时间:2023-03-21 17:11:51
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇水利技术论文范例。如需获取更多原创内容,可随时联系我们的客服老师。
1.概述
我国地处世界上两个最大地震集中发生地带——环太平洋地震带与欧亚地震带之间,地震较多,大多是发生在大陆的浅源地震,震源深度在20km以内。位于青藏高原南缘的川滇地区,主要发育有北西向的鲜水河-安宁河-小江断裂、金沙江-红河断裂、怒江-澜沧江断裂和北东向的龙门山-锦屏山-玉龙雪山断裂等大型断裂带[1]。该区新构造活动剧烈,绝大多数属构造地震,地震活动频度高、强度大,是中国大陆最显著的强震活动区域[2]。
而西南地区蕴藏了我国68%的水力资源,水利工程较多,且主要集中在川滇地区。据
2005年数据,四川省有大中小型水库约6000余座[3]。2008年5月12日的四川省汶川大地震,初步统计,已导致803座水库出险,受损的大型水库有紫坪铺电站和鲁班水库,中型水
库36座,小一型水库154座,小二型水库611座[3]。此外,地震还致使湖北和重庆地区各
79座水库出现险情[4,5]。为保证水利工程的安全运行,地震之后及时对水利工程进行检测,并对受损工程进行监
测和修复是必要的。有关震灾受损水利工程修复方面的文献不多,散见于各种期刊或研究报告,为便于应用参考,本文搜集、筛选了一些震灾受损水利工程的案例,并对一些实用技术进行了介绍。
2.地震对水利工程的危害
由于地震烈度、地震形态以及水库本身工程质量的不同,地震对于水利工程的危害也有所区别。高建国[6]对我国因地震受损水利工程进行分类整理,认为水库坝体险情主要可分为
3级:1级,一般性破坏,不产生渗漏;2级,严重性破坏,坝体开裂渗漏;3级,垮坝(崩塌),水库水全部流走。
我国因地震引起的水库垮坝并不多见,总结国内外地震对水利工程的危害,主要有以下几种形式:
2.1坝体裂缝
地震作为外力荷载将会导致大坝尤其是土石坝整体性降低,防渗结构破坏,引起大量裂缝。地震会产生水平和垂直两个方向的运动,并使周期性荷载增大,坝体和坝基中可能会形成过高的孔隙水压力,从而导致抗剪强度与变形模量的降低,引起永久性(塑性)变形的累积,进而导致坝体沉降与坝顶裂开。
2003年10月甘肃民乐—山丹6.1级地震引起双树寺水库大坝、翟寨子水库大坝,坝顶
均出现一条纵向裂缝,长约401~560m,最大宽度2cm左右,并有多处不同长度断续裂缝,
防浪墙局部错动约0.5cm。大坝右侧出现山体滑坡,形成长条带及凹陷,滑坡长37m左右,凹陷坑深2.5~3m、宽7m左右,凹陷处上部山体有多条斜向裂缝,缝宽20cm左右。李桥水库坝顶有纵向裂缝,多处缝宽在2~5mm,其中一条长约100m左右,出现横向贯通裂缝,防浪墙出现多处竖向裂缝。这些裂缝在坝体漏水、自然降水和温度作用下,又将产生新的冻融、冻胀破坏,影响大坝的整体性和稳定[7]。
托洪台水库位于新疆布尔津县境内,1995年被列为险库,1996年新疆阿勒泰地震(6.1级),使拦水坝出现10处横向裂缝,3处纵向裂缝,最宽处达16cm,长17m,防浪墙垂直裂缝27处。经评估,水库震后只能在低水位运行,致使发电系统瘫痪,同时对于下游构成潜在威胁[6]。
岷江上的紫坪铺水利工程位于都江堰市与汶川县交界处,2006年投产,是中国实施西部大开发首批开工建设的十大标志性工程之一。2008年5月12日的汶川地震造成紫坪铺大坝面板发生裂缝,厂房等其他建筑物墙体发生垮塌,局部沉陷,整个电站机组全部停机。[3]。此外,地震对泄水输水建筑物也将造成巨大危害。2003年8月16日赤峰发生里氏5.9级地震,使沙那水库混凝土泄洪灌溉洞产生纵向裂缝,长15m,最大裂缝15mm;环向裂缝
22m,最大裂缝宽度1.8mm;洞出口消力池两侧边墙产生竖向裂缝,总长15m,最大裂缝宽
度25mm。大冷山水库溢洪道两侧导流墙产生裂缝,以纵向裂缝为主,最大缝宽12mm[8]。
2.2坝体失稳
地震可能引起坝基液化,从而导致大坝失稳。地震时,受到周期性或波动性荷载作用,土石坝内土体将产生递增的孔隙水压力和递增的变形。粘性土体构成的土石坝在地震中相对安全。但相对密度低于75%的粉砂土和砂土,在几个循环之后孔隙水压力就会显著上升,当达到危险应力水平时,土体在周期性荷载作用下显示出极大的变形位移,坝内土体就会呈现出液化的流态,导致坝体失稳[9]。
喀什一级大坝1982年施工时,其坝体及防渗墙都未进行碾压,致使密实度降低,1985
年地震时,由于液化和沉陷,导致该坝整体失稳破坏。
美国加州的Sheffield坝,1917年建成,坝高7.63m,坝顶宽6.1m,长219.6m,水库库
容17万m3。1925年6月距坝11.2km处发生里氏6.3级地震,长约128m的坝中段突然整体滑向下游。事后,经调查研究发现,坝体溃决的主要原因是地震使饱和土内的孔隙水压力增大,造成坝下部和坝基内的细颗料无凝聚性土发生液化。
