时间:2023-03-20 16:25:21
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇沥青路面结构设计论文范例。如需获取更多原创内容,可随时联系我们的客服老师。
1沥青路面结构的透层技术应用功效
①合理连接沥青路面的不同施工结构层。按照高速公路路面结构设计,各结构层之间的接触面应为安全性连接系统。因此,借助沥青透层的应用,原本粘结力不强的内部结构沥青层与非沥青层之间将建立更紧密的结合,极大地改善了路面各结构层的整体性,也可有力避免各结构层之间出现的滑移安全隐患。②液体沥青的在结构表层出现程度不一的渗入作用后,将直接填充基层结构中的孔隙或集料间隙,使得各空隙直接封闭,避免雨水渗入存留加重基层侵蚀软化,可有效提升基层结构的稳定性。③高速公路的半刚性基层常要经碾压、洒水养生等处理,其间可致大量粉尘飞扬,可能加重细集料与粗骨料之间的不结合问题。透层的应用能够稳定浮尘,并加强粉尘与粗骨料层间的结合,降低软弱结构层的出现。④沥青透层的应用,可在基层均匀铺就防尘保护沥青层,在提高基层表面强度的同时增加抗摩擦力,避免基层结构的开裂等事故发生。
2高速公路的沥青透层施工技术应用关键要点
(1)设施准备透层施工要按工艺要求来准备合理的施工设备,提前备好试验检测仪器、液态沥青调制设备、洒布设备等物品,并对所有设施设备进行试用检验,确保设备的性能良好。(2)材料选择常规以透层油为透层材料,液体石油沥青、煤沥青、乳化沥青等都能作为透层材料,透层油的选择需参考基层类型,同时还应掌握不同透层油的性能优缺点。液体石油沥青即汽油、柴油、煤油等石油产品,经必要处理并混合沥青材料而成,属于目前沥青路面应用最广的透层油。大量理论研究与工程实践证实,只有混合沥青与石油两种化学物质才能发挥更好的渗透效果,渗透深度越大则沥青路面的生命周期越长。乳化沥青顾名思义就是固态沥青经高温乳化后形成,整个生产过程涉及更多化学原理与机械操作,因而更加复杂。煤沥青在日常工程中并不多见,原因在于煤沥青毒性较重。总的来看,三种透层油的渗透效果由高到低排位依次为:煤沥青、液体石油沥青、乳化沥青。(3)浇洒操作高速公路的路基施工完成后,路面沥青透层可选在基层上表面养护水分变干后,以计算机实现沥青机对接。当然,基层上表面的养护水分不能过于蒸发干燥,否则还需认真清扫和擦拭表面。公路路基若短时间内完成,需要积极完成异物清扫并淋洒水分进行湿润,等水分晾干后再予以透层施工。透层浇洒工作前,各种建筑构造物应要求施工人员加强安全保护。沥青路面的沥青透层洒布后,理想状态就是保持液态物质不随意流淌,且应直至渗透基层深处。
3沥青路面的透层技术应用实例分析
3.1工程实例基本情况。某高速公路第二标段全长23Km,其中公路施工工程量设计为:上面层为改性沥青马蹄脂施工;中面层为改性沥青混凝土施工;下面层为沥青混凝土施工;底基层为水泥稳定碎石施工,并设计有低剂量的水泥碎石处治层。该路段路基以整体、分离式相互结合来完成设计施工,整体路基26m宽,分离路基单幅宽13m。整条高速公路的设计车速达到100km/h。在某施工桩号处,要求在20cm水泥稳定碎石基层上表面顶面组织开展透层技术施工。该工程中所用到的沥青透层材料中,以高渗透乳化沥青作透层油,经过实验测定,该透层油完全满足JTGF40-2004规范中的质量要求。下表即为技术指标:3.2沥青路面透层施工的方法要求。(1)施工前的准备工作完成各材料的入场试验,严格落实材料的达标合规;完成施工设施设备以及机械装置的检查保养与试运行,确保配件充足、性能良好,认真确认沥青洒布车的整体情况,标定喷洒量;完成水泥稳定碎石基层上表面的清洗,先用竹帚整体清扫,后用鼓风机吹尽浮灰,最后以高压水完成冲洗。(2)透层乳化沥青的喷洒喷洒前应指定专人测定乳化沥青用量,调用智能型沥青洒布车完成一次性液态沥青的浇洒,并以人工方式补喷遗漏点,控制喷洒量,一旦出现过量情况则需要以碎石屑或砂灰粉吸油并做好碾压;喷洒透层油后注意加强现场检查,避免有车辆等机械设备行动所造成的油皮现象,而对透层油渗透深度不达标处,还需积极采取措施进行整改。(3)加强行动管制提高透层稳定性透层施工完成后的养护成型期间,现场应实施严格的行动管制,特别要求车辆与行人不得入内破坏。行动管制需要施工人员与项目管理的经理部门进行沟通并紧急协商出台行动管制方案,重点限制交通,以确保施工养护成型时间足够。施工方应在现场增设断道通知,并设反光标志进行标识。3.3沥青路面透层技术应用的质量检查检验标准。
4结束语
高速公路每日所承受的车辆荷载量十分巨大,因而需要不断提升公路整体性能,需要增加路基路面结构的稳定性。沥青路面透层施工技术的设计与施工应用,应灵活挖掘透层结构之功用,正确认清透层沥青材料的技术性能,不断由专业人员研究和探索在选材、施工应用等方面的方法,才能创造更可靠的高速公路系统。
参考文献
[1]王剑英.高速公路沥青路面透层技术功能与材料应用[J].北方经贸,2015(3):65-65.
[2]翟永强.浅谈高速公路路面透层沥青施工技术[J].黑龙江交通科技,2011,34(3):35-36.
关键词:重载交通;沥青路面;设计
中图分类号:S611
文献标识码:A 文章编号:
一、重载作用对沥青路面的影响
1重载交通参数分析
N =∑c1c2n(P)。其中,P为轴重;N为轴载作用次数;n为系数。通过分析不同路面结构下轴载换算系数与轴载的关系,发现轴载换算系数n主要与轴载有关,利用回归分析,忽略不同路面结构对轴载换算系数所造成的误差,可以得到基于弯沉、弯拉以及车辙等效的轴载换算系数n的取值范围。考虑超载,弯沉等效时n=5.0~5.8,线性分析结果n=5.0,非线性分析结果n=5.5;弯拉等效时,一般半刚性基层路面n≈8.0,考虑超载时n≈9.0;车辙等效时,n=4. 0~4. 5。此结果与国内外其他对轴载换算关系的研究成果基本一致。
由以上分析可知,n的取值远大于规范规定的数值,这就说明在较短的时间内可以达到路面设计的累积标准轴次,所以路面的使用寿命大大减少。超载100%时,高速公路、一级公路的路面结构只能使用1. 40年,二级公路的路面结构只能使用1. 20年,三级公路的路面结构只能使用0. 70年。所以必须采取措施,减少影响,延长重载交通下沥青路面的使用寿命。
2重载对设计指标体系的影响
根据分析,在标准轴载作用下,应用现行规范设计指标体系进行沥青路面结构厚度计算时,路表弯沉指标起控制作用,整体性结构层(包括面层和基层)的层底拉应力验算指标在厚度设计时一般不起作用。但路表弯沉指标同时存在明显的缺陷。与其利用它来控制路面破坏,不如采用整体性结构层层底的拉应力和土基顶面容许压应变来控制更为合理。但是,路表弯沉设计准则在我国柔性路面设计中已使用多年,它具有量测方便的优点,在一定程度上也反映了土基顶面压应变。大量的计算分析表明,路表弯沉和土基顶面压应变之间具有良好的相关关系。通过相关关系可以由路表弯沉推算到土基顶面压应变,把土基顶面压应变准则和路表弯沉结合起来,就可以同时利用上基顶面压应变准则较合理和路表弯沉量测方便的优点。因此,建议仍将路表弯沉作为一个设计指标。
3重载对沥青路面结构的影响
重载交通沥青路面结构,轴载增大时,路面结构的力学响应那些发生了变化,在设计中我们将怎么在满足疲劳寿命与设计指标的要求,下面我们先分析当轴载增大,主要对设计指标弯沉与基层底拉应力的影响。
表1轴载对设计指标的影响
图2弯沉与轴重的关系
图3基层底拉应力与轴重的关系
图4沥青层底拉应变与轴重的关系
图5基层顶压应变与轴重的关系
上面的图表我们发现,当轴载为100KN增大到160KN时,路面的弯沉从30增大到45,基层底的弯拉应力从0.11MPa增大到0.17MPa,青层底拉应变增大到90με。,基层顶压应变从130增大到260με,也就是说,在重载作用下,路面结构的整体刚度下降,基层的疲劳寿命降低,路面结构永久变形增大。经过上面的病害调查,重载下路面的车辙严重。
二、重载作用下沥青路面的设计
1设计步骤
根据现行沥青混凝土设计规范,可归纳出重载沥青路面设计步骤为:
