时间:2023-03-20 16:22:27
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇人工智能论文范例。如需获取更多原创内容,可随时联系我们的客服老师。
截至目前,古典控制方法一直都无法被人工智能控制技术所取代。但是随着时代的进步和发展,现代控制理论也日臻完善,人工智能软件技术(包括遗传算法、模糊神经网络、模糊控制以及人工神经网络等)逐渐取代了传统的控制器设计常规技术。这些方法有着许多的共同之处:都要具备不同类型和数量的描述特性和系统的“apriori”技术。这些方法都有着显著的优势,所以工业界都做出了不断的尝试,旨在进一步开发和使用这类方法,但是工业界又急于开发该系统,从而使其性能更加优异,系统更加简单、易操作。直流传动的控制程序较为简单,在过去得到了较为广泛的应用。但是不可忽视的是,它们有着难以克服的限制性因素,而且随着DSP技术的不断进步和发展,直流传动的优势逐渐隐没,性能更高的交流传动逐渐取代了直流传动。但近几年,部分厂商逐渐改良工艺,更高性能的直流驱动产品涌入市场,但是人工智能技术却鲜少提及。在未来几年,使用人工智能的直流传动技术将在更大范围内得到推广和普及。
交流传动瞬态转矩具备较高的使用性能,它有着较强的控制性,仅次于直流电机。目前,直接转矩控制(DTC)和矢量控制(VC)是比较常见的高性能交流传动控制方法。当前,不少厂商都顺应市场形势,相继推出了矢量控制交流传动产品,而且无速度传感器的矢量控制产品也大量上市。在性能较高的驱动产品中广泛使用AI技术,将会进一步提高产品的使用性能,截至目前,仅有两个厂家在其生产的产品中运用人工智能(AI)控制器。而在十五年前,日本和德国的研究人员提出了直接转矩控制这一概念,经过了十年的发展演变过程,ABB公司面向市场,将直接转矩控制的传动产品引入市场,让人们能够直接感受直接转矩控制的优势,从而开展相关的研究。可以预见,人工智能技术将会运用到直接转矩控制中,常规的电机数学模型将会被替代,从而退出市场。
人工智能控制器主要分三种类型,即:增强学习型、非监督型和监督型。当前,常规的监督学习型神经网络控制器的学习算法和拓扑结构已基本成型,这在一定程度上限制了此种结构控制器的生产和使用,导致计算机计算时间增长,而且常规非人工智能学习算法在具体应用上效果不明显。而要克服这些困难,最好的办法就是采用试探法和适应神经网络。常规模糊控制器的模糊规则表和规则初值是“a-priori”型,这加剧了调整难度。假若该系统无有效的“a-priori”信息作为支撑,那么将导致系统陷入瘫痪。而要有效克服此类缺陷和困难,就可以运用自适应模糊神经控制器,保证系统的正常运转。
二、电力系统中的智能控制
当前,世界各地的专家和学者都将眼光聚焦于智能控制理论的研究,研究表明,只要合理运用智能系统,就能在很大程度上提高电力系统控制水平,推动我国电力传动系统步入新的阶段。市面上广泛使用的交直流传动系统在控制技术和手段上已日臻成熟,闭环控制、矢量控制都有着较好的运用前景。PID控制法作为最新的控制方法,能较好地完成数学建模需承担的控制任务,但是在具体实践中,电力传动系统表现出较强的不稳定性,随工作状态的变化,电机参数也不断变化着,这加剧了传统建模控制的难度。
以上论证说明:人工智能技术可以在人类隐性智慧定义的工作框架内模拟人类显性智慧(人类智能)生成知识,创建主客双赢的策略解决各种复杂问题。而这是现今其他各类技术做不到的。不过,由于在人工智能系统工作的基本过程中,(1)中客观存在各种不确定性,人类给定的知识未必能够理想地体现客观规律,也未必能够完全满足求解问题的需要,(2)中人类预设的求解目标也不见得完全合理,(3)中人工智能系统各个环节必然存在各种不理想性。因此,人工智能系统对人类显性智慧能力的模拟不可能完全到位,人工智能系统提供的问题解答也有可能不如人类自己求出的解答。换言之,人工智能系统所模拟的人类显性智慧能力,原则上不可能超过人类自己的显性智慧能力。如果说人工智能系统确实也有超人的地方,那主要是它的工作速度、工作精度、持久能力等因素,而不可能是显性智慧中的智慧品质。至于一些人所宣传的机器超越人类甚至机器淘汰人类的说法,是没有根据的。无论是人工智能系统,还是其他各种机器系统,它们共同的问题之一是:机器没有生命,没有目的,不可能自主发现应当解决的实际问题,不可能自主形成机器的智慧,尤其不可能无中生有地形成超越人类和淘汰人类的荒唐愿望,因此更不可能产生淘汰人类或灭绝人类的行为。
2人工智能与信息技术的关系
图2的人工智能系统模型表明,完整的人工智能技术系统必须具有如下环节:信息获取(感知)、信息传递(通信)、信息处理(计算)、知识生成(认知)、策略创建(决策)、策略执行(控制)以及反馈学习优化等基本技术系统,这正像“人”这个智能系统必须具有感觉器官(信息获取)、传输神经系统(信息传递)、思维器官(信息处理、知识生成、策略创建)以及执行器官(策略执行)。 其中传感(感受信息)、通信(传递信息)、计算(处理信息)、控制(执行信息)等技术属于信息技术。可见,人工智能系统是一个全局整体,其中包含着传感、通信、计算、控制等信息技术环节;这正像人这个智能系统是一个全局整体,其中包含感觉器官、传输神经、丘脑和执行器官这些信息器官。如果把人工智能系统称为完整的人工智能系统,而把其中的知识生成和策略创建称为核心人工智能系统,那么,则有:完整的人工智能系统=核心人工智能系统+信息技术系统其中,核心人工智能系统处于完整人工智能系统的核心,处理知识和智能层次的问题;信息技术系统处于完整人工智能系统的外周,处理信息层次的问题,同时担任核心系统与外部环境之间的两端接口:一端是从环境获取本体论信息(传感),另一端是对环境施加智能行为(控制)。这就表明,信息技术系统提供给人类的服务主要是方便快捷的信息共享,而不可能提供如何认识事物本质的服务(因为这需要知识),更不可能提供如何解决问题的服务(因为这需要智能策略)[2]。
3“新型”信息技术
近十多年来,先后出现了大数据、云计算、物联网、移动互联网以及各种互联网的应用技术。人们把它们称为“新型”信息技术或“新一代”信息技术。深入分析可以发现,这些新型信息技术的核心技术正是核心人工智能系统的知识生成和策略创建技术。不妨以大数据技术为例加以说明。图3表示了大数据技术系统的工作流程。由于有着多种来源、多种背景以及多种格式,大数据通常是病态结构或不良结构的大规模数据集合,其中可能包含垃圾、病毒和黑客攻击程序。因此,如图3所示,大数据技术的第一个环节就是智能分类:把无用的数据识别分类出来加以过滤和抑制,把有用的数据按照某些特征进行分类,再分门别类地送到恰当的云计算(和云存储)系统,进行相应的信息处理,为知识生成(知识挖掘)做好必要的准备。通过知识挖掘生成了足够的知识之后,才可以把这些知识(结合求解目标)转换成为用来解决问题的智能策略。其中,智能分类、知识挖掘和策略创建都是人工智能的基本技术。可见,如果没有这些人工智能技术,大数据就只能是数据,而不可能转换成为有用的知识和可以用来解决问题的智能策略。
由此可知,大数据技术的核心就是人工智能技术,可以把它比较确切地称为面向大数据的智能技术。而把它称为新型信息技术则没有真正抓住大数据技术的要害和本质,模糊了人们对大数据技术和人工智能技术的认识,不利于大数据技术的研究和发展,也不利于人工智能的研究和应用。真正的智能物联网模型不是别的,正是图2所示的模型。如图2所示,只要在综合知识库内设置“对物控制的目标”,那么“外部世界的物”的信息就经由传感器获得,经过通信系统传送到计算系统并在这里进行必要的处理即把信息变成适用的信息,接着由认知系统转换成为知识,然后由决策系统根据控制目标把信息和知识转换成为智能策略,智能策略再经通信系统传到执行系统之后转换成为智能行为反作用于所关注的“物”,使它的状态符合预设的目标。近来人们在密切关注着“互联网+”。其实,“互联网+”可以有两种不同的理解。一种理解是当前人们所关注的互联网推广,这里的“+”就相当于信息化的“化”,就是互联网的各种应用。另一种更有意义的理解则把“互联网+”理解为互联网升级,就是把以计算机为终端的现有互联网升级为以人工智能系统为终端的智能互联网。这就是2015年全国两会期间全国政协委员的“中国大脑”提案。应当认为,互联网推广,即把互联网应用到各行各业是完全必要的,这是信息化建设的正常要求。但是,从信息化建设的发展大势来看,互联网升级即把当前常规互联网升级为智能互联网则更为必要,这将为中国信息化建设注入更为强大的新活力,是转变经济发展方式的需要,是国民经济产业升级的需要。综上所述,大数据技术、云计算技术、智能物联网技术,其实都是人工智能技术的相关具体应用。可以这么说,如果没有人工智能技术,单凭信息技术很难有效地应对大数据和物联网以及未来更多更复杂的技术挑战。
4结束语
人工智能是近年来随着计算机技术的不断发展的一个学科分支,是新兴的高科技技术。人工智能与纳米科学以及基因工程被人们称之为二十一世纪的三大尖端科技。人工智能的研究范围涉及较广,在诸多不同的领域都有涉及,比如:数学、认识科学、哲学、心理学以及计算机科学等多门学科,不同学科领域以人工智能为信息交流平台,进行相互的影响渗透,进而形成一门具有综合性质的科学。因此,人工智能也可以称之为社会科学与自然科学的交叉科学。人工智能主要是通过对计算机的研究,对人的某些思维以及智能行为进行模拟的学科,其主要被应用在专家系统、语言的理解、智能控制、遗传编程机器人工厂以及机器人技术等方面。一般而言,对于人工智能的研究的主要目的就是让机器代替人做一些复杂的工作。电气工程的研究长久以来都局限在电气化的方面,随着现代化科学技术的进步以及信息计算机技术的发展,电气工程自动化中逐渐向人工智能的趋势发展,通过引入人工智能进入电气工程自动化的领域,对人类大脑进行模拟并进行数据与信息的分析、收集、处理以及反馈,经过信息的自动化生产,进而提高电气工程的生产效益,进而推动电气工程产业结构的优化与升级。
2.人工智能在电气工程自动化中的应用
2.1人工智能在电气产品优化设计中的应用在电气工程运行过程中,进行电气设备的设计是十分复杂的,其设计不但对电气自动化的各个专业学科与内容有所设计,而且要求电气设备设计人员具有较高的专业文化知识以及丰富的设计经验,进行电气设备的设计只有把电气知识、经验以及科学进行有机的融合,才能够对电气产品的科学性有所保障。人工智能在电气产品设计中的应用有效的对一些依靠人脑无法迅速解决的复杂计算以及模拟过程进行解决,进而大大的缩短了产品设计的周期,提高电气工程的工作效率,并且设计出的电气产品极具科学性与实用性。专家系统对于电气工程的开发性设计有积极的意义,而遗传算法主要应用于产品的优化设计,在进行产品设计的过程中,要求设计人员应该具备设计经验以及较强的智能软件应用的能力,从而便于依据不同情况的沾边选择不同的算法对产品进行高质量的设计。
