时间:2023-03-20 16:20:29
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇有限元分析论文范例。如需获取更多原创内容,可随时联系我们的客服老师。
西门子NX是一个完全集成的CAD/CAM/CAE软件集,具有强大的计算机辅助设计、分析和制造功能。本文通过西门子NX的CAD/CAM/CAE来完成建模、有限元分析及数控编程。首先,在NX的CAD模块进行三维建模,完成建模后进入NX的结构分析模块,创建新分析方案,选择解算器,这里用NXnastran,材料设置为steel,即对应的45钢。网格划分是有限元分析的基础,其目的是将结构转化为离散的连续实体,有限元网格划分的质量,直接影响到分析结果的精确度和分析所用的时间,在保证解算精度的情况下尽量提高数值计算的速度。
在NX仿真导航器中激活FEM文件,将其设为显示部件,选择“3D四面体网格”工具,选用具有较高计算精度的“10节点四面体单元”对零件进行网格划分。在NX仿真导航器中激活仿真文件,将其设为显示部件,在约束类型中选择“固定约束”工具,选择尺寸100的平面定义固定全约束。在载荷类型中选择“力”工具,选择固定约束对面椭圆面(事先适当分割面),设置作用力为500N,力的方向为100平面的垂直方向。有限元模型建立后,可进行模型检查,如网格、节点/单元、载荷、约束及材料等,检查没有错误,进行求解,求解完成后,对分析结果进行综合评定,如图2所示。
变形输出excel文件格式,经过后处理输出的excel文件详细地记录了各坐标点上的变形量,如表1所示。有限元分析施加载荷和边界条件时,添加的力和约束与实际加工时工件的夹紧力、支撑点应相符合,以模拟工件实际受力情况。
2数控编程加工
利用excel的计算功能,将原始点和变形量进行比较,得到变形后的坐标点。将这些坐标点输入NX软件,用NX的建模功能三维建模,得到变形后的椭圆模型,因为NX平面铣适用于侧壁垂直底面或顶面为平面的工件加工,故选用NX的平面铣类型,加工轮廓刀具选用D40立铣刀,30°斜面选用60°成型刀,选择加工面,设置相关参数,生成轨迹后,后处理输出G代码。实际加工中可以通过测量工件夹紧后的变形量来控制夹紧力。本例在有限元分析时添加的力为500N,分析椭圆200mm尺寸变形量为0.516mm。加工时工件夹紧后,实际测量椭圆200mm尺寸变形量达到0.516mm时停止夹紧,这时有限元分析时添加的力与实际工件夹紧力应基本相等。实际加工时上下方向可增加辅佐支撑,以防止数控加工时工件震动。
3结语
关键词:城市园林有害生物问题分析对策
1有害生物的现状
号称松树“癌症”的松材线虫在广东、江苏、浙江、安徽、山东等地每天都有新的疫点发生,其蔓延之势已覆盖了我国5亿多亩森林。
危害100多种植物的美国白蛾在辽宁、山东、河北、天津等地并未“扑灭”,而且新疫点频频出现,现对北京已成包围之势,正在敲响北京的大门。
国槐的蛀干害虫锈色粒肩天牛,八十年代至九十年代初一直以河南、山东南部为根据地,局部为害国槐、栾树,九十年代中期向东、西、北三个方向出击,成为蛀干害虫的优势种,如今已成为北京市树“国槐”新的重要蛀虫。
从未过长江的北方蛀虫臭椿沟眶象,在本世纪初,跟随寄主千头椿大举入侵上海市,形成严重危害。
日本松干蚧是一种毁灭性害虫,遍及华东各省,如今又向东北扩散,吉林省1994年首次发现受其侵害,至2002年发生面积已达27万亩,成灾面积13.5万亩,4万亩松林在虫口下濒死或枯死。
杉树、柏树的重要蛀干害虫双条杉天牛向北已蔓延到沈阳,大有向东北扩散之势。
光肩星天牛的危害面积已达50万公顷。
青杨虎天牛在黑龙江哈尔滨周边地区再度暴发成灾。
蔗扁蛾是我国新发现的一种鳞翅目钻蛀性害虫,危害香蕉、甘蔗等经济作物,防治难度较大,如今已遍及华东、华中、华北、西南、东北等各地城市园林,危害植物达22科之多,除巴西木、发财树、绿萝、一品红、棕竹、鹅掌柴外,全国各地尤其是城市园林许多木本、草本花卉被其侵害。杨树烂皮病1999年春在东北全部及华北、内蒙古部分地区流行,被害致死柳、杨等绿化树木近15万株。
松枯梢病在山西、陕西、辽宁大发生,大连沿海地区的大片黑松患病死亡。
银杏大蚕蛾仅在陕西就发生2万公顷,东亚飞蝗在西北、华北再度暴发成灾。
2003年春,长春市因冻害死亡杨、柳树2万余株,由冻害引发病害,严重染病的树木3万多株。
原产南美的水葫芦,学名凤眼莲,作为畜禽饲料、观赏和净化水质的植物被引入并推广种植,后逸为野生,以极快的无性繁殖,形成单一的优势群落。在云南已成“喧客夺主”的心腹之患,占据了滇池10平方公里的水域,破坏当地水生植物和水生动物,堵塞交通,给渔业和旅游业造成重大损失,严重地破坏了生物间生态平衡。
2问题分析
2.1绿化格局的调整改变了原有有害生物的结构
园林植物是城市建筑物、道路之间互相联系并使之成为一体的纽带。国外园林风格不断传入我国,植物配置和种植方式更加多变,如疏林草地、规则绿化等,打破了我国传统园林格局。园林植物种类、数量以及绿化面积大幅度增加,改变了城市中原有有害生物的种类、结构和危害。如今,蛀干害虫、“五小害虫”(蚜、螨、蚧、粉虱、蓟马)和生态性植干病害成为城市园林植物的主要病虫害。
