时间:2023-03-20 16:23:53
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇数学课程论文范例。如需获取更多原创内容,可随时联系我们的客服老师。
一、开展《标准》专题学习,更新教学观念
为推动高师数学教育的发展,更好地与基础教育数学课程改革相适应,首先是转变教师的观念,观念是行动的先导,高师院校教师在头脑中要时刻明确我们的培养目标是新课程的实施者,是高素质的教师,要改变别人,必先改变自己,更新教学观念。实现教师的自我定位应以教师为中心转变为以学生为中心,课堂教学的价值取向应从知识中心转变为以学生的发展为中心,教学形式从封闭式转化为开放式的三个转变,只有进行观念的充分准备,才能实现教学目标和培养目标,才能在教育环境中掌握好方向。其次是组织学生学习《标准》理念、课程目标、评价方式,开设《标准》专题学习并积极开展讨论,分析课程改革对数学教师角色、能力、工作方式、教学方式、教学策略的新要求,充分认识数学教学改革是课程改革的关键。
二、结合《标准》改革《教法》教学内容
1.结合课改,吸收和补充新的研究成果
数学和数学教育都在不断地发展,教法与相关学科和新兴学科之间的关系还不很协调,有些教学内容陈旧,未能与当前的思想观念、生活实际和学科的发展同步,没有结合当前的基础教育数学课程改革,理论脱离实际。因此,在教学中应走出课本,在保持《教法》内容相对稳定的前提下,增加数学教育领域新的研究成果,使学生了解该领域前沿的基础研究状况,形成较为先进的数学教育观念。同时特别要联系目前的基础教育数学课程的改革实施现状,介绍中学数学教学改革的现状和发展趋势,以及对教师提出的新的要求,《教法》要在学习《标准》的前提下,开设中学数学发展的专题课程,明确符合时展的课程目标,使学生的学习紧跟时代的要求,实行教学内容和学生主体的开放,建立开放型知识结构。
2.对《标准》新增内容进行研究
新的中学数学课程在内容上有了重大的变化,突出了基础性、多样性和选择性,《标准》强化了概率统计,设置了数学探究、数学建模、数学文化,有些具体内容在教法课程中从未涉及乃至现行的高师数学课程中较薄弱和不能完全覆盖。如,算法、框图、信息安全与密码、球面上的几何、欧拉公式、与闭曲面分类、三等分角与数域扩充、开关代数与布尔代数、优选法与实验设计、风险与决策、数列与差分等[1],结合其高师专业课程的相应改革,专门补充讨论新增内容设置原因,正确把握《标准》对新增内容的定位,并对其教法及相关问题开展讨论研究。
3.调整教学顺序
《教法》是在学生已经掌握了教育学、心理学的基本知识和数学专业基础知识基础上开设的,通常是先学习了解研究对象、任务、特点,对中学数学教学的目的和内容有一个基本的了解,再讲教学原则、逻辑知识和教学方法,最后介绍中学数学教学工作[2]。如果先让学生明确中学数学教学应做哪些工作,再介绍做该工作具备的知识、原则、方法,就能激发其学习兴趣,使其主动学习,取得好的教学效果。
三、改进教学方法,转变学习方式
随着基础教育改革不断深化,教师素质与课改要求的差距明显显露出来。教师在以学生发展为本的前提下,要具有将知识转化为智慧,将理论转化为方法的能力,适应综合性教学、研究性教学、实践性教学的要求,提高将学科知识、教育理论、现代信息技术有机整合的能力。其变化的实质就是教法、学法上的改进,教法与学法相互制约,相互影响,许多有效的学法正是直接从教师具有示范性的教法转化而来的。高师生的学习方式直接影响其未来的教学方式,高师生经历“大学教法—学习方法—中学教法”的过程,作为《教法》课,更应该在新的教育教学观指导下从“满堂灌、一支粉笔、一块黑板”中解脱出来,运用探究、参与、研究的教学方法,进而促进学生从被动听、做笔记、围绕解题、练习、考试关心分数向独立思考、自主探索、动手实践、合作交流、阅读自学等有效的学习方式转变。1.强化案例教学法
案例教学法是一种教与学两方面直接参与、共同对案例或疑难问题进行讨论的教学方法。一方面通过教师精心选取典型的优秀教学案例,引导分析获得蕴涵其中的那些已形成的教育原理、教学原则和方法等;分析常规教学模式,并探讨新的数学教学模式(探究式数学教学、数学质疑教学模式、数学建模教学、活动型数学教学模式整体教学与范例教学)[3];学习综合性教学、研究性教学、实践性教学方法;深入学习分析案例中的教学设计如何体现现代教学理念和现代教学方法,既可体现学科特点,又可将已有的教育学、心理学原理知识运用其中,学生又能处于积极参与状态创造性地获得学科教学的有关知识,增强对教学问题的分析决策能力,真正达到理论与实践的结合。另一方面,在教学中,组织学生对不同的观点和看法进行充分讨论,取长补短,共同提高,教师根据情况进行总结。通过这种观摩—交流—反思等一系列教学活动,培养学生未来教育教学的反思精神,发展学生对自身教学实践进行批判的技能,使他们掌握对教学进行自我分析和反思的方法,进而形成一定的数学教学研究能力。
2.加强分析信息技术与数学课程的整合
《标准》提倡使用信息技术来改变学生的学习方式和教师的教学模式,因此《教法》教学中引导学生充分认识体会信息技术不仅作为教与学的辅助工具,更是作为促进学生自主学习的认知工具和情感激励工具,探讨如何利用信息技术所提供的自主探究、多重交互、合作学习、资源共享等学习环境,将学生的主动性、积极性充分调动起来,使学生的创新思维和实践能力在整合的过程中得到有效的锻炼。
四、加强实践环节中的理论分析和技能培训
《教法》课的教学,是对学生进行系统师范性教育的主阵地和主渠道,不仅要求学生很好地掌握其中的理论知识,还要培养技能。然而,知识并不能简单地由教师传授给学生,而只能由每个学生根据自己的知识和经验主动地加以建构。要体现学生知识的建构过程,就应该在学生的整个学习环境中,在教师的指导下,通过学生自主探索、合作交流完成。因此必须建立一种新的教学机制,创设一种能促使学生理论联系实际,开展研究活动的学习环境,使学生在开展合作交流的研究性活动中把握数学教育理论的精神实质,掌握一定的教学技能。然而,长期以来,《教法》课重理论轻教学技能训练,同时大学在追求学术高品位时,不可避免地脱离基础教育的实际。因此,教法课程必须由重理论轻技能转向借理论促技能,并将其作为专业技能课程设置,其理想的改革方式是实行开放式教学,发展专业发展学校,让学生经常到中学去见习,参与教研和教改活动,尝试教学设计和实施。这是一种互惠的行动,它不仅有利于大学教师、学生和中学教师双方的专业提高和发展,而且对师范生的知识应用和教学技能的训练提高有着举足轻重的作用[4]。但由于教育体制和条件的限制,这种方式难以实施。因此,在目前的状况下,只有加强和改进教学活动,活动始终以尝试教学设计、模拟课堂教学为中心,同时兼顾专业和技能的训练,加强师生之间、学生之间的交流和个人的教学反思,促进教师教学知识的发展。具体做法:改变将《教法》课与试教课分离的现状,在《教法》课学习理论的同时,就开始分小组对中学的典型课题进行试讲,小组既作为教学基本功训练小组,又作为学习理论小组和反思研讨小组。在教师的引导督促下形成一种合作交流、相互切磋、共同发展、和谐统一的学习氛围,增进知识的应用,在应用中进一步提高对理论的认识,继而在以后的全面试讲和教育实习过程中,进一步加强理论与实际相结合。在反思阶段针对实践中出现的矛盾与分歧,例如结合《标准》理念,分析《标准》实施中遇到的困难和矛盾以及不足等,提出研究探讨课题,更有目的、有针对性地确定毕业论文选题,进行实证研究和分析。只有这样才能培养能应用现代教育理论、教育方式和手段,善于把数学知识的学术形态转化为教育形态,既能从事数学教学又能从事数学教育科研的高质量的数学教师[5]。
五、实行多元化评价体系,全面提高学生的综合素质