2.2人工智能在电气设备故障诊断中的应用在进行电气设备故障的诊断时,电气企业通常会使用人工智能中的人工神经网络、模糊理论以及专家系统的引用,其应用诊断的范围包含:发电机、电动机、变压器等的故障诊断。在电气设备中,电气工程遇到故障问题时,所呈现的现象是相对复杂的,运用传统的处理技术很难对问题进行及时准确的查找与判断,人工智能技术对于这种问题科技进行高效的解决,例如:当发电机的设备出现故障时,故障所呈现的不确定性、复杂性以及非线性的特征都是可以通过人工智能中的专家系统以及模糊理论进行综合的处理,人工智能技术大大的提升了电气设备故障诊断的准确性。
2.3电气工程运行过程中的智能控制目前,在电气工程的自动化中智能控制的应用已经十分广泛,逐渐的发展成为电气工程自动化领域中的未来趋势。由于电气设备的控制工作比较复杂且极具综合性,对控制系统的技术含量以及计算的精确度都有比较高的标准,通过对人工智能中的模糊理论、人工神经网络以及专家系统的综合应用,有效的提高了电气设备的计算精度以及计算速度,不仅有利于节约电气企业的资源,而且对实现电气企业资源的优化配置具有积极的意义。
2.4人工智能在电力系统中的应用在电力系统中应用比较普遍的人工智能主要有:启发式探索、专家系统、人工神经网络以及模糊理论。其具体的应用主要表现为:一是,专家系统。作为一个十分复杂的程序系统,专家系统集知识、规则以及经验于一体,主要工作程序是通过运用电气系统中某领域的专业经验以及专业知识对所遇问题进行分析与判断,接着进行专家决策的模拟,对需要专家解决的问题进行处理,而且在专家系统的使用过程中,应该依据现实情况对系统中的知识库、数据库以及规则库的信息与数据进行更新,从而使用电力系统的应用需要。二是,人工神经网络。其学习的方式十分灵活,存储方式也是呈现分布式,在大规模的信息处理中得到广泛的应用,人工神经网络具有较强的识别与分类能力,对与模型进行合理的分类并进行科学的选择,同时其与元件进行关联分析相结合能够对复杂的电力系统进行故障的诊断,而且能对故障进行识别与定位。三是,模糊理论。模糊理论主要应用于系统规划、潮流计算以及模糊控制之中。有利于操作界面的优化以及工作流程的简化,而系统可以进行自动日志与报表的生成与保存,进而提高系统日常操作的效率,对系统的安全运行具有积极的作用。
3.总结
关键词:人工智能计算机技术
一、人工智能的定义
“人工智能”(ArtificialIntelligence)一词最初是在1956年Dartmouth学会上提出的。人工智能是指研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机,人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。
人工智能理论进入21世纪,正酝酿着新的突破,人工智能的研究成果将能够创造出更多更高级的智能“制品”,并使之在越来越多的领域超越人类智能,人工智能将为发展国民经济和改善人类生活做出更大贡献。
二、人工智能的应用领域
1.在管理系统中的应用
(1)人工智能应用于企业管理的意义主要不在于提高效率,而是用计算机实现人们非常需要做,但工业工程信息技术是靠人工却做不了或是很难做到的事情。在《谈谈人工智能在企业管理中的应用》一文中刘玉然指出把人工智能应用于企业管理中,以数据管理和处理为中心,围绕企业的核心业务和主导流程建立若干个主题数据库,而所有的应用系统应该围绕主题数据库来建立和运行。换句话说,就是将企业各部门的数据进行统一集成管理,搭建人工智能的应用平台,使之成为企业管理与决策中的关键因子。
(2)智能教学系统(ITS)是人工智能与教育结合的主要形式,也是今后教学系统的发展方向。信息技术的飞速发展以及新的教学系统开发模式的提出和不断完善,推动人们综合运用超媒体技术、网络基础和人工智能技术区开发新的教学系统,计算机智能教学系统就是其中的典型代表。计算机智能教学系统包含学生模块、教师模块,体现了教学系统开发的全部内容,拥有着不可比拟的优势和极大的吸引力。
2.在工程领域的应用
(1)医学专家系统是人工智能和专家系统理论和技术在医学领域的重要应用,具有极大的科研和应用价值,它可以帮助医生解决复杂的医学问题,作为医生诊断、治疗的辅助工具。事实上,早在1982年,美国匹兹堡大学的Miller就发表了著名的作为内科医生咨询的Internist2Ⅰ内科计算机辅助诊断系统的研究成果,由此,掀起了医学智能系统开发与应用的。目前,医学智能系统已通过其在医学影像方面的重要作用,从而应用于内科、骨科等多个医学领域中,并在不断发展完善中。
(2)地质勘探、石油化工等领域是人工智能的主要作用发挥领地。1978年美国斯坦福国际研究所就研发制成矿藏勘探和评价专家系统“PROSPECTOR”,该系统用于勘探评价、区域资源估值和钻井井位选择等,是工业领域的首个人工智能专家系统,其发现了一个钼矿沉积,价值超过1亿美元。
3.在技术研究中的应用
(1)在超声无损检测(NDT)与无损评价(NDE)领域中,目前主要广泛采用专家系统方法对超声损伤(UT)中缺陷的性质、形状和大小进行判断和归类;专家运用超声无损检测仪器,以其高精度的运算、控制和逻辑判断力代替大量人的体力与脑力劳动,减少了任务因素造成的无擦,提高了检测的可靠性,实现了超声检测和评价的自动化、智能化。
(2)人工智能在电子技术领域的应用可谓由来已久。随着网络的迅速发展,网络技术的安全是我们关心的重点,因此我们必须在传统技术的基础上进行网络安全技术的改进和变更,大力发展数据挖掘技术、人工免疫技术等高效的AI技术,开发更高级AI通用和专用语言,和应用环境以及开发专用机器,而与人工智能技术则为我们提供了可能性。
三、人工智能的发展方向
1.专家系统是目前人工智能中最活跃、最有成效的一个研究领域,它是一种具有特定领域内大量知识与经验的程序系统。近年来,在“专家系统”或“知识工程”的研究中已出现了成功和有效应用人工智能技术的趋势。人类专家由于具有丰富的知识,所以才能达到优异的解决问题的能力。那么计算机程序如果能体现和应用这些知识,也应该能解决人类专家所解决的问题,而且能帮助人类专家发现推理过程中出现的差错,现在这一点已被证实。
2.智能信息检索技术的飞速发展。人工智能在网络信息检索中的应用,主要表现在:(1)如何利用计算机软硬件系统模仿、延伸与扩展人类智能的理论、方法和技术。(2)由于网络知识信息既包括规律性的知识,如一般原理概念,也包括大量的经验知识这些知识不可避免地带有模糊性、随机性、不可靠性等不确定性因素对其进行推理,需要利用人工智能的研究成果。
3.SOAr是一种通用智能体系结构,其始终处在人工智能研究的前沿,已显示出强大的问题求解能力,它认为机器人的开发是人工智能应用的重要领域。在它的研究中突出4个概念:(1)所处的境遇机器人不涉及抽象的描述,而是处在直接影响系统的行为的境地。(2)具体化机器人有躯干,有直接来自周围世界的经验,他们的感官起作用后会有反馈。(3)智能的来源不仅仅是限于计算装置,也是由于与周围进行交互的动态决定。(4)浮现从系统与周围世界的交互以及有时候系统的部件间的交互浮现出智能。目前,国内外不少学者都对机器人足球系统颇感兴趣,足球机器人涉及机器人学、人工智能以及人工生命、智能控制等多个领域。足球机器人系统本身既是一个典型的多智能体系统,是一个多机器人协作自治系统,同时又为它们的理论研究和模型测试提供一个标准的实验平台。
参考文献:
[1]元慧.议当代人工智能的应用领域和发展状况[J].福建电脑,2008.
[2]刘玉然.谈谈人工智能在企业管理中的应用[J].价值工程,2003.
[3]焦加麟,徐良贤,戴克昌.人工智能在智能教学系统中的应用[J].计算机仿真,2003,(8).
[4]周明正.人工智能在医学专家系统中的应用[J].科技信息,2007.
[5]张海燕,刘镇清.人工智能及其在超声无损检测中的应用[J].无损检测,2001,(8).
[6]马秀荣,王化宇.简述人工智能技术在网络安全管理中的应用[J].呼伦贝尔学院学报,2005,(4).
机械电子产品虽然结构相对简单化,没有掺杂过多的运动元件或者部件,但是它的内部结构是非常复杂的,若想要产品的性能得到提高,就必须将传统落后的笨探究机械电子工程与人工智能的关系姚磊河北农业大学机电工程学院河北保定071000重机械面貌彻底抛弃,缩小物理体积。由于机械电子工程所涉及和利用到的内容非常广泛,所以电子机械工程是一种具有极强综合性的学科。机械电子工程的基础是传统机械工程,同时充分利用计算机的辅助作用,来强化机械电子工程的核心力量。这使得机械电子工程与其他学科相比较而言更能体现出科学性,并且能够保证满足系统配置方面的设计需求。机械电子工程充分利用到专业设计模板来完善机械电子设备,发挥设计应用中的模板作用,这样有利于保证机械电子工程设计能够顺利进行。机械电子工程产品在设计结构方面较为简单,并且元件利用数量也是相对较少的。所以在这种情况下,要通过持续提升产品性能,强化机械电子产品质量,优化机械电子产品的结构,来满足消费者的更多需求。
2人工智能的定义及特点
何为人工智能,人工智能是一门综合了计算机科学、信息论、控制论、神经生理学、语言学、心理学、哲学等多门学科的交叉性学科,是21世纪最伟大的三大学科之一。人工智能的发展其实经历了一段非常漫长的历程,人工智能在计算机开始发展的初期就已经被应用到了各个方面,只是它在起初所发挥的作用相对而言是非常小的,并没有得到足够的重视或者引起足够的注意。但是随着时代的进步,人工智能已经摆脱了过去相对弱小的形象,发生了翻天覆地的变化,得到了很大的改善。人工智能发生的这些转变正是人类对计算机的应用和熟悉程度的转变。信息时代的趋势已经使人工智能技术得到了很大的强化,在社会中的地位也越来越重要。机械电子工程的发展需要依靠人工智能的力量和支撑,相信随着人们对人工智能更加深入的研究,人工智能模仿人类思维的能力定会越来越强大。只有对人工智能不断创新和改善,才能在计算机语言理解和应用方面得到更大的进步,才能更加符合机械电子工程的发展需求。
3机械电子工程与人工智能的关系
机械电子工程在应用上不稳定主要表现在系统输入输出的问题,即利用数学方程来建立模型,并且依靠人工智能来完成对传统知识学习的更新,这种解析数学的相关方式在机械电子工程中的应用是非常广泛的。传统机械工程方式的应用是非常简单的,但是随着时代的发展和科学技术的进步,新时期出现的机械电子工程系统在处理各种问题时是相对复杂的,会通过配置多种系统对信息类型来进行区分。但是人工智能在机械电子工程领域还存在着一些不确定的因素,在计算机电子工程中,人工智能信息处理的方式主要采用的是解析数学措施,其应用方式主要是利用网络神经系统对网络系统进行合理安排,将神经系统迷你成人脑的结构,根据相关数字所传达出来的信号,对已经搜集到的资源进行参数分析。其实,人工智能在机械电子工程中的应用是有差异的,这种差异性也是人工智能的一种特点,没有办法对网络系统进行有效的描述,同时在建设系统资料库的过程中进行严密数学分析,在分析过程中若是出现错误会直接影响到网络系统的建设,甚至导致网络系统的崩溃。创新工程方式,加强人工智能信息的服务建设是保证机械电子工程能够顺利开展和进行的关键。随着时代的发展和人民日益增长的需求,生活方式的单一性早已不能满足社会的发展需求速度。不断完善的综合性人工智能系统必将会使生产模式发生转变。利用模型推理系统和神经网络系统的优势来补充综合性人工智能,逐步完善机械电子工程的发展,网络系统得到完善的必然结果就是模型推理系统。同时,模型推理系统也是二者功能性融合的重要体现。人工智能通过网络信息资源进行完整性表达,完善机械电子和人工智能的密切关系。
