时间:2023-03-17 18:08:01
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇钻井技术论文范例。如需获取更多原创内容,可随时联系我们的客服老师。
1.1以钻井工程定额为计价依据的结算方式。
在钻井工程全面完工,交井验收合格以后,依据完钻井深度,井筒所下套管的规格及尺寸,是否存在钻井工程质量等完井数据资料,按不同井型、井别,是否冬季施工,区分钻前、钻井、固井,分类别按不同子目套用相应区块的钻井工程定额的计价形式,来计算其每口井的钻井工程费用。采用以钻井工程定额为计价依据的结算方式,可操作性强,结算工作速度快,不存在扯皮现象;但定额子目涵盖不全,不能完全满足特殊区块特殊钻井结算的需要。
1.2双方协商定价的结算方式。
针对特殊区块的特殊井,在现有钻井工程定额子目涵盖不全无法按钻井定额正常结算的情况下,甲乙双方采用协商定价的结算方式。这种协商定价是由甲乙双方各相关部门的领导和概预算管理人员,根据钻井实际施工工作量,参照钻井部分定额,经过双方多次反复谈判协商,最终达成共识。例如,2007年兴古7区块有12口井均采用这种协商定价的方式结算。采用这种结算方式,往往易发生甲乙双方的扯皮现象,在结算时间非常紧张的情况下,结算工作迟迟不能落实,把问题都留到最后。不利于单井结算资料的形成,无法分析单井相关费用的构成,给一些资料统计和归档工作带来困难。
2以钻井工程定额为计价依据结算方式存在的问题
2.1现行兴隆台油田的钻井工程定额
只有开发井子目,而没有评价井子目,其井别类型不全面,使评价井和滚动开发井投资控制无据可依。
2.2现行兴隆台油田定额钻井周期对应的井深最深开发井为3000米(水平井定额只有2700米),而该区块的实际完钻井深为大多数为4000~5000米,有的井已达到5400多米,均远远超出该定额井深。
2.3钻井定额的泥浆费用
其定额含量是按三开井小井筒考虑的,而实际所钻井的井身结构为四开井,大井筒。以兴古7-H3井为例,其定额为276元/米,井深4052米,其定额消耗为111.84万元,而实际消耗为619.42万元,相差507.59万元。
2.4钻井钻头,现行定额钻头含量很低。
仅以兴古7-H3井为例,定额仅为14.13元/米,以井深4052米,其定额钻头费用为5.73万元,而实际消耗钻头为27只,约为198万元,相差192.27万元,定额含量严重不足。
2.550D、70D钻机,没有与之相应的定额,也没有可以参考的子目项。
近两年,随着钻井技术的不断进步,钻井进尺越来越深,有的井已超过五千多米,钻井工艺越来越复杂,原来的ZJ32、ZJ45小钻机承载负荷满足不了新钻井工艺要求,并存在不安全因素,因此50D、70D钻机应用越来越多。
3对建立健全与勘探钻井工程技术水平相适应的定价和结算机制的几点意见
3.1完善现行钻井工程定额,确保钻井结算有据可寻。
在保证现行定额相对稳定的前提下,适当编制钻井工程定额补充估价表,建立健全科学合理的钻井工程结算计价依据,提高钻井结算工作速度,避免在结算时互相扯皮现象的发生。
3.2引入竞争机制,以完全承包方式进行钻井结算。
引入竞争机制,以招投标方式,通过竞争优化施工队伍,公平合理的确定钻井工程造价。这种承包方式就是,经过前期仔细认真的测算,以不同的区块、井别、井型、井深、钻机型号来确定不同的承包费用。
3.3采用“日”费制与其它费用相结合的结算办法。
根据钻井工程日费定额,按钻井天数计算,再加上钻头、泥浆、柴机油、套管等主要材料费用;对钻前费用、固井费用均按固定费用计取;同时根据钻井设计确定钻井的难易成度,另加风险金,最终确定该井的全部钻井工程费用。
4按钻井工程定额结算时应注意b的主要事项
4.1钻井周期的确认。
对于探井、滚动控制井、开发井,以及水平井、定向井,应按不同井别、井型严格加以区分、区别。对超深部分周期的确认,应尽可能的做到公平、合理。
4.2钻机型号的确认。
钻机型号越大,所需要的费用就越高,因此在结算时要认真核实该钻井的钻机型号,严格按照定额来执行。
4.3对套管尺寸及长度的确认。
一口井的套管费用在钻井工程中占有很大的比例,因此在结算中要认真按照该井井史核对每口井各层所下套管的规格、型号以及套管的长度。
4.4对现场签证的复杂情况的确认。
关键词:天然气水合物,钻井冲洗液,原理,发展现状
要想在天然气水合物赋存地层钻井(进)时获得安全可持续的钻井作业环境和保证钻井质量,就必须控制水合物大量分解和再生,而控制的核心又在于对钻进过程中井内温度、压力的掌握和控制。钻井离不开钻井液,钻井液是实施井内温度和压力控制的主要途径,是实现上述目标的关键。论文大全,发展现状。针对天然气水合物赋存地层钻井特点和由水合物形成与分解所引发的主要钻井问题,常采取三种控制方式进行处理:分解抑制、生成抑制和诱发分解。
一、分解抑制
分解抑制主要是对钻进过程中所钻地层的水合物以及进入钻进体系的水合物分解进行抑制,使进入钻进体系的气量得以控制,结合生成抑制和诱发分解而保证钻进过程的安全与顺利。只要将水合物的温度压力条件控制在水合物温度和压力的相平衡稳定条件之内,就能够控制水合物的分解。论文大全,发展现状。目前,在钻进过程中抑制水合物分解主要通过压力控制、温度控制和化学稳定控制。