地震还会造成土石坝体脱落或堆石体沉陷,从而引起坝体失稳。在库水位较高的情况下,堆石体沉陷会造成坝体受力不均,更严重的会引起库水漫顶,引发坝体垮塌。1961年4月
13日在距西克尔水库库区约30km处发生里氏6.5级地震,该水库位于VIII度区[10],坝体出现了严重的堆石体沉陷现象,一段220m长的坝体沉陷值达到2~2.5m,崩塌范围在从坝轴线上游3~10m到下游的35~50m[11]。
前面述及的沙那水库土坝和朝阳水库因地震致使土坝排水体砌石脱落,经抗震复核下游坝坡不稳定[8]。
2.3岸坡坍塌
若水库两岸有高边坡和危岩、松散的风化物质存在,地震发生后,造成的岩体松动,可诱发产生崩塌、滑坡和泥石流,甚至形成堰塞湖等现象。
乌江渡水库处于地震多发区,1982年6月地震中,化觉乡东部厚层灰岩和白云岩地层
中发生大面积崩塌。同年8月,化觉、柏坪一带又发生较大规模的地层滑动,影响面积约
18km2[12]。
5•12汶川大地震造成四川多处山体滑坡,堵塞河道,形成34处堰塞湖。其中唐家山堰塞湖蓄水过1亿m3,另外水量在300万m3以上的大型堰塞湖有8处[13],对下游地区造成严重威胁。
另外,地震还可能对水利工程一些其它部分造成损坏。如1995年1月日本阪神淡路7.2
级地震[14,15]中,使堤防基础液化发生侧向流动,造成堤防破坏以及护岸受损。我国历次地震中,出现较严重险情的多为土石坝,且多为年代较久远的土石坝,如果发
生强地震就更容易造成损坏[16]。
3.震灾受损水利工程的修复技术
地震后受损水利工程修复措施主要包括以下几个方面:
3.1坝体监测
地震后,对于受损水利工程,应及时降低水库运行水位,并进行充分的坝体探测。对土石坝,可开挖土坑检测,对混凝土坝,则可用无损探伤检测[17]。包括使用地震波法、地质雷达、水下声纳法检测侵蚀程度,必要时还需要采取槽探、钻孔、孔内地球物理方法进行检测。根据地震前后大坝监测结果的对比分析,判明是否存在普遍的结构损伤迹象。尤其需要加强对坝体变形和渗透的观测,防止裂缝前后贯通,内部发育,产生渗漏通道。同时,加强对输水洞漏水、溢洪道裂缝的监测,以防渗漏进一步扩大[18]。
震后坝体探测中,作为一种非破坏性的探测技术,地质雷达具有探测效率高、分辨率高、抗干扰能力强等特点,可以快捷、安全地运用于坝体现状检测和隐患探查[1
9]。
2003年甘肃山丹地震后,利用地质雷达对双树寺、瞿寨子、瓦房城等水库的震后坝体裂缝、坝基渗透、溢洪道、高边坡开裂和库岸道路滑坡等进行了探测[20],效果很好。
3.2裂缝修复
对于已经出现的裂缝,要对其分布、走向、长度和开度等进行定时观测和检测。在大坝主裂缝部位设置标志,缝口要覆盖塑料布,防止雨水流入加速其恶化。对受洪水威胁的建筑物,要采取临时措施(如围堰)进行保护。
裂缝的修补应从实际出发,在安全可靠的基础上,同时考虑技术和施工条件的可行性,力求施工及时、简单易行、经济合理。常用的有以下几种处理方法:
3.2.1表面处理法
表面处理法[21]主要适用于对结构承载能力没有影响或者影响很小的表面裂缝及深层裂缝,同时还可以处理大面积细裂缝的防渗防漏。常用的有表面涂抹水泥砂浆、表面涂抹环氧胶泥以及表面涂刷油漆、沥青等防腐材料等,从而达到封闭裂缝和防水的作用。在防护的同时应当采取在裂缝的表面粘贴玻璃纤维布等措施,这样可以防止混凝土在各种作用下继续开裂。
3.2.2灌浆法
灌浆法主要应用于对结构整体有影响或有防水防渗要求的混凝土裂缝的修补。经修补
后,能恢复结构的整体性和使用功能,提高结构的耐久性。
灌浆法[22]分水泥灌浆和化学灌浆。水泥灌浆适用于裂缝宽度达到1mm以上时的情况;裂缝较窄的情况下宜采用化学灌浆。此外,工程经验表明水泥浆适于稳定裂缝的灌浆处理,不适用于活缝或伸缩缝的处理。化学灌浆也存在类似问题,应用最广的环氧树脂浆固结体是脆性材料,因此对活缝应选用弹性材料。部分化学灌浆还有毒性,应加强施工人员的保护措
施。
大量实践证明,灌浆法是目前最有效的裂缝修补处理方法。
3.2.3结构加固法
危及结构安全的混凝土裂缝都需作结构补强。结构加固法适用于对整体性、承载能力有较大影响的较深裂缝及贯穿性裂缝的加固处理。混凝土结构的加固,应在结构评定的基础上进行,以达到结构强度加固、稳定性加固、刚度加固或抗裂性加固的目的。结构加固中常用的主要有以下几种方法:加大混凝土结构的截面面积,在构件的角部外包型钢、采用预应力法加固、粘贴钢板加固、增设支点加固以及喷射混凝土补强加固。结构加固法还适用于处理对结构的承载能力、整体性、耐久性有较大影响的不均匀沉陷裂缝和较为严重的张拉裂缝
[23]。
3.3滑坡处理