随着教学观念、内容、方法的改革,《教法》所采用的传统的一张考试卷评定学生成绩的方法已经无法比较全面、准确地反映学生的实际水平和教学效果,因此,评价内容和方式必须进行改革完善。一方面,利用多渠道多种方式评价,如采取笔试、口试、教学研究小论文三结合的方式评定学生成绩,具体可包括课堂讨论、小论文、调查报告、平时作业、动手作业、课堂示范、书面考试等方面综合评价作为最后成绩。另一方面,加大平时成绩的权重,平时成绩比例增大为30%,期中和期末各占20%、50%。平时成绩包括课堂提问、作业以及课堂讨论等成绩,期中和期末考题改封闭型占主体为开放型占主体,主要考查对知识的理解与灵活运用。目的在于调动学生学习积极性,让每一名学生平时就积极投入到教法课的学习与活动中,促进教育理论的掌握和教学能力的提高以及数学教师数学素养的形成和教学研究能力的初步养成。
(一)课程方案设计
1.课程目标基础课程:培养学生数学学习的基本素质,包括数学知识与技能、数学思想与方法、数学学习动机与意志。拓展课程:实现学生数学素养发展的两个基本路径,包括体验与应用、理解与贯通。研究类课程:学生数学素养发展的最高境界,即批判与创新。
2.数学课程内容基础课程:人教A版普通高中课程标准实验教科书必修1、必修2、必修4、必修5、选修2-1。拓展课程:IB选修模块(人教A版普通高中课程标准实验教科书必修3、选修2-2、选修2-3),数学思想方法,数学小论文写作,模块专向研究,基于几何画板的高中数学实验。研究类课程:大学先修课程,数学思维拓展,希望数学,数学解题研究,竞赛、自主招生问题研究。
3.具体实施教学建议,教学评价,教材编写,资源开发。
(二)课程方案设计说明基础课程、拓展课程、研究类课程
既能满足培养致力于志远、自主、善思、善行的优秀人才的需要,又能满足本县教育的需求。基础课程目标、拓展课程目标、研究类课程目标的关系。显然,基础课程目标是基础目标,拓展课程目标是基础目标的提升,在基础课程目标和拓展课程目标的基础上再建立研究类课程目标。
二、数学课程的实施
课程实施是学科建设的重要环节,也是学校特色的展示。为了更好地做到使学生真正“学会”数学,“会学”数学,我校采用“必修走班制”教学。这是一种不固定班级、具有流动性的学习模式,学生根据自己的知识基础以及学科学习能力和兴趣,结合任课教师的意见,自主选择A、B、C三个层次(A层次对学习能力的要求最低,C层次对学习能力的要求最高)中的教学班,同一科目同时开展教学活动,学生分别去相应层次班级上课。“必修走班制”教学以个性发展为本,尊重学生自主选择。教师根据不同层次的学生重新组织教学内容,确定与其基础相适应又可以达到的教学目标、教学内容和教学进度,从而使学生个性特长得到充分发挥。
(一)目标分层
学科组制定A、B、C三个层次教学班的不同教学目标和教学策略。在分层次地落实学习目标时,无论对哪一层次的学生,给他们设立的目标都应在他们最近的发展区,不能借口差异,降低要求,迁就低水平。
(二)内容分层
根据新教材难易度的差异,我们将教学内容分为三类:第一类是基础知识,第二类是重点知识及其运用,第三类是迁移性知识。分层施教时,遵循A层“下要保底”、C层“上不封顶”的原则。在教学方法上,对A层次的学生重“讲解”,对C层次的学生重“引导”,而对B层次的学生则根据情况采取比较折中的办法。
(三)作业分层
作业能加深学生对所学知识的理解并且能形成技能。由于课堂教学目标有所不同,为巩固所学内容的作业设计也应有所不同。A层学生做基础题;B层学生做基础题加巩固练习题或综合题;C层学生做巩固练习题加能力提高题。当然,A、B两层学生在完成自己的练习题后可以向高一级练习题挑战。
(四)评估分层
我校以不同的标准客观评价每一个学生,定期随时进行测试。试题均根据教学目标分三个层次:基础题60分,提高题20分,综合能力题20分。降低基础题难度,让A层学生尝到成功的喜悦,产生成就感;提高题让B层学生获得“跳一跳就能摘到桃子”的体验;C层学生则从综合能力题中感到“英雄有用武之地”。另外,在设计试卷时遵循“两部三层”的原则。“两部”是指试题分为必做题和选做题两部分。“三层”是指教师在处理试题时要具有三个层次:第一层次为知识的直接运用和基础试题,是全体学生的必做题;第二层次为变式题或简单综合题,以B层学生能达到的水平为限;第三层次为综合题或探索性问题。第二、三层次的题目为选做题,这样可使C层学生有练习的机会,A、B两层学生也有充分发展的余地。
三、对学科建设的反思
一、新数学课程课堂教学的特点
1.基础性。在人的发展过程中,包含着一系列生理的、心理的和社会的较为稳定的发展,新数学课程课堂教学应着眼于学习主体的自然素质,调动其积极参与,促使其生动活泼的发展。初中数学作为一门基础自然学科,教学的根本目的就是要培养和发展学生的最基本的素质。
2.有序性。数学课堂实施素质教育在具体方法上是一个有节奏的,有重点的推进的一个过程,而不是胡子眉毛一把抓,数学教师应根据教学实践,在每一个阶段(学年、学期、学月或每一周)确定一个问题,重点突破。素质教育的目标实现,不是一蹴而就,必然是一个长期培养的有序的过程。
3.全面性。不体现全面性,就不是真正意义上的素质教育。“两全”──全面贯彻党的教育方针,全面提高教育质量足素质教育的基本内涵。在数学教学中,要做到面向全员促使全体学生都能得到发展,而不是“优生教育”、“竞赛教育”。
4.延续性。新数学课程的实施不能割断历史,不能认为过去的一切做法都是“应试教育”,全盘否定过去的教育教学活动,不能把过去已采用过的符合教育规律和学生认识规律的行之有效的方法和已取得的经验。同心课程教育对立起来。在“应试教育”的课堂中,也能进行素质教育;在新数学课程的课堂中。也要使用应试手段。
5.开放性。抽象性与严密性是数学学科的重要特点。在课堂教学中,不但要重视系统的学科学习,而且要重视生活的教育和社会的服务,使学生具有初步用数学的意识。
二、新数学课程课堂教学的内容
1.思想品德教育。思想品德包括政治、思想、道德、意识、观念等方面。初中数学教材中渗透了大量的德育教材,只要我们善于挖掘并充分利用,那么对培养学生实事求是的科学态度,勇于钻研的科学精神,树立辩证唯物观,以及遇到困难、挫折百折不挠的精神,都有着十分重要的作用。如我国方算书《周髀算经》记载的商高和周公的问答,竞有“勾广三,股修四,弦隅五”的论述。它比毕达哥拉斯的发现早600多年。又如圆周率,它是我国几何学举世公认的成就。这些成就,是我国古代劳动人民智慧的结晶,让学生了解这些事实,可以激发学生的民族自信心和民族自豪感,形成学生的爱国品质。
2.科学文化教育。作为教学科目的中学数学与作为科学的抽象数学,就其性质和内容来说,有着显著的差别,这是因为,作为教学科目的数学着眼点在于完成中学数学教学目的所规定的任务,具体他说,在于通过数学课堂教学,使学生掌握概念,并培养技能,发展能力。《数学课程标准》上所规定学生要了解、理解、掌握、应用的数学知识,就是我们数学课堂教学的任务所在,这也是构成学生数学智育素质的最基本的部分。另一方面,在使学生掌握数学知识的同时掌握数学思想(字母代数思想,方程思想,数形结合、式形结合的思想,转化的思想,统计的思想等)和数学方法。同时培养学生的逻辑思维能力(记忆、迁移、发散、分析、综合、抽象、概括的能力),使学生具有正确、迅速的运算能力,并逐渐形成技能和技巧。科学文化素质是学生一切素质中最重要、最核心的素质,而这种素质培养的重要途径就在于课堂教学,所以就要求我们数学教师在教学中必须把精力放在课堂内,精心设计,精心施教。把“教学最优化”作为教学的最高境界。应该是我们广大数学教师追求的目标,在课堂教学中做到“精讲精练精评”,尽量让每位学生都学到知识,切实提高学生的科学文化素质。