压力控制主要通过增加钻井液密度而提高孔底的静水压力,但是由于较小的温度变化需要较高的压力增加才能维持水合物的稳定,所以增加钻井液密度抑制水合物分解的能力是有限的。此外,钻井液密度增加会引起钻井液的漏失和失水量的加剧,护壁性能得不到有效的保证,从而有大量气体进入地层,进而影响钻井液的性能。为此,必须增加较多的套管柱,而这就提高了钻进成本。温度控制主要是对钻井液进行冷却,使其冷却至尽可能低的温度。钻井液的冷却通过地面钻井液池中的热交换器实现,另外采用孔底马达也有助于保持低的钻井液温度。不过在低温下还要考虑以下情况:首先,就要考虑低温下钻井液的相关总体性能,如流动性能、抗冻性能、失水控制,其次,还要考虑低温下的抑制剂的抑制性能以及钻井液中各种成分的相互影响。通常,当温度降低时,钻井液的粘度上升,这就会对钻井液的相关的总体性能造成很大的影响,因此,过分降低温度未必合适,而这可以通过添加合适的适量添加剂得以改善。
上述两种控制对水合物分解的抑制作用是有限的,因此,国外专家通过一系列的实验之后,发现了在钻井液中加入一定量的化学试剂(包括卵磷脂、多聚物或PVP等)之后抑制性得到增强。这些化学试剂通过吸附作用吸附于出露水合物的表面,结合钻井液泥皮形成多聚物的网格层,减少水合物和钻井液的接触,而且还能阻止分解产生的气体大量且快速地进入钻井液中,从而减缓水合物的分解速度。与此同时,还可使已分解出的自由水和气体迅速形成水合物,堵塞网格层的空隙从而控制气体的扩散。论文大全,发展现状。
二、生成抑制
生成抑制主要是指钻进系统中水合物的形成,它与分解抑制相互配合应用。生成抑制主要通过控制水合物形成的要素和改变水合物的相平衡稳定条件来实现。
由于水的存在对于钻井液系统的稳定和性能非常重要,因此,控制水合物形成的主要要素是指对钻进系统中水合物形成所需的气体的控制,而相关的解决途径就是断源限流。断源是指切断形成气体的来源,当水合物分解得到很好的抑制时,就使得形成水合物的气体来源得到控制,进而抑制水合物的生成。而限流就是尽可能地减少气体的侵入,这主要通过调节钻井液的密度以提高相应的静水压力和加入合适的添加剂改善泥皮的性能减少气体的进入,最终达到抑制水合物的生成。
从天然气水合物的相平衡稳定条件可以知道,只要使游离的甲烷气的温度、压力达不到生成条件,就能够抑制水合物的生成,即提高温度和/或降低压力。由于钻进水合物赋存地层的特殊性,即钻井液的温度较低,而且水合物的分解抑制需要较高压力,因此,改变水合物的相平衡稳定条件时,一般不考虑升高温度和降低压力,主要考虑加入合适的抑制剂改变水合物的相平衡稳定条件。论文大全,发展现状。一般采用的方法是,在钻井液中加入适当的抑制剂(NaCI等盐类、乙醇、乙二醇、丙三醇等),改变水合物的相平衡稳定条件,使其相平衡曲线向左移动,从而抑制水合物的生成。论文大全,发展现状。国外的试验和实践表明,在对钻井液的流变特性和漏失特性影响不大的情况下:乙二醇衍生物、乙二醇衍生物混合物、盐类与醇的混合物等抑制剂可以有效抑制钻井液中水合物的形成,钻井液中的膨润土对水合物的形成也有影响。
三、诱发分解
诱发分解主要通过往钻井液中添加抑制剂改变水合物的相平衡稳定条件,所解决的钻进过程中问题有:一是钻进管路中所形成的水合物堵塞:二是钻进过程中进入钻进体系的水合物的部分分解;三是当采用分解容许法钻进时,保证钻出的水合物块体在上返过程充分分解,以免堵塞管路,并获得全部水合物的分解气体样品。
之前所介绍的能有效防止钻进过程中天然气水合物再生成的抑制剂都能用于钻进管路中形成水合物的解堵,有时需要利用旁孔注入方法注入含抑制剂的钻井液。另外,聚环氧烷烃、氨基酸、氨基磺酸盐、单糖、甲基葡糖昔、甲基葡糖胺、双糖、果糖等也很有效。不同钻进过程对进入钻进体系的水合物的分解控制的要求不一样。对于通常的钻进方法,要求所进入的大块水合物部分分解,而后以小块岩屑的形式为钻井液所携带并排出,这主要通过添加相关的化学试剂。而当采用分解容许法钻进时,采用低密度钻井液(有时也适量加入上述抑制剂)诱发水合物分解(这种分解是被控制的,例如在起下钻、换钻头、测井时则需增加钻井液浓度,抑制水合物的分解),在气体进入钻井液后,随钻井液循环到地面并被分离出来。该方法的可行性需要考虑钻井液循环过程中水合物形成的可能性、钻井液的循环速度和温度、发生井喷的可能性、孔(井)底水合物分解的可控制程度、地层特性等。
可见,上述三种方法都需要通过钻井液来实现,与钻井液的各项性能密不可分。
四、常规油气钻井液研究现状
随着世界石油天然气工业的迅速发展,钻井技术对钻井液提出了更高、更新的要求,特别是在钻井液技术发展受到环保政策及法律、法规限制的情况下,研究满足钻井工程技术和环境保护需要的新型钻井液体系更显得非常必要。论文大全,发展现状。国内外钻井工作者均在竞相研究开发新的环保型钻井液体系,包括聚合醇钻井液体系、多元醇钻井液体系、合成基钻井液体系、烷基葡萄糖普钻井液体系、甲酸盐钻井液体系和硅酸盐钻井液体系等。
参考文献:
[1]梁武东,刘小静.新型天然气水合物抑制剂的研究进展[J]内江科技,2009,(11).
[2]宁伏龙,张凌,蒋国盛,涂运中,史茂勇.深水油基钻井液中抑制水合物形成的实验研究[J]石油学报,2009,(03).