(l)交通资料的收集。交通资料包括:初始年日平均交通量和交通组成、轴载谱、超载方式和超载规律、历年交通量及交通组成、方向分配系数、车道分配系数、轴载年平均增长率等,在此基础上判断是否适用于重载路面设计方法。若适用,利用本报告研究结果进行轴载换算及使用年限内累计标准轴次的计算,最后计算设计弯沉。
(2)收集沿线地质、土质及筑路材料状况,并结合原有沥青道路路面的使用及破坏情况,选择适合于重载道路的筑路材料并初拟路面结构。试验测定各结构层材料的抗压回弹模量、劈裂强度等设计参数。
(3)根据设计弯沉值计算路面厚度,并进行半刚性基层、底基层容许弯拉应力、极限弯拉应力验算及土基顶面容许压应变验算。若不满足要求,或调整路面结构层厚度,或变更路面结构组合,然后重新进行计算。
2材料设计
对于沥青路面的设计使用材料要充分考虑施工混合材料的抗剪强度。沥青路面的混合材料通常是采用马歇尔设计方法,马歇尔设计方法是通过混合料的密度、流值、空隙率等做出材料的混合比,但是这种设计方法不能够正确的分析出沥青混合料的抗剪强度,所以对重载情况下,沥青路面的实际受力状态无法真实的反映出来。可以将沥青路面的受力情况进行模型试验,通过测量的数据,反映出沥青路面在重载条件下的受力情况。通过三轴试验方法,按抗剪强度进行沥青混合料的配比设计。
3结构设计
根据以前的室内疲劳方程和力学设计程序,无论沥青结构层多厚,结构都会必然产生疲劳开裂、车辙。而最新的理论发现当沥青层超过一定厚度时,良好施工的路面结构不会产生源于层底的疲劳开裂和结构性车辙。当标准轴次超过一定次数后,沥青层厚度无须增加。也就是说,沥青层的厚度使层底拉应变小于一定的值以后,沥青路面的下部将可以无限期地使用下去。所以永久性路面的最大特点是确保路面各类损坏控制在路面表面层顶部很薄的范围内,如自上向下温度疲劳开裂、车辙、表面磨耗、沥青老化都努力限制在磨耗层内,防止出现中面层以下的结构性损坏,表面层的损坏只需通过预防性养护得以补救。 目前我国高速公路的结构设计大部分采用半刚性基层沥青路面结构,这种结构路面对于车辆重载的抗压能力较弱,容易导致路面破损现象出现。为此,本文介绍推荐一种由法国规范规定的全厚式路面结构设计方法,按该方法设计的沥青混凝土路面结构,其厚度相比半刚性基层沥青路面结构略薄,同时能够降低路面因载重疲劳产生开裂现象发生,当需要修复时,只需要更换或加铺一层表面层即可,无需大的结构性重修或重造。这给路面的修复工作降低了工作量和工程成本。全厚式路面结构设计是按照路面的功能合理的布置路面的层次结构,其特点是具有抗载重、抗疲劳、抗磨损、抗车辙、抗透水等。
4全厚式路面结构设计
重载沥青路面多为全厚式路面结构设计。全厚式沥青混凝土路面结构一般由磨耗层、连接层、基层和底基层组成。磨耗层应具有防渗透、防雨雪、抗滑耐磨的性能。连接层应具有抗车辙蠕变能力,能够有效的保护基层。基层和底基层为全厚式沥青混凝土路面的主要持力层,应具有良好的抗疲劳性能和很高的承载能力。支撑全厚式沥青路面结构稳定的另一个非常重要的因素是路面承台的稳定和强度。路面承台也即国内统称的路基和垫层。路面承台的变量参数,直接影响路面结构的计算结果,法国人根据地质、水文、路基填料、施工工艺水平,交通量等因素,将路面承台划分为多个等级,列表供查。全厚式沥青混凝土路面出现结构性破坏主要表现在两方面:一是沥青混凝土路面的疲劳裂缝破坏;二是路面承台发生的结构性车辙破坏。为保证全厚式沥青混凝土路面不出现上述破坏,需要对路面结构进行计算并满足两个条件:一是沥青层层底的水平拉应变 εt,ad 应小于允许极限值;二是路面承台表面的竖向压应变 εz,ad 应小于允许极限值。
5厚度设计
国外的沥青路面设计一般以沥青混凝土面层的弯拉应力作为设计控制指标,同时以基层底面拉应力和路标弯沉作为验算指标,如 Shell 设计法、AI 设计法等,这些方法比较符合国外的全厚式结构或粒料基层结构的特点。我国沥青路面设计规范以路面设计弯沉为主要控制指标,对高等级路面的面层和半刚性基层验算其层底拉应力。但根据有关研究,在目前半刚性基层应用十分普遍的情况下,基层的层底拉应力可以比较好反映荷载对结构的疲劳损耗要求,而且在进行高等级的路面结构设计时,往往是路标弯沉值符合要求,而基层底面拉应力验算不能通过,因此基层底面拉应力指标更具有控制意义。根据国内外经验,在重载沥青路面设计中,一般采用增加沥青面层厚度、改变沥青面层强度、增加半刚性基层厚度以及土基增强等方法。
4 结语
随着交通运输业的快速发展,道路交通呈现出交通量大、轴载加大、轮胎压力增加、车速提高等现象,这加剧了路面的疲劳损伤,并带来一系列的早期破坏,严重影响了道路正常的使用寿命。因此,为保证路面的服务水平和长期性能,在道路设计中对交通参数进行合理处理,设计出适宜重载交通的路面结构和材料形式就显得尤为重要。通过对本文的学习研究,可对提高重载交通条件下沥青路面的承载能力、延长路面使用寿命具有一定的参考意义。
参考文献:
[1]王斌等.重载下沥青路面早期主要病害成因及维护方法[J].魅力中国.2010(2)
[2]张勇.重载沥青路面结构应力分析与优化方法探讨[J].北京工业大学.2009
[3]谭炳超.浅谈重载沥青路面的设计[J].沿海企业与科技.
关键词:沥青路面;设计指标;参数
1.引言
我国的沥青路面设计规范对设计指标和相应的参数都有具体的规定,并且随时间的推移,设计指标和参数进行着不断的优化选择,如果新的设计指标和参数更为有效,对于沥青路面的设计和后期病害的预防起着举足轻重的作用。
2.对我国设计规范的回顾
2.1 1958 年版规范
1958 版规范以极限相对弯沉作为设计指标,设计方法采用单圆荷载均质体弹性理论。极限相对弯沉λk= lk / D,D 为荷载作用面积当量圆直径,lk 为路面处于极限状况时,在荷载作用中心处的路表极限弯沉值。
2.2 1966 年版规范
1966 年版规范主要是修正了1958 年版规范的弯沉计算公式,提出了中国气候分区及路基和路面材料计算参数值表,但设计标准与设计指标没有变动。
2.3 1978 年版规范
1978 年版规范以容许弯沉作为设计指标。容许弯沉是路面达到破坏状况时双轮轮隙中点的路标回弹弯沉值。对弯沉在全面调查时,按路表外观特征将沥青路面划分为5 个等级,视第四个等级的沥青路面已达到损坏状况,以第四等级路面弯沉低限作为路面处于破坏临界状态的划界标准,此时的弯沉值即容许弯沉值。
容许弯沉值的经验公式:
l R=(mm)
Nf ――路面达到临界破坏状态时的标准轴载累计作用次数;
A1――路面类型相关的系数。
2.4 1986 年版规范
1986 年版规范以路表容许弯沉值作为主要设计指标,对容许弯沉公式中的系数做了修改,并增加了公路等级系数,另外增加了沥青混凝土面层或整体性材料基层的弯拉应力验算指标。
(mm)
A2――公路等级系数。
2.5 1997 年版规范
1997 年版规范采用双圆垂直均布荷载作用下的多层弹性连续体系理论,以设计弯沉值为路面整体刚度的设计指标,计算路面结构厚度。对高速公路、一级公路、二级公路的沥青混凝土面层和半刚性基层、底基层应进行层底拉应力的验算。同86 规范比较,设计指标成设计弯沉,并且增加了基层类型系数。
(mm)
A3――基层类型系数。
《公路沥青路面设计规范(JTJ014-97)》取消了1987年设计规范中的诺谟图,沥青路面的设计采用专用计算机程序完成,这样避免了繁杂的查图设计工作。
2.6 2006 年版规范
2006年10月,交通部了公路沥青路面设计规范的新版本。此版规范沿用了前一版(1997版)规范的结构设计方法。
(1)即:计算弯沉值不大于设计弯沉值
(2)即:计算点的层底拉应力不大于材料的容许拉应力
在进行结构响应分析时,材料参数的取用采用下述方法:(1)路基回弹模量采用承载板法测定,并以不利季节的数值作为设计值;(2)半刚性材料的回弹模量采用120天或180天龄期的压缩模量测定结果,其抗拉强度采用相同龄期的劈裂强度试验结果;(3)沥青混合量的模量采用20°C(计算路表弯沉)或15°C(计算层底拉应力)时的压缩模量测定结果,其抗拉强度采用15°C时的劈裂试验结果,但未考虑不同地区温度差异的影响。
3.对我国现有规范的设计指标和参数的分析