3.技能操作素教育。众所周知,九年义务初中数学教材较之于过去的统编教材,明显的一个差别就在于:初中数学教材增加了“实习作业”,这类教材目的在于要求学生利用已学过的知识去实践、去运用。《解直角三角形》一章学完后的实习作业,就是要求学生制作测倾器,测量物体的仰角(俯角),从而计算物体的高度。而这类作业却受到了很多教师的冷落,殊不知,它对培养学生的动手能力和学以致用的能力有着十分重要作用,可以帮助学生解决日常生活、生产中的许多问题,更重要的是提高了学生的技能操作素质,发展了能力。
4.美育教育。初中数学教材中的美育因素也随处可见,一类是数学图形的美,如圆,正多边形等。另一是数学式子的美,如杨辉三角等,再者就是数学问题的美。这些数学图形,数学式子,数学问题作为美的载体,对培养学生的审美能力,创造美的能力也有着重要的作用。另一方面,数学教师本身要成为美的示范,教师走进课堂那笑容可掬的面孔,潇洒大方的举止,口齿灵利的言语,清秀的一手好字。美观整齐的板书,抑扬顿挫的语调,加之妙用的电教辅助,无不构成一种课堂教学的和谐美。
5.心理素质教育。在数学课堂教学中,应把培养学生良好的心理素质作为一项重要的内容抓好。成功者不骄傲,失败者不气馁,上课答问题不紧张.考试不怯场,遇到较难问题不灰心丧气等良好的心理素质的形成,也应是我们数学教师教学的重要内容。
三、新数学课程课堂教学的原则
1、真正摆正学生的主体地位,创设良好和谐的学习氛围。传统教学的弊端在于极大地限制了学生学习的主动性,扼杀了学生学习的兴趣。其实,教学活动是教师与学生的双边活动,数学教学过程不仅是一个认知过程,而且也是一个情感的交流过程.在教学活动中要注意符合初中学生的年龄特征和认知规律,善于激发学生学习数学的情感。由于初中学生年龄特点,既有小学生活泼好动、充满好奇的特点,也有渴望走向成熟的特征,因此要善于抓住积极因素,鼓励中国学习联盟胆设疑、探索,使学生的整个学习活动充满喜悦,学习的需要得以实现。在整个教学过程中,应始终体现”学生为主体、教师为主导”的教学原则,给学生以充分自主的权力,创设一个良好和谐的学习氛围。
2、合理布局课堂结构,优化数学教学方式。课堂教学活动中,教师应对教学目的、目标、重点、难点等教学内容把握得十分准确,同时对时间的把握也应十分严格,切忌教学的盲目性、随意性.在教学过程中,从数量上说,教师要少讲;从质量上说,教师要精讲;从内容上说,学生易懂的坚决不讲。整个教学活动,教师既要注重知识的系统传授,也要注意给学生以想、说、练的机会。
关键词:课程改革,终身学习,以人为本,因材施教,开放创新。
数学课程问题一直是数学教学改革的中心问题,也是数学教育科学研究的中心问题。高中数学试验教材已在全国十一个省市使用,新的高中数学课程标准也在讨论制订中,将于2010年在全国实施。如果说过去半个世纪以来的数学课程改革仅仅是“精简、增加、渗透”的加减运算的话,那么新世纪的这次课程改革则是一场脱胎换骨的教学观念上的革命运动。称之为“中国数学教育改革史上的一次”毫不为过。而这场革命能否顺利进行下去,则要取决于广大中学数学教师能否真正明确改革方向,真正理解改革的意义,充分把握新课程改革的体系结构。简而言之,关键在于数学教师们能否顺应改革要求,重新定位,真正实现自身角色的转变,在数学教育教学理念上有一个质的突破。
笔者认为,新的高中数学课程标准至少对我们提出了以下几方面的要求与挑战,我们应当认真面对,积极参与,全身心地投入到这场轰轰烈烈的改革大潮中去。
一、持续终身的学习理念
要把终身教育放在社会的中心位置
————选自国际21世纪教育委员会的报告
21世纪的中国正面临着高度信息化的挑战,面临着国际化的挑战,更面着教育现代化的挑战。而作为一名教师,还面临着青胜于蓝的挑战,过去,教师是知识的载体,教师就是知识,知识就是教师,而现在的学生可以从多种渠道获取知识掌握信息,甚至有时头脑中内存的信息比老师多得多。这一切都在提醒我们:阶段性的学习不再使我们永远保持着智慧,唯一的解决方法是必须继续学习,成为一个自觉的终身学习者。
新的高中数学课程标准明确提出了终身教育的要求,其中的课程目标、内容标准、教学建议及评价方式都对数学教师传统的教育教学思想带来了巨大的冲击,提出了许多新的要求。
1、从思维方式上看:要尽快从封闭性思维向开放性思维转化,从习常性思维向创造性思维转化。
2、从教学手段上看:要逐步掌握现代教育技术,积极使用现代化教学媒体辅助教学,把教材具体化、形象化,增强教学的生动性和感染力。
3、要高瞻远瞩,多学习理论知识,特别是要重视教育学理论和心理学理论知识的学习与运用。
4、要注重对跨学科知识的学习,扩大知识面,特别是要注意物理、化学、生物、历史等学科与数学学科内容的相互渗透与综合,尝试进行实践课、活动课、研究课等开放性教学并能及时积累经验,将之持续发展。
5、要多参与课题研究。将自己丰富的教学教育经验向前迈出一步,升华为个人的教育教学理论,再去指导自己的教学实践。
6、要学会向学生学习,善于接受学生的影响,向每一个孩子学习,把学生看作自己的老师,这也是数学新课程教育观念变革的焦点课题。古人云:“师不一定贤于弟子”,就是这个道理。
7、终身教育的提出同时也要求教师具有可持续发展的人格。首先,终身教育的提出,要求教师把自身知识的更新视做一种责任,使终身学习内化为教师的自觉行为。其次,学生正处于人格塑造和定化时期,价值取向、理想、信仰、道德情操及审美情趣都会通过教师的教学行为映射到学生的人格世界中去,作为数学教师的言传身教,决定了其人格对学生人格形成的“润物细无声”的功能。因此,数学教师人格的不断完善也是终身教育的内涵之一。
二、以人为本的教学行为
古希腊的普罗塔戈(plutarch)早在3000多年以前就说过这样一句话:“头脑不是一个要被填满的容器,而是一把需被点燃的火把。”而反思我们的教育,尤其是数学教育,由于长期以来受凯洛夫“自我中心论”的影响,过分关注了学生的共性,过于强调统一,搞大统一、一刀切的流水作业,不仅把学生的头脑当成一个个容器,并且是把他们看成是大小相同的容器,于是注入式、填鸭式教育便是堂皇之举。而其结果却是大大封杀了学生的个性化探究方式,造成极其严重的后果。
令人欣慰的是新数学课程标准秉持多元价值标准,而不是整齐划一标准,它所倡导的不仅仅是转变学习方式,而是通过转变学习方式,促进每一个学生的个性健康发展。其中明确提出了“数学素质教育”和“培养创新精神与实践能力”,这就要求我们在教学中要时刻关注每一位学生的身心发展需要,要求我们的教学应能促进学生个性的发展。因此,广大数学教师要彻底屏弃“以本为本”的错误观念,正确树立“以人为本”的教学理念,摆正“全体发展”与“特殊发展”的关系,提倡人才发展的非同步观,确立数学教育目标的多层次性,让每一个学生都能抬起头来走自己的路。在实际操作中笔者认为应该做好以下几点:
1、创设宽松的教育环境
“一切为了孩子的终身发展”,人本主义的教育思想要求我们的教育要关注人的发展,创设一个有利于学生发展的时间与空间。大量成功的经验和失败的教训都可以说明:宽松的教育,是一种人本主义教育,是一种民主平等教育,最有利于学生的身心健康发展。
因此,在数学新课程教学中,我们应重新定位师生关系,把课堂真正的还给学生,充分体现师生间的平等自由;师生不再主要精力化在传授知识上,而应该花在帮助、引导学生去发现问题并能自主解决;教师在课堂上尽量少讲,把尽可能多的时间留给学生去思考、练习,最大限度的让学生在活动中学习,在主动中学习,努力实现教学互动的和谐发展。
2、面向全体学生
早在两千多年前,孔子就已经提出了“因材施教”的著名论断,强调要面向全体学生,用不同的方法去教育不同的学生,让他们都能得到不同的发展。这实际上是突出了教育以人为本的学生主体思想。当然,在高中阶段应更注意发展学生的个性和特长。这就需要教师具有公正无私的爱心,但事实并非如此,“爱全人类容易,爱每一个学生难,爱每一个差生更难。”这里主要还是教师思想观念的转变问题。因此,要真正做到面向全体学生,请让我们一起从“爱每一个差生”开始吧!