土坝滑坡有剪切破坏、塑流破坏、液化破坏三种形式[24]。可采用“上部减载”与“下部压重”法来处理。“上部减载”就是在滑坡体上部的裂缝上侧削坡,以保持稳定;“下部压重”就是放缓下部坝坡,在滑坡体下部做压坡体等。当滑坡稳定后,应当及时进行滑坡处理[17]。主要处理方法介绍如下:
3.3.1放缓坝坡
若滑坡由于剪切破坏造成,则放缓坝坡为最好的处理方法。可填入土体将坝坡放缓,或是先削掉滑动面上坝顶的土体,使滑动面坝坡变缓,然后再加大未滑动面的断面[24]。
对存在失稳危险的土石坝也可采用水上抛石法放缓上游坝坡,施工方法简单,且不受季节和水位的变化。加固工程不破坏原坝体结构,减去拆除原有的坝体护坡石和反滤料工序,对保护原坝体非常有利。石料渗透系数大,在库水位降落时,新筑部分的自由水面线,几乎与库水位重合,这样就造成新增断面和原有断面共同承担原有坝壳中库水位降落时产生的渗透水压力及地震产生的超隙孔压力,起到压重的作用,从而有利于大坝的稳定[25]。
3.3.2压重固脚
若滑坡体底部滑出坝趾以外,则需要在滑坡段下部采取压重固脚的措施,以增加抗滑力。压重固脚的材料最好用砂石料。在砂石料缺乏的地区,也可用土工织物,代替反滤,以达到排水的要求[17]。
通过在坝体上加压盖重,或对坝体培厚加固处理,可以进一步提高防渗流土、坝体抗裂和抗渗性能,同时增加坝体稳定性。
实例:1999年山西大同堡村发生5.6级地震,对位于震中附近的册田水库造成VII度影响,坝体产生结构变形[26]。震后对主坝和北副坝下游坝坡采用石渣进行培厚加固处理。主坝所在956m高程以下石渣培厚体,坝坡分别为1:2.75,在956m高程设12m宽的平台,在
949m高程、940m高程设3.0m宽的马道,并在石渣体与原坝体设置反滤层。培厚坝体后,
即使再次遭遇地震,由于坝体在正常水位下(956m高程)宽度增加,也可避免大坝整体失
稳,从而保证大坝的安全[27]。
3.3.3库岸岩体加固
对于地震中松动的库岸岩体,应采取工程措施进行加固。地震后,首先需要对库岸岩石情况进行重新评估,选择加固方式。库岸加固通常采取锚固、支挡、排水相结合的方式。锚固措施是利用预应力锚索和锚杆固定不稳定岩层,适用于震后加固岩体滑坡和不稳定的局部岩体。通过一端与建筑物结构相连,一端打入岩体内部,在增强岩体抗拉强度的同时,
改善库岸岩体的完整性[28]。该方法在高切坡中被广泛应用。支挡方法是通过支挡体来平衡滑坡体的下滑力,确保滑坡体的稳定安全。支挡结构能有
效地改善滑坡体的力学平衡条件,阻止滑坡、泥石流等。常用的方法有重力式挡墙、拉钉挡墙、加筋土挡墙、抗滑桩等[29]。
此外,由于地震过后经常伴随暴雨,更易在松动岩石处产生滑坡、泥石流等灾害,因此需及时排水,包括地表水和地下水。可设置截水沟排除地表水;排除地下水可用廊道、竖井和水泵等。在美国、加拿大和日本等国家较多采用专用钻机打水平孔的办法排地下水[28]。
3.4渗漏修复
应根据具体情况降低库水位或放空水库,彻底修复防渗体,对由于浸润线过高而逸出坡面或者由于大面积散浸引起的滑坡,除结合下游导渗设施外,还应考虑加强防渗。
3.4.1劈裂灌浆
对于土石坝较严重的渗漏破坏,可以采取劈裂灌浆或加强防渗斜墙等方式解决。劈裂灌浆是指在垂直渗流的方向沿坝轴线劈开坝体,灌入稠泥或水泥砂浆,截断渗流通道,可以在短时间内坝体内的渗流,使大坝转危为安。
采用劈裂灌浆技术的岭澳水库具体做法如下:根据坝长选用适量的灌浆机,多台灌浆机同时开灌,为使浆液尽快硬化固结,所用浆料为掺入速凝剂的水泥加粘土。在灌浆工艺上,连续的多次复浆,使混凝土或泥浆墙尽快加厚,并使贯通的漏水通道通过灌浆压力和多次灌浆挤压膨胀与原坝土体紧密结合,最终形成垂直连续的防渗混凝土砂浆墙,防止再次出现漏水通道的可能[30]。
3.4.2开挖置换
置换技术是土石坝震后修复中的一种重要手段,尤其对于心墙开裂的土石坝具有重要意义。首先需要通过探测技术检测到侵蚀的区域,然后在心墙的下游侧补填塑性混凝土,并用颗粒反滤层加以支持。最后使用水泥膨润土混合物进行灌浆。置换技术可以有效阻止土石坝心墙的进一步破坏,达到防渗漏的目的[18]。
实例:新西兰的马拉希纳坝,在经历埃奇克姆地震后,初期表现稳定,在1987年12月后出现水位明显下降的现象。通过详细的监测发现,虽然大坝没有遭受严重的渗漏,但左坝肩心墙和下游副心墙出现明显的开裂和侵蚀,且侵蚀依然在继续发展。持续不断的侵蚀导致库水位不断下降,因而采取心墙置换的方式,即对左右岸坝肩进行开挖,喷上混凝土,置换开挖出来的材料。水库再次蓄水时没有出现新的事故[18]。
3.4.3排水设施
在阻止渗流发生的同时,需要做好排水工作,通过设置宽敞的排水带,使渗流能顺利排走,降低坝体内的浸润线,减小孔隙水压力。
4.典型水利工程抗震抢险及修复实例
4.1美国Hebgen坝