分析现行的设计指标和参数,可发现存在以下问题:(1)路面结构厚度设计都是路表容许弯沉值指标起控制作用,但该指标无法具体反映路面的使用性能和损坏类型。(2)路表弯沉值是一项整体性、综合性和表观性的指标,其无法控制面层底面或基层底面的应力状况和大小,也不能如实反映路面可能出现的损坏类型。(3)对于柔性基层沥青路面,现行规范的设计指标和相关参数值有待补充和修正。(4)各项材料性质测试指标和方法未能如实反映材料的力学特性,故难以正确建立力学响应量与路面结构使用性能之间的关系模型。(5)新规范提出采用面层底面拉应力和半刚性基层底面拉应力作为设计指标指导路面结构设计,但已有研究指出:仅半刚性基层底面拉应力是一个有效指标。
4.半刚性基层沥青路面设计理论改进
沥青路面设计方法必须采用多指标控制,才能避免或者控制车辙与裂缝等主要病害。下面就疲劳开裂与车辙形成两个方面分别讨论如何进行沥青路面设计。
4.1 半刚性基层沥青路面疲劳寿命问题
我国的半刚性基层沥青路面裂缝以反射裂缝为主,反射裂缝的本质就是沥青面层在不利力学状态下的疲劳断裂。进行沥青路面结构设计计算时应该采用基层发生开裂后的等效模量,或者按照断裂的基层建立模型计算面层底面的拉应力、拉应变。同时建立其适用于我国各个地区的沥青混合料材料的疲劳方程,结合新的计算方法进行路面结构的抗疲劳开裂设计。
4.2 半刚性基层沥青路面车辙问题
随着我们沥青路面的设计厚度得到增加,车辙病害逐渐显现出来。已有研究得知:半刚性基层沥青路面的车辙变形主要来自上中面层的流变变形及隆起变形,接近基层的部分变形很小。可以推断控制半刚性基层沥青路面的车辙变形需要在路面面层中选取一个合理的力学指标。建立半刚性基层沥青路面计算模型,考虑高温下面层模量为400MPa,半刚性基层及其以下结构层强度与温度无关。按照压应变和剪应变指标,在相同材料下对路面厚度有着不同的要求。路面厚度增加面层内部的压应变是变小的,而面层厚度增加导致面层内部剪应变增大。鉴于目前路面结构设计存在众多不同意见,不对路面面层厚度发表相关看法。至于控制面层永久变形的合理指标,希望公路领域专家早日确定一个合理的指标。
5.沥青路面设计理应考虑的指标和参数
5.1 沥青路面新指标和参数体系构建原则
为了改善现行沥青路面结构设计的指标和参数,2005年初交通部立项开展研究,计划提出新的设计指标和响应的设计参数。主要依据下述原则考虑:(1)仍遵循力学――经验法的基本思路;(2)针对层状复合结构和损坏类型多样化的特点,采用多设计指标体系,各指标分别控制对应的损坏类型;(3)设计基准期内路面的累计损伤仍采用当量损坏法分析;(4)对设计参数的采集要求分为3个层次,分别规定不同精细或准确程度的方法;(5)材料性质参数应能反映行车荷载和环境因素对其性状的影响,并采用科学的试验方法测定;(6)各种损坏模型的建立以室内试验为基础,室外验证和修正以路面加速加载试验(ALF)为主;(7)在现有国内外前沿水平的基础上建立设计指标和参数的基本框架体系。
5.2 现行的沥青路面设计指标和参数
现行沥青路面设计指南所构建的设计指标体系:沥青层的疲劳寿命、无机结合料稳定层的疲劳寿命、路基顶面的容许压应变、沥青混合料的蠕变率以及沥青的蠕变劲度和断裂应变,前三项主要与路面结构有关,而后两项则主要与材料组成有关,他们分别针对和控制五种主要路面损坏类型。
现行沥青路面设计指南所构建的设计参数:路基和粒料层回弹模量、路基回弹模量湿度调整系数和综合调整系数、沥青混合料动态压缩模量、无机结合料弹性模量,并相应地制定了各个参数的标准试验规程。这些设计参数能反映材料的力学性质,并能与设计指标的预估模型建立合理的相关关系。
6.结论
目前我国沥青路面设计规范、设计理论已经比较成熟,但是设计指标还存在不足。为此,对于沥青路面有效的设计指标和参数的确定还需要做更多的研究和探讨、进行更为精确的论证,得出更为有效的模型和理论支撑。
参考文献:
[1] 公路沥青路面设计规范(JTG D50--2006).人民交通出版社,2006.
[2] 公路沥青路面施工技术规范(JTG F40--2004).人民交通出版社,2004.
[3] 沥青路面设计指标和参数研究.中交公路规划设计院有限公司.2007-12.
论文摘要:主要对高等级公路沥青路面层间处理技术问题进行了探讨,首先概述了路面结构设计的目标和方法,然后分析了沥青路面层间状态的影响因素,最后探讨了沥青路面层间的处理技术。
论文关键词:高等级公路;沥青路面;层间
1 路面结构设计理论
1.1 路面结构设计的目标
路面结构设计的基本目标就是在道路的使用寿命期限内不发生损坏,这个目标看似简单,实则很难做到,这就需要在路面结构设计时要充分考虑多个方面的因素,比如环境因素、材料因素、荷载因素、结构因素以及经济因素等等,通过这些因素的综合分析和评判,最终才可能选择一个符合实际、性价比较高的设计方案。具体而言,路面结构设计有抗滑性、平整性和耐用性三个衡量标准,抗滑性从传统意义上而言并不属于路面结构设计的内容,但是随着高等级公路的日益增多,汽车行使速度的不断提高,抗滑性越来越受到重视,抗滑性可以通过表层材料的选择和设计来实现;平整性可以减少因为荷载冲击而给道路带来的破坏性,同时可以提高行使的舒适性,由于平整性可以降低对道路的破坏,所以也间接地提高了道路的使用寿命;耐用性是路面结构设计中的核心性能,所有的设计方法都是以此为中心展开设计的,耐用性要求路面有足够的强度已达到抗变形的目的,耐用性代表了道路的设计使用寿命。
1.2 路面结构设计的方法
路面结构设计的方法根据设计机理不同分为三类:基于经验的设计方法、基于力学的设计方法和基于性能的设计方法:(1)经验设计法:包括CBR设计法与AASHTO设计法,CBR的设计思想认为路面应提供足够的质量和厚度从而防止路面层内产生压力变形,CBR的设计简单明确,适用于低等级公路的路面结构设计;AASHTO方法引入了PSI概念,PSI是指路面现时服务能力指数,反映了道路使用者对路面质量的评价,评价值在0到5之间;(2)力学设计法:主要包括SHELL设计法和AI设计法,SHELL设计法把路面看做路基、基层与沥青层三层结构,以厚度、弹性模量和泊松分别表示各层的特征;AI法把路面看成多层弹性体系,各层材料采用弹性模量和泊松比来表征;(3)性能设计法:包括SUPERPAVE设计法和OPAC设计法,SUPERPAVE设计法根据道路的使用性能进行路面和材料的设计,从而达到抗低温、抗疲劳、抗车辙的目的;OPAC法主要考虑了环境因素和交通荷载因素对路面性能的影响。
2 沥青路面层间状态的影响因素
2.1 结构及材料类型影响
当混合料施工不当时容易发生离析现象,特别是混合料最大粒径较粗、沥青层总厚度较薄并三层铺筑时更容易发生这种情况,离析后由于形成了较大的空隙率,从而无法防止路表水下渗情况的发生,而且由于其他原因产生的裂缝无法避免(特别是半刚性基层收缩残生的沥青路面反射缝),所以加大了雨水渗入路面的可能性。冰冻地区的路面,冬季毛细管聚冰导致了在春融期水分过于饱和,加上半刚性基层的透油层效果较差,水分将向上移动积存在基层表面,由于半刚性基层不透水,会导致水分无法从基层排走,如果沥青路面较薄,作用到沥青层底部的荷载压力较大,基层表面机会越容易破坏成灰浆,会影响沥青层的疲劳寿命。 转贴于
2.2 施工管理的影响
施工管理对间层的影响也不应忽视,有些施工单位施工质量控制不严格,在进行基层表面清扫时清扫得不干净、不彻底,导致了间层的粘结不好,造成了层间容易产生相对滑动,另外由于在施工期间施工车辆通行的随意性以及不禁止外来车辆的通行,也会对间层造成严重的破坏。有些施工单位为了降低工程造价,在进行面层摊铺前不对基层进行洒粘层油的工艺处理,或者在洒粘油层的施工中计量不够、油膜不均匀等都会造成层间的粘结出现问题。要解决上述问题,首先要确保加强对基层表面严格的清扫工作,对基层表面粗糙度不合格的局部路段要进行相应的处理,达到技术要求之后,才可以进行粘结层的施工,另外在施工过程中严格进行车辆管理,禁止车辆通行。
2.3 温度和水的影响