关键词:立井井筒,冻结法,钻井法,制冷设备,钻进设备
1.冻结法与钻井法凿井介绍立井井筒工程是矿井建设的关键工程。我国立井井筒的主要特点是井筒深度大、断面积大、表土层厚、水文地质条件复杂,导致其施工难度大、施工技术复杂、施工周期长。立井井筒表土段施工方法是由表土层的地质及水文条件决定的。立井井筒穿过的表土层,按其掘砌施工的难易程度分为稳定表土层和不稳定表土层。在不稳定表土层中施工立井井筒,用普通的施工方法是不可以通过其表土层的,必须采用特殊的施工方法,如冻结法、钻井法、沉井法、注浆法、和帷幕法等。我国目前主要以冻结法和钻井法为主。
冻结法凿井就是在井筒掘进之前,在井筒周围钻冻结孔,用人工制冷的方法将井筒周围的不稳定表土层和风化岩层冻结成一个封闭的冻结圈。以防止水或流砂涌入井筒抵抗地压,然后在冻结圈的保护下掘砌井筒。待掘砌到预计的深度后,停止冻结,进行拔管和充填工作。钻井法是用钻头刀具破碎岩石,用洗井液进行洗井排渣和护壁,直到将井筒钻到设计直径和深度后,进行支护的机械化凿井方法。
2主要施工设备工作原理分析2.1冻结法人工制冷设备冻结法凿井分为钻冻结孔、形成冻结壁和井筒掘砌三大工序。首先在未开凿的井筒周围打一定数量的冻结孔,其深度穿过不稳定岩层进入稳定岩层,在孔内安装冻结器。
形成冻结壁是冻结法凿井的中心环节,是岩层冷冻的结果。人工制冷是通过冻结站的氨循环系统、盐水循环系统、和冷却水循环系统来实现的。通常使用氨作为制冷剂。利用氨由液态变为气态吸热的原理达到制冷。液态氨吸收蒸发器周围盐水的热量,变为饱和气态氨,经压缩器压缩变为过热蒸汽氨,进入冷凝器中与冷却水进行热交换,又变为液态氨,经调节阀降压后成为低压、地温的液态氨,回到蒸发器中重新汽化,构成氨的循环系统。
2.2钻井法凿井主要钻井设备钻井法凿井的钻井设备主要为钻井机,钻井机由多套设备组成,各设备的构造由钻井工艺确定,按设备所起作用不同分为以下几个系统:
钻具系统设备。包括钻头和钻杆,它们的主要功用是使钻头在旋转中破碎工作面的岩石。
旋转系统设备。包括转盘及传动装置、方钻杆。它们的功用是,电动机或液压马达驱动转盘产生旋转扭矩并经方钻杆传给钻杆和钻头,使钻头旋转。
提吊系统设备。包括钻塔、绞车、复滑轮组、大沟。主要用于提升和下放钻具。正常钻进时,提吊钻具、控制钻压并调节给进速度;砌井时,提吊下方井壁。
洗井系统设备。免费论文。洗井系统设备主要有水龙头、压气排液器、排浆管和排浆槽,在地面还有沉淀净化、清除岩渣和空气压缩机等辅助设备。它们的功用是产生洗井液循环的动力,造成洗井液的循环;使洗井液及时清除钻头破碎的岩渣,避免刀具重复破碎岩渣,提高钻井速度和效率;对刀具进行冲洗和冷却。
辅助设备。包括钻台车、封口平车、龙门吊车和气动卡瓦等。
3施工技术对比3.1冻结法施工特点冻结法施工其主要的技术包括冷冻站的安装、钻孔的施工、井筒冻结、井筒掘砌,在复杂和特殊地层施工中具有很大的优越性:
(1) 支护结构灵活、易控制。可根据不同地质条件、环境及场地条件灵活布置冻结孔、调节冷媒水的温度,从而获得高质量的冻土帷幕,特殊情况下还可以采用液氮进行快速抢险,与盐溶液人工冻结法相比,液氮人工冻结法具有温度低、冻结速度快、冻结强度高、无污染等优点。同时可通过地温监测指导施工,符合现代信息化施工的要求。
(2) 适应性强。它适应于各种复杂地质及水文地质条件下的任何含水地层的土层加固,并且基本不受基坑形式、平面尺寸和深度的影响。
(3) 隔水性好。它本身就是地下水的控制系统,防渗性能是其它施工方法无法相比的。免费论文。
(4) 对环境影响小。它充分利用土体自身的特点,材料是土体本身,对地下水及周围环境无污染,冻结壁解冻后,冻结管可回收,地下土层恢复原状,对地下工程较为有利。
(5)缺点是存在钻机性能跟不上要求、制冷系统跟不上要求、冻结壁强度不够、井壁结构设计不合理等问题,导致产生断管等重大事故。免费论文。
3.2钻井法施工特点钻井法施工主要工艺过程包括井筒的钻进、泥浆洗井护壁、下沉预制井壁和壁后注浆固井等。
(1)钻井法实现地面作业或远距离控制操作,彻底改变了普通凿井法打眼放炮的井下作业方式,从根本上改善了凿井工人的劳动条件和安全条件。
(2)施工机械化。钻井法均实现了凿井工艺综合机械化和部分工艺自动化,使凿井工人从繁重的体力劳动中解脱出来。由于钻井速度快,劳动生产率高,降低了工程成本,建井投资费用比普通凿井法低15%~40%。
(3)立井建井法采用地面预制钢筋混凝土井壁,井壁强度高,质量好、减少了井筒的维护和排水费用。
(4)钻井法不但能钻凿不稳定的松软岩层,而且能钻凿稳定的硬岩层。可以钻凿立井、斜井,也可以钻凿地下的垂直、倾斜巷道。
(5) 在钻井法施工中也存在一些问题,例如成井偏斜率大,生钻头、刀盘、滚刀、吸收器及风管等物意外掉落井内,在不稳定地层中、松散的流沙及砂砾层中易出现塌帮。
4 结论通过对两种特殊凿井法的比较可知,两种凿井法各有利弊,实践中要结合各地层的具体情况,合理地使用两种凿井法。冻结法施工不受井筒直径和深度的限制,在深厚表土层中建凿井筒时得到广泛应用,同时还应用到建设斜井、水利工程、地下铁道、过江隧道等工程。钻井法在高层建筑桩基础、大桥墩桩、高架公路基墩工程中也有广泛应用。
参考文献
【1】王建平,靖洪文,刘志强.矿山建设工程[M].中国矿业大学出版社.2007.
【2】汪正云.钻井法与冻结法凿井技术对比研究[J].山东煤炭科技,2008,(4).