4结束语
自二十世纪九十年代以来,意识问题受到高度关注,众多的哲学家、心理学家与神经科学家在此领域开展深入的研究工作。与此同时,人们也开始使用计算方法试图让机器装置拥有意识能力。这类研究逐渐被称为“机器意识”的研究。早期有关机器意识的研究比较初步,研究工作较少得到学术界的认同,甚至早些年提到“机器意识”还有不合时宜的顾虑。
尽管哲学上关于“机器意识”有着不同观点的争论,但随着研究工作的不断深入,一些有远见的专家学者开始充分认识到开展机器意识研究的重要意义,并专门撰文进行了精辟论述。比如,英国皇家学院电子工程系的Aleksander教授根据学术界从上世纪九十年代到本世纪对机器意识态度的转变,指出机器意识的影响与日俱增,并预计了机器意识对科学与技术发展的潜在影响,特别是在改变人们对意识的理解、改进计算装置与机器人概念等方面的贡献尤为重大。
无独有偶,美国伊利诺伊大学哲学系Haikonen教授则专门撰文强调机器意识是新一代信息技术产业发展的新机遇,他认为新产品与系统的发展机会起因于信息技术的发展,而现有的人工智能基于预先编程算法,机器与程序并不能理解其所执行的内容。显而易见,不考虑意识就没有对自身行为的理解,而机器意识技术的涌现可以弥补这一缺失,因此机器意识技术可以为信息技术产业的发展提供新的契机。意大利巴勒莫大学机器人实验室的Chella教授则指出,开展机器意识不仅是一种技术挑战,也是科学和理论上开展人工智能和机器人研究的新途径。最近,土耳其中东技术大学的Gök和Sayan两位学者进一步认为,开展机器意识的计算建模研究还有助于推进对人类意识现象的理解,推动构建更加合理的意识理论。
上述这些学者的论述,无疑说明,机器意识研究不但对深化人工智能的研究有着重要的推动作用,对从科学上解释神秘的意识现象也同样具有非同寻常的意义。正因为机器意识研究有着如此重要的科学意义和推动未来信息技术革新的潜在价值,随着最近十年的研究发展,该领域已经成为学界广泛关注的热点。与此同时,数量相当可观的研究成果和实验系统已逐步形成,有些成果已经被运用到实际机器认知系统的开发之中。机器意识研究已经成为了人工智能最为前沿的研究领域。
机器意识研究的现状分析
2006年之前的有关机器意识的研究状况,英国皇家学院电子工程系的研究团队已经做过了比较全面的综述。因此,我们这里主要就在此之后国际上有关机器意识的研究概况和发展趋势进行分析。据我们的文献检索,截止到2015年底,在机器意识研究领域发表过的学术论文超过350余篇,其中最近十年发表的论文占了一半以上。归纳起来,由于对意识的哲学解释不同,目前机器意识方面的主流研究往往是以某种意识科学理论为出发点的具体建模研究和实现。由于涉及到的文献过多,无法一一列举,我们仅就一些影响较大的典型研究进行分析。
在意识科学研究领域,一种较早的理论观点是用量子机制来解释意识现象,这样的出发点也波及到有关机器意识建模的研究。利用量子理论来描述意识产生机制的有效性并不是说物质的量子活动可以直接产生意识,而是强调意识产生机制与量子机制具有跨越尺度的相似性。近年来,意识的量子模型发展又有了新的动向。比如,作为量子意识理论的进一步发展,中国科学院电子学研究所的高山(Gao Shan)提出了意识的一种量子理论,研究了量子塌缩与意识之间的关系,假定量子塌缩是一种客观的动态过程。日本Akita国际大学的Schroeder另辟蹊径,在构建统一意识模型中不涉及量子力学的量子相干性方面做出了全新的探索,主要目标是说明现象意识能够依据量子力学的物理解释,用量子力学的形式化代数性质来描述。此外,俄罗斯Lebedev物理研究所的Michael B. Mensky利用意识的量子概念提出了一种主观选择的数学模型,说明意识和超意识的特性如何能够通过简单的数学模型给出。当然,更多的是有关意识量子机制描述的可能性争论,正反两方面的观点都有。特别是在2012年的Physics of Life Reviews第9卷第3期,以Baars和Edelman所著论文“Consciousness, biology and quantum hypotheses”为核心,10余名相关领域的学者分别撰文对是否能够通过量子机制来描述意识现象展开了多方位的辩论。最近,Susmit Bagchi从分布式计算的角度,较为全面地讨论了生物演化与量子意识之间的关系。遗憾的是,迄今为止,学术界对此问题尚未达成一致的结论。
在机器意识研究中,第二种有重大影响的理论观点就是全局工作空间理论。全局工作空间理论(Global workspace theory)是由美国加利福尼亚大学圣地亚哥分校神经科学研究所的Baars研究员1988年提出的意识解释理论。在该理论的指导下,由Baars、Franklin和Ramamurthy等人组成的研究团队开展了长达20多年的机器意识研究工作,最终开发完成了LIDA认知系统。
LIDA(Learning Intelligent Distribution Agent)是在该研究团队等人早期开发的IDA(Intelligent Distribution Agent)基础上发展起来的,主要依据Baars全局工作空间理论,采用神经网络与符号规则混合计算方法,通过在每个软件主体建立内部认知模型来实现诸多方面的意识认知能力,如注意、情感与想象等。该系统可以区分有无意识状态,是否有效运用有意识状态,并具备一定的内省反思能力等。从机器意识的终极目标来看,该系统缺乏现象意识的特征,比如意识主观性、感受性和统一性均不具备。
指导机器意识研究的第三种重要理论观点是意识的信息整合理论。意识的信息整合理论是美国威斯康星—麦迪逊大学精神病学的Tononi教授1998年提出的。自该理论提出以来,不少研究团队以信息整合理论为依据,采用神经网络计算方法来进行机器意识的研究工作。其中,典型代表有英国Aleksander教授的研究团队和美国Haikonen教授的研究团队所开展的系统性研究工作。英国皇家学院的Aleksander教授领导的研究团队长期开展机器意识的研究工作,发表相关论文30余篇。早期的研究主要给出了有关意识的公理系统及其神经表征建模实现,比较强调采用虚拟计算机器来建模意识。最近几年,Aleksander研究团队采取仿脑策略,强调信息整合理论的运用,建立了若干仿脑(brain-inspired)意识实现系统,更好地实现了五个意识公理的最小目标。美国伊利诺伊大学哲学系Haikonen教授的研究团队则主要采用联想神经网络来进行机器意识系统的构建工作。自1999年以来,该团队开展了富有成效的研究工作。Haikonen教授在所提出的认知体系模型的基础上,构建了一个实验型认知机器人XCR-1系统。应该说,虽然Haikonen所开展的机器意识研究的出发点是为了揭示意识现象本性,但他的成果却是目前机器意识研究领域最为典范的工作之一。
在意识科学研究中,也有学者将人类的意识能力看作是一种高阶认知能力,提出意识的高阶理论。在机器意识研究中,以这样的高阶理论为指导,往往会采用传统的符号规则方法来建立某种具有自我意识的机器系统。其中,一个比较系统的研究工程就是意大利巴勒莫大学机器人实验室的Chella教授用10年时间开发的Cicerobot机器人研究项目。该机器人实现了一种自我意识的认知结构机制,该机制主要由三个部分构成:亚概念感知部分、语言处理部分和高阶概念部分。通过机器人的高阶感知(一阶感知是指对外部世界的直接感知,高阶是对机器人内部世界的感知),就形成了具有自我反思能力的机器人。这项研究工作的主要特点是将逻辑形式化方法与概念空间组织相结合,强调对外部事物的一种心理表征能力,并对外部环境进行内部模拟。在高阶认知观点的自我意识建模研究方面,另一个做出突出贡献的是美国乔治梅森大学的Samsonovich教授率领的研究团队。该团队经过10余年的研究,开发了一个仿生认知体系GMU-BICA(George Mason University-Biologically Inspired Cognitive Architecture)。在该系统中定义的心理状态不但包含内容,还包含主观观察者,因此该系统拥有“自我”意识的主观能力。系统实验是利用所提出的认知结构模型来控制虚拟机器人完成一些简单的走迷宫活动,机器人可以表现出具有人类意识所需要的行为。相比而言,与Cicerobot机器人强调自我意识是反思能力的概念不同,GMU-BICA系统则将自我意识理解为“自我”的意识。当然,不管是Cicerobot还是GMU-BICA,这样的高阶认知模型往往对心理扫视、主观体验与统一意识等意识本质方面的表现兼顾不足。
除了上述介绍的这些有代表性的研究外,对于机器意识研究而言,还有如何判定机器具有意识能力的检验问题,这是目前机器意识研究领域十分重要的一个方面。显然,要判断开发的机器意识系统是否真正具备预期的意识能力,就需要开展相应的意识特性分析、评判标准建立以及检测方法实现等方面的研究工作。在这方面,由于目前对意识现象的认识存在许多争议,对于意识评测特性分析方面也难以有统一的认识。因此,目前的机器意识特性需求分析也比较零散。倒是在评判标准的建立方面,西班牙卡洛斯三世马德里大学计算机科学系Arrabales教授的研究团队做出了比较系统的研究。该团队自2008年开始就在这方面开展意识特性分析,给出了计算人工意识的一种量化测量方法ConsScale以及对感受质的功能性刻画。之后,该团队又进一步提出了ConsScale的修订版,并讨论了在机器中产生感受质和现象意识状态的可能性。最终,该团队成功构建了CERA-CRANIUM认知体系(采用意识全局工作空间理论建模)来检验产生的视觉感受质以及实现的内部言语。所有的这些成果为机器意识能力的初步检测提供了一种实用的标准。当然,也有将镜像认知看作是机器拥有自我意识能力的一种检测标准,该理论的依据是人类和其他一些动物能够在镜子中认出自己,这一能力被看作是拥有自我意识的明证。因此,Haikonen认为在镜像中的自我识别,即镜像测验,也可以用来确认机器潜在的自我意识能力。于是,在意识能力检测方法的研究中,许多研究工作都是通过镜像测试来确定意识能力的。但也有研究认为,镜像测验并不能证明意识能力的存在,要证明机器具有意识能力还需要通过更加复杂的测验。比如,Edelman就提出三种意识检验的途径,即意识的语言报告、神经生理信号以及意识行为表现。