3、以学生为主体的课堂教学
这个问题早就在数学教育界中提出、确定,被众多数学教育者不断从多角度多层面加以研究,但总是收效甚微,也许是因为教师的观念陈旧,也许是因为升学制度的牵制,也许是因为评价制度的不够完善,总之这不是一个孤立的问题。本文不再展开,而从数学新课程标准的特点来分析,笔者认为必须重视做好以下几点:
(1)重视数学史教育,这将有利于学生主体人格的塑造;
(2)重视数学的应用价值,这将有助于学生主体意识的增强;
(3)重视数学问题的开放,这将有益于学生主体能力的发展。
4、要充分发挥教师的主导作用
“以教师为主导”是“以学生为主体”的前提,一个教师主导什么、怎样主导,直接影响着能否贯彻“以学生为主体”的教育思想,两者密不可分。然如何去发挥教师的主导作用却一直极少有人去深入研究,结合数学新课程教学要求,笔者认为,教师的导必须适时、适度,可以精心设计好,可以随机而导、见缝插针,但不管怎样,都必须面向全体学生,真正起到画龙点睛的作用。具体的说,应该把握以下几个原则:
(1)学生易错处主导,促进学生思维深刻性的形成;
(2)在题型转换处主导,加深学生思维的广阔性;
(3)在学生易满足时主导,引导学生上进心理的发展;
(4)在思想方法上主导,提高学生数学素质和能力;
(5)在审美观点上主导,培养学生高尚情操。
5、培养学生的合作精神
如果说竞争是现代社会不可或缺的生存本领(其实这是一种本能),那么,合作则是现代社会更为重要、必须学习和形成的发展的本领。许多走上社会后的中学生、大学生甚至研究生都发现,在工作中,他们缺乏的不是记忆、独立思考、想象、动手实验方面的能力,而是组织、协调、与人合作共同做事的能力,包括说服他人、沟通协商让步的能力。美国著名的卡内基先生通过自己的成功经验发现了一个重要规律:一个人的成功,15%靠专业知识,85%靠人际关系和处世技巧,亦即学习合作。因此在实际教学中,我们应该努力培养学生之间相互切磋、讨论的习惯,让他们学会相互协作。比如:
(1)乐于并有能力帮助他人解疑;
(2)敢于并善于向他人请教;
(3)说话具有较强的感染力,善于说服他人;
(4)能形成一个自觉的学习合作体。
三、与时俱进的施教能力
由于新课程标准中内容的要求与改变,作为一名数学教师必须大胆屏弃传统教学方法中的不利因子,不断调整教学策略与方法,开拓进取,提高全方面的能力,以适应新课程改革的需要。
1、把握新教材的能力
新的课程标准在保证基础知识的教学、基本技能的训练、基本能力的培养的前提下,删减了传统的初等数学中次要的、用处不大的、学生学起来又有一定困难的内容。与此同时,却又增加了一些有广泛应用、学生易于接受的新知识。因此作为中学数学教师,对新的教材体系中的新内容、新要求要努力吃透。比如:对于新内容应分析为什么引入,引入了多少?怎样教学才能体现新教材的意图;对应用性和实践性的要求,应给予充分的重视,切不可因考试是否需要而作弃取;即使对删去的内容也要仔细分析,有些知识点虽然内容删去了,但其思想可能还会有所体现。
2、应用现代教育技术的能力
在新的课程标准中,已将计算器的应用引入教材,多媒体计算机辅助教学将进入课堂,这就要求教师必须具备使用现代教育技术的能力。具体的说,应具备使用常见的数学教学软件的能力,有选择课件的能力,有在网络上获取教学信息的能力,引导学生参与数学实验的能力。同时,教师还要能为培养学生的探索精神和创造意识提供丰富多彩的教育环境和有利的学习工具。
3、因材施教的能力
由于高中教育的普及,大学升学率的提高,读高中的学生越来越多,学生的数学知识的差异也会越来越大。这就要求教师必须要努力去探索课堂教学的新模式。教师不仅要研究教材,更重要的是要研究学生,研究学法,从学生学习的认识理论的角度去分析学生的特点,激发学生的学习兴趣,使每个学生的学习都有所进步。
4、开放创新的教学能力
数学开放教学已成为世界性的数学教育热点和数学教学新趋势,这种教学新模式着力发挥学生的自主性、能动性,强调培养学生提出问题、分析问题和解决问题的能力。现在的中学生独立意识强,自主需求浓,传统的封闭式教学显然不能满足这种心理特征,因此作为一名高中数学教师,提高自己在教学过程中开放创新的实践能力已是迫在眉睫。
(1)要立足学生现实基础,放眼未来发展,在传授知识的同时,更要侧重于科学思维方式的形成和信息处理能力的提高,让学生走出学校后仍具备获取数学知识的能力,仍具备强烈的学习欲望。
(2)数学教学应与生活生产实际相结合,努力向教材外拓宽,寻找并接受有益信息,拓宽视野,着力培养学生的动手能力。
(3)要培养学生打破常规、大胆质疑的创新精神,要鼓励学生不畏师唯师,要善于形成自己的见解,最终拥有数学的创造能力。
总之,随着课程改革的不断深入,中学数学教师应及早认清未来教育中社会对教师角色的期望,转变教育教学观念,不断学习,努力提高自身素质和各方面能力,与数学新课程改革共生长,同发展!
参考文献:
1、周南照、孙晓云主编.学会求知.北京出版社,1999,9.
2、张维忠著.数学文化与数学课程.上海教育出版社,1999,9
3、《高中数学课程标准》的框架设想.数学通报,2002,4
高职院校数学课程改革的过程中,院校及教师要严格依照系统理论,将教学大纲、教学原则、教学方法结合在一起,形成统一的系统,要针对上述理论内容,全面提升高职院校特色,提升教学与职业之间的需求效果,增强教学实用性。
1.1系统目标构建,走向改革正确方向在对高职院校数学课程改革时,院校及教师要对高职教育特色进行全面分析及了解,依照高职教育中对学生技术性、实用性的要求,形成具有自身特色的数学教学内容。院校及教师要将培养目标定位在对学生能力的拓展,确保将数学学习与职业需求紧密结合在一起,提升学生在今后职业中的发展效果。高职院校学生在就业过程中主要分为以下三大类,第一,生产或服务行业中的技术人员;第二,经营性岗位中管理人员、经营人员;第三,高技术操作岗位中的技工人员。因此,在基于系统理论中的高职院校数学教学体系建设的过程中,院校及教师要对上述方面中应用到的数学知识进行强化,形成以实用为主体的教学目标。
1.2系统关系调节,处理存在教学问题在实施关系调节的过程中,院校及教师要处理好以下几方面内容:(1)处理好职业方向针对性及终身发展需求性之间的关系。院校及教师不能仅仅将高职数学教学作为一个阶段性教学内容,需要将上述内容发展成终身学习教育,让学生能够形成终身学习意识,提升可持续发展效果;(2)处理好教学内容应用及科学知识系统线性之间的关系。在该处理的过程中,高职数学教学要将学生今后职业方向作为建设基础,弱化对支离破碎的概念、公式、定律,降低学生可能产生的厌烦情绪。教师要将学科之间的知识形成系统,以应用为目的,让学生在应用的过程中对上述知识之间的联系进行深入了解,融会贯通;(3)处理好学科知识重点与学生能力培养之间的关系。高职院校在实施系统理论教学建设的过程中需要及时调整知识内容,对知识系统进行构建,确保重点、难点突出。在处理重点、难点时,教师要以培养学生职业能力为基础,确保教学内容深浅适宜。
1.3系统内容选取,提升教学改革质量在实施系统理论下的高职院校数学课程改革的过程中,院校及教师要保证教学内容“够用”,保证学生能够学过,能够顺利应用。例如,在对高职院校中会计、经济管理专业学生进行数学课程教育的过程中,院校可以将教学的内容重点放在初等函数、微积分、概率分布及统计等内容上。院校可以适当设计单利、复利、税收、利润、收入、收益等方面的教学练习,确保上述专业学生能够在学习的过程中提升自身能力;在对理工类学生进行数学课程教学的过程中,院校可以将内容放在初等函数、微积分、向量及空间几何、线性代数等方面,设计数学模型及数学软件等教学内容,提升学生能力素质。
1.4系统方法优化,降低数学学习难度系统理论要求高职院校数学课程教学从主体出发,以系统角度实施教学,完成对学生的素质教育及能力培养。实施数学教育的过程中,教师要将教学内容作为教学主体,循序渐进。例如,在实施空间解析结合教学的过程中,教师可以先从空间解析几何的特征出发,确保学生能够认识到空间解析几何。完成上述教学后,教师可以对空间解析结合中的内容细化,丰富二维空间及三维空间内容,从主体到细节,降低学生理解难度。除此之外,在教学的过程中教师还可以以树状结构、环形结构等确保学生理解之间的关系,可以使用类比法、对比法等提升知识理解效果,确保学生认识到数学的本质。教师要以降低教学难度为基本,依照系统之间关系、内容,对各项教学方法进行合理选取,最大限度改善学生在高职数学教学中的学习效果。
2总结