沥青对温度的敏感度很高,所以温度对层间材料的影响很大,在夏季高温时期,沥青路面的温度可以高达60摄氏度,在60度高温下进行剪切试验可以发现层间材料此时的抗剪强度已经很小了,所以在夏季高温情况下,层间材料在重力的作用下就容易发生损坏,因此在路面层间结构的设计中要注意温度对层间材料的影响。另外,水的影响也不能够被忽视,半刚性基层具有不透水的特点,水分在基层上方无法扩散而只能滞留聚积,而沥青表面层下面往往设置的是空隙率较大的沥青混合料,其空隙间充满了水分,在车辆行驶荷载的反复重压之下,水动压力会让基层冲刷破坏而软化,沥青层与基层之间会从连续状态转变成半滑动或滑动状态。
3 沥青路面层间处理技术探讨
3.1 粘结层材料功能分析
基层与面层之间的粘结层材料受力情况比较复杂,主要包括压应力、拉应力和剪应力三类受力,另外,由于道路处于自然环境中,不可避免的受到日照、温度、水等因素的影响,所以粘结层材料应该具有以下两个重要功能:(1)抗拔能力,由于汽车轮胎在行驶过程中与路面的摩擦会影响层间的粘结效果,另外启程行驶中的后轮产生的真空泵吸作用也会造成层间粘结的减弱,所以在粘结层材料选择时要注意材料的抗拔能力,否则很容易产生层间分离现象;(2)抗剪能力,如果抗剪能力不足,基层和面层之间往往会出现推移、拥包、两层皮等病害,轻者会影响路面的使用性能,严重的话会威胁到路面使用者的行车安全,所以粘结层材料还要具有较高的抗剪能力。
3.2 透层油的作用机理
透油层主要起到过渡偶合作用,当透油层撒布到基层之后,会在基层上形成一定深度的渗透,这种渗透填充了半刚性基层的表面空隙,形成了一个特殊的结构层,即偶合层,偶合层本身属于基层的一部分,降低了基层材料的模量,从而解决了有机结合料到无机结合料之间的粘结问题。透油层的作用主要体现在以下几个方面:首先提高了路面结构设计的连续性,从多层组合体系转变成连续组合体系;其次,透油层的作用相当于增加了柔性材料结构层的厚度,从而提高了路面结构的抗变形能力;第三,透油层渗入基层后闭合了基层混合料的开口孔隙,增强了基层抵御水破坏的能力;最后,透油层可以避免基层内部水分的蒸发,省去了洒水养护的成本。
关键词:排水沥青路面;研究;应用;规范
中图分类号:U416.217文献标识码:A 文章编号:
引言:
国外对透水性沥青混合料己研究多年,我国对此研究尚处于起步阶段,虽然近年来对此已有许多相关的论文,但除个别工程外,我国目前尚未正式使用透水性沥青混合料,主要就是因为透水性沥青混合料的材料选择、级配及施工工艺尚无完整的规范或指标。但从我国公路发展现状和透水性沥青混合料的材料特点及气候、环境等方面考虑,在我国开展透水性沥青混合料的研究己迫在眉睫。
1.排水沥青路面的定义
排水沥青( drainage asphalt )路面,又称透水沥青( porous asphalt )路面,针对表面层来说又称多孔隙沥青磨耗层( PAWC, porous asphalt wearing course ),开级配磨耗层( OGFC,open-graded friction course )等,指压实后空隙率在20%左右,能够在混合料内部形成排水通道的新型沥青混凝土面层,其实质为单一粒径碎石按照嵌挤机理形成骨架-空隙结构的开级配沥青混合料。
2.排水沥青路面的特性
透水性沥青混凝土具有传统沥青铺面所没有的优点
1)透水性沥青可以防湿滑:
透水性沥青因可迅速排泄雨水并预防湿滑,故其可确保行车安全。可有效降低湿路面之喷溅及路面反光之晕眩。
2)透水性沥青可降低噪音:
由于轮胎及车首间之气体被下压至表面孔隙,故滚动阻力及噪音皆有效降低,同时节省耗油量及轮胎的磨损。雨天时,透水性沥青道路表面干爽,能提供比传统湿滑路面较高且均匀之路面磨擦力,高速行驶时亦然,因而雨天行车无路面打滑之虞。
3)透水性沥青可延长使年限:
有稳定而坚固的沥青铺面,其极佳之之沥青黏着力,可提供高抗张及抗压强度,此可降低路面变形的风险。
4)透水性沥青容易铺筑:
拌合温度与传统之非透水性沥青混凝土之拌合温度一样,约在150~170℃;至于另一款所谓的HABD透水沥青,其拌合温度为110℃,因粒料极易硬化之故,使铺筑十分困难,容易产生不均匀之铺面。透水沥青反之,用人工铺筑极为容易,而且路面均匀而平滑。
5)透水性沥青可降低成本:
透水性沥青较传统非透水沥青混凝土更坚实。于相同厚度的条件下,传统非透水性沥青每平方公尺需要80公斤的沥青混凝土,而透水性沥青每平方公尺则须要65~70公斤即可。
3. 排水沥青路面国内外应用概况
排水性沥青混合料起源于欧洲,1960年德国首次使用此种路面。80年代在法国、英国、意大利等国家得以较大面积推广。欧洲通常使用的厚度为40~50mm,主要是为了减少噪音,减轻雨天的溅水,提高抗滑能力。在美国,该种面层称为OGFC,它本来是60年代几个洲用作混合料封层发展起来的,后来又吸收了欧洲的经验,大部分用作薄层表面层以获得良好抗滑性能,铺筑厚度在13~19mm。 日本从80年代后期开始这方面的试验研究。虽然起步较晚,但发展较快,目前已形成较为完善的排水性沥青混合料设计方法,应该说,日本是研究和应用排水沥青路面最成功的国家之一。
我国对这类路面的研究起自20世纪90年代初期。国内部分高校和研究所先后在收集国外资料的基础上做了一些尝试性工作,工程应用很少,我国上海、河北、黑龙江、广东等地修了一些小规模的试验路,但由于使用普通沥青,性能很差未获得成功。
由于我国尚没有对排水沥青路面设计、施工和质量评价建立规范和标准,加之排水沥青路面的诸多问题在国际上也尚处于认识发展阶段,这使得这种在国外被称作具有“顶级路面性能”的新型路面结构在国内迟迟不能推广。 2001年~2004年,交通部公路科学研究院与东南大学等单位合作完成了交通部西部项目《山区公路沥青面层排水技术研究》课题。该课题初步解决了我国应用排水沥青路面的主要技术问题,包括材料性能与设计、结构设计、施工技术、路面安全特性等,在重庆渝邻高速修筑了长3km的实体工程,试验了不同空隙率、不同改性沥青的多种排水性沥青路面。该课题成果经交通部科教司鉴定,总体上达到国际先进水平,为排水沥青路面在我国的应用奠定了基础。 2005~2006年,交通部公路科学研究所承担了江苏省交通科学研究计划项目《排水性沥青路面应用技术研究》。根据本项目研究成果,在盐通高速成功地铺筑了16.8km的排水性沥青路面,这条试验路也是目前我国南方高温多雨地区第一条大规模的排水性沥青路面实体工程,取得了丰富的研究成果。2008年,江苏省又在宁杭高速公路二期修筑了全长20.9km的排水沥青路面,目前使用效果良好。 近年来,我国高速公路建设发展迅速,里程逐年增长,路网日趋完善。如何提高路面的使用品质,如何向社会提供更安全、更舒适、更快捷的公路交通,已成为我国交通部门追求的新目标。可以预测,排水沥青路面将适应这一趋势,在我国得到更广泛的应用。
4.工程应用中的相关注意事项
我国尚没有对排水沥青路面设计、施工和质量评价建立规范和标准,故我们需在工程应用中摸索前进。由于其独特性,排水沥青路面在工程应用中除了符合现有相关规范,还应注意以下几点:
1)混合料技术要求
有别于其他沥青混合料,排水性沥青混合料压实成形后空隙率在20%左右,±20℃沥青混合料的飞散损失率应不大于10%,渗水系数应不小于900mL/15s。
2)排水性沥青路面结构设计
排水性沥青路面由排水面层、基层、垫层等多层结构组成。排水面层厚度一般宜为40~50mm,空隙率在20%左右。
排水性沥青路面结构形式
3)排水性沥青路面排水设计
为充分发挥排水功能,不透水层表面应确保横坡和平整度,应设置通道等能迅速将水排出的设施。
边沟排水处理示意图
5.结束语
不管从国际路面使用趋势,还是国内实际情况出发,沥青排水路面的推广及应用已经迫在眉睫。当沥青排水路面技术在国内成熟推广应用,路面的使用品质将极大的提高,公路交通也将变得更安全、舒适、快捷。
参考文献:
论文关键词:沥青路面 早期损坏 合理结构 反射开裂 水损坏
论文摘要:目前,随着我国公路建设不断发展,沥青路面结构作为主要的路面结构而被广泛应用。但是在我国目前公路建设和养护过程中,沥青路面结构的损坏问题非常突出,成为目前困扰我国交通建设发展的难点和热点问题。文章就我国沥青路面主要结构形式和使用性能评价进行了相关分析。