总而言之,机器意识的研究主要围绕量子涌现机制、全局工作空间、信息整合理论、意识高阶理论以及意识能力检测这五个方面展开的。从研究的策略来看,主要分为算法构造策略(Algorithm)与仿脑构造策略(Brain-Inspiration)两种途径。从具体的实现方法上,主要可以分为三类:一是采用类神经网络的方法;二是采用量子计算方法;三是采用规则计算方法。虽然经过20多年的发展,机器意识的研究取得了众多的研究成果,但相对于人类意识表现方面,目前机器意识能力的表现还是非常局限的。根据笔者以及土耳其中东技术大学的Gök和Sayan发表的论文,目前机器意识系统主要具备的能力都是功能意识方面的,偶尔涉及自我意识和统一性意识(很难说是否真正实现了)。可见,意识计算模型的研究还有很长的路要走,特别是关于内省反思能力、可报告性能力、镜像认知能力、情感感受能力以及主观性现象等,这些方面更加需要进一步的研究和探索。
人类意识能力的唯识学分析
人类意识能力的基础是神经活动,尽管神经活动本身是意识不到的,也不是所有的神经活动都能产生意识,但神经活动却能够产生有意识的心理活动,这便形成了人类的意识能力。
根据现有的相关科学与哲学研究成果,人类意识的运行机制大致是这样的:物质运动变化创生万物,生物的生理活动支持着神经活动,神经活动涌现意识(有意识的心理活动),意识感受生理表现并指导意向性心智活动的实现,从而反观认知万物之理。除了心理活动所涉及的神经系统外,主要的心理能力包括感觉(身体感受)、感知(对外部事物的感知能力,包括视、听、味、嗅、触)、认知(记忆、思考、想象等)、觉知(反思、意识、自我等)、情感(情绪感受)、行为(意志、愿望、等)、返观(禅观、悟解)等。
必须强调的是,迄今为止,对有意识的心理能力最为系统解析的学说体系并非是现在的脑科学研究,而是起源于古印度的唯识学。唯识学所研究的对象就是心识问题,相当于本文界定的有意识的心理活动。如图1所示,其理论体系主要包括五蕴八识的心法体系。
第一,前五识归为色蕴,对应的心法称为色法,相当于当代心理学中的感知,其意识的作用称为五俱意识(所谓“俱”,就是伴随)。如果这种感知是真实外境的感知,则其伴随性意识称为同缘意识;如果是有错觉的感知,则称不同缘意识;如果这种感知活动产生后像效应,则称为五后意识(属于不相应法)。一般而言,色蕴对应的心理活动都是有意向对象的,因此属于意向心理活动。
第二,受蕴是一种心所法(具体的心理能力),主要是指身体与情感状态的感受。注意这里要区分身识中的身体状态感受与色蕴是完全不同的心理能力,身识相当于触觉,是一种感知能力,而身体状态的感受不是感知能力,而是感受身体疼痛、暖冷等的体验能力。受蕴的心理活动,虽然具有意识,但不具有意向对象,因此不属于意向性心理活动。
第三,想蕴是另一种心所法,用现代认知科学的话讲,就是狭义的思维能力,如思考、记忆、想象等,属于认知的高级阶段,显然是属于意向性心理活动。
第四,行蕴也是一种心所法,主要指一切造作之心,用现代认知科学的话讲,如动机、欲望、意愿、行为等。唯识学中的“行”,与“业”的概念相互关联,一般分为三种,即身业(行动)、语业(说话)和意业(意想),但都强调有意作为的方面,因此行蕴也属于意向性心理活动。
第五,识蕴是整体统一的心法,更加强调的是后两识(第七末那识、第八阿赖耶识)的心法,现代西方的认知科学尚无对应的概念。主要强调的是自我意识,特别是返观能力,即对根本心识的悟解能力。
总之,色蕴是色法(感知能力),受蕴、想蕴、行蕴都是心所法(具体的心理能力),它们本身就是具有意识的心理活动(统归于心法),其中色法的意识作用是伴随性的五俱意识,其他三蕴的意识作用与伴随性的意识则又有不同,称为独散意识(受蕴、想蕴、行蕴所涉及的意识,是一种周遍性意识活动)。
当然,如果所有意识作用出现在梦中,唯识学中则另外称之为梦中意识(做梦时的意识活动,属于不相应法)。在唯识学的五蕴学说中,识蕴比较复杂,它是唯识理论特别单列的一种根本心法,除了强调自我意识的末那识“我执”外,更是强调达到定中意识的阿赖耶识“解脱”,属于去意向性心理活动。
总之,从意向性的角度看,我们的心理能力可以分为无意向性的受蕴,意向性的色蕴(前五识)、想蕴、行蕴,元意向性的意识以及去意向性的识蕴。其中,识蕴是一种特定的禅悟能力,对其性质的认识与禅宗的心法观有关。
机器意识研究面临的困境
对于目前的人工智能研究而言,我们涉及到的心智能力,如果按照五蕴分类体系来分析,那么大致只有色蕴、想蕴与行蕴中的部分能力。如果考虑目前有关机器意识的研究,也仅仅涉及到五俱同缘的伴随性意识、想蕴与行蕴中的独散意识、识蕴中的自我意识以及意识活动本身的机制问题,其他意识比如不相应法的梦中意识、五后意识、定中意识、五俱不同缘意识等都没有涉及。
根据上述有关心识能力的唯识学分析,对于机器而言,真正困难的机器意识实现问题是受蕴性独散心识(体验性意识能力)与识蕴性心识两个方面,一个涉及无意向心理活动的表征问题,一个涉及去意向性心理活动的表征问题,这两方面都是目前计算理论与方法无法解决的问题。反过来讲,机器最有可能实现的心智能力部分应当是那些具有意向性的心识能力(色蕴、想蕴与行蕴),即唯识学心法中的色法与若干心所法。
很明显,意向性心理活动一定伴随有意向对象,于是就有可能对此进行计算表证,并完成相关的某种计算任务。因此,反过来说,我们认为意向性心理能力是人工智能的理论限度(是上界,但并非是上确界),机器实现的人类意识能力不可能超越意向性心识的范围。这也就是本文观点讨论的基点,并具体给出如下方面论据的分析。
首先,我们来分析心智机器的成功标准。从我们的立场看,如果要构建具有人类心智能力的机器,成功的标准起码应该通过图灵测验。主要理由是,由于“他心知”问题的存在,行为表现可能是唯一的判断标准,此时图灵测验不失为一种可行的测试途径,关键是“巧问”的设计。原则上,图灵测验通过言行交流,这是人类之间默认具有心智能力的唯一途径。再者,根据摩根准则,在没有把握的情况下,宁肯选择比较简单的解释。因而,对图灵测验的解释中,也必须注意摩根准则,诸如机器思维或者机器经过思考的行动这类有关心智能力的假设在大多数情况下应该丢弃。
现在我们就来一场图灵测验,看看机器到底会遭遇什么样的困境。为了看清本质,我们的提问异常简单,就是进行如下提问(所谓“多大年纪”思想实验,参见笔者以前的文章“重新发现图灵测验的意义”):你多大年纪?此时会发生怎样复杂的情形呢?当提问者一而再、再而三不断重复这一问题时,机器很快就会暴露出其致命的缺陷,就是缺乏不可预见性反应能力。那么,面对这么简单的提问,机器为什么会无所适从呢?其实这跟机器形式系统的局限性有关。众所周知,图灵机是个形式系统,而哥德尔不完全性说明足够复杂的形式系统不能证明某些真命题。这是否说明人的某些知识是计算机器永远不能得到的?或者反过来说,是否说明不是所有的知识都能形式化呢?这样就引出了如下第二个论据的讨论。
从形式系统角度看,确实存在不可计算(证明)的问题,而且是大量的,但这些问题对于人类同样也是不可计算(证明)的。比如图灵停机问题,如果换成了人,结果是一样的。至于知识,可能首先要分清知识的含义与性质,知识是动词还是名词,要不要考虑元知识?如果这样看待知识,那么肯定不是所有知识都可以形式化的。因此,我们可以发现,问题不在于形式系统是否有局限性,而在于对于意识现象能不能给出一致性的形式描述。
那么,我们可以对人类的意识现象给出一致性描述吗?回答显然是否定的。因为在人类的意识现象中,存在着意识的自反映心理现象:我们的意识活动是自明性的。从逻辑上讲,如果一个系统允许自涉,那么该系统一定是不一致的,也就是说无法对该系统给出一致性的形式化描述。其实,人类的心理活动本来就是建立在神经集群活动的自组织涌现机制之上的。因此,出现意识的自明性现象是必然的。这也就是美国哲学家普特南给出“钵中之脑”思想实验所要说明的道理。比如,对于“我们都是钵中之脑”命题,在事先并不知晓这一事实的前提下,使用知道逻辑的反证法,可以明确加以否定。因此,我们人类的意识能力,显然不可能为机器所操纵。这样,由于计算机器形式化能力的局限性,靠逻辑机器是不可能拥有人类全部意识能力的,起码意识的自明性能力不可能为机器所拥有。
进一步,作为第三个论据讨论,我们再来看人类的意义指称能力问题。我们需要明确的问题是:机器能处理符号,但它能真正理解符号所代表的意义吗?如果人的概念依赖于人类的躯体和动机(涉身性认知),那机器怎么可能掌握它们呢?这个问题主要是指机器是否能够拥有指称能力。塞尔的“中文之屋”提出了反对意见。其实这个问题的关键还是要弄清什么是“意义”?如果意义是指所谓抽象的“概念”内涵而非表征形式,那么就必然存在一条语义鸿沟,因为机器内部能够处理或变换的只是不同的形式语言而已。但如果意义是指“行为表现”,那么这个问题就回到了上面图灵测验的第一个论据上去了。
人类语言表达意义不在语言形式本身,而在于意识能力。正因为这样,才会有许多超出常规的意义表达方式。从根本上讲,我们也不必一一列举机器难以拥有的指称能力,诸如矛盾性言辞、元语言表述以及整体性语境等难以一致性描述的状况;而只需指出,机器不可能拥有人类的终极指称能力即可。那么什么是终极指称能力呢?宋代临济宗禅师惠洪在《临济宗旨》中指出:“心之妙不可以语言传,而可以语言见。盖语言者,心之源、道之标帜也。标帜审则心契,故学者每以语言为得道浅深之候。”其中所谓的“心之妙”者,就是终极指称。由于超越了概念分别,是难以用语言来描述的,这就为形式化描述带来了根本的困境。
第四个论据的讨论涉及到所谓预先设定程序的问题。我们知道,目前的机器只能遵循给定的程序运行(预先设定的程序),这样的话,机器又怎么可能拥有真正的创造性和灵活性?也许人工智能的目的就是要让机器的“计算”更加“聪明”,但目前预先设定程序的机器不可能是灵活的,更不用说创造性能力了。显然,事情越有规则,机器就越能掌控,这就是预先设定程序的界限。比如对于表面复杂结构的分形图案,由于可以靠简单规则加以迭代产生,机器就可以靠预先编程规则自如产生。但是对于人类常常出现的出错性,由于毫无规律可言,机器便不可能预先加以编程,机器也就不可能拥有出错性了。人是易于犯错误的,而机器按照设定的程序运行,永远不会出错,这就是预先编程的一个致命弱点,这也是第一个论据讨论中机器无法通过图灵测验的根本原因。
要知道出错性表面上似乎是一个负面品质,但其实质上则包含着灵活性和创造性,是一切新事物涌现机制的基础。如果没有生物基因的出错性,自然选择就没有了作用的对象,繁复的生物多样性也就无从谈起。同样,如果没有了思想模因的出错性,文化选择也同样没有了作用的对象,博大的思想多样性同样无从谈起。可见,出错性是机器难以企及人类心智能力的一个分界线,而这一切都归结为机器的预先编程的局限性。
同样的道理,由于预先编程问题,也带来了机器不可能真正拥有情感能力的新问题,这也构成了机器难以拥有人类心识能力的第五个论据。我们知道,情感从某种意义上讲就是常规理性活动过程中的“出错性”,是非理性的,但基于逻辑的机器是理性的。也许人们会说,非理性的情感在心理表现中是不重要的,甚至是不起作用的。但我们要强调,即使是理性思维,情感和其他非理性因素也在其中扮演重要角色(倾向性指导作用)。如果说理性的认知能力是前进的方向,那么非理性的情感能力就是前进的动力,人类的心理活动中岂可或缺情感能力?!而对于机器而言,缺少了情感能力,机器怎么能够像人类一样思维?!