自从初中数学新课程改革以来,也有不少教师主动地参与到教育教学改革工作中来,也有部分教师处于观望状态。其原因是,大家对教育教学改革的意义认识不一致。对教育教学改革如何开展没有借鉴的经验,不知道从何下手。现在真正参与教育教学改革的老师,教育教学改革的彻底程度也不近相同。有的教师上课表面看起来课堂气氛异常活跃,学生也积极的参与,好像效果很好,可是,当我们细心观察和思考,不难发现由于教师盲目追求课堂教学中提问题的数量,一定程度上忽视了对学生课堂教学参与度的分析,还有的教师对发挥学生的主体作用认识不到位,教师的课堂引导不到位,使得课堂气氛热烈却收效甚微。出现这样的现象原因是教师对新课程教学理念的理解不到位,教学改革中过于追求形式,不注重内容导致的结果,这样的教学改革并不可取。我们提倡的教学改革需要教师的真抓实干,注重实效,有效地推进教学改革才是每一位教师要做到事情。
二、创设情境教学过程中不能流于形式,要注重内容
初中数学新课标教学理念,强调教师要调动学生的学习积极性,激发学生的学习兴趣。这是因为新课程教学建立在学生的自主学习的基础上,要让学生实现自主学习教师就不能采取压制性手段,强迫学生学习,教师必须要让学生有“要我学”转变为“我要学”。要促成这样的转变,教师需要激发学生的学习兴趣。兴趣是一个学生最好的老师。学生有了兴趣就能够表现出积极的自主学习倾向。学生就会乐于参与学习过程并乐此不疲。所以,想办法激发学生的学习兴趣就成为我们教学改革现阶段的教学突破口。在教学开始阶段实施教学情境是一种激发学生学习兴趣的有效的手段。教师通过创设生动有趣的教学情境,能够让学生身处教学情境中,引起学生的思考,从而发现问题、思考问题,进而尝试解决问题。这样就引起了学生的学习兴趣,并对接下来的自主探究环节起到了重要作用。教学情境的创设,目的是要激发学生的学习兴趣,方法是要把教学内容和学生的生活实际联系起来,创设学生熟悉的、感兴趣的教学情境,激发学生的学习兴趣。可见,创设教学情境,不仅可以使学生容易掌握数学知识和技能,而且可以使学生更好地体验教学内容中的情感,使原来枯燥的、抽象的数学知识变得生动形象、饶有兴趣。但部分教师过于注重教学的情境化,为了创设情境而情境,把教学情境进行虚构,使得数学课脱离生活实际,这样的结果不仅不利于教学情境的作用的发挥,更使得初中数学教学脱离的实际生活,失去了数学存在的实际意义。事实说明,有些教师辛辛苦苦创设的情境,并没有起到应有的作用。往往因为被老师创设的情境所吸引,而久久不能进入学习状态。教师创造性地使用教材,要体现教材的基本思路,不能完全抛开教材。教学情境的创设要符合不同年龄段学生的心理特点和认知规律,,要根据不同的教学内容有所变化,创设的情境还应该赋予一定的时代气息。
中学数学教育是学校教育的重要组成部分,它在教育学生:陶冶学生,发展学生思维能力等方面都起着十分重要的作用。随着社会的发展,人们对数学教育的要求会越来越高。为适应这种要求,高中数学试验教材已在全国十一个省市试用。高中数学课程标准也在讨论制订之中。但我们知道:从教育的效果来看,课程可分为预期课程,实施课程和实现课程三种。预期课程是由国家政府部门和教育专家们制订的,而实施课程是教师根据自己对预期课程的理解和自己的主观愿望所决定的。由此可知,预期课程设计得再理想,如果教师不能按要求去实施,那么其教育效果可想而知。因此,我们说:中学数学课程改革成败的关键在数学教师。为使中学数学课程改革能够深入下去,使新的中学数学课程标准能够顺利实施,并达到预期的目的。笔者认为有必要,根据素质教育目标,新的高中数学教学大纲和高中数学课程标准框架,对中学数学教师的角色做认真的研究。
一、课程标准对中学数学教师角色的期待
(一)课程改革的深入要求教师具有全新的教育观念
教育不仅具有生产力等经济功能和价值,而且这种价值和功能要与人的精神世界的丰富,道德品质的提高,人与自然的和谐,人文精神的培养相协调。而我们原来的有些教育方法,对学生个性心理的发展,以及创新素质的培养是格格不入的。针对这一客观事实,教师的职能应该做相应的改变,由封闭式的教学改为指导学生"开放式学习,"教师应树立以"学生的发展为本"的教育观念。建立完全平等的新型师生关系。
另外,"双基"是我们的特长,但"双基"是随着时代而变化的,"代数运算的熟练和逻辑推理的严谨"虽然是双基的两个基本点,但归纳、猜想、创新的思维方式,广阔的数学视野,信息技术手段的运用,去应该是"新双基"的有机组成部分,中学数学教师对此必须有清醒的认识。
(二)课程中新内容的增设,要求教师具有创新精神
新课程中,增设了"数学建模,探究性问题,数学文化"这三个模块式的内容。这些内容的增设其主要目的是培养学生的数学素质。这些内容要求教师要用全新的教学模式来教学,因此,要求教师要具有创新精神,要能够推崇创新,追求创新和以创新为荣,善于发现问题和提出问题。要善于打破常规,突破传统观念,具有敏锐的洞察力和丰富的想象力。使思维具有超前性和独创性。教师自身应具备宽厚的基础知识和现代信息素质,形成多层次、多元化的知识结构;有开阔的视野,善于分析综合信息,有创新的数学模式,创新的教学方法,灵活的教学内容选择,以创新思维培养为核心的评价标准等。善于创设"创新的自由空间",为学生提供更广阔的学习园地,指导学生改进学习方式。
(三)新课程的多样性、选择性要求中学数学教师具有良好的综合素质
新的高中课程,具备有多样的选择性,在共同基础上设量不同的系列课程,以供学生进行适合自己发展的选择。整个高中数学课程体系,包括课程设置,课程目标,课程内容等,都将致力于根据学生的不同志趣,能力特征以及未来职业需求和发展需要,向他们提供侧重于不同方面的数学学习内容和数学实践活动。
这就要求中学数学教师有能力胜任不同的课程,既能教基础课程也能教系列课。教师不仅是解惑者,还应是问题的诊断者,学习的启发者,还要求教师能了解所教学生的个性发展。指导帮助学生按自己的能力需要选择所学课程。
(四)终身教育的提出,要求教师具有可持续发展的人格
首先,终身教育的提出,要求教师把自身知识的更新视为一种责任,使"终身学习"内化为教师的自觉行为。
其次,学生正处于人格塑造和定化时期,社会文化中的价值取向、理想和信仰、道德情操、审美情趣等都会从教师的角色文化中折射出来。并通过他"映照"在学生的人格世界中,作为数学教师的言传身教,决定了其人格对学生人格的形成有"润物细无声"的功效。这就要求中学数学教师按社会的道德原则和规范去塑造自我,实现"超我"。
二、中学数学教师应做角色转变的准备
(一)教师思想观念的更新
首先,认识到课程改革的必要性和重要性。教师要摆脱旧的教育观念的束缚。更新教育观念,树立正确的人才观,质量观和学生观。其次,教师要认识到自己在课程改革中的作用和地位。能以饱满的热情投身到课程改革中来。第三,教师要认识到:"数学素质教育"的提出,要求教师的教学要关注每一位学生的身心发展的需要。而"培养创新精神与实践能力"的提出,要求教师的教学要促进学生个性的发展。教师要真正理解:"人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展。"这是新世纪数学课程的基本理念。第四,教师要认识到在未来社会中,获取知识的能力比获取知识本身更重要,获取信息的方法比获取信息本身更关键。教师给学生的应该是方法库,工具库。教学模式应是:知识,素质,创新能力的三维教学模式。
(二)教师知识结构的更新
教师的知识结构是由本体性知识,条件性知识,实践性知识和文化知识组成。
未来社会的知识结构应是:信息化板块结构,集约化基础结构,真线化前沿结构。教师作为社会化的人,必须更新自己的知识,才能适应社会的要求。
从课程改革来看,新的高中数学课程标准中,将增加很多新的知识内容。有些内容是教师学过的,也有内容是教师没有学过。为了适应教学,中学数学教师首先应通过自学,参加继续教育学习或一些培训班的学习,提高自己的专业理论水平。其次,通过报刊,杂志、信息技术等收集有关的教育教学资料,充分自己的实践知识。数学文化课的开设,综合课程的开设,要求中学数学教师要了解数学史,了解数学文化的教育价值,了解数学在其它相关学科的应用等。也就是说数学教师不仅精通自己的专业知识,还要扩大知识面,对跨学科的知识有所了解。
随着社会的发展,我们所面对的学生也会更加复杂化,这就要求教师必须不断学习心理学和教育学,能够以新的教育理论来支撑自己的教学工作。
(三)教师心理观念的更新
在只有语言的传媒时代,教师有绝对的权威,教师是学生获取知识的唯一来源。在文学出现以后,这时的教师在课堂教学中仍是主演,因为学生必须通过教师的教学,才能获得必要的知识,进而才能自己阅读书籍。到了信息时代,学生获得教育信息的渠道是多元化的。有时学生获得的信息可能比教师快,比教师多。所以这时的教师在学生面前没有了绝对的权威。这是教师在心理上要接受的第一个事实。