Hebgen土石坝[31]位于美国Montana州,1915年建成,1959年8月遭受里氏7.1级的强烈地震,坝和水库所在地变形并整体下沉约3.1m,右岸溢洪道严重损坏,坝体沉陷开裂,水库岸坡坍塌,库水震荡并漫溢坝坝。当时此坝并无抗震设计,承受地震对其的各种危害而未垮坝,其破坏模式和耐震经验极有借鉴意义。
当时业主Montana电力公
司采取的紧急抢救措施包括:
(1)立即将泄水底孔进水口原用迭梁封闭的二个孔口开启,以80m3/s的流量泄水降低库水位。
(2)对半角沉陷区和被流冲蚀的坝下游面填土修复。检查表明,心墙与溢洪道连接处的漏水并非通过心墙上的裂缝而是从破坏的溢洪道流出。
(3)在心墙的大裂缝处下游,打竖井检查和修补。同时对下游河岸坍方区进行了修整。此后于1960年4月开始对溢洪道、坝体心墙和上游面进行了全面的修复和加固工作。
至今运行完好。
4.2美国LowerSanFernando坝
LowerSanFernando坝[31]位于美国加州洛杉矶市北,1912年动工,最大坝高43.2m,坝顶宽6m,长634m。1971年2月在坝东北12.9km处发生里氏6.6级地震,致使主坝发生巨大滑坡,坝的上游部分带动坝上部9.2m高的坝体和坝顶一起坍落滑向水库20多米远。
事故发生后,救援人员立即采取了如下措施:一方面立即运来砂袋加固筑高坝的低陷部位;另一方面紧急撤离坝下游地区8万居民;此外,通过2条泄水道和3条引水管排放水库中的水。
经初步调查和后期进一步挖槽、钻孔取样研究得出,坝内有大范围土区在地震后液化,但液化区被强度较高的非液化土约束住,因而直到液化区内有足够扩张力,促使土向外和向下移动时,才出现大规模滑动。
4.3新疆西克尔水利工程
西克尔水库[10,11]位于新疆伽师县东北西克尔镇,1959年建成使用,为均质土坝,设计库容10053万m3,属大型拦河式平原水库。该工程自建成以来共经历了15次地震,其中较严重的有3次:1961年4月13日发生6.5级地震,震中距水库约30km,致使220m长的坝出现沉陷崩塌,余坝产生165条裂缝;1996年3月19日发生6.4级地震,坝段出现涌沙,裂缝,局部产生沉陷;2002年3月3日,阿富汗发生里氏7.1级地震,造成水库副坝段出现决口,并迅速扩大到50m左右,决口流量约120m3/s,损失惨重。
由于西克尔水库运行年限长,且早年建设时没有进行地质勘探,因此极易糟受地震破坏。多次地震后,主要采取的措施有:
(1)加高坝顶,坝后设置压重,并铺设无纺布反滤。
(2)大坝决口后,进行抢险封堵,修复缺口。
(3)按库区基本烈度八度进行设计校核,对西克尔水库主坝、副坝和其它建筑物进行加固修复。针对部分坝段坝基地震液化问题,主坝采用压盖重措施,以进一步提高防渗流土、坝体抗裂和抗渗性能。副坝部分改线,采用粘料含量高的土进行填筑,加固填筑总方量为
58.59万m3,其中粘土39.29万m3,占60%。
4.4北京密云水库
密云水库位于北京密云县城北13km处,库容43.8亿m3,是北京市民用、工业用水的主要来源。水库始建于1958年9月,分白河、潮河、内湖三个库区,主要建筑有白河主坝
(高66m,长1100m)、潮河主坝(高56m,长960m)和5道副坝等。
1976年7月28日,河北唐山发生里氏7.8级强烈地震,白河主坝发生强烈扭动,主坝水面以下6万m2的块石坡和砂砾保护层滑落,受损严重。地震后,采取的主要措施[6]有:
(1)及时探测大坝裂缝,并派潜水员进行水下探测。
(2)通过筑堰建闸,把密云水库分隔成两个库区,放空库水后,进行全面检查加固。清除白河主坝上的砂砾保护层,加厚铺盖粘土斜墙,改用碴石保护层,往水下填粘土及砂石
达20万m2。随后,打通白河廊道、削坡清基,进行坝体加固。
(3)加固了3座副坝,并增建了3条泄水隧洞、1座溢洪道等。
白河主坝加固工程于1977年11月21日完成,达到了国家一级工程标准,至今完好。
5.小结
地震后受损水利工程修复是项复杂的工作,要因地制宜尽快采取最合适的方法进行修复。几条主要结论如下:
(1)地震发生后,各级水行政主管部门应该对境内的水利工程,尤其是堤防、水库大坝、水闸等工程进行排查,及时掌握工程破坏的情况及其隐患,有针对性地制定抢修方案。对地位重要、关系重大、危险性高的受损水利工程,要抓紧修复,确保度汛安全。
(2)坝和地基土料的液化,是导致垮坝或严重破坏的主要原因,此外,较普遍的震害有滑坡、开裂、沉陷和位移。
(3)尽可能保证水坝顺利泄水,降低蓄水位,避免出现垮坝事故。
(4)目前对于水利工程一般都有相应的突发事故(如地震、洪水等)预警机制,但对于如何应对出现的险情,采取必要的工程措施,尚是一个薄弱环节,宜提高认识,加强要应的工作。
(5)对山区河流因沿岸崩山、泥石流等形成的堰塞湖,要当机力断主动尽早清除,以避免水位升高,堰塞湖溃决形成洪灾。
参考文献
[1]苏有锦,秦嘉政.川滇地区强地震活动与区域新构造运动的关系[J].中国地震,2001,17(1):24~34.