机器是逻辑的,难以体现情感本性,目前有关情感的计算只是实现了情感的理性成份。笔者比较赞同这样的观点:理智是方向性的舵手,情感是驱动性的马达,在航行中情感与理智相互依存。因此,如果情感不能计算,那么也谈不上实现人类意识的计算,因为情感难以计算的本质就是意识的感受问题。
机器能拥有意识能力吗
通过上述对机器实现人类心智能力所面临的困境的讨论,就可以进一步引申出机器是否能够跟人类一样拥有意识能力的问题。为了避免陷入不必要的信念之争,笔者认为学术辩论主要应对事实或可能事实开展分析讨论。由于计算机器的概念相对明确,争论的焦点多半会聚焦到有关人类“意识能力”的界定之上。所以,下面先给出笔者所理解的人类“意识能力”的分析描述,然后再围绕着我们讨论的主题,展开观点的陈述。
意识包括功能意识、自我意识和现象意识,其中功能意识大体上涉及到意向性的心理能力,除了前面已经讨论过的五个论据外,似乎并不存在特别的新困难。但自我意识和现象意识则不同,由于涉及到去意向性和非意向性的表征问题,这便构成了机器心识的最大困扰。首先,我们要清楚“自我意识”不是关于“自我”的意识,而是一种自身内省反思能力。因此,自我意识是意识的核心功能。其次,我们必须澄清所谓的“体验意识(qualia)”到底指什么?是精神的本性,还是虚构的对象?这涉及到哲学基本问题,非常复杂,观点纷呈。机器能否拥有意识能力的核心问题,其实就在于此。
由于涉及到心灵的一些本质问题,机器意识研究一开始就引起了哲学领域的广泛关注,有专家专门讨论机器意识研究的哲学基础,也有学者讨论机器意识会面临的困难,包括像意识(consciousness)、感受质(qualia)和自我觉知(self-awareness)这些回避不了的、显而易见的困难问题,以及一些与意识相关的认知加工,如感知、想象、动机和内部言语等方面的技术挑战。除此之外,更多的则是延续早期对人工智能的哲学反思,对机器意识的可能性提出质疑。涉及到强弱人工智能之争、人工通用智能问题、意识的难问题、“中文之屋”悖论的新应用、人工算法在实现意识能力方面的局限性、蛇神机器人不可能拥有主观性、现象意识等众多方面的争论。
那么机器能够拥有这种现象意识状态吗?对于现象意识的存在性问题,有截然相左的两种观点。一种是神秘论的观点,认为我们神经生物系统唯一共有的就是主观体验,这种现象意识是不可还原为物理机制或逻辑描述的,靠人类心智是无法把握的。另一种是取消论的观点,认为机器仅仅是一个蛇神(zombie)而已,除了机器还是机器,不可能具有任何主观体验的东西。在这两种极端观点之间,还存在各种不同偏向的观点,如还原论、涌现论、唯心论、二元论,等等。其实,依笔者看来,无需做上述复杂的讨论,只须从意向性的角度来看,便可以澄清机器意识的可能性问题。笔者观点是,凡是具有意向性的心理能力,理论上机器均有可能实现,反之则肯定不能实现。因为一旦缺少了意向对象,机器连可表征的内容都不存在,又如何形式化并进行计算呢!
通过上述分析讨论,可以发现,机器意识难以达成的主要困境可以归纳为这样三个方面。第一个是形式化要求,特别是一致性要求导致的局限性,使得机器智能局限于具有意向性的心识能力,如色蕴、想蕴、行蕴。第二个则是机器缺乏不预见性的反应能力,只能通过预先设定的程序来应对环境。第三个就是无法拥有终极指称能力,无法实现去意向性的识蕴能力。最后补充一点则是,对于涉及到现象意识的感受性能力(受蕴),由于没有意向对象可以作为形式化的载体,因而对其进行的计算完全无从入手。
于是,我们可以很清楚地看到,意向性就是实现机器意识能力的一条不可逾越之界线。用数学的术语说,机器能够拥有的意识能力的上界就是意向性心识能力。当然这并非是上确界,因为不可预见性的反应能力也属于意向性能力,但从前面的分析中可以看出,目前基于预先编程的机器仍然无法拥有不可预见的反应能力。或许我们可以期待更为先进的量子计算机器来突破预先编程能力,但意向性心识能力的边界,依然是无法突破的。
因此,当我们把目前有关机器意识的研究分为面向感知能力实现的、面向具体特定意识能力实现的、面向意识机制实现的、面向自我意识实现的以及面向受蕴能力实现的这五个类别时,就可以同唯识学中意识的五蕴学说相对比,从而更加清楚地认识其中的本质问题所在。我们的结论是,对于机器意识的研究与开发,应当搁置有争论的主观体验方面(身心感受)的实现研究,围绕意向性心识能力(环境感知、认知推理、语言交流、想象思维、情感发生、行为控制),采用仿脑与量子计算思想相结合的策略,来开发具有一定意向能力的机器人,并应用到社会服务领域。
机器意识研究未来展望
围绕着上述分析所得出的主要结论,我们认为,未来机器意识的研究,主要应该开展如下5个方面的研究工作。
首先,构建面向机器实现的意识解释理论。由于意识问题本身的复杂性,目前存在众多不同的意识解释理论,其中只有部分理论用于指导机器意识的研究。为了更好地开展机器意识研究工作,取得更加理想的机器意识表现效果,必须直接面向机器意识实现问题本身,综合并兼顾已有意识解释理论,提出一种更加有利于机器意识研究的、有针对性的、全新的意识解释理论。提出的新理论应该不但能够清晰地刻画各种意识特性及其关系,而且应该符合机器意识实现的要求,更好地用以指导机器意识的开展。为此,具体需要开展现有意识解释理论的梳理研究、机器意识限度与范围的分析研究、意识特性刻画标准规范的构建研究等方面的研究工作。
其次,探索机器意识的计算策略与方法。过去的研究表明,要想让机器拥有意识能力,传统的人工智能方法是无能为力的,我们必须寻找全新的计算方法。因此,机器意识的深入展开,需要有不同于传统人工智能的计算策略和方法。就目前机器意识研究中所遇到的问题而言,在计算方法方面起码需要开展亚符号(神经信号)表征到符号(逻辑规则)表征之间的相互转换计算方法、在非量子体系中实现类量子纠缠性的计算方法,以及神经联结与符号规则相互融合的计算方法等方面的研究。而在计算策略方面则需要开展仿脑与算法相结合策略的研究。只有确定了行之有效的计算策略和方法,才能真正推动机器意识进一步深入发展。
第三,构建机器意识的综合认知体系。作为机器意识研究的主要任务,就是要构建具有(部分)意识现象表现的机器认知体系。给出的意识机器认知体系应该满足一些基本需求,起码应该包括:实现具有感受质和外部感知对象的感知过程;实现过程内容的内省反思;允许各模块无缝整合的可报告性以及配备本体感知系统的基本自我概念。因此,这部分的研究内容应该结合机器意识计算策略与方法的探索,参照已有各种机器意识认知体系的优点,有针对性地进行构建工作,以期满足基本的意识特性需求。
第四,开发实验性的意识机器人系统。在已有智能机器人开发平台的基础上,嵌入构建好的机器意识综合认知体系,形成具体的意识机器人系统,并开展具体的系统实验分析研究。通过各种意识特性的实验,检验机器意识综合认知体系的性能是否满足基本的意识特性需求,最终给出一种实验性意识机器人系统的范例。
2017年7月,国务院印发《新一代人工智能发展规划》,不仅对人工智能的发展做出了战略性部署,还确立了“三步走”的政策目标,力争到2030年将我国建设成为世界主要的人工智能创新中心。[1]值得注意的是,此次规划不仅仅只是技术或产业发展规划,还同时包括了社会建设、制度重构、全球治理等方方面面的内容。之所以如此,是由于人工智能技术本身具有通用性和基础性。换句话说,为助推人工智能时代的崛起,我们面对的任务不是实现某一个专业领域或产业领域内的颠覆性技术突破,而是大力推动源于技术发展而引发的综合性变革。
也正因为如此,人工智能发展进程中所面临的挑战才不仅仅局限于技术或产业领域,而更多体现在经济、社会、政治领域的公共政策选择上。首先,普遍建立在科层制基础上的公共事务治理结构,是否能够适应技术发展和应用过程中所大规模激发的不确定性和不可预知性?再者,长久以来围绕人类行为的规制制度,是否同样能够适应以数据、算法为主体的应用环境?最后,如何构建新的治理体系和治理工具来应对伴随人工智能发展而兴起的新的经济、社会、政治问题?