现代教学论认为,在教育过程中,教师将扮演着多种角色,从多方面影响着学生的发展,教师不仅仅只是知识的传递者,他还是学生的榜样,集体的领导者,人际关系的艺术家,心理治疗工作者,学者和学习者,以及学生的朋友和知己。在教学过程中,教师是主导,学生是主体,教学活动是在师生双方的相互作用下共同完成的。学生的主体作用只有在教师良导作用下才能得以发挥,而教师的主导作用必须是建立在学生的主体作用之上的。只有当师生之间互相作用,学生的能动性,自主性和创造性才能得以激发和培养,学生才能获得充分的发展,因此,在课堂教学中,教师与学生是合作伙伴的关系。教师是组建者,引导者,解惑者。教师与学生在人格是平等的。这是教师在心理上要接受的第二个事实。
教师在学生面前的角色变化必将成为事实,我们教师只有在心理上做好充分的准备才能扮演好自己的角色。
三教师施教能力的提高
(一)教师要提高把握新课程的能力
新的课程标准在保证基础知识的教学,基本技能的训练,基本能力的培养的前提下,删减了传统的初等数学中次要的,用处不大的,而且对学生接受起来有一定困难的内容。与此同时,增加了一些为了进一步学习打基础,有着广泛应用的,而且又是学生能够接受的新知识。作为中学数学教师首先要了解减去什么,增加了什么?其次对新的教材体系中的新内容,新要求,要努力吃透。对知识点的分布及其要求的不同。教学时要把握每一处出现时的度,防止因不了解整体安排而把教材中分几次达成的知识作一次性处理。提前拔高。对新内容,应分析为什么引入,引入了多少?怎样教学能体现新教材的意图,防止范围,难度失控。对应用性和实践性的要求,应给予充分的重视。切不可因应试是否需要作弃取。对删去的内容也要分析,有些知识点是内容删去了,但其思想可能还会有所体现。
(二)教师要提高使用现代教育技术的能力
随着现代教育技术的不断发展,新的课程标准中,已将计算器的应用引入教材,多媒体计算机辅助教学将进入课堂。这就要求教师掌握计算机工具,在助教方面:能提出好的脚本,能使用常见的数学教学软件解决教学中的重难点,能评价课件的好坏,有能力选择好的课件。有能力在网络上获取教学中所需的信息资料等。在助学方面:教师能够组织引导学生参与数学实验。例如利用动画技术演示几何图形运动变化规律,三角函数曲线周期的变化规律,探求点的轨迹等。通过实践探索,使学生体验数学家的思维过程。教师要能为培养学生的探索精神和创造意识提供丰富多彩的教育环境和有力的学习工具。教师还要能指导学生使用计算器进行繁杂的计算,节省计算时间,提高学习效率。
(三)教师要提高因材施教的能力
由于高中教育的普级,大学升学率的提高,读高中的学生会越来越多。因此学生的数学知识的差异也会越来越大。这就要求教师要探索课堂教学的新模式。教师不仅要研究教法,更重要的是要研究学法。从学生学习的认识理论的角度去分析学生的特点,激发学生的学习兴趣,使每个学生的学习都有所进步。
综上所述,在课程改革不断深入的今天,中学教学教师极早认清未来教育中,社会对教师角色的期望,作好角色转变的准备。将有利于教师自身素质的提高,有利于确保课程改革的顺利进行。
百年大计,教育为本。有了第一流的教师,才会有第一流的教育,才会出第一流的人才。当代的中学数学教师的职责和使命比以往任何时候都更重要,而对于教师角色的正确定位,在时代的浪潮中,正如镇舟之石,其意义是重大的。
参考文献
1、全日制普通高级中学数学教学大纲(试验修订版)2000.3
2、《高中数学课程标准》基本框架(征求意见稿)
内容提要:随着校园信息化建设的快速发展,可以充分利用校园计算机、网络和多媒体资源,借新课标实施的契机,做好初中数学课程改革,发挥现代信息技术与初中数学课程整合的优势,克服信息技术在数学教学中的不足,真正从数学教学规律自身特点出发,改变教师的传统教学方式和学生的被动学习方法,采用建构主义的教学观和学习观,模拟实际生活模型,激发学生潜能,增强学生学习数学的积极性,全面提高教学质量,提高学生素质。
正文
信息技术与初中数学课程整合的一点探索
一、引言
二十一世纪计算机技术高度发达,网络信息日新月异,同时,以构建主义为理论的教育和学习方法日趋成熟,从而使以多媒体、计算机和网络为载体的新的教育技术的应用显得十分的必要和重要,信息技术与课程整合的议题已摆到广大教育者的面前。传统的行为主义教学观认为,学生的学习和知识的获得是由环境的刺激引发人的行为上的反映,就是说学生是被动地学习;当代的建构主义特别是社会性建构主义强调知识建构的合作,就是说教师与学生、学生与学生之间建构意义时是互相的,学生是主动自愿去建构学习。基于多媒体、计算机和网络为载体的新的教育技术,能够在初中数学教育中充分发挥建构主义教学理念的优势。
就数学教育教学来说:数学作为学生学习各科的基础学科,工具学科,因其严谨的知识系统性,链状结构性,以及在学生思维训练所独具特色的逻辑性,科学性,有它独特的特点。因此,在信息技术与数学课题整合的过程之中,如何探索信息技术在数学教育教学中的运用,发挥信息技术这一先进教育技术的作用,更好地驾驭这种新式的教育教学手段,就成了我们广大教育工作者的重要任务。
二、信息技术与数学课程整合的优势
信息技术与数学课程整合之中教师可以借助计算机相关软硬件支持,同时获取、处理、编辑、存储、展示包括文字、图形、声音、动画,以及网络信息下各种数学原件、数学问题的生活原形等不同形态的信息,超越了课本的视野,拓宽了数学的范畴,丰富了教学内容,能创造出使知识、学问来源多样化的人文教育环境。与传统教学相比,有着无可比拟的优势。
1、信息技术与数学课程整合有助于培养学生的数学思维能力
数学偏重于逻辑推理,偏重于培养学生的抽象思维能力。利用信息技术支持下的动画演示,生活中的数学问题的情景再现,可以让学生从具体问题到抽象概念,从特殊问题到一般规律,逐步通过自己的发现、探究去思考数学、学习数学。在课件《生活中轴对称》的制作中,我利用网络展示了生活中大量的轴对称图形,又利用蝴蝶飞舞的视频吸引学生注意力,然后将一只蝴蝶框定放大成为平面图形;在讲授多面体的展开图时,学生和教师都可以充分利用实物,给正方体的六个面标上字母A、B、C、D、E、F,但由于实物不透明,学生观察不方便。因此,我利用《几何画板》做了个正方体,给六个面着不同颜色并标上字母且可透视,再结合实物进行教学,这一过程让学生直接感受到数学来源于自然,抽象于实践,创设了数学教学的良好情境,建构了较理想的学习环境,收到了较理想的教学效果,使学生比较自然地接受数学概念,同时开阔了学生视野,有助于发散思维的培养。
2、信息技术与数学课程整合有助于培养学生的自主建构能力
新课程标准对学生的能力要求有了更高的标准,要求学生会在实际生活中应用数学知识建构模型解决实际问题,同时也要能在实践中发现数学规律。数学教学的核心是培养学生的思维,而思维能力的培养,需要经历实践---认识---再实践---再认识的过程。信息技术介入到数学教学中,提供的是超大的信息量和多媒体的信息传递方式。充分利用计算机及软件的模拟技术,可以让学生把纷繁复杂的运动图形或数据用计算机处理,达到形象直观的目的,从而易于学生去观察比较、分析综合、归纳概括。其实,它还可以培养学生数学模型的建构能力,深入理解数学知识的生成过程。
学校教育离不开德育,课堂教学必须渗透德育。在数学课堂教学过程中经常要进行有关数学史教育,以拓宽学生知识面,增强学生的爱国情操。例如:在讲授几何中圆的知识的时候,我就布置了上网查找《割圆术》的有关资料的课外作业。结果,90%以上的同学都知道了是刘微独创的割圆术,它比德国的托勒密计算的圆周率要精确一些,比古希腊阿基米德的方法要简单,并以中国的灿烂文化自豪。又如,在讲授勾股定理的证明的时候,我就布置了上网查找勾股定理的证明方法的课外作业,结果,90%以上的同学都了解了包含我国古代的赵爽和刘徽的证法在内的至少五种以上的证明方法。利用学生的猎奇获新的心理,通过学生自己在互联网上有目的的漫游,获取全面的相关知识,可以拓宽学生的知识面,增强其动手能力,发挥其主体作用。所以,只要是简单的素材资讯查找,教师尽可以充分利用丰富的网络资源,放手让学生去自主建构。
3、信息技术与数学课程整合可以激发学生学习数学的兴趣
数学课内容抽象,概念严谨却又枯燥,因此数学教师教学中考虑最多的是如何让课本知识活起来,而运用信息技术就可顺利达到效果。我在讲授无理数时,就做了几张有关第一次数学危机的背景资料和人物介绍的幻灯片,引起学生的学习兴趣,知道了无理数的产生过程。我还利用《几何画板》演示等腰三角形的特征,直观地表现了三线合一的现象,让学生从感官上区别具体概念,加深了记忆;运用《几何画板》指导学生自制平行四边形、梯形等积变形课件,同时又引导他们由此推导面积计算公式,这样既激发了学生学习的兴趣,又培养了学生的动手能力,同时也加深了学生对概念的理解。起到了形象直观,节约时间和教具,提高课堂效率,事半功倍的效果。