【3】赵士弘,马芝文.特殊凿井[M].中国矿业大学出版社.1993
【4】刘斌.地下工程特殊施工[M].冶金工业出版社.1994
论文关键词:空气钻井,漏失,应用,效果,裂缝性地层
前言
普光气田陆、海相地层复杂,深处的碳酸盐岩裂缝性气藏普遍存在多产层、多压力系统、高压、高含硫以及高陡构造,而且地层可钻性低、井眼稳定性差。喷、卡、漏、塌、斜、硬、毒(H2S)等复杂情况相对集中,断钻具、套管磨损等钻井难题多,造成钻井施工投入高,机械钻速和生产时效很低,周期长、难度大、风险大。采用空气钻井技术、空气雾化钻井技术和氮气钻井技术,极大的提高了钻井速度,解决了钻井周期长的难题,安全快速钻穿陆相地层,钻井工艺上取得了重大飞跃。
1 空气钻井技术
1.1 空气钻井工艺流程
空气钻井工艺是以空气为工作对象,用空压机对空气先进行初级加压,然后经过增压机增压后打入井中,最后完成携带岩屑的任务,具体流程见图1和图2。
图1 空气钻井工艺流程图
图2 空气钻井循环方式图
表1 空气钻井主要设备一览表
序号
名称
型号
参数
数量
1
增压机
FY400
74m3/min 15MPa
3台
2
空压机
XRVS 976
27.5m3/min 2.5MPa
10台
3
膜制氮
NPU3600-95
60.0m3/min 2.2MPa
1台
NPU1800-95
30.0m3/min 2.2MPa
1台
C5551-3600
60.0m3/min 2.2MPa
1台
4
雾泵
1台
5
方钻杆
/
5¼″
1根
6
滚子方补芯
/
5¼″
1个
7
地面配套管汇
/
2套
8
旋转控制头
FX35-3.5/7.0
/
2套
9
排砂管线
/
/
2套
10
可燃气体监测仪
/
/
4个
11
空气呼吸器
/
/
4个
12
H2S监测仪
/
关键词:水平井,采油指数油藏深流,产能
一、采油指数的影响因素分析
目前,水平井以其泄油面积大、生产井段长、井底降小等优势,受到广泛关注。为了更好地提高水平井的产能,充分发挥水平井的开发潜力,必须对影响其产能的因素进行研究。首先对影响水平井采油指数的因素进行分析。
1、水平井采油指数公式的推导
在生产过程中,水平井泄油区的形状与垂直井不同,垂直井形成的泄油区可认为是一个圆柱体,而水平井所形成的泄油区是椭球体,泄油区的长半轴与水平井的开采长度有关。在不考虑油井表皮效应时,由Economides的水平井产能公式[1]推导出水平井采油指数表达式,Jh为水平井的采油指数,m3/(MPa·d);KH为水平渗透率,10-3μm2;h油藏厚度,m;B0为地层油体积系数,m3/m3;μ为流体粘度,mPa·s;a是水平井椭球体泄油区的长半轴,m;L为水平井水平段长度,m;β为渗透率各向异性系数,rw为井径,m;Kv为垂直渗透率真,10-3μm2。在存在渗透率各向异性的油藏中,当考虑水平井伤害表皮效应时,根据伤害形状的几何结构,Hawkins推导出了水平井表皮因子的计算公式[1],从而推导出考虑了表皮效应的水平采油指数计算公式。论文写作,产能。Seq’为Hawkins表皮因子;K为地层原始渗透率,10-3μm2;Ks为地层伤害后渗透率真,10-3μm2;ah max为水平井伤害截面的长轴,m。
2、影响水平井采油指数的因素
大多数油藏在一定程度上都存在着渗透率各向异性,尤其在砂岩油层中,而岩夹层是一种常见现象,可能存在严重的各向异性。所以对于开发砂岩油层的水平井,更应该重视地层非均质性对水平井产能影响。假设一口水平井的水平段最大长度304.8m,水平泄油半径507.45m,油藏厚度15.24m,流体粘度1.7mPa·s,水平渗透率2μm2,地层体积系数1.1m3/m3。当不考虑表皮效应而渗透率各向异性系数为0.1,0.25,1,4,10时,分别计算水平井的采油指数。同时,还计算了油藏厚度为7.62m和30.48m时的采油指数。论文写作,产能。研究表明,当油层厚度一定时,随着渗透率各向异性系数的增大,采油指数趋于减小。并且当油藏厚度为15.24m时,渗透率各向异性系数等于1即均质油藏,采油指数为159.32m3/(MPa·d);而当渗透率各向异性系数为4时,即水平渗透率是垂直渗透率的16倍时,采油指数为114.0m3/( MPa·d),产能下降;当渗透率各向异性系数为0.25时,即垂直渗透率是水平渗透率真对产能的影响明显比水平渗透率要大,而且这种影响随着油层厚度的增大将更加显著。因此,在水平井钻井之前,必须对地层的水平与垂直渗透率真进行测定,应沿着最小水平应力方向钻井,以减小渗透率各向异性的影响;同时也可采取水力压裂技术,对地层进行改造,发挥出水平井的潜能]。在相同的钻井工艺下,钻一口水平井比钻一口垂直井费时长,致使产层与钻井液的接触时间相对较长,这样就加大了井底污染程度。利用公式(3),假设在油藏非均质系数一定的情况下,伤害椭圆锥的最长水平轴分别为0.518,0.762,1.006m,计算表皮因子和采油指数,并做出产能变化指标数据。
经实验,对于一口水平井,随着伤害程度的增大,水平井的产能将明显降低。论文写作,产能。当伤害椭圆锥的最长水平轴为0.762m,表皮因子为0时,采油指数为114.04 m3/( MPa·d);而表皮因子为26时,采油指数为38.57 m3/( MPa·d),产能降低了66%。因此,在钻井过程中选用合适的钻井液,通过减少泥浆固相和钻井过程中选用合适的钻井液,通过减少泥浆固相和钻井岩屑进入地层,减少固井水泥浆对地层的侵入等措施,达到降低井底污染的目的是十分必要的。论文写作,产能。地层渗透率各向异性对水平井产能影响非常显著,特别是地层垂向渗透率的影响起着主层作用。在水平井钻井、作业过程中造成的表皮效应对产能影响也较大,建议在施工中昼减少油层污染,这样能充分发挥了水平井的产能。对已生产的水平井,可以通过水力压裂、基质酸化等措施进行油层改造,以减小渗透率各向异性和表皮效应两方面的影响,使油井增产。