应对上述挑战并不完全取决于技术发展或商业创新本身,而更多依赖于我们的公共政策选择。本文试图在分析人工智能发展逻辑及其所引发的风险挑战的基础上,对人工智能时代的公共政策选择做出分析,并讨论未来改革的可能路径,这也就构成了人工智能治理的三个基本问题。具体而言,人工智能本身成为治理对象,其发展与应用构成了治理挑战,而在此基础上如何做出公共政策选择便是未来治理变革的方向。
全文共分为四个部分:第一部分将探讨人工智能的概念及特征,并进而对其发展逻辑进行阐述。作为一项颠覆性技术创新,其本身的技术门槛对决策者而言构成了挑战,梳理并捋清人工智能的本质内涵因而成为制定相关公共政策的前提;第二部分将着重分析人工智能时代崛起所带来的治理挑战,主要包括三个方面,即传统科层治理结构应对人工智能新的生产模式的滞后性、建基于行为因果关系之上的传统治理逻辑应对人工智能新主体的不适用性,以及人工智能发展所引发的新议题的治理空白;面对上述挑战,各国都出台了相关政策,本文第三部分对此进行了综述性对比分析,并指出了其进步意义所在。需要指出的是,尽管各国的政策目标都试图追求人工智能发展与监管的二维平衡,但由于缺乏对人工智能内涵及其发展逻辑的完整认识,当前的公共政策选择有失综合性;本文第四部分将提出新的治理思路以及公共政策选择的其他可能路径,以推动围绕人工智能治理的相关公共政策议题的深入讨论。
一、人工智能的概念及技术发展逻辑:算法与数据
伴随着人工智能技术的快速发展,尤其是其近年来在棋类对弈、自动驾驶、人脸识别等领域的广泛应用,围绕人工智能所可能引发的社会变革产生了激烈争论。在一方面,以霍金[2]、马斯克[3]、比尔-盖茨[4]、赫拉利[5]为代表的诸多人士呼吁加强监管,警惕“人工智能成为人类文明史的终结”;在另一方面,包括奥巴马[6]在内的政治家、学者又认为应该放松监管,充分释放人工智能的技术潜力以造福社会。未来发展的不确定性固然是引发当前争论的重要原因之一,但围绕“人工智能”概念内涵理解的不同,以及对其发展逻辑认识的不清晰,可能也同样严重地加剧了人们的分歧。正因为此,廓清人工智能的概念内涵和发展逻辑不仅是回应争论的需要,也是进一步提出公共政策建议的前提。
就相关研究领域而言,人们对于“人工智能”这一概念的定义并未形成普遍共识。计算机领域的先驱阿兰-图灵曾在《计算机器与智能》一文中提出,重要的不是机器模仿人类思维过程的能力,而是机器重复人类思维外在表现行为的能力。[7]正是由此理解出发,著名的“图灵测试”方案被提出。但如同斯坦福大学计算机系教授约翰·麦卡锡所指出的,“图灵测试”仅仅只是“人工智能”概念的一部分,不模仿人类但同时也能完成相关行为的机器同样应被视为“智能”的。[8]事实上,约翰·麦卡锡正是现代人工智能概念的提出者。在他看来,“智能”关乎完成某种目标的行为“机制”,而机器既可以通过模仿人来实现行为机制,也可以自由地使用任何办法来创造行为机制。[9]由此,我们便得到了人工智能领域另一个非常重要的概念——“机器学习”。
人工智能研究的目标是使机器达到人类级别的智能能力,而其中最重要的便是学习能力。[10]因此,尽管“机器学习”是“人工智能”的子域,但很多时候我们都将这两个概念等同起来。[11]就实现过程而言,机器学习是指利用某些算法指导计算机利用已知数据得出适当模型,并利用此模型对新的情境给出判断,从而完成行为机制的过程。此处需要强调一下机器学习算法与传统算法的差异。算法本质上就是一系列指令,告诉计算机该做什么。对于传统算法而言,其往往事无巨细地规定好了机器在既定条件下的既定动作;机器学习算法却是通过对已有数据的“学习”,使机器能够在与历史数据不同的新情境下做出判断。以机器人行走的实现为例,传统算法下,程序员要仔细规定好机器人在既定环境下每一个动作的实现流程;而机器学习算法下,程序员要做的则是使计算机分析并模拟人类的行走动作,以使其即使在完全陌生的环境中也能实现行走。
由此,我们可以对“人工智能”设定一个“工作定义”以方便进一步的讨论:人工智能是建立在现代算法基础上,以历史数据为支撑,而形成的具有感知、推理、学习、决策等思维活动并能够按照一定目标完成相应行为的计算系统。这一概念尽管可能仍不完善,但它突出了人工智能技术发展和应用的两大基石——算法与数据,有助于讨论人工智能的治理问题。
首先,算法即是规则,它不仅确立了机器所试图实现的目标,同时也指出了实现目标的路径与方法。就人工智能当前的技术发展史而言,算法主要可被划分为五个类别:符号学派、联接学派、进化学派、类推学派和贝叶斯学派。[12]每个学派都遵循不同的逻辑、以不同的理念实现了人工智能(也即“机器学习”)的过程。举例而言,“符号学派”将所有的信息处理简化为对符号的操纵,由此学习过程被简化(抽象)为基于数据和假设的规则归纳过程。在数据(即历史事实)和已有知识(即预先设定的条件)的基础上,符号学派通过“提出假设-数据验证-进一步提出新假设-归纳新规则”的过程来训练机器的学习能力,并由此实现在新环境下的决策判断。
从对“符号学派”的描述中可以发现,机器学习模型成功的关键不仅是算法,还有数据。数据的缺失和预设条件的不合理将直接影响机器学习的输出(就符号学派而言,即决策规则的归纳)。最明显体现这一问题的例子便是罗素的“归纳主义者火鸡”问题:火鸡在观察10天(数据集不完整)之后得出结论(代表预设条件不合理,超过10个确认数据即接受规则),主人会在每天早上9点给它喂食;但接下来是平安夜的早餐,主人没有喂它而是宰了它。
所有算法类型尽管理念不同,但模型成功的关键都聚焦于“算法”和“数据”。事实上,如果跳出具体学派的思维束缚,每种机器学习算法都可被概括为“表示方法、评估、优化”这三个部分。[13]尽管机器可以不断的自我优化以提升学习能力,且原则上可以学习任何东西,但评估的方法和原则(算法)以及用以评估的数据(数据)都是人为决定的——而这也正是人工智能治理的关键所在。算法与数据不仅是人工智能发展逻辑的基石,其同样是治理的对象和关键。
总而言之,围绕“人工智能是否会取代人类”的争论事实上并无太大意义,更重要的反而是在廓清人工智能的内涵并理解其发展逻辑之后,回答“治理什么”和“如何治理”的问题。就此而言,明确治理对象为算法和数据无疑是重要的一步。但接下来的重要问题仍然在于,人工智能时代的崛起所带来的治理挑战究竟是什么?当前的制度设计是否能够对其做出有效应对?如果答案是否定的,我们又该如何重构治理体系以迎接人工智能时代的崛起?本文余下部分将对此做进一步的阐述。
二、人工智能时代崛起的治理挑战
不同于其他颠覆性技术,人工智能的发展并不局限于某一特定产业,而是能够支撑所有产业变革的通用型技术。也正因为此,其具有广泛的社会溢出效应,在政治、经济、社会等各个领域都会带来深刻变革,并将同时引发治理方面的挑战。具体而言,挑战主要体现在以下三个方面。
首先,治理结构的僵化性,即传统的科层制治理结构可能难以应对人工智能快速发展而形成的开放性和不确定性。之所以需要对人工智能加以监管,原因在于其可能成为公共危险的源头,例如当自动驾驶技术普及之后,一旦出现问题,便可能导致大规模的连续性伤害。但不同机、大型水坝、原子核科技等二十世纪的公共危险源,人工智能的发展具有极强的开放性,任何一个程序员或公司都可以毫无门槛的进行人工智能程序的开发与应用。这一方面是由于互联网时代的到来,使得基于代码的生产门槛被大大降低[14];另一方面,这也是人工智能本身发展规律的需要。正如前文所提到,唯有大规模的数据输入才可能得到较好的机器学习结果,因此将人工智能的平台(也即算法)以开源形式公开出来,以使更多的人在不同场景之下加以利用并由此吸收更多、更完备的数据以完善算法本身,就成为了大多数人工智能公司的必然选择。与此同时,人工智能生产模式的开放性也必然带来发展的不确定性,在缺乏有效约束或引导的情况下,人工智能的发展很可能走向歧途。面对这一新形势,传统的、基于科层制的治理结构显然难以做出有效应对。一方面,政府试图全范围覆盖的事前监管已经成为不可能,开放的人工智能生产网络使得监管机构几乎找不到监管对象;另一方面,由上至下的权威结构既不能传递给生产者,信息不对称问题的加剧还可能导致监管行为走向反面。调整治理结构与治理逻辑,并形成适应具有开放性、不确定性特征的人工智能生产模式,是当前面临的治理挑战之一。
再者,治理方法的滞后性,即长久以来建立在人类行为因果关系基础上的法律规制体系,可能难以适用于以算法、数据为主体的应用环境。人工智能的价值并不在于模仿人类行为,而是其具备自主的学习和决策能力;正因为如此,人工智能技术才不能简单地理解为其创造者(即人)意志的表达。程序员给出的只是学习规则,但真正做出决策的是基于大规模数据训练后的算法本身,而这一结果与程序员的意志并无直接因果关联。事实上也正由于这个特点,AlphaGo才可能连续击败围棋冠军,而其设计者却并非围棋顶尖大师。也正是在这个意义上,我们才回到了福柯所言的“技术的主体性”概念。在他看来,“技术并不仅仅是工具,或者不仅仅是达到目的的手段;相反,其是政治行动者,手段与目的密不可分”。[15]就此而言,长久以来通过探究行为与后果之因果关系来规范人的行为的法律规制体系,便可能遭遇窘境:如果将人工智能所造成的侵权行为归咎于其设计者,无疑不具有说服力;但如果要归咎于人工智能本身,我们又该如何问责一个机器呢?由此,如何应对以算法、数据为核心的技术主体所带来的公共责任分配问题,是当前面临的第二个治理挑战。
最后,治理范围的狭隘性,即对于受人工智能发展冲击而引发的新的社会议题,需要构建新的治理体系和发展新的治理工具。人工智能发展所引发的治理挑战不仅仅体现在现有体系的不适应上,同时还有新议题所面临的治理空白问题。具体而言,这又主要包括以下议题:算法是否能够享有言论自由的宪法保护,数据的权属关系究竟如何界定,如何缓解人工智能所可能加剧的不平等现象,以及如何平衡人工智能的发展与失业问题。在人工智能时代之前,上述问题并不存在,或者说并不突出;但伴随着人工智能的快速发展和应用普及,它们的重要性便日渐显著。以最为人所关注的失业问题为例,就技术可能性来说,人工智能和机器人的广泛应用代替人工劳动,已是一个不可否定的事实了。无论是新闻记者,还是股市分析员,甚至是法律工作者,其都有可能为机器所取代。在一个“充分自动化(Full Automation)”的世界中,如何重新认识劳动与福利保障的关系、重构劳动和福利保障制度,便成为最迫切需要解决的治理挑战之一。[16]
上述三方面共同构成了人工智能时代崛起所带来的治理挑战。面对这些挑战,各国也做出了相应的公共政策选择。本文第三部分将对各国人工智能的治理政策进行对比性分析。在此基础上,第四部分将提出本文的政策建议。
三、各国人工智能治理政策及监管路径综述
人工智能时代的崛起作为一种普遍现象,其所引发的治理挑战是各国面临的共同问题,各国也陆续出台了相关公共政策以试图推动并规范人工智能的快速发展。
美国于2016年同时颁布了《国家人工智能研究与发展战略规划》和《为人工智能的未来做好准备》两个国家级政策框架,前者侧重从技术角度指出美国人工智能战略的目的、愿景和重点方向,而后者则更多从治理角度探讨政府在促进创新、保障公共安全方面所应扮演的角色和作用。就具体的监管政策而言,《为人工智能的未来做好准备》提出了一般性的应对方法,强调基于风险评估和成本-收益考量的原则以决定是否对人工智能技术的研发与应用施以监管负担。[17]日本同样于2016年出台了《第五期(2016~2020年度)科学技术基本计划》,提出了“超智能社会5.0”的概念,强调通过推动数据标准化、建设社会服务平台、协调发展多领域智能系统等各方面工作促进人工智能的发展和应用。[18]
尽管美国和日本的政策着力点不同,但其共有的特点是对人工智能的发展及其所引发的挑战持普遍的包容与开放态度。就当前的政策框架而言,美日两国的政策目标更倾斜于推动技术创新、保持其国家竞争力的优势地位;当涉及对人工智能所可能引发的公共问题施以监管时,其政策选择也更倾向于遵循“无需批准式(permissionless)”的监管逻辑,即强调除非有充分案例证明其危害性,新技术和新商业模式默认为都是被允许的。[19]至于人工智能的发展对个人数据隐私、社会公共安全的潜在威胁,尽管两国的政策框架都有所涉及,却并非其政策重心——相比之下,英国、法国则采取了不同的政策路径。
英国政府2016年了《人工智能:未来决策制定的机遇与影响》,对人工智能的变革性影响以及如何利用人工智能做出了阐述与规划,尤其关注到了人工智能发展所带来的法律和伦理风险。在该报告中,英国政府强调了机器学习与个人数据相结合而对个人自由及隐私等基本权利所带来的影响,明确了对使用人工智能所制定出的决策采用问责的概念和机制,并同时在算法透明度、算法一致性、风险分配等具体政策方面做出了规定。[20]与英国类似,法国在2017年的《人工智能战略》中延续了其在2006年通过的《信息社会法案》的立法精神,同样强调加强对新技术的“共同调控”,以在享有技术发展所带来的福利改进的同时,充分保护个人权利和公共利益。[21]与美日相比,英法的公共政策更偏向于“审慎监管(precautionary)”的政策逻辑,即强调新技术或新的商业模式只有在开发者证明其无害的前提下才被允许使用。[22]
在本文看来,无论是“无需批准式监管”还是“审慎监管”,在应对人工智能时代崛起所带来的治理挑战方面都有其可取之处:前者侧重于推动创新,而后者则因重视安全而更显稳健。但需要指出的是,这两种监管路径的不足却也十分明显。正如前文第二部分所指出,一方面,快速迭代的技术发展与商业模式创新必将引发新的社会议题,无论是算法是否受到言论自由的权利保护还是普遍失业对社会形成的挑战,它们都在客观上要求公共政策做出应对,而非片面的“无需批准式监管”能够处理。更重要的是,“无需批准式监管”的潜在假设是事后监管的有效性;然而,在事实上,正如2010年5月6日美国道琼斯工业指数“瞬间崩盘”事件所揭示的,即使单个电子交易程序合规运行,当各个系统行为聚合在一起时反而却造成了更大的危机。[23]在此种情形下,依赖于合规性判断的“事后监管”基本上难以有效实施。另一方面,人工智能本身的自主性和主体性使得建立在人类行为因果关系基础上的“审慎监管”逻辑存在天然缺陷:既然人类无法预知人工智能系统可能的行为或决策,开发者又如何证明人工智能系统的无害性?