2.2绿化植物的不合理配置为病虫害的发生提供了先决条件
害虫与寄主在长期进化过程中形成了协同进化关系,可以说植物一栽下去就决定了病虫害的发生程度,不合理的种植结构是病虫害严重发生的源头。2.3园林植物检疫环节薄弱,外来病虫猖獗
随着国际间植物交流的频繁,侵入型害虫不断传入我国,而我们当地天敌尚不能马上跟踪适应,这些自然控制因素的丧失使侵入型害虫比我国本地害虫具有更大的危害性。严重危害100余种花卉植物的毁灭性食叶害虫美洲斑潜蝇和前面提到的蔗扁蛾就是近年从国外传入的,并在短短两年时间就遍及我国22个省区。
2.4城市生态恶化为病虫害的发生开启了方便之门
城市环境是由人工建造起来的特殊生态系统,地上部分往往是空气污染严重、光照条件不佳、人为破坏频发;地下部分往往是土壤坚实、透气性差、土质低劣、缺肥少水、生长空间狭窄,这些直接导致了有害生物的大发生。当某种生态因子达到灾变程度,而养护管理又长期相当不力时,生态平衡将被打破,园林植物病虫害就暴发成灾,发展成为自然生物灾害。
2.5气候异常促使城市园林病虫害大发生
在城市恶劣的生态环境下,园林植物生长势极弱,这时气候方面的因素则变成决定性影响因子。
1999年柳树烂皮病大发生,国家林业局专家组确定为灾变性气候引起。
2003年春长春大量树木死亡也是由灾变性气候引起。
3对策:
3.1加强抗性植物品种的选育及应用
植物材料的选择应以植物区系分布规律为理论基础,以乡土树种为重点,以适应城市生态环境,如抗干旱,耗水少,耐瘠薄和土实,抗污染,抗冻害,抗病虫,耐粗放管理等7个方面为树种选择的首要标准。
3.4加强养护管理,减少有害生物的发生
;加强养护管理就是人为地调整适合目的植物生长,而不适合有害生物生长的环境条件,使目的植物能健康、茁壮地生长,有害生物很难侵入,也不能大量繁殖,对目的植物构成威胁。从根本上解决植物衰退病这一难题。
3.3从规划设计着手,控制有害生物的发生
从尊重生态系统自我调节出发进行园林规划设计,遵循生物共生、循环、竞争的原则,以乔木为主,实行乔、灌、藤、花、草多种植物合理混配的林荫型绿化,造成一个和谐、有序、稳定的园林植物群落,形成一个多品种、多层次、互促共存、遮阴效果好的复层种植结构。
关键词:有限元法;课程;案例教学
中图分类号:G642.4?摇 文献标志码:A?摇 文章编号:1674-9324(2013)46-0093-03
当前中国高等教育面临两个紧迫局面:一个来自“全面建成小康社会”,另一个来自高校人才培养自身。党的十提出的“2020年全面建成小康社会”的发展目标,使得以培养人才、服务社会为己任的高等教育,倍感责任重大,情势急迫。目前,大学本科生已全为“90后”。“90后”在校大学生一方面善于求新求变,不断扩大信息量和知识面,另一方面却更注重实际、利害、功用[1]。如何根据“90后”大学生的特征,将他们培养成为国家急需人才,这是高等教育迫在眉睫的现实课题。
现代先进设计制造技术(CAE/CAM)是我国实现从制造业大国向制造业强国跨越的关键。有限元法作为计算机辅助工程分析(CAE)的先进方法之一,是工程结构设计不可缺少的重要手段。有限元法基于先进的数字模型,通过数值模拟技术能够在产品设计阶段预测产品各方面性能,避免了加工物理样机并通过试验测试产品性能所带来的高成本低效率问题,大大缩短了产品的研发周期和研发费用。在我国实现从制造业大国向制造业强国跨越的趋势下,企业对具备有限元分析能力的毕业生需求越来越大。有限元法课程作为机械、土木等工程本科专业的重要选修课之一,对于培养高素质、高质量的高级专门人才有着重要作用。根据“90后”大学生的求知特征,开展有限元法课程教学改革,是培养和提高学生解决实际问题能力的重要途径,也是实现高等教育人才培养战略必然要求。
一、有限元法课程的教学特点
有限元分析技术涉及数学力学基础、单元技术、计算机应用技术、工程中的应用四个方面。“数力基础+单元技术+软件工具+应用对象”是工程有限元法课程的四个主要特征[2]。有限元法课程的教与学必须抓住“理解基础理论,熟练掌握软件工具应用,广泛涉猎工程应用对象”这一主线。
二、有限元法课程教学中的问题
有限元法的基本思想是离散和分片插值,其理论涉及泛函分析、矩阵理论、数值计算、计算机技术以及各应用领域(结构、热、电、磁、光等)基本理论。有限元教学如果只是一味强调理论分析,就无法使既“求新求变”又“注重实际、利害、功用”的“90后”大学生切实感受到先进方法的魅力,反而因为繁琐的公式推导而对有限元法产生望而生畏的感觉[3]。当前有限元法课程教学的主要问题有两个方面。一方面是,过分强调有限元分析的基础理论教学,却又局限于课程学时少、学生数学力学基础不足而流于形式。学生觉得理论深奥、晦涩难懂,半生不熟,事倍功半。另一方面,实践环节片面地强调对有限元分析软件的掌握,对工程应用对象涉猎不足,上机实验根据指导书按部就班完成,学生缺少自主性、探索性实践锻炼。使学生觉得上手容易,用起来茫然,无法自主完成实际问题的研究、探索性分析过程。