在我国公路建设不断发展的过程中,沥青路面结构作为一种主要的路面结构形式被广泛应用。目前我国通车的公路路面中,约80%以上的路面结构采用了沥青路面,沥青路面结构已成为我国公路建设发展过程中所采用的主要路面结构形式。在公路建设取得巨大成就的同时,也暴露出了一些问题,特别是在已建成的高速公路中,沥青路面结构出现了较多的早期损坏,明显表现出沥青路面结构长期使用性能的不足。本文开展了我国沥青路面主要结构形式和使用性能评价的研究。
一、沥青路面功能作用和要求
沥青路面的功能和作用不言而喻是以满通车辆安全、舒适通行为目的的,由于公路是暴露在自然环境条件下的土工工程构造物,因此,沥青路面还需满足并适应自然环境条件。我国现行的公路沥青路面设计规范对沥青路面结构设计的目的做出了明确要求,即“路面在设计年限内,满足各级公路相应的承载能力、耐久性、舒适性、安全性的要求”。根据路面的功能和作用,对沥青路面结构的基本要求包括以下几个方面:(1)强度,公路路面的强度是指路面结构层对于行车和自然因素等作用的抵抗能力即承载能力;(2)稳定性,公路路面的强度经常受到自然气候和水文因素的影响而发生变化,为了保证路面满通车辆行驶的需要,要求路面结构在任何气候和水文条件下都必须保持稳定的强度;(3)平整度,路面越平整,交通车辆行驶时的振动、冲击越小,行车的滚动阻力也越小,这样就能保证交通车辆以较高的车速行驶,并使车辆的损坏减少,燃油和轮胎磨耗降低,行车更舒适;(4)粗糙度,路面粗糙度的大小关系到行车安全,因此沥青路面必须满足一定的抗滑要求。
二、沥青路面结构的分类
从大的分类来说,公路路面可以按照使用的材料、施工方法、工程造价的多少或使用的品质及承受的交通荷载的方式进行分类。公路路面通用的分类如下,按照使用的材料、施工方法分类,公路路面可以划分为以下几种类型土质路面、稳定处理路面、沥青路面、水泥混凝土路面、砌块路面。按照工程造价的多少分类,可以分为低级路面、中级路面和高级路面。按照承受的交通荷载的方式分类,可以分为柔性路面和刚性路面,我国还增加了半刚性路面。此种方式还可以认为是根据路面的力学特性进行划分的。
我国按照路面使用性质和技术因素,公路路面划分为高级路面、简易式高级路面、过渡式路面和低级路面四类。按照路面在交通荷载作用下的工作特点划分为三类,即柔性路面,包括铺筑于非刚性底层上之各级沥青路面及用有机结合料或不同结合料之各种土壤路面与粒料路面。刚性路面,包括水泥混凝土路面及用水泥混凝土为底层上铺沥青作为磨耗层之路面。半刚性路面,水泥混凝土基层上之各种块料铺砌的路面。按照路面在荷载作用下的工作特点,公路路面类型划分调整为两类,即柔性路面包括有机结合料处治石料路面,碎石和砾石路面,块料铺砌路面,结合料处治土和粒料改善土路面等。由于我国沥青路面结构形式日趋单一,现行规范对路面结构类型的分类明显不全面,比如国外应用较多的半刚性材料做底基层,沥青稳定粒料和粒料材料做基层的结构形式在现行规范中没有定义,而国外一般称这种结构类型为混合式结构或倒装式结构。
三、沥青路面早期损坏原因与机理分析
近年来,我国沥青路面早期损坏现象引起了广泛的关注,有关的科研院所、院校、以及交通部门对造成沥青路面结构早期损坏的现象、原因进行了分析和研究。本文在分析和总结这些资料的基础上,通过对几条高速公路实际使用性能的调查,对半刚性基层沥青路面结构早期损坏类型和原因进行了分析总结。
(一)关于半刚性基层沥青路面的开裂
半刚性基层路面的开裂是一种必然的结果,因为这是由半刚性基层材料本身的性质决定的。尽管我们可以通过一定的技术途径改进或改善半刚性基层材料的开裂的特点,但壁面半刚性基层材料的开裂特点。照以上分析,当水泥稳定材料用做路面基层时,交通荷载的作用会加剧水泥稳定材料的开裂,因此在一定条件下,基层开裂的结果必然反映到面层上来,材料的性质从根本上已经确定开裂的发生。所以说水泥稳定类材料的开裂是必然的。在这个阶段中,如果水进入路面结构内,一方面由于水和水泥稳定材料中的细颗粒在开裂破碎后能形成胶液,对开裂有一定重愈合作用,如果这种潮湿状况在短时间内得以改变,水泥稳定材料的强度会重新形成,但在重交通荷载作用下,由于压力水的渗透,水泥稳定材料的开裂也可能被加速。
(二)关于半刚性基层沥青路面结构的反射开裂
通过对国内半刚性基层沥青路面结构早期损坏现象调查后发现,目前国内很多高速公路由于半刚性基层材料的开裂引起的反射裂缝问题非常突出,分析造成半刚性基层开裂的原因就是使用的水泥剂量太高,在很多高速公路上,行车道上的反射裂缝很明显,而超车道上的反射裂缝几乎没有,证明了以上对材料开裂的分析是正确,正是在交通荷载作用下,半刚性基层的开裂会加剧,有效使用寿命会缩短,半刚性基层材料开裂引起的反射裂缝不可避免。要避免这种早期损坏的发生,半刚性基层的强度必须控制在一定范围内。
(三)关于半刚性基层沥青路面结构的破坏机理
按照前面我国沥青路面结构设计方法,半刚性基层沥青路面结构的破坏应该从半刚性底基层开始,实际沥青路面结构的早期损坏形式和试验结果表明这种设计理念并不全面,因为目前大多数的半刚性基层沥青路面结构的破坏是始于沥青面层的。这种破坏形式目前在国内的一些高速公路上也已经表现出来,其特征还可以通过路面表面的弯沉指标反映出来,即当这种破坏发生时,路面结构表面的弯沉仍然较小。对于较薄沥青面层的半刚性基层沥青路面结构,在路面交通荷载作用下,随着沥青路面结构层间黏结状态的改变,沥青层与半刚性基层的层间结合状况由逐渐由连续变为滑动,沥青面层的疲劳剪切开裂发生;随着荷载的继续作用,半刚性基层的裂缝得到快速扩展,并逐渐向上反射,造成沥青层的破坏进一步加剧,这个阶段可以认为是半刚性基层沥青路面结构疲劳破坏的第一阶段;随着交通荷载的继续作用,沥青层和半刚性基层的开裂进一步加速,路面结构强度急剧衰减,直到沥青层和半刚性基层发生完全损坏,成为第二阶段。
(四)半刚性基层沥青路面的水损坏
目前半刚性基层沥青路面结构的水损坏主要有两种表现形式,即沥青混合料的水损坏和结构性水损坏。半刚性基层沥青路面结构的水损坏有两种表现形式,一种是由于半刚性基层没有形成足够强度或强度不足,当路表水进入使半刚性基层后,由于半刚性基层的软化而造成强度失稳,从而在路面结构表面形成坑槽;另一种形式是半刚性基层强度过高,开裂在所难免,当路表水进入路面结构后,不仅会软化半刚性基层表面,而且水会沿裂缝深入整个半刚性基层内部,导致路面结构发生根本性的损坏,在交通荷载作用下,这种破坏进一步加剧。因此,要控制和解决半刚性基层的早期水损坏问题,一要注意选择合适的沥青混合料类型,另一方面要控制半刚性基层材料的强度在合理的范围内,不能低,也不宜太高。
(五)关于半刚性基层沥青路面结构的车辙
沥青路面车辙的形成主要受温度、轴载、材料类型以及路面结构形式的影响,其中温度对车辙的形成影响最大。对于半刚性基层沥青路面结构,当温度较高时,由于沥青层软化,沥青混合料非常容易发生塑性形变。路面结构面层材料强度应高于基层材料。基层材料的强度要大于底基层材料,路面结构层的强度从上到下应有一个合适的比值。
四、结语
通过对国内外沥青路面结构形式及使用性能的对比研究,结合我国沥青路面特点,详细分析了我国沥青路面主要结构形式,并分析了路面结构早期损坏特点以及原因,为我国公路建设合理规划设计提供设计基础。
参考文献
[关键词] 沥青路面;早期破损;防治措施
[Abstract] Illustrates the types of damage of asphalt pavement and analyzes the seasons of damage of asphalt pavement from both internal and external factors. At the same time, this paper puts forward the prevention from three aspects of material selection, design and construction, and analyzes the disposal method of the damage of asphalt pavement.