三、信息技术和初中数学课堂教学有机整合的实例分析
信息技术和课堂教学的有机整合与传统教学相比,他的最大特点是可以最大限度地促进学生学习模式的转变,而“网络环境的教学模式”正是其于交互型整合方式所产生的,目的是创设自主学习的环境,让学生能够在老师的引导下自主建构知识,变被动的听和练为主动的探索和运用。下面以《勾股定理的应用》在网络环境下教学为例来进行实例分析。
1、课件制作设想
数学是现实生活的数量化和抽象化,就是说数学知识是从实践中起源的,同时,数学必须解决实际问题,要经得起实践的检验。所以,在本堂课的引入和部分都以实际问题的数学化为基础,增强学生的兴趣,同时让学生看到数学的巨大魅力。课件以网页形式在互联网上,分为五个页面,学生可以自由切换。但是,在页面的排列上按照知识的科学性为序,从产生到运用,从易到难,方便学生自学。同时,例题以中考题为基础,进行适当的改编,增强了开放性,给学生自主探索的空间。最后,本课件强调了师生的互动性。
2、教学过程举例
(1)知识探索请学生例举一个能用勾股定理解决的生活实例。此过程安排学生提前完成。学生可以去上网查找有关例题,然后整理下来,交给老师,老师再从中抽取具有代表性的几题,拿到课上供大家交流。
学生在上网查找的过程中,可以接触到许多与勾股定理有关的知识,这样既激发了学生的学习兴趣,培养了他们的思维能力,又锻炼了动手能力,充分体现了学生自主探索并自由建构的过程,体现知识产生于实践的思想,符合新课标理念。
(2)应用举例
例1、李焕菁妈妈买了一部29英寸的电视机。李焕菁量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了。你同意他的想法吗?你能解释这是为什么吗?(1英寸=2.54厘米)
例题中出现的是学生的真实姓名,这样可以调动学生学习的积极性,增强学生的自豪感,对其他同学也是一种期待和激励。学生用勾股定理的知识解决这个问题是轻而易举的事情。通过这道例题,学生既巩固了勾股定理的知识,又学会了一个生活常识,原来电视机的大小是凭电视机屏幕对角线的长度并用英寸作单位来度量的。
例2、“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边;王青观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅”请你帮助王青算出湖水的深度。
这是一道诗意化的题目,题目本身就能较好地调动学生的学习兴趣。我根据题目意思,利用《几何画板》,再现红莲的摇摆过程,加深学生对题目意思的理解。学生根据左下图,易知,CD=0.5,BC=2,AB=AD,进而利用勾股定理去解决它。
例3、如上中图,徐良家有一底面周长为2m,高为1m的圆柱形油罐,一天他发现一只聪明的老鼠从距底面1dm的A处爬行到对角B处吃食物,你知道徐良为什么说那是只聪明的老鼠吗?(从爬行路线考虑)
由于老鼠是沿着圆柱的表面爬行的,故需把圆柱展开成平面图形。我利用《几何画板》形象直观地把圆柱展开成如右上的平面图形,学生能容易根据计算机演示,结合“两点之间线段最短”公理,理解AB长既为最短路线。
这些例题放在第三个页面,而详细答案放在第五个页面“后花园”里,并且建有例题与答案的超链接,学生可以自由点击浏览,在各个页面间进行自由切换,打破了传统的课堂教学内容不可重现性,让学生根据自身所需去侧重解决自己的难点,真正做到因材施教,因人而异。
四、对信息技术与数学课程整合的几点思考
1、教师始终要起到主导作用。
信息技术的介入应体现一种新的教育观念,而不只是教学内容数量上的增多,手段上的新颖,课堂教学活动的主体是人。教师不仅是知识的传授者,还应是知识发生、发展的播种者及浇灌者,更应是学生处事的模范。灵活的应变能力,严谨的求学态度,严密的逻辑思维,这些都要靠师生之间的心灵感应,靠教师以自身的人格魅力和富有情趣的讲解,通过师生间的情感互融,来调动学生积极
参与。我们不应让“人机对话”取代人与人之间的情感交流,否则,现代媒体成了教学机器,教师成了键盘手。这样的课堂教学结构模式是极不利于学生形成健全人格,发展个性。
2、多媒体课件的制作应不求时髦,但求实用。
课件的运用应整合于课堂教学内容之中,针对以抽象思维、逻辑推理为培养目的的数学教学,课件中存储内容要精练,画面要简洁,讲解和推导应由教师引导学生通过合作探究自主完成。为帮助解决数学中数形结合的难点,理解抽象于实践而又指导实践的数学思想,我们认为,应根据数学自身特点,充分利用信息技术的交互功能,将课件设计成一些相对独立,又相互联系的模块,让老师能按自己组织教材需要,针对各自不同教学思路,灵活调用各模块里的内容,设计自己的教学过程,表现自己的教学风格。
3、网络电子教室应成为数学教育的理想场所。
在人手一机的网络教室,学生可以在教师指导下,自己动手操作、观察、发现、研究问题,在网络中查找数学资料,形成学生动手“做数学”的模式。学生成为学习的主人,不再把学习数学看成负担,增强了学好数学的信心,享受学习数学的乐趣。学生直接动手操作,使实践能力、观察能力、归纳能力都会得到很好的锻炼,更有助于培养思维能力,创新能力。
在讨论中,不少观点的争论实际上都可上溯到这个层面上来,它涉及到为什么要制定标准?以什么制定标准?所制定标准需要体现的核心思想或观念是什么?这些问题实际上关系到标准研制的基础,也是需要在研制过程中不断深入研讨以形成共识的。
1.1应首先以时代性要求作为标准研制的依据
作为实施《面向21世纪教育振兴行动计划》的一项重要工作,当然应该从更广阔的时代背景出发,反映出数学课程在新的历史条件下的发展变化和应达到的目标,诚为G.豪森在《数学课程发展》一书中所指出的:应该将数学课程发展放在历史的,以及更普遍的社今的、教育的背景中去加以考察。"从这一角度出发,至少如以下几个方面是应该考虑的:
(1)未来社会发展的新特征(如社会的信息化、数字化、学习化)对教育及数学教育提出的新要求;
(2)数学学科本身的发展变化(如技术性特征的凸现、应用环境的拓展、以数学理性精神及数学语言、思想、方法为核心的数学文化与人的生存更紧密的联系等);
(3)数学教育观的新发展(如数学教育功能、价值的变化;对数学教育过程、本质的新认识等);
(4)数学教育改革的国际、国内时代背景(如怎样适应以培养创新精神和实践能力为中心的素质教育总要求以及国际数学教育改革的新趋势等)。
应该说,我国数学教育工作者在近几年的研究中已敏锐地关注着上述时展要求所赋予的数学教育新的时代特征。如在ICME-8上,我国学者提出了"中国数学教育的范式革命",引起国际数学教育界的关注。之后,文[2]进一步从数学教育价值观、认识论观、数学观3个维度组成的框架来描述这种观念的变革。文[3]从"数学素质教育的建设是一项深刻的教育思想改革"的角度对上述观点予以支持。20世纪末连续两年·。在上海举行的"数学教育高级研讨班",不仅对20年来我国数学教育的成就和特点进行了总结和国际比较,还对改革的目标和未来10年中国数学教育的发展作了展望,作为参与者,深感数学教育的新观念、新思维已成为问题研讨的基础;而在北京举行的全国高师数学教育年会上,主题报告《数学教育如何迎接知识经济时代的挑战》鲜明反映出在知识经济理念之下对数学及数学教育的新认识。这里还要提及的是以青年学者为主体的"21世纪中国数学教育展望课题组"围绕"大众数学的理论与实践"进行了长达6年的实验研究,专家鉴定意见指出:该课题"在数学教育观和数学教育改革的指导思想、基本思路和原则、理论依据方面提出了一套较为系统的新思路"。其主旨报告从重新认识数学、重新认识学生、重新估价我国数学教育现状、把握国际数学教育新方向等方面论述了其研究在未来义务教育中"代表着一种新的数学思想和实践体系"。
上述具有一定代表性的研究活动集中地反映出这样一种共识,即:应该以一种基于时展要求之下的全新的理念来推进数学教育改革,而这也就成了标准研制的一个重要的思想基础。
1.2关于《设想》所提出的改革的基本理念
它主要涉及到如下层面:(l)数学观,从数学是模式与秩序的科学,是普遍适用的。技术,是一种充满探索与创造的过程等方面去反映对数学发展的新认识。(2)突出"以人的发展为本"的数学教育观,从中体现出数学教育与国民素质、人的理性思维、自我情感发展、解决问题能力的新关系,体现出平等教育、终身教育与可持续发展的新观点。(3)围绕"学习的建构",从数学学习的本质、方式、教师作用等方面形成一种新的学习认识论观念。(4)基于以上观念变化,提出新的教育评价观,即建立一种注重过程的、动态的、多样化的数学教学评价机制。