1.对有限元法基础理论理解不透彻。目前有限元法教材及课程教学内容,大多以大量篇幅和课时讲授有限元法和各种单元的力学原理。课堂讲授花费很多时间进行数学力学推导,而用很少时间讲授应用。实践表明,教学效果很差,多数学生感觉深奥难懂,枯燥乏味且不懂应用。
2.对分析对象的工程背景不熟悉。有限元课程教学的最终目标就是引导学生“广泛涉猎工程应用对象”,提高学生对实际问题进行研究、探索性分析的能力。实现这一目标的途径就是做实实践环节。目前有限元课程实践教学环节主要形式有:⑴课堂实例分析演示;⑵上机实验;⑶课外工程实例研究分析。这些实践过程基本都是学生根据指导书完成,缺少自主性、探索性实践锻炼。由于缺少自主性,多数学生对分析对象的工程背景不熟悉。不清楚研究对象模型如何简化,导致分析过程中不能合理的设置参数,对分析中出现的问题找不出原因予以解决或者对分析结果不能做出合理的解释。无法培养和有效提高学生用有限元法分析实际问题能力。
3.对分析软件功能模块应用不熟练。对于复杂的实际问题,很少有学生能够通过直接编程完成对结构的分析过程。利用商业软件进行工程问题有限元分析,“熟练掌握软件工具应用”是目前有限元课程实践教学的基本要求。目前教学实践环节存在的问题是,上机实习题目少,涉及的工程问题较简单,使得学生对软件功能模块的应用不熟练。在遇到实际问题时,不清楚先后步骤;不会合理的设置参数,导致问题不能求解或求解结果不正确。分析解决实际问题的能力受到限制。
三、有限元法课程教学改革实践
教学过程中如何贯彻“理解基础理论,熟练掌握软件工具应用,广泛涉猎工程应用对象”这一主线,是有限元法教学成与败的关键。加强基础理论教学理解性教学,强化实践教学环节,增强学生分析解决工程实际问题的能力是教学改革的大方向。因此,针对目前有限元课程教学中的问题,我们对课程教学内容与教学方法进行了改革。
1.基础理论教学化繁为简,虚实结合。基础理论从平面杆系结构开始,再到弹性体平面问题,把有限元法基本原理和分析过程循序渐进、完整、清晰地讲授出来。简化理论推导过程,提高了学生的理解和接受程度。讲授平面杆系结构有限元分析过程时,以图1所示的简单静定桁架内力分析为例;讲授弹性体平面问题时,以图2所示的两端固定平面深梁为例。用这些实例,把结构离散,单元分析,整体刚度矩阵集成,整体结点平衡方程,位移边界条件应用,有限元最终解等完整的分析过程展现给学生。虚实结合,这一方法有效地提高了学生对基础理论的理解和接受程度。
2.采用案例教学,广泛涉猎分析对象的工程背景。基于ANSYS软件平台,精选机械工程中应用实例,如齿轮、飞轮、主轴等零部件进行课堂有限元分析演示,广泛涉猎分析对象的工程背景,使学生认识到该课程的广阔应用前景。讲授单元类型时,结合具体工程实例来介绍轴对称单元、板壳单元、实体单元等类型单元的应用。讲授单元位移模式和结构分析的h方法与p方法时,结合工程实例分析演示,采用讨论式、启发式的教学方式,让学生从中体会不同分析方法的优缺点。案例教学法,使学生逐步体会到如何将一个工程实际问题转换为有限元求解模型,树立了牢固的工程观。
3.强化实践教学环节,使学生对分析软件“练中学,学中用”。“练中学”。安排16学时的课程上机实习环节,提供8个左右的实际问题有限元分析题目,使学生在上机练习中逐步熟悉和掌握ANSYS软件的功能模块应用。同时,通过这些练习,使学生逐步学会将一个工程实际问题转换为有限元求解模型的技能,初步具备解决实际问题的能力。“学中用”。课程教学的终极目标是使学生学以致用。因此,课程实践环节考核的最有效指标就是学生能否“学中用”。在教学实践环节改革中,我们在上机实习之外增加了课程论文考核环节,同时增大这一自主实践环节的考核权重。课程结束时,教师给出15个左右工程实际问题题目,让学生按小组选题并完成分析过程,提交课程论文。学生也可以自己寻找工程中实际问题作为课程论文题目,藉此可以锻炼学生发现问题、分析解决问题的能力。通过几年教学改革实践,效果显著。学生利用课程论文这个实践环节,熟练、系统地对所学知识和分析软件进行应用。一部分学生结合教师的科研项目,自找题目完成课程论文。例如,有学生自拟“不同筋板结构井盖的有限元分析”题目并以优异成绩完成课程论文;也有学生结合教师科研项目开创性地完成“马铃薯覆膜穴播种机机架有限元分析”课程论文。“学中用”的目标,通过课程论文题目这一实践环节得到充分体现。
通过几年来有限元法课程教学改革实践,本科生对有限元法基础理论理解加深,软件的操作应用熟练掌握。同时,通过课程论文环节的实践锻炼,学生对有限元法有了更深刻的认识,达到了“学中用”的教学目标。通过有限元课程教与学,极大提高了学生的数值计算应用能力,为将来从事CAE相关研究工作打下了坚实的基础。
参考文献:
[1]高文兵.聚焦90后——高校当前的人才培养[N].光明日报,2012-12-5(14).
[2]向家伟.机械类工程有限元法课程新体系的建设与实践[J].桂林电子科技大学学报,2008,28(2):150-152.
[3]于亚婷,杜平安.有限元法课程实践教学方法探索[J].实验科学与技术,2008,(2):108-110.