[2]龙小霞,延军平,孙虎,等.基于可公度方法的川滇地区地震趋势研究.灾害学,2006,21(3):81~84
[3]任波,徐凯.四川已发现803座水库受损[OL].[2008.5.14].
/20080514/61586.shtml
[4]孙又欣.汶川地震造成我省水利工程新隐患[OL].[2008.5.14].
/iNews/Index/Catalog1/8493.aspx
[5]中评社.汶川地震灾后余波!重庆79座水库出现险情[OL].[2008.5.17].
/doc/1006/4/7/9/100647908.html?coluid=45&kindid=0&docid=100647908&mdate
=0517123254
[6]高建国.中国因地震造成的水库险情及其防治对策[J].防灾减灾工程学报.2003,9:80~91
[7]王东明,丁世文,等.对甘肃民乐—山丹6.1级地震震害的几点认识[J].自然灾害学报,2004,13(3):
122~126
[8]王艳梅,李俊,等.赤峰市“8•16”地震对震区水利工程的危害及应急措施[J].内蒙古水利,2003,(4):
66~68
[9]K.维克塔乔姆,R.K.基特里亚.与土石坝有关的地震问题[J].水利水电快报,1999,11:5~7
[10]库尔班阿西木.地震对西克尔水库大坝工程的影响和抗震加固[J].大坝与安全,2006,6:64~68
[11]库尔班阿西木.地震对平原水库大坝的影响和抗震加固[J].地下水,2006,8:82~85
[12]覃子建.乌江渡电站水库地震灾害[J].地震学刊,1994,3:42~49
[13]吴胜芳.唐家山堰塞湖库容逼近1亿立方米,3万人转移.[OL].[2008.5.23].
[14]张敬楼.日本兵库地震及水利工程震害综述[J].水利水电科技发展,1995,10:17~19
[15]史鉴,汤宝澍;从日本阪神淡路大地震——谈我省水利工程抗震加固问题,陕西水利,1999,(Z1):
50~51
刘真道.浅谈灾后小型水库工程安危状况与对策[J].浙江水利科技,2001,(sup):118
水利部国际合作与科技司编.抗震救灾与灾后重建水利实用技术手册.2008.5.15
M.D.吉隆,C.J.牛顿.地震对新西兰马塔希纳坝的影响[J].水利水电快报,1995,4:1~8
杨金山,卢建旗.地质雷达技术在水利工程中的应用[J].地质装备,2001,12:7~9
马国印.地质雷达在水库震后病害检测中的应用[J].甘肃水利水电技术,2007,3:47~48
喻文莉.浅议混凝土裂缝的预防与处理措施[J].重庆建筑,2007,(4):36~38
鞠丽艳.混凝土裂缝抑制措施的研究进展[J].混凝土,2002,(5):11~14
陈璐,李风云.混凝土裂缝的预防与处理[J].中国水利,2003,(7):53~54
肖振荣.水利水电工程事故处理及问题研究[M].北京:中国水利水电出版社:2004
杜智勇,李贵智,等.柴河水库除险加固综述[A].全国病险水库与水闸除险加固专业技术论文集[C].
北京:中国水利水电出版社,2001.212
[26]贾文.册田水库大坝工程场地地震地质灾害评价[J].山西水力,2004,6:67~68
[27]朱宏官,陈连瑜.中强地震对册田水库大坝造成的危害及安全预防处理[J].山西水利科技,2001,(1):
71~73
[28]吴凤英.浅谈水库库岸滑坡[J].广州水利水电,2007,4:17~18
[29]王连新.水库滑坡治理[N].长江咨询周刊,2007,6:B01
[30]白永年.劈裂灌浆技术在岭澳水库大坝防渗加固中的应用[A].全国病险水库与水闸除险加
固专业技术论文集[C].北京:中国水利水电出版社.2001
[31]中国水力发电工程学会史料信息组,上海大科科技咨询有限公司.国外土石坝地震震害实例和统计[R].
2001.2
Casestudiesandrepairingtechniquesrelatedtohydraulic
engineeringprojectsdamagedbyearthquakes
MaJiming,ZhengShuangling
DepartmentofHydraulicEngineering,TsinghuaUniversity,Beijing(100084)
Abstract
EarthquakesfrequentlyoccurinChina,especiallyintheSichuan-Yunnanregionwheredensehydro
projectsareconstructed.Actingasexternalforces,earthquakescandecreasetheintegrityofthedams,causedamcracks,landslide,settlementanddisplacement,foundationliquefaction,resultingindaminstabilityorevendamfailure,aswellasthedamageofoutletstructures.Besidesthedamageofhydroprojects,seismicactivitiesalsothreatenthedownstreamarea.Basedontheexistingliteraturedataindomesticandabroad,thispaperintroducestheseismicdisastersregardinghydroprojects,especiallythesoilandrockfilldams.Somepracticalremedialmeasuresandrepairingtechniquesaresummarized