二、油藏渗流的耦合研究
1、井筒—油藏的耦合模型
油藏和井筒的耦合条件为:1)从油藏流入水平井的流量和水平井筒内的流量平衡;2)井筒内压降和油藏中的压降在井壁处相等。利用该条件,把井筒模型方程式(9)和油藏模型方程式(13)结合起来得到井筒/油藏的耦合模型。该模型是由2N个方程和2N个未知数组成的方程组。用迭代法对耦合模型进行求解,迭代格式如下:由初始值对P0=[PWf,PWf,…,PWf]开始,应用迭代格式依次产生新的压力向量和径向流入向量,直到p、q 的改变量小于一定的误差值。
2、计算实例
计算所用油藏、水平井参数为:油藏压力pe=41.6MPa;渗透率K=0.165μm2;原油黏度μ=0.29mPa·s;;原油密度ρ=840g/m3;原油体积系数B0= 1.165 ;油层厚度h =33.5m ;井距油层底部的距离zW,=22m ;井筒直径D =0.103m ;水平井段长度L =600m ;井筒相对粗糙度。ε/D=0. 0001 ; 井筒跟端压力pwf=41.35 MPa。从耦合模型和无限导流模型的流量分布剖面对比结果,其井筒截面轴向主流量分布剖面对比。由油藏径向流人水平井筒的流量沿井长分布是不均匀的,总体上呈现“U”形,反映出水平井筒不同位置的供给范围不同,这主要是由于稳态流时水平井段相互干扰增强,端部供给范围大、中部范围小,导致端部呈拟半球形流、中部呈拟线性流形态。论文写作,产能。若忽略井筒内的压降,即假定水平井具有无限导流能力,得到的流量分布明显估计过高。另外,水平井井筒内的流动是变质量的,表现为井筒流量从指端到跟端呈不断增加的趋势。
水平井生产时井筒内存在压降损失,为井各压降的分布。总的压降损失呈现从指端(X=600)到跟端(X=0)逐渐增加的趋势;在该实例的计算中,摩擦压降在井筒总压降中占有较大的分量,加速度压降和混合压降的影响较小。
从耦合模型和无限导流模型的井筒内压力分布剖面对比。可以看出,水平井筒中压力从指端到跟端呈下降趋势.靠近指端(X=600),压力变化较小;靠近跟端(X=0二一O ) ,压力变化越大。这主要是因为井筒中总压降从指端到跟端逐渐增加,越靠近跟端主流流量越大,摩擦引起的压力损失和径向流人引起的压力损失越大。
对水平井产量随水平段长度变化的关系问题,耦合模型和无限导流模型计算出了不同的结果。论文写作,产能。经实验可以看出,水平井水平段长度较短时,两种模型计算的结果相差不大;水平井水平段长度越长,无限导流模型计算的水平井产量越高,而耦合模型计算显示产量增加逐渐缓慢,水平段达到一定长度后,产量将不再增加。实际上由于井筒中压降的存在,产量不能随水平段长度的增加而无限制的增加。因此预测水平井产量尤其是大位移井的产量时应该考虑井筒内的压降,耦合模型计算的结果更合理。
①推导出了裸眼水平井筒内的混合压降计算公式.得到了井筒内流动的压降模型,利用耦合模型计算分析了水平井的变质量流动特性。②井筒压降对水平井生产动态有影响,预测水平井产量尤其是大位移井的产量时应该考虑井筒内的压降。③水平井水平段长度存在最优值,当水平段长度超过一定值后,水平井的产量并不随着水平段长度的增加持续增加。
论文关键词:清洁生产,钻井液,环境
1.前言
在石油天然气钻井行业,就环境影响而言,钻井液(钻井泥浆)是最为显著一个方面:配制钻井液需要消耗大量的新鲜水,添加维持钻井液性能化学药剂,废弃泥浆构成了最大的废物流,甚至是环境负债,其中油基钻井液(非水溶性钻井液)矿物油相含的多环芳烃(PAH)是生物毒性主要来源。例如,在与厄瓜多尔石油二十年的联营期结束后,根据政府按新的法规监督审计的结论,从按1995年开始,德士古石油公司(TexacoPetroleumCompany)花费4000万美元,对161处泥浆池进行生态恢复,包括清理、换土、水处理、分析、植被恢复等多个环节。另一方面,钻井液对提高钻井效率、保护油气藏、防治井喷事故起着不可或缺的作用。
按国际惯例,废弃泥浆的环境责任由业主—油气开发商承担,尽管如此,对于专业的钻井液公司,为主动保护环境、提升竞争力,开展专项清洁生产审核、实施清洁生产方案,依然十分必要。
2.审核重点与效果
2.1.产污节点分析
钻井液的循环大致可以分为两个部分,在地下是通过钻杆、钻头高压喷射到钻遇层,而后携带岩屑从井筒返回地面。在地面则是经过一系列的固液分离、性能调整、增压后重新进入地下。图1是地面循环示意图。在正常循环情况下,固液分离系统的固相物会将钻井液带出循环系统,造成了钻井液的损失,或者说是废弃钻井液的形成。如在钻进过程中调整钻井液的性能、更换钻井液配方、完井时,也会部分、甚至全部排放。
图1钻井液地面循环示意图
根据现场实测数据,某口水平井累积配制钻井液1940m,到完井时,累积排放200m,回收392m,井筒内留存144m,循环损失1200m。排放和循环损失合计1400m,价值达100万元,占配置总量的72%,其中新鲜水780,卤水653吨,柴油18吨,其他添加剂的综合为327吨。
2.2.清洁生产方案
采用先进的堵漏工艺及材料,可显著减少钻井液在井筒内的漏失和降失水。投入防漏材料费用100万元,防漏成功率85.91%,堵漏成功率78.79%。根据钻遇的地质情况,每年可获得经济效益147万元。
在保证性能、满足钻井生产的前提下,采用的新型剂有RT001、聚合醇,固体剂等替代柴油。年减少柴油2791吨的使用,价值1674万元,扣除剂的费用后的净效益达1346万。
3.持续清洁生产
钻井液公司的清洁生产水平满足当前环境管理的要求,但与国际先进水平相比,还有一定的差距,应在以下几个方面持续推进清洁生产:
通过减少基液的多环芳烃含量降低生物毒性。高芳烃柴油通常含有2~4%PAH,低毒矿物油的芳烃含量0.8%,二者的LC50介于0~0.25%。经特殊处理的矿物油芳烃含量远远小于0.1%,毒性微乎其微,LC50可达20%。