应该说,上述理念基本反映了目前的研究成果和共识,反映了未来发展的时代要求,为前期研制奠定了必要的思想认识基础。随着研制进程的推进和讨论的深入,研制者对上述理念也作了一些调整和补充,我们不难从文[5]及《义务教育阶段数学课程标准征求意见稿》中发现一些变化。
1.3关于标准研制的核心思想
文[6]认为"一个好的数学课程标准还应其有明确的指导思担",它应该有一个核心的思想予以表述,它"事实上构成了新的改革运动的主要特征,或者说,是次之改革运动成败的关键因素"。笔者赞同这样的成点,只是认为这种核心理念的形成需要经历一个过程(从某种意义上讲,它本身也是研制的一个成果),它需要对诸多层面的理念予以梳理、贯通、整合及提炼,需要以深入的理论与实践研究为基础,它也不仅仅是一种理性思考的产物,更应该能通过课程载体落在实处。
综合研制过程中所接触到的种种观点,比较趋于共识的是:新课程标准应注重在素质教育的目标下实现"人的发展",有鉴于此,就必须实现如下转变,即:从面向少数学生转变为面向全体学生;从强调以获取知识为首要目标转变为首先关注人的情感、态度、价值观和一般能力的培养;从数学接受性学习转变为数学活动中的建构性学习;从仅于数学内部学数学转变到更多地联系数学外部(社会、生活、其它学科等)学数学;从追求特定时限学习目标的实现转变到着眼于学生终身学习及可持续发展基础的养成。
2课程标准研制需要注意的几个策略
由于"标准"的研制在我国尚属首次,加之涉及面广,需解决的问题多,且要经历一个较长的研制实验过程,可以说是一项数学教育改革的系统工程,为有效地实施这项工程,应该注意方法、策略问题。笔者曾在1999年10月份召开的北京会议上就此问题发表过意见,现在本文着重就几个问题再谈点个人意见。
2.1需处理好几个关系
首先要处理好继承与发展的关系。建国以来,我国数学教育经过若干历史发展阶段,积累了宝贵的经验和教训,形成了具有自我特色的厚重的历史底蕴。特别是改革开放以来,数学教育改革理论和实践上都取得了巨大的成绩,这是应该充分肯定的。但也应该看到,基于应试教育的大背景,数学教育也出现了许多值得认真研究、加以解决的问题。而如果从前述时展的要求看,数学教育在某些方面还有相当大的差距,更应该加快改革进程。正是基于这样一种分析,决定了"标准"研制的基本态度应是扬弃加变革,即采取历史唯物主义和辩证唯物主义态度对数学教育的过去和现状作实事求是的分析,既要肯定成绩,也要正视问题,更要以改革的姿态,适应未来发展的需要。应该说,研制者所采取的态度是严肃而科学的,除了注意历史总结,现状剖析和未来需求设计这三者的贯通外,其着力点放在了适应未来发展需要上,这也表现了"标准"是一个适应未来的向前看的标准目前有人对标准研制是否充分肯定了我国数学教育的成绩以及目前改革步伐是否迈得过大所表现的忧虑是没有必要的。
另一个需要处理好的是坚持自我特色与借鉴国际经验的关系。数学教育研究历来具有国际协作的传统,而数字化社会的到来,使"地球村"更加成为现实,全球一体化的大趋势使得各国的数学教育更加走向开放和交流。值此世纪之交,各国数学教育研究异常活跃,反思过去、调整现在、思考未来已成为共同的主题。数学教育在这特定的时代背景下也呈现出更多带普遍规律性的特征,这无疑为我们提供了进行国际研究的大好时机。中国作为世界上学习数学人口最多的国家,其研究应该更多地融入国际数学教育改革的主潮流,一方面吸取别国之长;另一方面也为国际教育界提供自己的经验。正是从局这双向目的出发,在标准研制中,加强国际比较研究就显得极其重要。研制组除了进行"国际数学课程改革的最新进展"的专题研究外,还广泛收集了各国第一手资料,有针对性地进行了国别研究和其它方面的专题研究。事实证明,这种比较研究对于认清自己国的长处和不足,把握数学教育改革的趋势是有效的,值得进一步深入下去。
在研讨中,还涉及到正确处理好需要与可能的关系问题。比如,关于计算机(器)的普遍使用能否实现,某些现代内容(如概率统计)的增加是否会造成地区间新的水平差异,在义务教育阶段,创新精神的培养是否能落到实处,师资水平能否保证标准的实现,等等。笔者认为,在标准研制中,注意我国国情和现实可能性固然重要,但这种现实可能性一定是放在21世纪发展的背景下加以考虑的,一定是以时代需要为前提的。所谓目标既定,行动使然,课程标准应该在这个意义上体现它的先导性。
2.2吸纳各方力量参与,增强研制工作的开放性
应该说研制工作一开始就注意到了这一点。除就《设想》在全国普遍征求意见外,还先后召开了华东、华南、西南、西北、华北地区的座谈会,并通过多种形式,分别听取了数学家、数学教育家、高师研究者、教研员、一线中小学教师及其他各方人士的意见,并调动国内、境外有关学者的力量,进行了5个方面专题的调研,研制工作及有关会议也考虑到了地区性和各个层面的代表性。考虑到标准研制及具体实施、实验还将持续一个相当长的过程,更需要各方参与、通力合作才能收到实效,因此在研制的开放性上还需加强。应鼓励针对研制及实验有关各层面课题的立项研究,更提倡多方联合对重点问题进行攻关研究。
2.3提倡学术论争,增强研制过程的活力
围绕着标准研制,一段时间以来,在各种期刊上出现了不少文章,仁者见仁,智者见智,其中多有观点碰撞。事实上,数学教育研究的多元化格局已是当前发展的趋势,更何况我们是在做过去从未做过的事,如果众口一词,循之一径那才是不正常的事。学术论争必然带来学术繁荣。笔者参加的几次会议,尽管时时感到"火药味",但同时更感到言者的坦诚和成就这一事业的高度责任感。因标准研制所引发的学术论争是一件大好事,它必然为这一工作灌注强劲的动力。
3关于课程标准的设计
3.l标准水平的定位
此问题曾引起人们的关注(并引发出应是高水平还是低水平的争论),这里要解决好4个方面的问题:(1)要以反映基础教育阶段数学课程的基本要求(即普及性、基础性、发展性)为定位的依据;(2)从上述依据出发,标准应首先是对全体学生的基本标准,但正如它是致力于"人的发展"的标准,所以这一标准又不应理解为基于当前现状的低标准,而是着眼于21世纪发展要求的高标准;(3)标准在确立规范性要求的同时,应体现一定的弹性,这种弹性能为标准的实施(教材编制、教学实施、教学评价手段及地区实际情况差异)提供必要的发展空间;(4)3学段(9年级)之间的水平划分也应体现科学性和学段水平之间的递进发展关系,即通过阶段性与发展性的有机结合,来刻画标准的完整水平定位,而这些又是需要一定的研究来予以确定的。
3.2标准的内容与结构
《设想》对九年义务教育阶段的标准提供了一个基本框架,反映出如下特点:(1)以基本理念阐释标准制定的时代背景与指导思想;(2)将目标体系分为发展性领域与知识性领域,"虚"实结合、内容与活动结合、知识与素养(能力、态度等)结合、认知与情感结合,通过两个领域的交融、互动,来实现课程的总目标;(3)进一步对实施课程目标从课程设计和教学过程两个方面提出了思路,按此思路可对教材编写、教学实施、教学评价等方面形成指导性意见。这样。目标体系、教材编写、教学实施、教学评价就形成了一个相互贯通,有机结合的体系,应该说这是值得肯定的有一定特点的结构。
这之中,目标体系的设计特别是知识领域内容的设计是重点,也曾引发出一些有争议的问题。如关于平面几何的改革,关于小学是否引入方程,关于计算机(器)的进入?关于四则运算的要求以及一些具体内容的增、舍等等。此外,关于如何看待数学能力;如何贯穿数学思想方法;如何体现数学的文化价值;关于"证明"限制的程度怎样才合适;在3部分内容(数与式、空间与图形、概率统计)之外如何反映数学的联系(内部及外部联系);发展性目标对知识性目标的导向如何落在实处;如何处理好课程标准与教材编写与呈现之间的关系等也是引起关注的问题。
3.3对案例的重视
课程标准研制应该把典型案例的设计放在一个重要的位置。一个好的案例应该体现如下功能:(1)示范性,即提供一个实实在在的示例。(2)过程性,通过案例反映出动态活动特征。比如,通过"问题情境一一模型一一解决与拓展"的过程展示、呈现一种基本模式。(3)综合性,通过案例,浓缩与融合课程要求的诸要素,以期对课程达到的目标和实现的途径作整体反映。(4)可实现性,即能行性,以案例为载体,解决理论联系实际的问题,把课程标准落在实处。无独有偶,在1999年底上海举行的"数学教育高级研讨班"讨论"数学教师培训课程计划"时,大家极力主张"案例+反思"应作为教师培训的基本方式。而王长沛先生所提供的几个案例录相曾在多个场合引起大家的兴趣和好评。我们应该将这一工作视为一项基础性的工作,围绕课程标准的研制,广泛收集、整理、设计各种层次的丰富多彩的案例就显得很有必要。