关键词:齿轮轴 UG 有限元分析 优化
0 引言
行星齿轮减速器因具有体积小、重量轻、承载能力高、结构紧凑、传动效率高等优点而广泛应用于冶金机械、工程机械、轻工机械、起重运输机械、石油化工机械等各个方面。UG软件是集CAD/CAE/CAM为一体的三维化的软件,它是当今最先进的计算机辅助设计、分析、制造软件,广泛应用于航空、航天、汽车、造船、通用机械和电子等工业领域。UG的CAD/CAE/CAM功能模块有复杂的特征建模、装配、运动仿真和有限元分析等功能。实现UG有限元分析功能,必须要遵从UG有限元分析的一般过程,构建有限元模型,其中包括自动网格划分、添加约束与载荷,利用图形的方式得到模型应力、应变的分布情况。机械优化设计,就是在给定的载荷和约束条件下,选择设计变量,建立目标函数并使其获得最优值的一种新的设计方法。
1 齿轮轴几何参数的初选
通过常规设计方法设计计算出齿轮轴的几何参数,齿轮轴的齿形为渐开线直齿。分配减速器传动比,计算齿轮模数,并根据传动比条件、同心条件、装配条件和邻接条件确定齿轮的齿数。齿轮轴的齿轮基本参数如表1所示。
2 齿轮轴的三维建模
利用UG/Modeling模块建立齿轮轴模型,如图1所示(去掉网格后的实体模型)。
2.1 网格划分
网格划分越密集,计算结果越精确,但是这会使计算时间加长。单元网格的划分采用UG自带的3D四面体自动网格划分,单元尺寸为3mm。网格划分情况如图1所示。
图1 齿轮轴的网格划分
2.2 定义材料特性
齿轮轴材料选择20Cr,其材料属性如下:质量密度 7.850e3kg/m^3,杨氏模量205000N/mm^2(MPa),泊松比0.29,屈服强度等于540N/mm^2(MPa)。
2.3 施加约束和载荷
齿轮轴两端由两个滚子轴承支撑,限制了空间5个自由度,只允许转动。本论文只考虑齿轮轴齿轮处的应力进而对其进行优化,所以为齿轮轴加载荷及约束,安装轴承处加圆柱形约束,在轴端即与联轴器相连处施加大小为175.083N·m的扭矩。约束和载荷施加情况如图2所示。
图2 齿轮轴的载荷施加
2.4 求解和结果查看
UG软件的结构分析模块提供了强大的后处理功能,可以自动生成计算分析报告。齿轮轴的Von Mises应力图如图3所示。单元节点最大应力为325.8MPa,基本接近材料屈服强度的60%。总体来说,输出轴在强度方面不仅满足了设计要求,而且还有很大的裕量,材料的承载能力并没有得到充分的利用,这为齿轮轴的优化提供了很大的空间。
图3 Von Mises应力图
3 齿轮轴的优化
设计目标:
最小化 模型 重量
设计约束:
模型 Von Mises 应力,上限=320000.000000
设计变量:
a::p53,初值=38.000000,下限=32.000000,上限=38.000000
最大迭代次数:20
优化结果如图4,图5所示。
由图6迭代分析结果可以看出,在进行第三次迭代的过程中,应力值超出上限,所以,以第二次的迭代结果为准,此时的齿宽为35mm,应力值为295MPa,比较理想。所以常规设计方法得到的齿宽b=38应变为优化设计方法得到的齿宽b=35,此时的应力值为295Mpa,亦满足强度要求。
4 结束语
本论文利用UG的高级建模功能,在对行星齿轮减速器齿轮轴进行参数化建模的基础上,建立了有限元模型并进行了有限元分析,得到了齿轮轴的Von Mises应力图,替代了常规校核的设计方法,大大提高了设计效率。同时对齿轮轴的齿宽进行了优化设计,使得设计方案比原常规设计方案在齿轮轴重量上下降了2.02%。为多个设计变量(如模数、齿数)的单或多目标函数优化奠定了基础。
参考文献:
[1]孙恒,陈作模.机械原理.7版[M].北京:高等教育出版社,2002.
[2]濮良贵,纪名刚.机械设计.8版[M].北京:高等教育出版社,2001.
[3]吴春兰,王世杰.井下专用行星减速器中心齿轮有限元分析.沈阳工业大学学报,2004,26(4).
关键词:汽车零部件;快速设计;有限元分析
引言
快速设计是为实现加快新产品开发周期,提高设计效率减少重复劳动的目的而诞生的。不同于传统的设计,它储存了设计的整个过程,能设计出一簇而非单一的,形状和功能具有相似性的产品模型[1]。汽车零部件有很多零件虽然尺寸不同,但形状相差不大,建模的特征及顺序很接近,适合使用快速设计。
快速设计技术以及快速设计系统的开发是一个研究热点,国内外很多高校和研究机构都做出了大量的研究。太原理工大学的王铁教授提出功能元的概念,并将之用于手枪等的快速设计[2]。大连理工大学的马铁强教授将CAD模型的重用技术应用于产品的快速设计上[3]。中国科学技术大学的蒋维将混合模板库与锻压机床的快速设计进行了结合,并集成了CAE模块[4]。国外快速设计的研究一直走在我们的前头。波音、空客、福特等大型制造企业都有自己的快速设计系统。
我国已经是汽车产销大国。据中国汽车工业协会统计,据中国汽车工业协会统计,2013年我国新车销售2198.41万辆,同比增长13.87%,居世界第一。为了降低制造成本,提高产品的市场竞争力,整车制造厂商往往以客户的身份将汽车零部件以订单的方式下发到具有不同加工能力的中小型企业(供应商)生产。随着技术的发展,汽车更新换代速度加快,零部件制造企业如何快速响应,来协同整车制造企业正成为一个日益严重的问题。在我国制造业比较发达的上海和苏南地区,中小企业往往因为不能及时设计造成无法按期供应产品而导致跑单。
1.系统的功能要求
汽车零部件快速设计与有限元分析系统主要服务于中心型汽车零部件制造企业的,基于特征和参数化技术的,可以解决企业人才短缺,无法同时具备解决快速设计及有限元分析两部分内容的问题。一般中心型汽车零部件制造企业生产的产品具有类别相同,尺寸不同的特点因此,系统的应实现以下几个方面的功能:
1.1快速造型设计,输出三维模型和CAD图纸,显著提高零件的设计速度;
1.2零件的详细CAD模型和简化CAE模型的对应和设计参数的共享;
1.3零件有限元分析边界条件参数化,可实现快速有限元分析。
2.系统设计
2.1通过对同系列零件特征的分析,将特征进行归类,建立基于特征的参数表达式,通过特征的叠加得到同系列零件系列化的参数化模型。将零件进行归类、存档,构成零件的参数化模型库;
2.2运用KBE(Knowledge-Based Engineering)技术和软件工程的方法,以零件的参数化模型库为支撑,以通行的CAD/CAM软件UG作为开发平台,以UG/Open API和Microsoft VC++ 6.0作为开发工具和编程语言,开发零件的快速设计系统,提高设计速度;
2.3基于APDL(ANSYS Parametric Design Language,ANSYS参数化设计语言)建立零件的参数化有限元模型,实现特征和边界条件的参数化,并形成可用于分析*.txt文件。当用户在快速设计系统中输入参数建立零件的详细CAD模型的同时,系统将自动修改*.txt文件,重新生成分析文件。通过调用有限元分析软件ANSYS读取该*.txt文件对零件进行有限元分析,并可对零件进行结构优化设计。
3.结论
汽车零部件快速设计与有限元集成系统切中中心型汽车零部件制造企业不具备快速设计的问题。然而此类企业生产的产品具有类别相同,尺寸不同的特点。因此,系统根据实际情况来开发,具有明显的优势:
3.1通过建立零件的参数化模型库实现零件的快速设计;
3.2在完成零件详细的CAD模型的同时,系统自动完成简化CAE模型的建立,并传递设计参数,且所有模型都实现参数化;
3.3本系统的建立将极大的减少零件设计和分析的重复性工作,极大的提高设计效率。
参考文献:
[1]王良文,王传鹏,郭志强等. 基于ANSYS二次开发的塔式起重机快速设计系统[J]. 机械设计,2014,31(5):69-74.