[Key words] asphalt pavement;early damage;prevention
中图分类号:U416文献标识码: A 文章编号:
1 前言
据相关资料统计,截止2012年底我国高速公路通车里程达9.56万公里,这其中沥青路面所占的比重非常大,沥青路面结构的早期破坏问题也日益突出。调查表明,许多公路通车一至两年以后,甚至不到一年,其沥青面层就产生了大量麻面、松散、掉粒、唧浆、坑洞、网裂等破坏现象,结构内部剥蚀程度相当严重。
2 沥青路面早期破损类型及产生原因
2.1裂缝类
裂缝主要表现为龟裂、网裂和各种形式的纵横裂缝。路面裂缝使雨水很容易渗入沥青混凝土路面的面层、基层甚至土基内部,形成对路面的浸泡,降低了路基、基层的结构强度和面层的耐久性。
根据裂缝产生的原因,又可分为荷载型裂缝和非荷载型裂缝两大类。荷载型裂缝主要是沥青路面在行车荷载作用下而产生的裂缝。非荷载型裂缝主要是温度收缩裂缝和温度疲劳,温度收缩裂缝一般起始于温度变化率最大的表面并很快向下延伸, 且随着时间的增长、沥青的老化, 沥青面层的抗裂缝能力逐年降低, 温度收缩裂缝也随之增加;温度疲劳裂缝由于环境气温反复升降,在沥青面层中产生的温度应力日复一日地反复作用在沥青面层中,沥青面层产生疲劳开裂。
2.2 变形类
沥青路面变形类破损主要包括车辙、波浪、拥抱。车辙主要出现于行车轮带处,是路面结构及土基在行车荷载作用下的补充压实,以及结构层中材料的侧向位移产生的积累所形成的永久变形。车辙的产生主要是在高温和荷载的综合作用下,荷载应力超过沥青混合料的稳定度极限,使流动性变形不断积累,形成流动变形和失稳性变形。
波浪和拥抱的产生主要是由于沥青面层过厚、热稳定性差、面层与基层之间的粘结强度低,在车辆荷载水平作用下产生推移,形成高低不平的波浪形变形,严重时形成拥抱。
2.3 松散类
松散是由于沥青混凝土表面层中的集料颗粒脱落, 从表面向下发展的渐进过程。集料颗粒与裹覆沥青之间丧失黏结力是颗粒脱落的主要原因。
2.4 泛油类
泛油是沥青从沥青混凝土层的内部和下部向上移动, 使表面有过多沥青的现象。油石比偏大是出现泛油现象的主要原因,另外,高温季节雨水侵入沥青混凝土内部后,如沥青与矿料的黏结力不足, 沥青很快就会从集料表面剥落并向上移动,也会产生更严重的泛油现象。
3沥青路面早期破损的预防
预防沥青路面早期破损的出现,主要从材料的选择、结构设计、施工控制这三个环节入手。
3.1 材料的选择
在寒冷、阴湿地区,要选用稠度小、针入度大和低温延度大的沥青,以提高混合料的低温抗裂性;骨料优先选用碱性石料,且级配良好、针片状含量少,当采用酸性石料时,必须掺入抗剥离剂等活性物质,改善石料和沥青的粘附性;在高等级公路施工中,尽量采用改性沥青,提高沥青的粘度和稳定性。
3.2 路面结构设计
对于沥青面层的设计,最主要的是要选择合理的沥青面层级配类型。按照美国对Superpave和SMA的综合研究,对沥青混合料要求目标空隙率控制在4%左右。但一般认为,沥青混合料的设计空隙率控制在3%~5%的范围内是适宜的,这可同时兼顾混合料的高温性能和水稳定性。至于空隙率与构造深度的矛盾,可以考虑同时采用沥青玛蹄脂碎石混合料(SMA)和改性沥青。
3.3 路面施工要求
由于施工工艺和程序控制不严格造成的路面缺陷主要有以下几方面:一是路面离析和不均匀严重,这样容易造成局部渗水,使路面出现病害;二是施工中压实不足,由于片面追求平整度,不能在温度较高的时候及时压实,不敢采用轮胎压路机,这样就造成了路面表层看起来很平整,通车不久就很快衰减;三是施工污染。沥青面层一般分为二层或三层,施工中把路面底层弄脏了,造成了层与层之间形成不了一个有机的整体,从而降低了路面结构层的承载能力。
因此,一定要严格控制施工工艺和程序,保证沥青混合料压实度、厚度及平整度达到设计和规范要求;有条件的话可采用大动力机械拌和设备,以便更好做到沥青混合料拌和均匀、油石比控制准确。
4 沥青路面早期病害处治措施
目前,国内外对沥青路面小面积早期损坏的修补方法有:传统修补方法、红外辐射修补方法及热辐射加热修补方法。
4.1 传统修补方法
传统修补方法是先划出所需修补坑槽的轮廓线,沿轮廓线用切割机切割至坑底稳定部分。然后用风镐、液压镐或铣刨机去除沥青路面的损坏部分, 将开挖后的沥青块、尘土、废渣清扫,废渣的清除要见到稳定面为止,同时将坑边四周的杂物清理干净。接着,喷洒粘层油,采用的粘层油可用改性乳化沥青或石油沥青,用量一般为0.4kg/,用手工或小型机具喷洒进坑槽及坑槽周边。最后利用综合养护车在现场拌制沥青混合料并将其填入坑槽, 摊平后用压路机压实。
4.2 热辐射加热修补法
热辐射加热修补方法是利用辐射加热技术来加热损坏的沥青路面,然后在补充些新的沥青混合料、摊平、压实。该方法类似于再生路面,这是因为两种方法都会利用原路的废旧沥青混合料,不同于再生路面的是,热辐射加热修补法没有将新的混合料与旧混合料混合,而是采用加热的方法将二者结合在一起。
4.3 红外加热修补法
红外加热修补是以液化石油气为燃料加热红外线辐射板, 利用红外线辐射加热损坏路面, 然后摊平并压实。这种方法与热辐射加热修补方法相似,只是加热的方式不同。
综上三种处治方法,后两种方法虽然无废弃旧料, 环保性较好,但由于没有对原路面结构进行深层处治,不能对病害进行较为彻底的处治。
5结语
沥青路面技术及新材料日新月异,为解决我国沥青路面早期破损问题,我们必须在学习新技术、应用新材料、认真总结自身经验教训的基础上开拓进取、深化研究。
参考文献:
[1]JTG F40-2004,公路沥青路面施工技术规范[S].
[2]邓学均.路基路面工程[M].北京:人民交通出版社,2004.
[3]沈金安.改性沥青与SMA路面[M].北京:人民交通出版社,2001.
关键词:柔性基层;半刚性基层;重载适应性
Abstract: the paper to pavement mechanics for computing tools BISAR3.0 software, analysis standard axle load, overload, overload 100% 50% of cases of the two different the mechanical response of the asphalt pavement, the contrast of the way the table deflection, pavement structure all levels (surface, basic level, subbase) mechanical properties. The results show that the asphalt pavement and flexible grassroots semi-rigid base of the asphalt pavement overloaded adaptability differences. Only for the rational optimized combination, can realize the two complementary advantages of pavement structure.
Keywords: flexible grassroots; Semi-rigid base; Overloaded adaptability
中图分类号:U416.217文献标识码:A 文章编号:
1概述
近年来,我国车辆的超载、超限情况十分普遍,重载(这里重载是指单轴轴载大于 130kN 或双轴轴载大于 220kN 的轴载) 日益显著增加。调查表明,规范规定的轴载换算公式已不适用。本文采用交通部公路科学研究所《重载沥青路面设计规范研究报告》里的科研成果,当计算标准轴载、超载50%、超载100%的情形时,荷载接地压力分别采用0.707MPa、0.84MPa、1.0MPa,与之相对应的三种作用半径分别为10.65cm、12.50cm、15.47cm。
目前,在我国高等级公路中,沥青路面占 80%-90%,其中约90%以上采用半刚性基层。由于半刚性基层自身不可克服的缺点:温缩、干缩变形大,易开裂,并最终形成反射裂缝,在行车荷载、水、温度梯度的综合作用下,使得路面结构产生松散、唧浆、车辙等病害,极易导致路面结构的破坏。特别是在车辆重型化日益严重的今天,更加暴露了半刚性基层路面的这种缺点,使得路面使用性能和寿命均达不到理想水平。而柔性基层如级配碎石、沥青稳定碎石等,属于粘弹性材料,韧性好,有一定自愈能力,但是变形和弯沉较大,其面层层底容易产生疲劳开裂,虽然可以采取增加沥青面层厚度来延长裂缝扩展时间的措施,但这样一来投资成本较高,而且也会加重沥青面层出现车辙的可能性。下面就以力学的方法来探讨这两种路面结构在不同荷载条件下的力学响应。
2路面结构设计及计算
2.1理论基础
对路面结构进行计算和分析是基于弹性层状体系理论,荷载图式采用与双轮组相当的两个圆形均布荷载,其圆心距假定为三倍荷载圆半径。双圆均布荷载中心点的坐标分别为(0,0,0)和(3δ,0,0) (δ为荷载半径)。轴载是采用之前提到的标准轴载、超载50%、超载100%的情形。
2.2路面结构
本文所考虑的柔性基层和半刚性基层沥青路面沥青路面的具体结构及参数如表2-1和表2-2所示,结构层总厚度均为70cm。
表2-1柔性基层沥青路面结构
层位 材料 厚度(cm) 弹性模量(Mpa) 泊松比
上面层 沥青混凝土 4 1500 0.25
下面层 8 800 0.25
基层 级配碎石 38 300 0.30
底基层 级配砂砾 20 200 0.35
土基 25 0.35
表2-2半刚性基层沥青路面结构
层位 材料 厚度(cm) 弹性模量(Mpa) 泊松比
上面层 沥青混凝土 4 1400 0.25
中面层 5 1200 0.25
下面层 6 700 0.25
基层 水泥砂砾 35 1500 0.25
底基层 石灰土 20 750 0.30
土基 25 0.35
3计算结果分析
3.1路表弯沉分析
弯沉是表征路面总体刚度的指标,在荷载相同、土基支承相同的条件下,弯沉越小,则总体刚度越大,抗变形能力越大。图3-1为柔性基层沥青路面与半刚性基层沥青路面路表弯沉随荷载增长的变化情况。
图3-1路表弯沉
由图3-1可以看出,随着轴载的增长,柔性基层沥青路面和半刚性基层沥青路面弯沉变形也会逐渐变大,这说明路表弯沉对车辆轴载变化较为敏感,而柔性路面的弯沉增长率大于半刚性基层沥青路面,说明柔性基层沥青路面的路表弯沉对车辆轴载变化更为敏感。
3.2下面层层底受力分析
图3-2为两种路面结构分别在不同荷载作用下下面层层底的力学响应及其分布规律。从图中可知,柔性基层沥青路面的下面层层底所受的水平应力均为正值,可见其下面层在车辆荷载作用下处于受弯拉状态。当车辆超限严重时,很容易造成沥青面层的拉裂破坏。而半刚性基层沥青路面的下面层层底所受的水平应力均为负值,说明在车辆超载很严重时,半刚性基层沥青路面的面层也不会产生拉裂破坏。
图3-2 下面层层底最大拉应力(MPa)
3.3基层和底基层层底受力分析
柔性基层沥青路面和半刚性基层沥青路面的基层和底基层层底主要受拉应力,图3-3、图3-4分别为两种路面结构的基层、底基层层底最大拉应力随轴载增长的变化规律。随着荷载的增加, 柔性基层沥青路面与半刚性基层沥青路面基层、底基层层底的最大拉应力都在增大,变化趋势大致相同。从两图可以看出,半刚性基层沥青路面的基层和底基层底面的最大拉应力要比柔性基层沥青路面的大,而且随着轴载的增加最大拉应力增大较明显,可见严重超限运输车辆会使半刚性基层沥青路面的基层和底基层的抗拉强度不足,提前在层底产生拉裂破坏,并反射到面层,形成面层的反射裂缝早期破坏。而柔性基层沥青路面的基层和底基层的板体性较差、强度低,故其最大拉应力随轴载增加的变化较小。因此,半刚性基层沥青路面的基层及底基层的最大拉应力的变化对车辆轴载变化更加敏感。根据之前的学习,我们知道结构的疲劳寿命由结构的拉应力所决定的。所以,半刚性基层沥青路面在超载车辆数量较多、频繁作用时,极易引起疲劳拉裂破坏,严重影响其使用寿命。
图3-3 基层层底最大拉应力(MPa)
图3-4 底基层层底最大拉应力(MPa)
由图3-3和图3-4的比较可以看出,半刚性基层沥青路面底基层层底拉应力大于基层层底拉应力,这也验证了对于设置半刚性下基层(即底基层)的路面结构,通常极限状态首先发生在下基层底部,产生初始裂缝,然后向上使得基层拉应力增大而引起基层裂缝,最后扩展到沥青面层。
4结论
(1)通过路表弯沉的比较,柔性基层和半刚性基层沥青路面在车辆轴载变化的条件下,柔性基层沥青路面表现的更为敏感。
(2)在相同的交通荷载的作用下, 柔性基层和半刚性基层沥青路面呈现不同的破坏状态。柔性路面的破坏主要是沥青面层的疲劳拉裂破坏和路面整体的功能性车辙沉陷;半刚性路面的破坏主要是因基层及底基层的拉裂破坏而促使面层形成反射裂缝破坏。
(3)鉴于这两种路面结构的特点,今后的研究方向在于充分发挥它们各自的优势,进行优化组合设计。
参考文献:
[1] 陈峰峰,黄晓明,单景松,等.重载下不同基层沥青路面的力学分析[J].上海公路,2008(2):11-15.