1.1采取措施完善水利工程机电技术标准
为推动水利工程健康发展,要求对水利工程是机电技术相关的部门或相关企业标准进行明确统一,确保标准规范性与通用性,从而在标准上避免设备通用性不足或难以应用问题。加强行业与行业之间的有效联系,组建机电技术行业交流有效机制,在执行标准的基础上,有力推动机电技术快速发展。
1.2加强跨行业及部门协调,构建有效管理机制
政府部门应充分重视机电技术管理问题,组织机电技术各行业及部门,依据实际构建出完善的管理机制,确保各行业机电技术应用在统一机制基础上有序进行。为确保机电大型设备设计及制造应用性,应综合考虑行业需求,综合全面研究,确保机电技术设备运行的安全性与可行性。设置专业的管理机构,对水利工程项目中的机电技术应用进行有效管理。
1.3对水利工程机电技术应用进行检测与评估
在水利工程建设中,为确保机电技术应用及整体工程安全性,要求对其工程进行安全性检测与评估。依据机电技术标准,从全局出发综合考虑实际,有效贯彻综合标准,对其机电技术设计、建设及运行进行监测与评估。此外,还应落实国际化标准,考虑到部分水利工程中机电设备存在着进口现象,要求在推行国家相关标准的同时,综合考虑国际化标准要求,提高标准设置,有助于推动我国机电技术发展水平,推动我国机电设备制造水平,实现其整体效益。
2水利工程中机电技术未来发展趋势展望
2.1智能化趋势
智能化属于现代科学技术发展的重要特征之一,其未来机电技术发展的重要方向。在机电技术中实现智能化,可以实现对人类认知及判断等有效模拟,让机电技术及相关设备具备一定思考能力、判断能力与决策能力,配置相关数据库,通过收集数据与分析数据以实现其智能化操作。机电技术智能化,可以让其相关设备完成一定的工作,尤其是在处理风险性较高,难度较大的问题时其作用更为突出,随着信息处理水平的不断提高,机电技术智能化发展更为突出。
2.2网络化趋势
网络技术与计算机技术普及,让其成为了人们生活的重要部分,网络技术的快速发展与应用,让其广度及深度不断扩展。水利工程机电技术网络化发展是其未来发展的重要表现,尤其是网络化技术的应用,可以极大加快机电技术信息收集与信息处理效率,为信息交流提供更好平台。应用网络技术,还可以实现对机电设备运行状况的远程监控,为实现无人监督奠定技术基础。
2.3系统化趋势
随着机电技术的快速发展,机电产品与人类之间的联系越发紧密,实现系统化一体化势在必行。机电技术实现系统化,有助于机电技术运行安全性、可靠性的有效实现,系统性管理优势凸显。依据特定生物构造,研究出新的机体,推动机电技术向生物系统化方向进步,以实现更加的发展效果。
2.4环保化趋势
首先是对明渠的断面尺寸进行确定,结合设计导流的流量控制来确定明渠断面的尺寸,并且受到了诸多因素的影响,如地形地质、允许抗冲流速等,在设计断面的过程中,需要结合差异化的明渠断面尺寸,来组合围堰,综合考虑。其次是对明渠断面形式进行合理选择,通常情况下,会按照梯形来设计明渠断面设计,如果有坚硬基岩存在于渠底,可以按照矩形来设计,在一些特殊情况下,为了促使截流和通航的不同要求得到满足,也可以按照复式梯形断面进行设计;最后是对明渠糙率进行确定,明渠的泄水能力会直接受到明渠糙率大小的影响,因此,开挖方法、衬砌材料以及渠底平整度等因素会直接影响到糙率大小,所以设计过程中,就需要结合具体情况,严格依据相关的规定和要求来进行。
2隧洞导流的方法
一是隧洞导流的使用范围:对于山区河流,通常应用隧洞导流的方法,这是因为其有着较为狭窄的河谷,两岸有着陡峻的地形;因为每条隧道都有着十分有限的泄水能力,隧道需要较高的造价成本,因此,没有较大的流量,就可以应用隧洞导流的方法。结合如今的形势,每条隧洞的可宣泄流量严格控制2000m3/s—2500m3/s,大部分工程将两条左右的导流洞给应用过来。为了促使导流费用得到减少,就需要结合导流漏和永久隧道。如果是将高水头土石坝枢纽兴建于山区河流上,将永久隧漏给应用过来。因此,对于土石坝纽,非常普遍的使用了隧洞导流,将混凝土坝修建于山区河流上,也可以将隧洞导流给应用过来。二是导流隧洞的布置方法:需要在完整和新鲜的岩层中,布置隧洞,为了避免有大规模坍方出现于隧洞沿线中,需要避免平行于洞轴线、岩层和断层和破碎带,严格控制洞轴线和岩石层面之间的夹角,避免其小于45°,层面倾角控制在45°以上。将坝址附近的有利地形给充分利用起来,保证有顺直的隧洞线路,如果是弯曲的河岸,需要在凸岸布置隧洞,这样隧洞长度可以得到缩短,并且有着较好的水力条件。转弯是有压隧洞和低流速无压隧洞所必须具备的,转弯半径应该比5倍洞宽要大,转折角控制在60°以内,要将直线段过渡设置于弯道的上下游,直线段长度需要比5倍洞宽更大。避免有冲击波产生于高流速无压隧洞的弯段上。严格控制进出口和河床主流流向的交角,否则就会影响到上游进水条件,会有有害的折冲水流与涌浪产生于下游河道,出角需要控制在30°以内,结合具体情况,可以适度放宽上游进口处的要求。