[2]张浩浩. 基于功能元的快速设计平台研究[D]. 太原:太原理工大学硕士学位论文,2006.
[3]马铁强. 支持产品快速设计的CAD模型重用技术研究[D]. 大连:大连理工大学博士学位论文,2009.
[4]蒋 维. 基于CAD/CAE混合模板库的锻压机床快速设计、优化方法研究[D]. 合肥:中国科学技术大学博士学位论文,2008.
[5]刘巍巍,邵文达,刘晓冰. 面向机械产品创新与快速设计的知识建模方法研究[J]. 组合机床与自动化加工技术,2014,(5):27-30.
[6]王 志,张进生,于丰业等. 基于模块化的机械产品快速设计[J]. 机械设计,2004,21(8):1-3.
作者简介:
项忠珂(1984- ),男,江西上饶人,硕士,讲师,研究方向:结构优化设计,汽车安全技术。
关键词:超大型平头塔式起重机;平衡臂;优化设计;有限元
中图分类号:TH2文献标识码:A
Abstract:Taking the counterjib of T3000160 super large flattop tower crane as the research object,the structure is optimized. Firstly,the finite element simulation model of the counterjib is established. Then,the APDL algorithm language and parametric technique in Ansys are used to parameterize the design dimensions of the counterjib structure. Through the structural optimization,the optimal crosssectional dimension of the main structure of the counterjib is obtained,The results show that the overall strength and rigidity of the counterjib meet the design requirements,and the parametric design can improve the design quality of the construction machinery.
Key words:super large flattop tower crane,counterjib,optimized design,finite element
1引言
S着有限元技术的不断发展,计算机辅助设计在塔式起重机关键组成部件的优化分析设计中得到了广泛应用。计算机辅助设计及有限元分析技术的引进使用,使得塔机产品使用起来更加安全和高效。超大型平头塔式起重机作为塔机发展的方向,其结构复杂,工况多样,仅仅对其进行整体的综合系统设计是不够的,更应该关注其细节结构设计分析,关注计算机优化设计。
本论文选取T3000160超大型平头塔式起重机作为研究对象,利用计算机辅助设计技术对平衡臂结构进行有限元建模分析,使用APDL算法完成平衡臂结构的优化设计,达到降本增效的目的。
2Ansys有限元分析优化设计的有关概念121设计变量设计方案完成后,其中的设计元素可以用一组基本参数数值来表示,这一组参数数值就是所谓的设计变量。
22目标函数
在产品结构设计中,可以利用一些设计指标衡量一项设计方案的好坏,通过把设计指标参数化得到相关函数来表示这些指标,这些相关函数即是优化设计的目标函数。
计算技术与自动化2017年6月第36卷第2期郭纪斌等:基于Ansys的超大型平头塔式起重机平衡臂优化设计23约束性条件
所谓约束性条件是在对与目标函数相关的设计变量进行取值时加入的限制性条件。约束类型按照目标函数中设计变量的不同性质可分为边界性约束和性能性约束。
24合理性设计
所谓合理性设计是指满足设计方案所有给定约束条件(包括设计变量的约束和状态变量的约束)的设计。倘若给定约束条件中的任一条未满足,该设计就被认为是不合理的。而最优设计就是既能满足所有约束条件同时目标函数值又是最小的设计。
3超大型平头塔机平衡臂优化设计的步骤
在Ansys软件中可以用两种方式进行结构优化设计:图形交互式或者数据批处理来完成。在本论文中,选用数据批处理方式来进行平衡臂结构优化设计,以期提高优化设计效率。
由于用户采用优化方式的差异(批处理或GUI方式),Ansys优化设计步骤会有些许差别。本论文中平衡臂优化设计步骤如下:
31分析文件的生成1311参数化建立模型通过Ansys软件/PREP7命令把设计方案中的设计变量参数化建立数据模型的工作完成。对于本论文选定的T3000160超大型平头塔式起重机平衡臂,设计变量是拉杆和臂架弦杆的尺寸,如表1所示。
表1设计变量