[2] 艾长发,兰波,宋琼瑶,等.重载交通对柔性与半刚性路面性能影响分析[J].公路与汽运,2006(4):58-61.
[3] 邓学钧.路基路面工程[M].北京:人民交通出版社,2007.
[4] 张少颖.半刚性基层沥青路面的设计理念与方法探讨[J]. 科技信息,2008(20):114.
[5] 沙庆林.高速公路沥青混凝土路面早期破坏现象及预防[M].北京:人民交通出版社,2001.
关键词:沥青路面;水损坏;路面结构;持续粘附能力;表面能理论;分子定向理论
中图分类号:U416
文献标识码:A
文章编号:1009-2374(2009)18-0186-03
一、沥青路面水损坏的特性
沥青路面水损坏是一个普遍存在的问题,也决不是一个过时的话题,特别是在中国南方地区。沥青路面水损坏问题的本质是沥青与集料在静、动水压力作用下的持续粘附能力,这也是该问题的核心。沥青混合料水损坏的作用机理,主要依据是沥青对集料的粘附理论,包括力学理论、化学反应理论、表面能理论和分子定向理论。
(一)沥青特性
沥青一般带负电荷,由于含有少量羧酸和亚枫而呈弱酸性;而集料的岩性决定了集料表面电荷的性质和酸碱特性。所以,按照化学反应理论,沥青对集料的粘附性决定于集料的岩性。
(二)集料特性
某些集料过分坚硬致密,破碎后表面光滑不利于沥青粘附。潮湿的集料与沥青的粘附性大大降低。滞留在混合料内部的水分夏季遇高温会变为水蒸汽,使沥青膜从集料表面撑开。而有些吸水率稍大的集料,只要施工时彻底干燥,沥青将会被吸入集料内部一部分,反而有良好的水稳定性。集料中含有泥土对沥青混合料得水稳定性的影响很大,土壤都带有负电荷,它是强亲水物质。单从材料本身的角度而言,水渗入路面中的途径还是很多的,例如施工时集料本身是含水的,而生产混合料时又不可能完全烘干,又例如施工时由于石料本身压碎值较大或压路机振幅过大,路面表面露白,给水进入沥青与集料之间的界面提供了条件,还有开放交通后集料表面沥青的磨耗、集料本身的损失等,都造成路面内部实际上是长时间处于潮湿状态的,如果沥青与集料粘附性不良,剥落也是不可避免的。排水不良、路面渗水是我国高速公路沥青路面水损害的重要原因,但并非根本原因,根本的原因是沥青与集料的粘附性不良。要防止或减轻沥青路面水损害,最好是能提高沥青与集料的粘附性。但是,消石灰和水泥的添加不可能完全搅拌均匀,抗剥落剂的性能参差不齐,目前国内抗剥落剂的添加工艺的不成熟导致添加效果差,都给沥青与集料的粘附性留下了隐患。
因此,在改善沥青对集料粘附性的同时,对路面结构和排水进行研究改善显然是十分必要的,国内、外对透水基层、抗滑密实的上封层和排水设施等进行了研究与应用,这是疏导的方法。
二、现行设计规范对沥青路面水损坏的考虑
我国现行沥青路面设计规范针对沥青路面水损坏现象作了如下规定:
1.粗集料与沥青应具有良好的粘附性,对年平均降雨量1000mm以上的高速公路和一级公路,表面层所用集料与沥青的粘附性应达到5级;其他情况粘附性不宜低于4级。
2.当粘附性达不到要求时,应通过掺入适量的消石灰、水泥或抗剥落剂等措施,提高粘附性等级及混合料的水稳定性。
3.矿粉必须采用石灰石等碱性石料磨细的石粉,不得使用酸性岩石等其他矿物的矿粉。
4.为防止雨雪下渗,浸入基层、土基,沥青面层应选用密级配沥青混合料。当采用排水基层时,其下均应设防水层,并设置结构内部的排水系统,将雨水排除路基外。
5.为排除路面、路基中滞留的自由水,确保路面结构处于干燥或中湿状态,下列情况下的路基应设置垫层:(1)地下水位高,排水不良,路基经常处于潮湿、过湿状态的路段;(2)排水不良的土质路堑,有裂隙水、泉眼等水文不良的岩石挖方路段;(3)季节性冰冻地区的中湿、潮湿路段,可能产生冻胀需设防冻垫层的路段;(4)基层或底基层可能受污染以及路基软弱的路段。
6.现行沥青路面设计规范还规定沥青混合料的空隙率较大、路面渗水严重时宜设上封层。可以看出,现行规范对沥青路面水损坏的防治还停留在给出设计原则阶段,因而是粗线条的,对于中央分隔带、路缘石如何设计、路面结构组合应选用哪些类型的混合料还不够详尽,不能很好地指导建设、施工。
三、影响沥青路面水损坏的路面结构因素分析
路面结构组合和路面排水设计合理时,路面排水通畅,路面结构内部基本无积水或不至于产生动水压力,有利于沥青混合料的水稳定性,反之则不利于沥青混合料的水稳定性。
(一)路面结构组合设计
1.材料――沥青混合料类型。沥青混合料为全开式结构或密实式结构时,路面不易发生水损坏;沥青混合料为半开式结构时,路面易发生水损坏。随着公称最大粒径的增大,渗水系数将增加,所以为了做到密水,减小公称最大粒径是有效的。
施工失败时以上关于沥青混合料类型对路面水损坏的影响的分析不适用。沥青路面密实度小,则孔隙率大,路面结构内部积水,在车辆荷载作用下易产生动水压力。
2.结构组合。路面结构组合设计包括给路面不同层位选择恰当的材料类型,保证路面结构的整体承载力和水稳定性。这包括选择密实而具有良好骨架结构的沥青混合料,使得路面不至于发生表面型水损坏;选择良好的透层和粘层材料,使得路面整体强度足够,不至于发生内部型水损坏;处理好接缝,避免缝边级配离析和压实不足。
例如,近年来广泛采用的三层式沥青路面结构中,上面层普遍设计为AK类沥青混合料,是一种半开式结构,再加上施工离析等原因,路面水损坏严重,在排水不畅的桥面情况更严重;下面层普遍设计为AC-25I型,而实际使用效果该层由于施工离析严重,导致透水严重,大量发生内部型水损坏,使得路面疲劳耐久性差,有时甚至中面层AC-20I型沥青混合料也存在相同的问题。湖北省和广东省就提出将下面层设计为AC-20I型沥青混合料,这一建议显然具有进步性。但是,由于加工更小粒径的碎石工艺流程更繁杂、产量更低和单价较高等原因,这一建议一直没有得到采纳。
对于沥青面层的厚度与公称最大粒径的关系一定要引起注意,必须保证厚度不小于公称最大粒径的3倍,对SMA要求甚至更高。然而,国内一些高速公路建设忽视了这个问题,例如有些公路由于造价的原因减薄了路面结构厚度,却没有相应调整沥青混合料类型,导致两者不相匹配。厚度与公称最大粒径不相匹配一般是厚度偏薄,其后果是级配离析严重,表面缺粒严重,导致压实离析,路面渗水。相反的例子是,施工单位私自调整级配,名义是按设计混合料类型施工,实际调细级配甚至将公称最大粒径减小一个筛孔,使得上述不良现象大大减轻甚至基本消失。
由于国内长期以来注重路面平整度等原因,路面结构设计的主流一直是半刚性基层沥青路面,对于柔性基层结构使用较少,在沥青下面层和上基层之间采用碎石层作排水层的做法自然就难以实施。许多国家在水泥稳定碎石集料上面设置级配碎石层作为过渡层,以减少路面的开裂和有利于排水,成为倒装结构,如南非、法国和德国等。我们经常说有些国家也使用半刚性基层,实际上是组合式基层沥青路面。
过去较多地使用乳化沥青类、稀释沥青类材料作为透层、粘层,但实际使用效果较差,不仅层间脱空,而且水容易渗透进入路面结构,或积存在上基层表面,造成沥青路面唧浆等。稀释沥青类材料作为透层、粘层存在的问题是,我国工程建设往往工期十分紧张,特别是新建公路,有时存在作为稀释剂的煤油还没有挥发就摊铺上一层混合料,影响了路面质量。近年来较多地使用热沥青类材料作为透层、封层,层间结合加强的同时,路面结构防水能力也得到加强。
