑物安全进行保障。在地基施工中,对基坑的排水工作以及降水工作要进行格外的重视,这样能够对地基安全进行保证。
1.2 承台施工
依据建筑物的标准高度开展针对性的测量就是承台施工,建筑物承台要以间隔水平分割为主,通常在主楼的基础是以两层楼的施工为主,因此,两层通常都要进行混凝土的浇筑,混凝土的浇筑时间一般要以六天为间隔,对两层之间的厚度也要进行严格要求,一般在一米半以上,层与层之间也要采取一定的间隔措施,可以利用抗拉钢筋为间隔工具。在施工中,这种方法不仅仅能够对混凝土内部的温度进行降低,同时,也能节省施工成本,对资源进行节约。
1.3 严格遵守混凝土施工顺序
在建筑工程施工中,混凝土施工一定要按照施工顺序来开展施工,一般都是由远到近的施工,但是,因为施工中会出现很多的不可控因素,在不平坦的施工地点施工有时无法避免,在这种施工地点进行施工,一定要保证首次浇筑就要成功,然后到另外一边进行施工,最后在顶端进行施工。整个施工过程中,混凝土一定要由输送泵运输到施工现场,而且,对混凝土的温度也要进行控制,避免在运输过程中出现离析现象,影响工程的施工质量。
2 建筑工程中混凝土施工的要点分析
2.1 混凝土施工的工作要点
在混凝土建筑工程建设施工中,必须对其原材料进行严格的审查与检测,确保每个施工环节的混凝土比例严格符合标准要求。尤其是在搅拌机进行施工作业时,必须对其原材料进行严格审查及精度计算,确保混凝土质量合格。不仅仅如此,还要针对施工中的混凝土进行分层次检测,这样才能确保施工中每个环节的混凝土从选取、运输、施工及后期养护等环节的质量控制。为了加强混凝土的使用,建筑施工人员必须利用科学的检测手段,进行混凝土检测,防止 偷工减料现象的发生。
2.2 钢纤维混凝土的施工要点
在建筑施工中,对钢纤维混凝土的施工要进行严密的监视,尤其是搅拌过程。在搅拌时要保证混凝土中的钢纤维分布的非常均匀,可以利用强制搅拌机,这样能够保证搅拌的均匀程度达到相关的要求。与此同时,在施工过程中也要进行不定时的抽查,对施工质量进行提高。在搅拌时间和投放原材料方面也要进行重视,保证在混凝土中的钢纤维不会出现团状现象。
2.3 混凝土的运输与泵送要点
在建筑施工中,混凝土的运输一般都是采用搅拌运输机来进行输送,在运输时,混凝土的强度会受到运输时间长短的影响,因此,施工单位对混凝土的拌制场所以及运输距离和时间都要进行分析和研究,保证混凝土在运输过程中质量不会受到影响。为了避免混凝土在运输过程中出现质量问题,在运输过程中可以在罐内或者是现场进行二次搅拌,保证混凝土在使用过程中的均匀程度,对建筑工程的质量进行保障。
2.4 混凝土在浇筑过程中应该注意的要点
在混凝土在实际浇筑过程中,对冷缝的问题一定要进行重视。在很多的建筑施工中,冷缝问题是很难避免的,但是,混凝土在浇筑过程中就出现质量问题,一定会导致裂缝的出现。很多的施工队伍采用振捣的方式对冷缝问题进行处理,但是,在振捣过程中一般都是由机械完成,因此,采用人工振捣方式时一般都会导致混凝土出现不均匀的现象。在具体的施工过程中,混凝土振捣应该按照施工要求的时间来进行执行,要以混凝土的不下沉或者是表面出现浮浆为准,这样才能对浇筑的质量进行保证。
3 建筑混凝土施工技术的强化措施
3.1 强化混凝土施工技术的创新与研究
建筑工程中应用的混凝土施工技术一般都是沿用以前的施工技术,在创新以及科研方面没有进行过多的投入,因此,对混凝土施工技术进行创新和研究非常必要,对改善落后的技术以及提高施工技术水平有很大的促进作用。国内建筑行业管理部门要对时展要求进行顺应,重视科研项目的开展,组织专业的人员进行混凝土施工技术创新和研究工作,为其具有更好的适用性以及科学性提供保证。建筑工程施工技术管理人员对混凝土施工技术的工作经验也要进行积累和总结,利用长时间的经验总结能够更好的提出合理化的建议,同时,也能在工作中找到技术问题的解决方法。
3.2 强化混凝土施工技术交流环节的作用
建筑工程混凝土施工在全面开展以前,技术管理人员要对复杂环节的施工要点进行交流,交流的主要对象就是设计单位和监理单位。混凝土在施工钱,技术管理人员要对施工技术要求以及质量检验标准等问题进行掌握,并且结合施工现场的人员素质、施工材料以及机械设备等实际情况制定科学合理的混凝土施工方案。混凝土施工技术的交流还要对工程的整体进度以及质量提高进行重视,促进工程的经济效益以及社会效益可以实现。
4 结束语
在当代建筑工程施工中,混凝土施工技术是应用比较广泛的施工技术,也是建筑行业得到快速发展的技术保障。在建筑项目中,混凝土施工要包含很多的项目,因此,对其施工技术进行分析非常必要。最好混凝土施工技术中的每个部分,都会推动这项技术向着更加科学合理的方向发展。建筑工程数量的增加也是为了更好的满足经济社会发展的要求,满足人们在住房方面的需求,因此,在施工中,对质量一定要进行提高,提高整体施工质量对施工技术水平就要进行提高,这样才能保证建筑工程在使用中不会出现更多的问题。
参考文献
[1]吕军子,郭振权,陈小阳.混凝土裂缝的原因及防治[A].河南省建筑建筑学会2009年学术年会论文集[C].2009.