正如本文所反复强调的,人工智能与其他革命性技术的不同之处,正是在于其所带来的社会冲击的综合性和基础性。人工智能并非单个领域、单个产业的技术突破,而是对于社会运行状态的根本性变革;人工智能时代的崛起也并非一夜之功,而是建立在计算机革命、互联网革命直至数字革命基础上的“奇点”变革。因此,面对人工智能时代崛起所带来的治理挑战,我们同样应该制定综合性的公共政策框架,而非仅仅沿袭传统治理逻辑,例如只是针对具体议题在“创新”与“安全”这个二元维度下进行艰难选择。本文在第四部分从承认技术的主体性、重构社会治理制度、推进人工智能全球治理这三方面提出了政策建议,并希望以此推动更深入地围绕人工智能时代公共政策选择的研究与讨论。
四、人工智能时代的公共政策选择
《新一代人工智能发展规划》明确提出了到2030年我国人工智能发展的“三步走”目标,而在每一个阶段,人工智能法律法规、伦理规范和政策体系的逐步建立与完善都是必不可少的重要内容。面对人工智能时代崛起的治理挑战,究竟应该如何重构治理体系、创新治理机制、发展治理工具,是摆在决策者面前的重要难题。本文基于对人工智能基本概念和发展逻辑的梳理分析,结合各国已有政策的对比分析,提出以下三方面的改革思路,以为人工智能时代的公共选择提供参考。
第一,人工智能发展的基石是算法与数据,建立并完善围绕算法和数据的治理体系与治理机制,是人工智能时代公共政策选择的首要命题,也是应对治理挑战、赋予算法和数据以主体性的必然要求。(1)就算法治理而言,涉及的核心议题是算法的制定权及相应的监督程序问题。算法作为人工智能时代的主要规则,究竟谁有权并通过何种程序来加以制定,谁来对其进行监督且又如何监督?长久以来公众针对社交媒体脸书(Facebook)的质疑正体现了这一问题的重要性:公众如何相信脸书向用户自动推荐的新闻内容不会掺杂特殊利益的取向?[24]当越来越多的人依赖定制化的新闻推送时,人工智能甚至会影响到总统选举。也正因为此,包括透明要求、开源要求在内的诸多治理原则,应当被纳入到算法治理相关议题的考虑之中。(2)就数据治理而言,伴随着人工智能越来越多地依赖于大规模数据的收集与利用,个人隐私的保护、数据价值的分配、数据安全等相关议题也必将成为公共政策的焦点。如何平衡不同价值需求、规范数据的分享与应用,也同样成为人工智能时代公共政策选择的另一重要抓手。
第二,创新社会治理制度,进一步完善社会保障体系,在最大程度上缓解人工智能发展所可能带来的不确定性冲击。与历史上的技术革命类似,人工智能的发展同样会导致利益的分化与重构,而如何保证技术革命成本的承受者得到最大限度的弥补并使所有人都享有技术发展的“获得感”,不仅是社会发展公平、正义的必然要求,也是促进技术革命更快完成的催化剂。就此而言,在人工智能相关公共政策的考量中,我们不仅应该关注产业和经济政策,同时也应该关注社会政策,因为只有后者的完善才能够控制工人或企业家所承担的风险,并帮助他们判断是否支持或抵制变革的发生。就具体的政策设计来说,为缓解人工智能所可能带来的失业潮,基本收入制度的普遍建立可能应该被提上讨论议程了。“基本收入”是指政治共同体(如国家)向所有成员不加任何限制条件地支付一定数额的收入,以满足其基本生活的需求。尽管存在“养懒汉”的质疑,但有研究者已指出,自18世纪就开始构想的基本收入制度很有可能反过来促进就业。[25]芬兰政府已经于2017年初开始了相关实验,美国的一些州、瑞士也做出了一定探索。在人工智能时代尚未完全展现其“狰容”之前,创新社会治理机制、完善社会保障体系,可能是平衡技术创新与社会风险的最佳路径。
第三,构建人工智能全球治理机制,以多种形式促进人工智能重大国际共性问题的解决,共同应对开放性人工智能生产模式的全球性挑战。人工智能的发展具有开放性和不确定性的特征,生产门槛的降低使得人工智能技术研发的跨国流动性很强,相关标准的制定、开放平台的搭建、共享合作框架的形成,无不要求构建相应的全球治理机制。另一方面,跨境数据流动在广度和深度上的快速发展成为了人工智能技术进步的直接推动力,但各国数据规制制度的巨大差异在制约跨境数据流动进一步发展的同时,也将影响人工智能时代的全面到来。[26]故此,创新全球治理机制,在承认各国制度差异的前提下寻找合作共享的可能性,便成为人工智能时代公共政策选择的重要考量之一。就具体的机制设计而言,可以在人工智能全球治理机制的构建中引入多利益相关模式;另一方面,为防止巨头垄断的形成,充分发挥主权国家作用的多边主义模式同样不可忽视。作为影响深远的基础性技术变革,互联网全球治理机制的经验和教训值得人工智能发展所借鉴。
上述三方面从整体上对人工智能时代的公共政策框架做出了阐述。与传统政策局限于“创新”与“安全”之间做出二维选择不同,本文以更综合的视角提出了未来公共政策选择的可能路径。就其内在联系来讲,建立并完善围绕算法和数据的治理体系是起点,其将重构人工智能时代的规则与制度;创新社会治理机制并完善社会保障体系是底线,其将缓解人工智能所带来的影响与波动;构建全球治理机制则成为了制度性的基础设施,推动各国在此之上共同走向人工智能时代的“人类命运共同体”。
五、结语
在经历了60余年的发展之后,人工智能终于在互联网、大数据、机器学习等诸多技术取得突破的基础上实现了腾飞。在未来的人类生活中,人工智能也必将扮演越来越重要的角色。对于这样的图景,我们自不必惊慌,但却也不可掉以轻心。对于人工智能的治理,找到正确的方向并采取合理的措施,正是当下所应该重视的政策议题。而本文的主旨也正在于此:打破长久以来人们对于人工智能的“笼统”式担忧,指出人工智能技术发展的技术逻辑及其所引发的治理挑战,并在此基础上提出相应的政策选择。人工智能治理的这三个基本问题,是重构治理体系、创新治理机制、发展治理工具所必须思考的前提。伴随着我国国家层面战略规划的出台,我国人工智能的发展也必将跃上新台阶。在此背景下,深入探讨人工智能治理的相关公共政策议题,对于助推一个人工智能时代的崛起而言,既有其必要性,也有其迫切性。(来源:中国行政管理 文/贾开 蒋余浩 编选:中国电子商务研究中心)
[参考文献]
[1]国务院关于印发新一代人工智能发展规划的通知[EB/OL]. http://gov.cn/zhengce/content/2017-07/20/content_5211996.htm.
[2]霍金. AI可能成就或者终结人类文明[EB/OL].http://raincent.com/content-10-7672-1.html.
[3] Elon Musk. Artificial Intelligence is Our Biggest Existential Threat. https://theguardian.com/technology/2014/oct/27/elon-musk-artificial-intelligence-ai-biggest-existential-threat.
[4] Microsoft's Bill Gates Insists AI is A Threat. http://bbc.com/news/31047780. 2017-8-14.
[5] [以]赫拉利.人类简史[M].北京:中信出版社,2014.
[6] The President in Conversation With MIT’s Joi Ito and WIRED’s Scott Dadich. https://wired.com/2016/10/president-obama-mit-joi-ito-interview/. 2017-8-14.
[7] Turing,A. M. Computing Machinery and Intelligence. Mind,1950,59(236).
[8] [9][10] McCarthy,J.What is Artificial Intelligence. URL:http://www-formal.stanford.edu/jmc/whatisai/whatisai.html.
[11] [12][13] [美]佩德罗-多明戈斯.终极算法:机器学习和人工智能如何重塑世界[M].黄芳萍译.北京:中信出版社,2016.
[14] Benkler,Y. The Wealth of Networks:How Social Production Transforms Markets and Freedom. Yale University Press,2006.
[15] Foucoult,M. Discipline and Punish. A. Sheridan,Tr.,Paris,FR,Gallimard,1975.
[16] Srnicek,N.,& Williams,A. The Future isn't Working. Juncture,2015,22(3):243-247.
[17] Preparing for the Future of Artificial Intelligence. https://obamawhitehouse.archives.gov/sites/default/files/whitehouse_files/microsites/ostp/NSTC/preparing_for_the_future_of_ai.pdf. 2017-8-14.
[18]薛亮.“日本推动实现超智能社会‘社会5.0’”[EB/OL]. http://istis.sh.cn/list/list.aspx?id=10535.
[19] Thierer,A. Permissionless Innovation:The Continuing Case for Comprehensive Technological Freedom. Mercatus Center at George Mason University,2016.
[20] Artificial Intelligence:Opportunities and Implications for the Future of Decision Making.https://gov.uk/government/uploads/system/uploads/attachment_data/file/566075/gs-16-19-artificial-intelligence-ai-report.pdf.
[21]周衍冰.大数据产业在法国的发展及应用[N].学习时报,2014-11-03.
[22] Thierer,A. D.,& Watney,C. J. Comment on the Federal Automated Vehicles Policy,2016.
[23] [美]杰瑞·卡普兰.人工智能时代:人机共生下财富、工作与思维的大未来[M].杭州浙江人民出版社,2016.
[24] Marcel Rosenbach. How Google and Facebook Can Reshape Elections.http://spiegel.de/international/germany/google-and-facebook-could-help-decide-2017-german-election-a-1120156.html.
[25] Van Parijs,P. Basic Income:A Simple and Powerful Idea for the Twenty-first Century. Politics & Society,2004,32(1).