近年来越来越注重施工缝的设置,这也是结构方面的很好的考虑,例如,相邻两幅及上下层的横向接缝均应错位1m以上,上面层应采用垂直的平接缝。上、下层的纵缝应错开150mm(热接缝)或300~400mm(冷接缝)以上。这些措施有利于防止集料离析上下重叠或左右紧邻,防止形成联通的透水面积。
(二)路面排水设计
路面排水设计与沥青路面水损坏密切相关,适当的路面排水设计与路面结构设计组合可以极大地减缓路面水损坏。路面排水设计应遵循几个原则,使得路面降水尽快通过路表迳流排走,进入路面结构内部的水以尽量快的速度通过路面结构内部排水系统排走。
1.中央分隔带排水。在我国,中央分隔带植树防眩而不加封闭带来的水损坏现象一直以来没有得到改善,但近年来,一些公路特别是改扩建的公路开始将植树以外的面积采用浆砌片石等措施进行封闭。遭受抱怨的还有反滤土工布被立柱打穿,造成中央分隔带渗水,但可从设计上检查立柱尺寸是否足以穿透土工布。
2.硬路肩排水。挡水式的路缘石使路面表面排水滞留在路面上成为水坑,也妨碍了具有一定透水能力的表面层的内部积水从硬路肩排出。近年来较多采用了平放的路缘石,不至于使水滞留在路面上。
3.路面结构内部排水。挖方路段的排水往往是薄弱环节,尤其要注意边沟的深度,不仅能排路表水,还应能排结构层的水,使路面内部的水能排入边沟。路基中有地下水或裂隙水冒出时,将使路基含水量过大,承载能力严重降低,所以挖方路段的纵向排水盲沟也是很重要的。在沥青层下设置排水层,可以是级配碎石层,也可以是嵌挤良好的沥青或水泥稳定碎石(或贯入式结构层),空隙率应达到15%以上。但施工期间必须保证路面不被污染,以防止将空隙堵住。
(三)施工质量和工艺
施工质量和工艺的可靠、合理是一切设计得到体现的保证,是工程建设的生命。没有施工质量和合理的工艺作保障,任何完美的设计都只是一纸空文。
以上路面材料、结构组合和路面排水系统等几个影响因素都对沥青路面水损坏存在影响,相互之间一方面普遍存在联系,另一方面又存在相对独立性。它们是通过沥青与集料在静、动水压力作用下的持续粘附能力这一内部影响因素而相互联系的,故属于内部联系、本质联系。
四、沥青路面水损坏的室内试验研究方法简介
一般而言,沥青路面水损坏研究以沥青路面在车辆荷载和路面结构内部水的双重作用下的损坏为研究对象。没有车辆荷载的作用,动水压力无从产生;没有路面结构内部水的存在,即使有车辆荷载,也不会产生动水压力,故车辆荷载和动水压力对沥青路面的水损坏研究缺一不可。
目前,有关水对沥青混合料性能影响的研究大部分集中在分析沥青混合料的水敏感性和抗水损坏材料的开发上,而有关水的作用对沥青混合料长期性能的影响,以及路面在此条件下的疲劳寿命衰减等方面的研究工作进行得较少。
常规的描述水对沥青混合料性能影响的试验方法大致可分为两类:
一类是将未经压实的松散沥青混合料浸于水中一段时间后,主观评价或利用试验仪器检查集料裹覆沥青膜的剥蚀程度,并据此作为判定沥青混合料水稳定性的依据。这类方法以水煮法、浸水法和光电分光度法为代表,美国SHRP研究内容中还发展了一种搅动水净吸附法。目前有研究改变这类试验的试验参数如试验温度、试验时间等进行试验,取得了初步效果。
另一类评价方法是将沥青混合料试件或芯样置于一定的水浸蚀环境条件下,以某些物理力学指标的衰减程度来表征混合料的水稳定性。这类方法有马歇尔试验、冻融劈裂试验、洛特曼试验、改进的洛特曼试验以及浸水轮辄试验等。
也有过一些研究从一定角度模拟了水对沥青混合料的动态作用,如Jimenez在亚利桑那大学提出重复孔隙水压力的作用。为了能够模拟孔隙水压力,将试件浸入水中,同时施加一个能够产生35~217kPa的孔隙水压力的循环应力作用。Jimenez认为这个水压力范围与饱和状态沥青路面在车辆荷载作用下产生的孔隙水压力范围是相吻合的。
工欲善其事,必先利其器。恰当的试验方法是通向研究成功的第一步,也是关键的一步。在目前沥青路面水损坏普遍严重存在的情况下,研究有效评价沥青混合料或沥青路面水稳定性的室内试验方法,是十分有必要的,也是十分紧迫的。
五、沥青路面水损坏的现场试验研究方法
为了使沥青混合料水稳定性研究符合实际、接近实际,光凭室内试验分析是不够的,有必要在实体工程中开展现场试验研究。然而到目前为止,国内外还没有完整地提出过进行沥青路面水损坏现场试验研究的思想,已有的研究还只限于在路况调查阶段对沥青路面水损坏进行分类、归纳、统计和分析查明原因。沥青路面水损坏现场试验研究方法的提出,无疑将成为本课题研究的一个创新点。
1.比较研究不同结构组合沥青路面的水稳定性,如半刚性基层与沥青稳定基层沥青路面,又如表面层设计为AK-13A、SAC-13的和SMA-13A的进行比较,中、下面层设计为AC类结构的和FAC类的结构进行比较,层间结合采用乳化沥青的和采用热沥青的进行比较,下封层采用应力吸收层的与采用热沥青上撒布瓜米石的进行比较。比较的具体方法可以采用现场病害调查(反映表面水损坏情况),也可以采用路表弯沉检测分析(反映内部水损坏情况),既能调查得到需要的数据,又不对路面造成破坏。
2.利用TBR仪等无损检测手段检测路面结构内部实际含水情况,比较不同路面结构表面和内部排水设计的沥青路面的水稳定性,例如对是否设置排水垫层的路面进行对比,对是否封闭中央分隔带除植树以外部分的路面进行对比,对是否设置硬路肩路缘石的路面水稳定性进行对比。
3.利用动水压力测试系统,对车轮荷载作用下动水压力进行测试,为路面结构受力分析提供更多参数。
4.利用公路改扩建的机会,进行开挖试验,检验不同路面结构组合、不同路面排水设计情况时的沥青路面水稳定性。
六、结语
沥青路面水损坏涉及设计、施工和养护等众多环节,而路面结构设计的影响尤其重要。针对沥青路面水损坏的现状,显然应该从设计的角度下更多的功夫,例如现行设计规范主要从力学的角度考虑沥青路面结构承载能力,对水损坏的考虑就有很大的欠缺,没有针对路面使用性能进行设计。要想在短时间内解决路面设计方法体系显然是有不小困难的,然而,从材料的角度对沥青路面水损坏的室内、外试验研究也还很不够,特别是没有从理论上很好地解决沥青混合料水稳定性的原理,这也是沥青混合料水稳定性设计和检验的难题所在。
参考文献
[1]沈金安. 国外沥青路面设计方法总汇[M].人民交通出版社,2004.
[2]张林洪,等.公路排水设施施工手册[M].人民交通出版社,2004.
[3]董泽蛟.多孔介质理论下饱和沥青路面动力响应分析[D].申请哈尔滨工业大学博士学位论文,2006,(9).
[4]黄晓明.路面设计原理与方法[M].人民交通出版社,2001.
[5]张登良.沥青路面工程手册[M].人民交通出版社,2003.
[6]沈金安,等.高速公路沥青路面早期损坏分析与防治对策[M].人民交通出版社,2004.
[7]于凤河,等.道路改扩建工程设计与施工技术[M].人民交通出版社,2004.
[8]刘和凤,等.高等级公路沥青路面防排水设计[J].中南公路工程,2005,30(12).
[9]程英伟,等. 湖北省高等级公路沥青路面面层材料选用研究[J].武汉理工大学学报(交通科学与工程版),2005,29(8) .
[10]张宏超,等.沥青混合料水稳定性能全程评价方法研究[J].同济大学学报, 2002,30(4).
[11]公路沥青路面设计规范[S].人民交通出版社,1997.
[12]公路沥青路面设计规范(讨论用报批稿),2004.