如果需要的导流隧洞为两条以上,那么就可以在两岸或者一岸布置。隧洞进出口和上下游围堰坡脚需要有50m以上的距离,近些年来,也出现了10m~20m以内的距离;如果只有较小的距离,就需要科学的防护堰坡。三是导流隧洞断面设计:在确定隧洞断面尺寸时,需要综合考虑诸多因素,如设计流量、地质和施工条件等,要结合相关规范,控制洞径;一般来讲,单洞断面尺寸需要保证不超过200m2,单洞泄量控制在2000m3/s~2500m3/s以内。将地质条件、隧洞工作状况和施工条件纳入综合考虑范围,对隧洞断面形式合理确定。在洞身设计中,十分重要的一个问题就是合理选择糙率n值,糙率的大小会对断面的大小产生直接影响,糙率大小则会直接受到其他因素的影响,如衬砌情况、施工质量、选择的开挖方法等等。在设计过程中,需要结合具体情况,对相关规范进行查阅,对糙率值合理选择。
3结语
1.1减轻灾害
水利工程在减轻洪旱灾害方面发挥着重要作用。水利工程可以进一步提高防寒、抗洪、抗旱能力,通过科学合理的水利调控,减少自然灾害造成的损失。利用卫星检测技术对区域旱情、水情进行实时监控,为相关部门提供依据,预先做好抗旱、抗涝、抗洪计划,通过详细计划向蓄滞洪区进行放水,将水害转化为水利。
1.2调配水源
我国水资源南北分布不均,随着地球环境的不断恶化,有限可利用的水资源总量在减少,这是一个摆在我们面前非常严峻的问题,只有通过兴建水利,科学有效的调度利用好水资源,才能促进经济和社会的健康良性发展。
2衬砌技术在水利工程中的应用
2.1衬砌管道的结构
要充分了解当地地质情况,分析水利应用方向,选择不同类型的现浇衬砌管道技术,这项工程结构由多种类型组成,常见的衬砌结构是等厚度梯形单式断面结构,保持渠坡坚实稳定,将管道内坡比值设为1∶2,更加方便施工操作。充分考虑管道对防渗等级要求和管道流量,对混凝土防渗层厚度合理设置,为预防裂缝可在适当位置设置伸缩缝,对混凝土出现的裂缝具有良好的效果。
2.2衬砌工程施工过程
2.2.1准备工作水利工程施工由多个工种组合施工完成,是一个综合工程,合理的设计和安排是保证工程顺利开展的关键要素。在对水利工程设计时,一定充分考虑到各工种的位置和工作特点,避免各个工种、单项工程之间相互干扰。合理规划水、电的使用频率和时间,保证机械设备正常运转,通过前期准备,打好工程建设基础。
2.2.2土方施工事先对渠道浸水性能进行仔细分析,通过土质预沉的方法,解决渠道土质疏松产生的沉降,或者通过夯实方法,达到相关工程要求标准。对渠道放样进行严密的准备,划定渠道中心控制线,每隔200米设置一个高程控制点,每距离50米设置一个中心桩,在弯道处加大密度,每5米设一个桩,确保中心桩精度。要对土层进行仔细清理,防止夯实的土层里有杂物,影响夯实效果,把土层分为30厘米左右,保证土层厚度均匀,夯实效果会更好;对含水量低的,适当洒水提高土壤含水量,对含水量高的,要更换土壤。蛙式打夯机要保证四次以上的夯实工作,夯实密度至少达到1.5t/m3。
2.2.3工程材料
(1)水泥和外加剂。水泥尽量使用同厂出售的水泥,一般是使用325#的硅酸盐水泥,通过添加适量的外加剂,保证渠道的抗冻和抗渗性能,PC-2型引气剂成分是松香皂和热聚合物,具有良好的抗渗和抗冻作用,根据水泥标准进行适量添加,一般保持在水泥重量的1%左右。
(2)运输、储存。要把不同类型的水泥分别堆放,对先进现场的水泥先使用,防止气候变化影响水泥性能改变,为防止水泥硬化,堆放的时候,最好是在通风干燥的库房。水泥运输也是关键环节,不同材料不能同时运输,防止混合,一定要保证水泥纯度。
(3)混凝土配比。混凝土的配比是否标准,直接影响着抗冻、抗渗能力,水灰比最大值一般是0.6,塌落度掌握在3厘米以内,当渠床较湿润或是温度较低时,塌落度要适当降低,反之就要适当提高。
2.2.4混凝土渠道施工
(1)准备工作。混凝土浇筑前要有充分的准备,对各类设备进行检修,需要使用的磨光机、发电机、搅拌机一定要摆放到位,对保证机械运转的供水、供电系统要检查是否正常运行,对施工场地、道路是否清理干净,保持表面光洁平整,施工人员、技术人员是不是已经到位,准备就绪后,方可进行混凝土浇筑施工。
(2)浇筑过程。保证浇筑顺序,在渠床上放好钢模板,测量好伸缩缝,如渠床过于干燥,就要适度洒水,避免水分流失出现裂缝;混凝土搅拌机容积要大于0.4m3,合理控制塌落度和水灰比,保证混凝土的上标号不低于C15;混凝土要立即溜槽入仓,人工进行平仓,要从下至上单方向使用振动器进行振捣,保证混凝土各部分均匀;磨光机是对表面进行磨平处理的机械,出现水泥浆后,分两次进行人工压光;当混凝土达到一定强度后,进行拆模,时间的把握是关键,如果时间不足,就容易出现变形损坏;初凝之后进行几次洒水并使用软塑料布进行地表覆盖保养两周以上。
3结束语
在众多的围堰项目中,土围堰的使用几率非常大。接下来具体的分析它的特征和使用区域。在开展水利项目建设工作的时候,此类围堰一般适合用到水流的速度不是很快,水的深度低于两米,透水能力不是很高的河流之中。在具体的开展建设工作的时候,此类项目主要是借助于项目本身的重力以来提升它的强度的。不过,如果河床是砂土的话,为了增强稳定性,避免塌陷,就必须合理的选择围堰的种类。工作者在使用围堰开展建设工作的时候,必须认真对待如下的内容。第一,假如项目的上方宽度超过一米低于两米的话,工作者可以借助行管的设备来进行地基的挖掘工作。第二,为了保证后续的项目开展顺畅,保证施工的品质良好,工作者在修建围堰之前的时候,必须把下方的杂物都清理好。第三,在具体的开展建设的时候,为了保证密度,最好是选择黏土,而且在完工之后要使用机械对其合理的夯实处理。