提高固控系统的分离效率。安装干燥器可减少震动筛后的钻屑上钻井液损失89.5%,从原来的从34.2%降到3.61%,既可减少废物的产生量,也显著地节约钻井液的费用。
推行全面的钻井液管理(TFM)。由专业公司提供钻井、完井、废物处置全过程的钻井液服务,采用前沿技术、工艺和设备,能够降低业主的环境责任风险,提高钻井液系统的成本绩效。
关键词:培训;培养;专业技术人员
一、专业技术人员存在问题
(一)现场经验不足,处理复杂情况能力有待提升
近两年公司强化人才强企战略,青年技术人才培养力度大,提拔调整频繁,多人提拔到管理岗位上,其余资历老一点的优秀青年技术员也都在重点岗位上,另外,公司近几年选派了较大比例的优秀大学生开拓海外市场,现在国内钻井队中,仅有5名工程师是2008年以前分配的,其中有2人是中专生,其余井队的主要技术员是2010年分配的大学生,技术人员出现了断层,工作时间短,导致工作经验严重不足,遇到复杂情况不能及时处理。
(二)技术创新能力不足,综合技术水平有待提高
公司开展“技术创新成果评审”活动以来,很好的激发了一线技术人员创新积极性,2009年至今共收集技术创新成果400余篇,从论文上报数量上看,是逐年递增的,从论文质量上看,是不断提高的。但是,通过对上报的技术创新成果综合分析,技术人员仍然存在三方面的问题,一是技术人员创新意识还有待提高,根据《技术创新管理规定》技术人员每季度应上报创新成果,但实际上每次评审前都需要办公室一再督促提醒,二是技术人员创新思路还不清晰,多数上报的技术创新成果是对口井、钻井工艺的总结,技术创新首先就是在于对已有的技术进行全面分析、梳理的基础上。三是技术人员的综合技术水平有待加强。通过一年的技术工作分析,基层专业技术人员在技术监控上还有盲点,在技术措施的执行上还有欠缺,导致技术人员不能及时发现问题。
(三)自主学习意识不强,理论联系实际能力有待加强
主要表现为四方面:1.业务理论学习意识不强。公司利用一切机会组织技术培训班,致力于提升技术人员的业务素质,但是专业技术理论学习是一个不断积累的过程,主要还是要依靠平时的学习积累,部分技术人员忽视了日常的学习,主要体现在技术比武时,多数人员理论考试成绩不理想。2.实践操作能力不强。部分技术人员因为个人懈怠或者是队上不敢放手让技术人员操作练习等原因,理论联系实际能力较差,明明是都学过的知识,遇到实际复杂情况就慌了手脚,不能及时有效处理。3.忽视文化学习,导致文字总结能力不强。主要体现在上报的论文写作水平较差,从论文的格式、排版、文字的组织、公式的编写、表格的使用都存在一定的问题。另一方面,不注重文字写作能力学习,导致上报的述职报告、工作总结等材料,水平较差。4.协调沟通能力不强,部分技术人员会出现与井队正副职或者职工因沟通不良出现各种矛盾,以致出现工作积极性下降,甚至消极怠工或者粗暴对抗的现象。
二、主要措施
(一)调整技术人员职能分工,改进培训方法
要求工程师24小时住井,强化技术措施的执行,由技术办公室安排住井工程师兼职导师,带领技术人员学习对复杂情况的处理,并对每一次处理情况认真撰写总结。充分利用QQ群,电子邮箱等网络工具,由技术办公室每周带领技术人员学习1个案例,主要分析公司在钻井过程中遇到的复杂情况、出现过的技术事故等,同时,大家可以及时交流生产中的技术难题,技术人员可以把遇到的问题发送到QQ群讨论,或者发送给主管师,由主管师进行解答。每季度生产例会后组织1次考试,考试内容以本季度发送的复杂情况处理为主。采取“请进来、走出去”的培训方法,组织技术人员到相关单位学习,到管具公司学习各种接头、工具的使用,到地质公司学习地层的分析、特点,到测井公司学习看图,到定向井公司学习定向知识,增强职工的实践能力,防止纸上谈兵。请相关专家来公司授课,重点讲授钻井新工艺、新技术,开拓思路,提高能力。每个季度组织工程师短期培训班,由技术办公室有针对性的就一个课题进行讲解,着重讲解区域钻井技术、特殊工艺井技术、新工艺、新技术或者为技术人员解疑答惑、组织交流座谈。每次技术例会要求工程师将问题写在纸上上交技术办公室,由钻井主管师针对问题进行分析讲解。
(二)充分利用“技术人才团队创新工作室”
不断优化技术人才创新工作环境,建立完善技术人才团队创新的长效机制,依托创新工作室,加大重点课题、施工难题的技术攻关力度,保证月度有课题立项、季度有创新成果、半年有评比展示、年度有成果转化,切实把创新工作室建设成技术交流的平台。通过组织上报成果人员参加不定期技术研讨会、季度技术创新成果评审会、月度总结会等形式,激发大家的创新意识,形成浓厚的创新氛围,围绕专业技术工作中的重点、难点问题,开展课题攻关、技术革新、合理化建议等创新创效活动,通过工作室开放学习、网络平台交流等形式,实现资源共享、信息互通、创新发展。加大工程师轮岗锻炼的力度,建立工程师轮岗锻炼的长效机制,促进工程师轮岗的合理流动,工程技术员交流挂职每次可2-3人,每次挂职3个月。挂职期间,督促工程师多跑、多看、勤学、苦练,培养工程师博闻、善问、敏思、勤学的素养,引导工程师有意识的培养自己解决问题的习惯,和正确提出问题的能力,通过不断的努力去解决问题,形成创新的思路,成为创新的人才。
【关键词】封堵技术 桥接材料 屏蔽暂堵 低渗透成膜
随着资源勘探开发的纵深发展,我国深井钻探的数量逐年增加,然而深部钻探所钻遇地层更加复杂多样,因此更易发生井壁不稳定问题。
为了控制井壁失稳,提高钻探效率,必须提高地层的承压能力,影响地层承压能力的因素很多,主要有地层本身性质(内因)和钻井、封堵工艺水平(外因)两个方面的影响。前者包括地层岩性,胶结程度,裂缝发育方式、开度、宽度,地层温度,近井壁岩石水化程度等;后者则包括钻井液性质、种类、封堵剂组成,所使用的封堵工艺以及相应的钻井参数、工艺等。然而,钻探时地层压力本身往往具有不确定性和不可控性,而钻井液的封堵性能则可以根据实际进行调控,所以钻井液的封堵性能往往决定着提高地层承压能力的高低。