设计变量1初值(mm)1变量含义X112001平衡臂下弦杆角钢L200X36的截面长度X21361平衡臂下弦杆角钢L200X36的截面长度X31651平衡臂拉杆圆钢Φ130的半径
312计算求解
Ansys中的求解器主要是对分析类型和分析选项在优化过程中进行定义,并完成载荷的施加,及对载荷步的指定,最后进行有限元分析计算,同时在分析过程中需要的数据都要在计算求解过程中指出。
在本论文平衡臂的优化分析中,solution 部分输入如下:
/SOLU
PREP7,
…
BEAM,P21X,5,PRES,-0.2c-5,…
Acc1,0,10000,0,
AUTO CP,0,0.65*2,
SOLVE,
FINISH。
313提取参数化分析结果
对分析结果进行提取并给相应的参数赋值,这些参数通常情况下包括目标函数和状态变量。完成本步操作使用POST1命令,尤其是与数据的存储、加减或者其他操作相关时,而对数据的提取通常用*GET命令(Utility Menu>Parameters>Get Scalar Data)来完成。
在本论文研究中,设置平衡臂总重量为目标函数。因为重量和体积成比例关系,对产品总体积的减小就相当于总重量的减少,因此把总体积设计为目标函数。在优化研究中,把轴向应力、节点位移设置为状态变量。这些参数的设定可以用下面的方法进行定义:
/POST1
ETABLE,evolume,VOLU,
QR SSUM
*GET,VOLUME,SSUM,DEFORMED,EVOLUME
…
QR,SMAX_E,LS,0,1
CP,ETAB,SMAX_E,0,1,
*GET,SMAX_E,SORT,MAX
…
*GETT,DYMAX1,NODE,1528,Z,Y
…
32对计算结果优化分析
建立完成分析文件之后,就可以利用计算机进行优化分析。在优化处理器中,这些相关参数的值被假定为一个设计序列,所有参数会在Ansys数据库中被自动设置为设计序列1。
4超大型平头塔机平衡臂优化设计结果
通过10次迭代计算完成对模型参数的优化,目标函数与设计变量的变化如图1―图3所示。
图1设计变量X1优化示意图图2设计变量X2优化示意图图3设计变量X3优化示意图通过上面的优化示意图可以看出,三个设计变量都是平衡臂主结构件的截面尺寸,经过优化计算,截面尺寸都得以减小,而与其相关的目标函数(平衡臂总体积)有总体减小的趋势。
在优化计算时不仅要减少平衡臂体积,同时其结构对强度和刚度的设计要求也要满足,所以本研究增设状态变量1(平衡臂端部位移)和状态变量2(截面危险节点的应力值)为研究对象,其优化过程如图4―图5所示。
图4状态变量1优化示意图图5状态变量2优化示意图从两个状态变量的优化过程可以看出,在经过多次迭代优化后各状态变量值变量均在设定值范围内变化,变化非常小。
目标函数的最优解在Ansys优化设计过程可以自动选出,在本论文中得出的最优解见表2。
由优化计算结果可以看出,平衡臂总质量由18.87吨优化到了17.13吨,p少了1.74吨,减重百分比为9.22%。与初始设计方案相对比,优化后主体结构件截面尺寸减小,从而降低了平衡臂总质量,达到了减轻平衡臂总重量的优化设计目标。通过对优化模型有限元分析结果的检查,其结构刚度、强度均符合设计要求,如表2所示。
本论文选用Ansys一阶优化方法对以平衡臂总质量为目标函数的方案进行计算优化,优化后平衡臂结构强度刚度均在设计允许值范围内。通过定义主要结构件尺寸的优化,平衡臂总重量减少1.74吨,降幅9.22%。
5结论
本论文以T3000160超大型平头塔式起重机平衡臂的优化设计为研究对象,采用现代设计理论和方法,使用主流有限元分析软件Ansys完成对平衡臂结构的优化分析,其过程主要如下。
(1)建立T3000160塔机平衡臂有限元分析模型,选用BEAM188,MASS21等作为模型分析单元,确保有限元模型结构、重量等参数的设置符合实际情况。
(2)各项参数满足设计方案要求。通过优化分析,得到平衡臂主体结构件的最优截面尺寸,同时有限元分析结果表明整体结构强度和刚度满足设计方案需求。
(3)本论文选取T3000160超大型平头塔式起重机的平衡臂进行有限元分析优化设计,为超大型平头塔式起重机平衡臂及其他相关部件结构的强度分析和设计提供一个理论性的支撑,同时提高工程机械设计质量,缩短设计周期,促进优化设计法在起重机设计中的应用。
参考文献
[1]张洪信.ANSYS基础与实例教程[M].北京:机械工业出版社.2013.
[2]周宁. ANSYS APDL高级工程应用实例分析与二次开发[M].北京:中国水利水电出版社. 2007.
[3]起重机设计规范GB/T38112008[S].中华人民共和国质量监督检验检疫总局.2009.
[4]马东辉,赵东.基于ANSYS和MATLAB的结构优化设计[J].制造业自动化.2013.35(10):106-108.
[5]李新华,张毅,戴琳.塔式起重机起重臂的模糊优化设计[J].机械与电子.2010(9):92-93.
[6]孙运见,孙乐.基于Jaumin的等参单元算法框架设计[J].计算机辅助工程.2015(1):63-67.