一、银行反欺诈发展趋势
国内外银行在传统反欺诈管理中主要依赖专家经验,通过人工方式制定检测规则,当申请或交易信息与反欺诈规则匹配后即执行相应的业务策略。这种管理模式得出的反欺诈规则存在一定的局限性,不能枚举所有业务场景,无法对各类欺诈行为进行全面覆盖。与此对应,欺诈者会针对性的对已有规则进行回避,导致专家规则处于被动调整的位置,无法跟上欺诈手段的更新换代[1, 2]。另外,当专家规则积累达到一定数量后误报率通常会比较高,能够影响到实际风险决策制定和实际业务开展。
机器学习是一种重要的金融科技创新手段,近年来在国内外金融机构和金融科技企业中被尝试应用到风险防范、反欺诈等领域。例如花旗银行、美国银行、汇丰银行等机构广泛应用逻辑回归、神经网络等技术以提升欺诈识别能力;京东金融与ZestFinance组建的合资公司以数据挖掘建模为核心竞争力,在反欺诈领域深入应用机器学习技术以发挥大数据价值。机器学习是一种研究机器获取新知识和新技能,并识别现有知识的方法[3];通常针对大规模数据集进行全方位综合考量,挖掘深层次业务场景特征进而建立监督、无监督等类型的学习模型,在大量应用中模型的准确性、稳定性也得到了充分验证[4]。
为此,我们针对信用卡申请审批这一典型业务场景,应用机器学习技术进行欺诈风险管理并设计数据产品对异常客户进行监控预警。区别于将机器学习技术应用到单一反欺诈规则制定的典型做法,我们尝试从整体视角对欺诈风险进行评估,实现精准量化预测并以此作为应对欺诈风险的强有力手段。建模思路及方法具有一定的可迁移性,可以被广泛应用到银行风险防范、反欺诈等业务领域。
二、“会思考”的风控模型
在应用大数据支持业务发展转型的过程中,我们提出构建增强智能(Augumented Intelligence)系统[5]的创新思路。一个务实的增强智能系统包括客户画像、数据挖掘模型和决策引擎三个组成部分。数据挖掘模型是智能化的核心,客户画像为建模过程持续提供特征输入,决策引擎将模型输出成果转换为实际业务行动。增强智能系统的一个重要目标是提升传统业务流程的自动化水平,过程中的大数据能力主要体现在三个方面,也就是下图中的三个组成部分:更好的客户认知、更智能化的算法、更快速的决策支持。
图1:增强智能系统组成模块
数据挖掘模型发挥动力引擎作用,吸收学术界和产业界先进机器学习知识成果并应用于银行实践。客户画像重点体现大数据背景下的客户多维度刻画,在静态信息和交易行为信息之外可以补充社交网络维度特征信息。伴随大数据的持续采集、生产和交换,客户画像能够进一步补充情绪属性、价值观属性乃至道德属性等信息,为数据挖掘建模提供源源不断的能源输入。决策引擎能够面对业务场景进行快速响应,通过可视化等手段提供自助式业务分析能力,促进数据价值转化为业务行动。
践行上述思路,我们结合传统风险管控和社交网络分析技术,加工基础维度信息和社交维度信息特征指标组成反欺诈客户画像,并应用随机森林等分布式机器学习算法建立欺诈风险预测模型。不同于传统风控模型以年为单位的更新优化周期,智能化预测模型每天都能够进行“思考”,通过更新网络关系并重新训练模型确定最新的欺诈预测思维模式。模型在研发和使用的过程中灵活运用机器学习和社交网络分析技术,催生新型数据产品的开发与应用从而带动传统业务流程的优化。
三、模型构建与结果分析
以银行信用卡申请反欺诈为应用场景,详细描述社交网络构建、特征处理、算法实现、运行结果分析等阶段过程。
1、结合社交视角构造客户特征信息
社交网络分析是融合多学科理论和方法,为理解各种社交关系的形成、行为特点分析以及信息传播的规律提供的一种可计算的分析方法[6]。社交网络分析方法旨在建立一个网络与真实世界的实体与关系映射,在银行应用中的典型实体包括客户、账户、员工等。社交网络分析通常关注静态和动态两个层面的网络特征,静态特征包括提取网络指标、对网络特征刻画、识别网络群组等;动态特征主要包括描述网络如何随时间推移进行扩散、如何影响其他节点等。
分析信用卡进件审批数据,确定数据中包含四种角色,分别是申请人、申请人亲属、联系人和推广人。在建模实施过程中将申请人角色作为社交网络的关键节点,把申请人、申请人亲属、联系人及推广人这四种角色的移动电话、家庭电话、办公电话的相同作为关系类型。建模过程中构建的社交网络包括780万节点,2.33亿条关系。
在构建完成社交网络后,设计并计算一二阶度、一二阶欺诈数、一二阶欺诈占比、最短路径等网络指标。从网络视角衡量欺诈风险的传播,度反映节点关联好友数量,最短路径反映网络中节点间亲密程度。此外,建模中的客户基础信息包括申请人年龄、手机号、单位电话、电子邮箱、学历、年收入、职位等,针对这些信息需要进行结构化分解、离散化、频度计算等数据预处理操作,共同构建特征以用于后续模型的训练和验证。
图2:反欺诈模型特征构造过程
2、建模方案设计
对进行特征工程化处理的数据进行拆分,设置三组建模数据集,分别是基础信息的数据集(base)、社交信息的数据集(social),以及组合在一起的数据集(combine)。建模过程中采用3折交叉验证的方式完成欺诈风险预测模型建立和训练,并比较多组模型输出的计算结果。
算法选择方面,分别选择逻辑回归(LogisticsRegression, LR),随机森林[7](Random Forests, RF)和深度学习[8](Deep Learning, DL)。逻辑回归是银行风控领域的经典算法,以此作为模型结果的标杆参考。随机森林是一种集成学习算法,利用多棵决策树对样本进行训练并预测;通常单棵树性能表现较弱,但进行组合之后能够提供较好的分类性能,同时算法稳定性较好。深度学习(DL)模型是包含多隐层的多层感知器系统,通过应用综合复杂结构和多重非线性变换构成的多个处理层及对数据进行高层抽象的一系列算法,建立具有数个隐层的多层感知网络并实现各种模式的识别和认知。
模型评价方面,选用AUC、Precision、Recall、Accuracy、F1-measure等指标。其中AUC[9](Area under Curve)是ROC曲线下的面积,介于0和1之间;AUC值表示将两样本正确分类的概率,AUC值越大说明模型分类性能越好。其他指标均是从不同角度衡量模型性能,这里不再详细说明。
3、建模结果分析
如下表所示,前三列数据为应用随机森林(RF)算法在不同数据集上进行的三组模型输出结果。比较结果数据可以发现,通过整合社交属性信息模型各项评价指标较基础信息模型结果均有大幅度提升。不同于基础信息,社交维度重在刻画实体在网络中的关系,其加工指标在建模后呈现出与欺诈风险相关的强特征关系。建模结果中AUC提升7个百分点,F1-measure提升2个百分点,充分验证了建立多维度视角对于提升客户欺诈风险识别能力的有效性。更重要的是,伴随大数据的采集和处理,可以从深度和广度上对客户欺诈风险认知进一步补强,进而持续优化模型的底层数据源。
后面三组数据是在整合数据集上应用三种不同算法,整体表现逻辑回归算法较弱,深度学习居中,随机森林表现最优。结果表明目前模型输入特征与预测目标关联性较好,并且总体特征数量为数十个的量级,还不足以发挥深度学习海量特征无监督优化选择的特性,相比之下随机森林、GBDT[10]等集成学习算法表现更为突出。
表1:欺诈风险预测模型结果比较
四、欺诈监控数据产品
大数据在实际应用中体现出强产品化的特点,通过构建反欺诈数据产品能够快速实现决策引擎的功能;同时原始数据从积累到建模均与该数据产品关联,用户画像建立和持续丰富也与反欺诈业务场景相结合。数据产品通过可视化技术实现自助式分析能力,在数据价值转化为业务行动过程中发挥桥梁作用。
针对信用卡申请反欺诈场景,设计专项数据产品对接相关业务系统。数据产品提供全国进件审批疑似欺诈情况分布图,实时获得所关注区域的欺诈进件分布、欺诈发展趋势、欺诈比重等动态。另外,提供分地区信息概要、进件详情、明细检索和社交网络检索等功能,能够在系统页面查询基础指标统计图(手机和电话特征分布)、不同模型输出的欺诈风险概率值、进件基本信息、进件网络特征、社交指标统计(一度、二度、最短路径)等内容。
图3审批疑似欺诈情况分布图
五、总结与展望
一、机械电子工程的发展与特征
(一)发展历程
在机械电子工程发展初期,主要体现为手工制作,生产力水平较低,资源技术等对其发展产生制约。为了提升生产效率,逐渐朝着机械工业方向发展。在生产线阶段,机械工程己逐渐发展到流水线生产,实现标准化大批量生产,.这一生产模式使劳动力得到解放,生产力水平大大提升,同时生产效率也得到提高。但是仍然存在一些不足,比如,部分生产仍就以进口为主,生产成本较大,在市场方面缺少适应力舀灵活性较差,难以满足不断变化的市场需求。
在机械电子产业发展阶段中,产品生产能够适应市场的需求,对于不断变化的产品需求产业化发展能够满足。
(二)机械电子工程主要特征
机械电子工程是复杂综合性学科,同各类学科之间都有着密切的联系。机械电子工程发展要以计算机、电子以及机械为基础,结合其他学科做出合理、科学的设计。在设计的过程中,要求每一个模块都能够实现有机结合,进而使得各个模块都能将其最大优势发挥出来。机械电子产品内部结构简单明了,并不复杂,无需复杂原件的投入,这样能在一定程度上使产品性能得到提升,进而扩大消费市场,
二、人工智能简述
人工智能是一门复杂,并且综合性较强的学科,所涉及到的学科比较多。也可以说,21世纪人工智能是最伟大学科之一。人工智能实现了对人的智能模拟,并且能通过计算机使认得智能化得到进一步的延伸,人工智能这门学科有着较好的发展潜力。人工智能在发展的过程中主要经历下列几个阶段。
初步阶段。人工智能在17世纪开始发生萌芽,法国在这一阶段成功诞生世界上的第一部计算机,这一计算器只是单纯的能进行加法简单运算,但是仍就轰动世界,进而在世界范围内,对这项技术开始进一步研究。在最初阶段,人工智能并没有明显的进展,主要是在实践的过程中积累与总结知识,这为今后人工智能发展奠定坚实的基础。
发展初始阶段。美国人在二十世纪首次提出人工智能专业用语。在这个发展阶段,人工智能主要以证明与阐释为主要体现,在这一时期对于人工智能的研究就是首要任务。
发展起伏阶段。随着人们对于人工智能的不断深入研究,人工智能也处于持续的发展阶段,但是在实践过程中发现,要想使人工智能模仿和人类思维同步是非常困难的。大部分对于人工智能的科学研究仅仅是停留于简单映射层面,.对于逻辑思维的研究仍就没有突破性进展。不论怎么说,在发展的起伏阶段,人功能智能也在发展中得到了技术创新,特别是在系统方面、计算机机器人以及语言掌握方面取得了较大的成就.
起伏阶段发展以后。在这一阶段,人工智能的相关研究得到了发展,尤其是第五届国际人工智能联合会议的召开,人工智能逐渐朝着知识层面的方向发展,大部分的人工智能研都会结合相应的知识工程,在这个阶段中,人工智能发展的高度是前所未有的,在一定程度上促进了人工智能应用于实际工程中。
稳步发展阶段。随着互联网技术的快速发展,对于人工智能研究方向发生重大转变,由原本的单一主体朝着集中统一主体的方向发展。关于人工智能在实际中的运用以及研究,受到了互联网技术的影响。网络的普及与快速发展,在一定程度上促进了信息化的发展,信息在传送方面发生率重大性变革。在人们逐渐进入信息化社会后,在信息有效处理方面人工智能的发展起到了重要的作用,在模拟设计方面,机械电子工程的发展需要人工智能的大力支持。
三、机械电子工程与人工智能之间的关系
随着我国社会经济的持续发展,社会不断的进步,对于信息人们越来越重视。在21世纪,互联网技术得到快速发展,同时信息的传递也逐渐注入新鲜血液。互联网应用的普及说明人们正朝着信息时代的方向迈进,在社会逐步信息化以后,更加需要有人工智能这一技术的支持,特别是机械电子工程发展中有着重要作用,机械电子系统本身缺少一定的稳定性,这样在机械电子工程设计方面就有着较大阻碍存在。在现代社会中,信息的处理量持续增大,并且较为复杂,有些时候需要同时对不同类型的信息进行处理,所以需要采取人工智能的支持才能完成信息处理。人工智能主要包含模糊推理系统、神经网络系统这种两种方法。神经网络系统倾向于对人脑结构的综合分析,模糊推理系统更加重视对于语言信号的分析与理解。随着现代社会的发展,仅仅采取单一的人工智能方法,明显己经无法适应目前社会中不断变化的市场需求,所以,对于人工智能相关问题的研究正逐渐朝着多方位、全面的人工智能方向转变。多方位全面人工智能系统通过模糊推理系统和神经网络系统相互统一的方式,扬长补短,将二者有效的结合起来,使得二者的优势得到最大程度的发挥。
总结