1 桥接材料封堵技术
桥接封堵就是通过不同配比将不同形状和级配的惰性材料,混合加入到钻井液中,随着钻进液循环而封堵漏失层的方法。
此种封堵方法较为传统,但实际施工时却得到广泛应用,主要原因在于此种封堵方法不仅可以有效解决井内孔隙和裂缝造成的部分及失返漏失,而且材料具有易买价廉、使用安全、操作方便等优点。
常见桥堵材料根据形状一般分为颗粒状材料、纤维状材料及片状材料三种类型(具体情况见表1),他们级配和浓度应根据井内漏失层性质及严重程度进行合理选择。堵漏时钻井液中添加桥接材料的含量一般为4%~6%,且上述三种材料在施工时常用的混合复配比例为2∶1∶1,并且应尽可能使大于桥堵缝隙尺寸的惰性材料含量不低于5%;此外需要注意的是如果使用过程中常用尺寸的桥接材料堵漏不成功,应根据情况及时换用更大尺寸的颗粒并增大使用比例。
采用桥接封堵的施工方法有两种,即挤压法和循环法。施工前应准确地确定漏层位置,钻具尽量下光钻杆,钻头不带喷嘴(不然应选择合适的桥接材料的尺寸,以避堵塞钻头水眼);钻具一般应下在漏层的顶部,个别情况可下在漏层中部,严禁下过漏层施工,以防卡钻。施工时要严格按照施工步骤进行。封堵成功后,应立即使用振动筛筛除井浆中的堵漏材料。特别要提出的是,对于在试压过程中出现的井漏,由于漏失井段长、位置不清楚,采用大量桥浆(通常为40~60m3)覆盖整个裸眼井筒的封堵方法,经常可取得成功。
但是,在使用过程中桥接类封堵材料仍然存在以下3点主要问题:
因纤维类封堵材料在井壁无法形成有效低渗阻挡层,故其在微裂缝上搭桥时不具备阻止钻井液侵入和防止井眼失稳的能力;
在渗透地层利用不同尺寸和级配的封堵材料形成泥饼屏蔽层的条件是要具有足够的瞬时滤失。但实际情况是由于井内微裂隙的瞬时滤失过低,致使封堵材料很难形成保护性泥饼;
片状云母类材料使用时通常需要在高浓度快速作用才可以在裂隙处搭桥,发挥封堵作用。但是此种材料在钻井液中浓度的增加会使钻井液循环当量密度也随之增加,导致井底压力进一步提高,最终可能加剧滤失或漏失;
部分桥接材料在使用时因条件限制达不到最好功效,如沥青,其使用时温度必须达到软化点温度以上方可发挥最强封堵作用,但实际施工中绝大多数地层都达不到这个温度。
2 屏蔽暂堵技术
钻井液中起主要暂堵作用的惰性材料称之为屏蔽暂堵剂。屏蔽暂堵技术就是将钻井液中加入屏蔽暂堵剂利用井内钻井液液柱压力与地层液柱压力之间形成的压差压人地层孔喉,并在短时间内形成渗透率接近零的暂堵带技术。
屏蔽暂堵带主要具有以下两方面功能:一是能够有效使地层避免固井水泥浆的污染,二是降低钻井液对地层浸泡时间,降低钻井液污染,进而起到保护作用。
一般来说,暂堵颗粒由起桥堵效的刚性颗粒和起充填作用的粒子及软化粒子组成。在各种处理剂材料中,各种粒度碳酸钙是常用的刚性粒子;沥青、石蜡和油溶性树脂等是常用软化粒子。
引起压差卡钻的主要原因是钻井液在滤失过程中形成的泥饼较厚,泥饼与钻杆的接触面积较大,进而增加了卡钻的概率。但使用低渗透钻井液时,由于其能够在井壁上迅速形成一层低渗透薄膜,相较于传统钻井液而言可以大幅度降低滤失量,所以压差不会传递到地层,从而有效避免了卡钻问题的发生。
(4)防止钻井液漏失
超低渗透钻井液含有气泡和泡沫,这些气泡和泡沫可使过平衡压力降到最低,并且气泡和泡沫可桥塞各种孔径的喉道,阻止钻井液的渗漏,防止地层层理裂隙的扩大和井下复杂情况的发生。
4 结语
桥接材料封堵、屏蔽暂堵以及低渗透成膜封堵是现阶段国内施工实践中主要应用的三种封堵技术手段,其中桥接材料封堵及屏蔽暂堵技术因材料价格低廉、易购买等因素而在实际生产中得到广泛应用,低渗透成膜封堵也因适用地层范围广、封堵性能出色而得到越来越多的研究与关注,发展潜力巨大。所以在施工生产中我们应结合施工实际对封堵剂进行综合考量和使用,争取达到经济效益最大化。
参考文献
[1] 张洪利,郭艳,王志龙.国内钻井堵漏材料现状[J].特种油气藏,2004,11(2):1-2
[2] 黄进军,罗平亚,李家学,等.提高地层承压能力技术[J].钻井液与完井液,2009,26(2):69
[3] 申威.我国钻井用堵漏材料发展状况[J].钻采工艺,1997,20(1):57
[4] 薛玉志.超低渗透钻井液作用机理及其应用研究[D].博士学位论文.山东:中国石油大学(华东),2008
[5] 袁春.隔离膜水基钻井液体系研究[D].硕士学位论文.四川:西南石油学院,2004
论文摘 要:随着海洋石油的大力开发,钻井技术的研究至关重要,本文主要阐述海上钻井发展及现状,我国海上石油钻井装备状况,海洋石油钻井平台技术特点,以及海洋石油钻井平台技术发展分析。
1 海上钻井发展及现状
1.1 海上钻井可及水深方面的发展历程
正规的海上石油工业始于20世纪40年代,此后用了近20年的时间实现了在水深100m的区域钻井并生产油气,又用了20多年达到水深近2000m的海域钻井,而最近几年钻井作业已进入水深3000m的区域。图1显示了海洋钻井可及水深的变化趋势。20世纪70年代以后深水海域的钻井迅速发展起来。在短短的几年内深水的定义发生了很大变化。最初水深超过200m的井就称为深水井;1998年“深水”的界限从200m扩展到300m,第十七届世界石油大会上将深海水域石油勘探开发以水深分为:400m以下水域为常规水深作业,水深400~1500m为深水作业,大于1500m则称为超深水作业;而现在大部分人已将500m作为“深水”的界限。
1.2海上移动式钻井装置世界拥有量变化状况