论文关键词:振动,时效,有限元分析
承德石油高等专科学校
无论在国内还是国外,振动消除残余应力都己经被广泛应用。目前,振动消除残余
应力不但被用在传统的重型机械和大型焊接构件、床身铸件、煤机产品、锅炉制造等方
面,而且许多其它行业也开始应用振动消除残余应力技术。目前,该项技术在铝合金试
件、化工设备领域、建筑领域、风机制造等方面都发挥着它的魅力。本文通过对试件进行振动时效处理,验证了对振动时效机理的分析及振动时效效果的判据。在此基础上,提出了用有限元模拟振动时效的想法,井作了初步的探讨。
一、振动时效前残余应力的有限元模拟
有限元分析以试验所用的对接焊薄板为研究对象,试件的尺寸单位为毫米,材质为低碳钢,焊缝与母材材质相同。我们近似认为它是以焊缝为对称轴,在考虑残余应力时只要考虑焊缝一侧即可。由于残余应力在沿焊缝方向的分布大致相同,所以将其看成无限大板,分析时选取一部分即可。
图1为模拟振前残余应力的网格划分及加载图。模型左端为焊缝处,延长度方向10等分,因靠近焊缝处应力较大,故在距左端0.1处进行网格细化。有限元采用面单元,119个节点,面面之间用强接触处理。左边和下边单向约束,右边自由,上边加载。
图2、3为第一、第二主应力分布图。
图1模拟振前残余应力的网格划分及加载图
图2第一主应力分布图
图3第二主应力分布图
二、振动时效的有限元模拟
上面通过对模型加载模拟了振动前残余应力的分布,现在要加上激振力,模拟振功
时效过程。图4.8为模拟激振力的网格划分及加载图,图4.9为Y方向上的应力。
图4模拟激振力的网格划分及加载图
图5Y方向上的应力分布
三、结果分析
加激振力前后沿远离焊缝方向节点的Y方向应力见表1。
表1节点对应的应力值
从上表可见,对残余应力的模拟与实际测量的应力值有一致的分布趋势。加上激振
力后残余应力的变化也与实际测量得到的变化趋势一致。当然,实际的振动时效过程是一个非常复杂的过程,涉及到各种参数的变化以及材料本身各种物理性能的变化。因此,用有限元来模拟整个振动时效过程是比较麻烦的事情,受到诸多方面因素的影响。如何模拟振动时效过程使其更贴近实际情况仍需做大量的工作。
参考文献
1 孙丰华等.振动时效消除金属工件残余应力效果检测.大连理工大学学报,1994,34(3):28-33
2 WalkerCAetal.Vibrato Srtess Relief一一 an Investigation of the Underlying Poreess.Eoll93 IMeeEh.proe.Josut.Meeh.Engrs,1995,209:52-57
3 房德馨等编著.金属的残余应力与振动处理技术.大连:大连理工大学出版社,1989
4 李洪升等.振动时效对焊接构件材料性能的影响.大连工学院学报,1987,26(3):41一50
关键词:CAD/CAE一体化,有限元分析,一段板簧
1.1导入CAD生成的模型
通常情况下,对于非常复杂的不规则线、面或体,在ANSYS中建立其几何模型将非常复杂。这时可以采用在熟悉的专用的CAD系统中建立几何模型,然后通过ANSYS提供的接口导入到ANSYS中,这样可以实现CAD/CAE一体化技术,提高效率。然而,从CAD系统中导入的模型很可能需要另外的大量的几何模型的修补工作。
1.2导入在CAD系统创建的模型以实现CAD/CAE一体化
1.2.2 以IGES格式实现导入
在PRO/E完成的模型被另存为IGES的格式可以导入ANSYS7.0中,但这种方式经过大量的检验证明是很有局限性的,只有当模型简单包括很少的特征才可能不产生基本特征的丢失。对于稍稍复杂的模型来说就会丢失一些特征特征,这就使我们不得不进行大量的模型修补工作。
1.2.3从PRO/E中启动ANSYS实现CAD/CAE一体化
ANSYS还具有从PRO/E中导入*.prt或*.asm的功能,但是按照ANSYS帮助里的提示不能将模型导入。经过实践研究,CAD的各种文件格式导入到ANSYS中都存在着一些问题。本文最后解决了从PRO/E中启动ANSYS实现了CAD/CAE的一体化。并发现也能够从ANSYS中将模型以*.prt或*.asm的格式导入。而且通过这种途径导入的模型或启动ANSYS绝对没有任何模型元素的丢失。
下面介绍实现的过程;
(1)在同机的同一工作系统下安装有Pro/E和ANSYS两种软件;
保证上述两种软件的版本兼容,Pro/E的版本不得高于同期的ANSYS的版本;
(2)开始?程序?CAD/CAM?ANSYS Release7.0?Utilities?ANS_ADSIN Utility?Configurationoptions?OK? Configuration Connection for Pro/E?选择ANSYSProduct?选择Graphics device name(NT: Win32)?会出现SUCCESS提示:
给出Pro/Engineer installation path?(在我们的机器上PRO/E的工作路径是
C:PROGRAM FILESPROE2001)会出现如下提示:
至此,PRO/E和ANSYS接口程序已经设置成功。
——PRO/E的系统实用工具主要集中Utilities 菜单中,个别集中在View菜单中。利用 Utilities菜单中的选项View菜单的个别选项可以系统各项设置值,定制工作环境,例如定制用户界面,加载和编辑配置文件等。科技论文,CAD/CAE一体化。。这里利用管理辅助应用程序 Auxiliary Applications将ANSYS Geom加到PART菜单下;用Register找到ANSYS安装目录下的protk.dat文件,选中这个文件,再运行start即可。
——完成第一步的设置,应该可以将文件*.prt或*.asm的格式导入ANSYS中,但是导入时程序却没有响应;完成以上两步的设置,在PRO/E中创建完模型后点击ANSYS GERM应该可以直接进入ANSYS中。有一超时功能中理论上的“无限时间”设置使用不恰当的日期值,这一日期值相当于2004年1月10日,所以到了2004年1月10日,代码会自动判断当前时间已经超过无限时间。科技论文,CAD/CAE一体化。。据PTC介绍,这种超时功能的主要软件模块是
“Name Service Demon”(nmsd.exe),所以要对nmsd.exe进行更新。要用一个网上下载的nmsd.rar的补丁来覆盖以超时的这个模块。更新了nmsd.exe后实现了点ANSYS GERM后启动了ANSYS7.0会自动生成*.anf文件,以上所做的工作均可以在Windows2000下顺利的运行。进入了ANSYS中在输入窗口输入命令:
/inut,文件名(不带后缀),anf
后再执行plot volume即可。科技论文,CAD/CAE一体化。。科技论文,CAD/CAE一体化。。经过此设置文件以.prt的格式导入ANSYS中都不会有任何特征的丢失。
经过以上三步的设置就会发现PRO/E和ANSYS的无缝接口。
3.3 在PRO/E中建立模型并在ANSYS中分析
3.3.1在PRO/E中建模(一段单板簧):
一、尺寸的选取
1)b,l由经验选取2
2)h的确定,要求43
3)H=5h
二、弹阻力的计算
1)弹阻力计算公式
2)弯矩公式
若令Q=0可得kl==l
=0 可得kl-2=l
则N=4
a)的确定
l=,l= b)弹阻力计算
最大负荷时弹阻力为 =0
最小负荷时的弹阻力为
3.3.2将PRO/E中建立的模型导入ANSYS中没有几何数据的丢失:
3.3.3在ANSYS中对导入的模型进入前处理器
(1)定义单元类型,选取菜单Main Menu>Preprocessor>Element Type>Add/Edit/Delete弹出Element Type对话框,单击按钮Add弹出Library of Element Types对话框,选择相应的单元类型,单击OK按钮返回Element Types对话框,单击Close按钮。科技论文,CAD/CAE一体化。。
(2)定义材料属性:选取菜单Main Menu>Preprocessor>Materical Props>Materical Models 弹出Define Materical Models Behavior对话框,在右边的MatericalModels Available 框中连续双击选择Structural>Linear>Elastic>Isotropic,弹出Linear Isotropic Properties for…..对话框在EX和PRXY选择相应的值,单击按钮返回DefineMaterical Model Behavior 对话框,选择该对话框菜单Define MaterialModel Behavior>Materical>Exit.定义完单元类型和材料属性后,对于从PRO/E中导入的模型就可以进行网格划分了
(3)进行网格划分:单击MeshTool对话框中Mesh按钮弹出MeshAreas拾取对话框,单击pick all按钮执行网络划分操作。科技论文,CAD/CAE一体化。。
(4)退出前处理器MainMenu>Finish.
(5)并且对所做的划分执行存储,单击ANSYS Tooler窗口中的SAVE_DB按钮。
3.3.4执行求解,当求解结束后,弹出黄色提示信息对话框显示Solution is done!表示求解成功完成。观测等效应力动画结果。
论文关键词:光碟机,热量,ANSYS,分析
随着机电产品使用时间的增加,通电时间越长必然导致集成芯片发热量增大,其散热问题是一个必须要考虑的问题。如果热量不能以合适的方式及时的散出去,必将影响机电产品的功能。光碟机就是一个比较典型的机电产品,其散热问题的考虑是一个很经典的设计。ANSYS是目前应用比较广泛的有限元分析软件,具有强大的有限元分析功能和人性化的人机交互界面,使用该软件,能够有效地降低分析成本,缩短设计时间[1]。本文通过对这一问题的分析研究,对光碟机的热分析问题进行了深入的分析,采取了合情合理的散热方式,采用有限元分析软件ANSYS9.0对散热垫的散热状况进行散热模拟,并对分析结果进行对比。
1 散热理论
热分析是基于能量守恒原理的热平衡方程[2]:
1.1辐射
辐射是指机体以发射红外线方式来散热,物体发射能量并被其他物体吸收转化为热量能量交换[2]。当皮肤温高于环境温度时,机体的热量以辐射方式散失。辐射散热量与皮肤温、环境温度和机体有效辐射面积等因素有关。在一般情况下,辐射散热量占总散热量的40%。当然,如果环境温度高于皮肤温,机体就会吸收辐射热。
1.2传导
传导就是机体通过传递分子动能的方式散发热量,几个完全接触的物体之间或同一物体不同部分之间由于温度梯度而引起的热量交换[2]。当人体与比皮肤温低的物体(如衣服、床、椅等)直接接触时,热量自身体传给这些物体。临床上,用冰帽、冰袋冷敷等方法给高热病人降温,就是利用这个原理,CPU上的平板式散热片[3]也是利用了传导的原理。
1.3对流
对流就是空气的流动,这是以空气分子为介质的一种散热方式,物体表面与周围环境之间,由于温度差而引起的热量交换[2]。与身体最接近的一层空气被体温加热而上升,周围较冷的空气随之流入。这样,空气不断地对流体热就不断地向空气中散发。对流散热量的大小,取决于皮肤温与环境温度之差和风速。
1.4蒸发
液体汽化需要热量,自人体表面每蒸发1ml水,可带走2.32/kJ热量。当气温高于皮温时,其他几种散热方式都失去作用,蒸发便成为唯一的散热途径。
2 光碟机介绍
2.1 光碟机组成
光碟机组成按结构功能来划分主要有三大部分,一是机芯,二是PCBA,三是承载机构和外壳等,如图1所示:
图1 碟机结构
Fig1. ODD structure
2.2光碟机热量散发系统
散热系统主要有:下盖(BC),散热垫(Heat sink),集成芯片(IC)和PCB四部分相接触的物体组成,如图2所示:
图2 散热系统
Fig2. Heat dissipating system
3 热传导散热分析
ANSYS的热分析是基于能量守恒原理的热平衡方程,通过有限元法计算各节点的温度分布,并由次导出其他热物理量参数[2]。电子元器件功率的不断提升导致了更多热量的产生[3],因而散热显的极为重要[4]。本例中采用稳态分析,参数设定:自然对流条件(10W/m2.K),热源设定6W(12V*0.5A),光碟机內部环境温度设定为42℃,光碟机器外部环境温度设定为30℃。各零件的热传导系数如表1:
表 1
零件缩写
热传导系数k(W/m.K)
BC
18.5
Heat sink
3.2
IC
50
PCB
0.36
4 分析结果
经过上述设置后,可得到散热垫的温度场分布图,如图3所示:从图中可看出,使用该散热垫后最高温度可达165.92℃。
图3 温度场分布
Fig3.Temperature field distribute
5 结束语
ANSYS不仅能用于常规工程结构问题的静态或动态有限元分析,还能在诸如流体力学,热力学(温度场)、电磁场等方面进行有限元的模拟与计算[5]。一个成熟的热设计可以为为我们带来一个可靠的产品,同时也为我们的使用创造舒适性[6]。本例中通过对散热垫模拟现场情况的分析,得出散热垫的温度场分布,进而可比较不同散热垫带来的不同散热效果,选择合适的散热垫来散热,为碟机的散热设计提供了有力的数据支撑。同时也值得其它需要散热的产品设计者借鉴学习。
参考文献:
[1]郝兆明.基于ANSYS组合模具过盈配合有限元分析[J]. 机械工程师,2008(5)
[2]王建江,胡仁喜,刘英林.结构与热力学有限元分析[M].机械工业出版社,2008(3)
[3]张远波.CPU散热片结构优化设计[J].华中科技大学学报.2008年第4期
[4] 卢中林.电子产品的散热设计[J].可靠性分析与研究(集成电路与元器件卷),2004,(12)
[5]Saeed Moaveni.ANSYS理论与应用[M].电子工业出版社,2003(6)