自20世纪50年代初第一座自升式钻井平台“德朗1号”建立以来,海上移动式钻井装置增长很快,图2显示了海上移动式钻井装置世界拥有量变化趋势。1986年巅峰时海上移动式钻井装置拥有量达到750座左右。1986年世界油价暴跌5成,海洋石油勘探一蹶不振,持续了很长时间,新建的海上移动式钻井装置几乎没有。由于出售流失和改装(钻井平台改装为采油平台),其数量逐年减少。1996年为567座,其中自升式平台357座,半潜式平台132座,钻井船63座,坐底式平台15座。此后逐渐走出低谷,至2010年,全世界海上可移动钻井装置共有800多座,主要分布在墨西哥湾、西非、北海、拉丁美洲、中东等海域,其中自升式钻井平台510座,半潜式钻井平台280座,钻井船(包括驳船)130艘,钻井装置的使用率在83%左右。目前,海上装置的使用率已达86%。
2我国海洋石油钻井装备产业状况
我国油气开发装备技术在引进、消化、吸收、再创新以及国产化方面取得了长足进步。
2.1建造技术比较成熟海洋石油钻井平台是钻井设备立足海上的基础。从1970年至今,国内共建造移动式钻采平台53座,已经退役7座,在用46座。目前我国在海洋石油装备建造方面技术已经日趋成熟,有国内外多个平台、船体的建造经验,已成为浮式生产储油装置(FPSO)的设计、制造和实际应用大国,在此领域,我国总体技术水平已达到世界先进水平。
2.2部分配套设备性能稳定海洋钻井平台配套设备设计制造技术与陆上钻井装备类似,但在配置、可靠性及自动化程度等方面都比陆上钻井装备要求更苛刻。国内在电驱动钻机、钻井泵及井控设备等研制方面技术比较成熟,可以满足7000m以内海洋石油钻井开发生产需求。宝石机械、南阳二机厂等设备配套厂有着丰富的海洋石油钻井设备制造经验,其产品完全可以满足海洋石油钻井工况的需要。
2.3深海油气开发装备研制进入新阶段目前,我国海洋油气资源的开发仍主要集中在200m水深以内的近海海域,尚不具备超过500m深水作业的能力。随着海洋石油开发技术的进步,深海油气开发已成为海洋石油工业的重要部分。向深水区域推进的主要原因是由于浅水区域能源有限,满足不了能源需求的快速增长需求,另外,随着钻井技术的创新和发展,已经能够在许多恶劣条件下开展深水钻井。虽然我国在深海油气开发方面距世界先进水平还存在较大差距,但我国的深水油气开发技术已经迈出了可喜的一步,为今后走向深海奠定了基础。
3海洋石油钻井平台技术特点
3.1作业范围广且质量要求高
移动式钻井平台(船)不是在固定海域作业,应适应移位、不同海域、不同水深、不同方位的作业。移位、就位、生产作业、风暴自存等复杂作业工况对钻井平台(船)提出很高的质量要求。如半潜式钻井平台工作水深达1 500~3 500 m,而且要适应高海况持续作业、13级风浪时不解脱等高标准要求。
3.2使用寿命长,可靠性指标高
高可靠性主要体现在:①强度要求高。永久系泊在海上,除了要经受风、浪、流的作用外,还要考虑台风、冰、地震等灾害性环境力的作用;②疲劳寿命要求高。一般要求25~40 a不进坞维修,因此对结构防腐、高应力区结构型式以及焊接工艺等提出了更高要求;③建造工艺要求高。为了保证海洋工程的质量,采用了高强度或特殊钢材(包括Z向钢材、大厚度板材和管材);④生产管理要求高。海洋工程的建造、下水、海上运输、海上安装甚为复杂,生产管理明显地高于常规船舶。
3.3安全要求高
由于海洋石油工程装置所产生的海损事故十分严重,随着海洋油气开发向深海区域发展、海上安全与技术规范条款的变化、海上生产和生活水准的提高等因素变化,对海洋油气开发装备的安全性能要求大大提高,特别是对包括设计与要求、火灾与消防及环保设计等HSE的贯彻执行更加严格。
3.4学科多,技术复杂
海洋石油钻井平台的结构设计与分析涉及了海洋环境、流体动力学、结构力学、土力学、钢结构、船舶技术等多门学科。因此,只有运用当代造船技术、卫星定位与电子计算机技术、现代机电与液压技术、现代环保与防腐蚀技术等先进的综合性科学技术,方能有效解决海洋石油开发在海洋中定位、建立海上固定平台或深海浮动式平台的泊位、浮动状态的海上钻井、完井、油气水分离处理、废水排放和海上油气的储存、输送等一系列难题。
4海洋石油钻井平台技术发展
世界范围内的海洋石油钻井平台发展已有上百年的历史,深海石油钻井平台研发热潮兴起于20世纪80年代末,虽然至今仅有20多年历史,但技术创新层出不穷,海洋油气开发的水深得到突飞猛进的发展。
4.1自升式平台载荷不断增大
自升式平台发展特点和趋势是:采用高强度钢以提高平台可变载荷与平台自重比,提高平台排水量与平台自重比和提高平台工作水深与平台自重比率;增大甲板的可变载荷,甲板空间和作业的安全可靠性,全天候工作能力和较长的自持能力;采用悬臂式钻井和先进的桩腿升降设备、钻井设备和发电设备。
4.2多功能半潜式平台集成能力增强
具有钻井、修井能力和适应多海底井和卫星井的采油需要,具有宽阔的甲板空间,平台上具有油、气、水生产处理装置以及相应的立管系统、动力系统、辅助生产系统及生产控制中心等。
4.3新型技术FPSO成为开发商的首选
海上油田的开发愈来愈多地采用FPSO装置,该装置主要面向大型化、深水及极区发展。FPSO在甲板上密布了各种生产设备和管路,并与井口平台的管线连接,设有特殊的系泊系统、火炬塔等复杂设备,整船技术复杂,价格远远高出同吨位油船。它除了具有很强的抗风浪能力、投资低、见效快、可以转移重复使用等优点外,还具有储油能力大,并可以将采集的油气进行油水气分离,处理含油污水、发电、供热、原油产品的储存和外输等功能,被誉为“海上加工厂”,已成为当今海上石油开发的主流方式。
4.4更大提升能力和钻深能力的钻机将得到研发和使用
由于钻井工作向深水推移,有的需在海底以下5000~6000m或更深的地层打钻,有的为了节约钻采平台的建造安装费用,需以平台为中心进行钻采,将其半径从通常的3000m扩大至4000~5000m,乃至更远,还有的需提升大直径钻杆(168·3mm)、深水大型隔水管和大型深孔管等,因此发展更大提升能力的海洋石油钻机将成为发展趋势。
参考文献