2木板桩围堰
特征以及使用区域简述:在水利项目的建设过程中,此类围堰常常被用到方便获取木材的地方。因为这种项目需要使用非常多的木材,因此在具体的开展建设工作的时候,为了减少投入,保证项目正常开展,在附近区域可以建设此类围堰。除此之外,工作者在进行建设工作以前的时候,还必须认真分析河床的透水能力,以及水流的速度等。其一般适合用到流速为每秒一米到五米,水体深度不超过五米的地方。施工工艺简介:通常来讲,在开展此类建设工作的时候,为了提升效益,确保板缝的密度合理,工作者必须把两三块木板拼凑到一起,进而插打。假如在安装的时候木板太短的话为了确保项目能够正常开展,工作者可在水表面或是地表布置一个导框。假如木板桩太长的话,为了确保工作能够顺畅开展,就要在其中设立两个导框。带明确实际的方位并且做好插打施工以后才可以进行安装活动。在插打以及合拢的时候,我们通常按照分块的方式来处理,或是先插后打。虽说分块方法的效果有,不过它的合拢性不是很好,而且无法控制品质。先插后打的措施虽说可以确保合拢良好,不过它的速度非常慢。
3双壁钢围堰
特征和使用区域简述:如果工作者在工作的时候发现水体非常深的话,我们就可以使用双壁钢围堰。在具体的使用该项工艺之前的时候,工作者必须结合项目的实际状态明确围堰的规模,进而才可以开展后续的建设工作。此类技术是一种全新的施工工艺,它的环保性能较好,效率也非常高,除此之外稳定性好,非常受人们的青睐,施工工艺。双壁钢围堰的施工要点如下:第一,为了保证清基和顺利钻孔,钢壳的刃脚应全部稳妥地支承于岩面上。第二,钻孔护筒顶面应比封底混凝土面高出。下端应与基岩面接近,并与其串联固定连成整体。当封底混凝土灌注完毕后,由潜水员在水下拆除连接螺栓并将固定支架吊出水面。第三,可以在墩身混凝土筑出水面后拆除双壁钢围堰的上部,均可在围堰内切割,外壁在灌水后在水中切割,内壁在无水的情况下切割。
4钢板桩围堰
特征和使用区域简述:如果水体的深度超过了五米,而且河床是砂土或是其他的透水能力较好的土层,无法使用别的类型的围堰的话,我们可以使用钢板类型的。可根据需要修筑成构体"单层和双程式,或者可以根据实际需要将钢板桩围堰可作成矩形或圆形。矩形围堰的角桩没有现成的角桩板桩,需要把一块钢板截开为两个半块并在中间加一根角钢铆接或焊接。施工工艺:钢板桩围堰的施工中有以下几点应该特别注意:第一,打桩机具的选择。打桩机具的选择主要包括两部分,分别是打桩锤和打桩架。打桩锤的重量一般大于桩重,这样能保证打桩效率高,且桩尖与桩头不被打坏。第二,围囹安装。安装围囹时应对其进行测量定位。当水中围囹距离已成桥墩或岸边较远者,可采用前方交会法进行定位。第三,钢板桩插打。钢板桩可采用全围囹组插合拢后再逐步打和逐块插打两种方法。为了加快速度,可令桩架只负责打桩,另用一台吊机或者一艘吊船来承担吊桩工作。可采用外加导框的措施来保证钢板桩插打顺利合拢。第四,防渗漏措施。如果出现了渗漏问题的话,我们可以在撒一些碎屑之类的物质,这样水在流经此处的时候就能够将这些物质带到下方的缝隙里面,进而起到了封堵的意义。除此之外还可以使用棉絮等在里面封堵。最后,将板桩去除。通常应该在去除之前的时候,把水下方或是基坑里面的支撑体系去除,为确保工作者的安全,在拆除的时候必须做好防范活动。
5套箱围堰
特征和使用区域简述:当遇到深水且流速为平坦的岩石河床且无覆盖层的情况下,可以采用套箱围堰。套箱围堰分无底套箱和有底套箱,浅水部位可采用无底套箱,深水部位可采用有底套箱。套箱可用钢板"木材或钢筋混凝土制作,并在内部设相应材料的支撑。施工工艺:首先,测量组放线。在平台拆除以后,搭设上导梁及内支撑。对上导梁牛腿抄平,安装上导梁"并与牛腿焊接定位,安装内斜撑,并用相同的方法安装下导梁。然后,第一次下插模板并合拢,水下安装斜拉杆。进行抛填粗砂及砂袋维护并布置导管。接下来,灌注水下封底混凝土,套箱止水与封底处理。最后,割除设计桩头标高以上的钢护筒并安装下导梁内斜撑。绑扎预埋墩身钢筋"承台钢筋和接地钢筋并浇筑承台混凝土。
6结束语
水利工程建设常常会遇到岩溶地段,这样的地段在处理上必须要格外注意,一旦处理不当,就会给工程的安全埋下隐患,除了灌浆处理技术,目前尚没有特别好的处理方法。在对岩溶地区进行基础施工时,要先对所在地段进行详细的勘察,根据施工情况、地质特点、岩溶深浅、分布情况等进行全方位的了解,然后制定相应的技术方案,对于岩溶地区的基础施工,一般分为有填充物和没有填充物。在进行基础处理时,一般采用不冲洗高压水泥灌浆,这种方式能大大提高基础的稳定性、抗渗性,也可以采用使水泥浆液以条带状向土体中穿插,凝结后,会形成网络包裹进而提高地基的稳固性能。高压喷浆技术主要是利用高压喷嘴,通过灌浆管不断钻进,把喷嘴送到指定位置,水泥喷浆强大的压力会把原有土层破坏,水泥浆液会和被破坏的土层泥土进行充分混合相融,凝固后形成一个结实的柱体结构,这样会使岩溶地区的基础变得稳定坚固。高压灌浆技术在处理岩溶地段的地基应用较为普遍,效果不错。
2浅层岩溶地区和深层岩溶地区的基础灌浆
对于浅层岩溶地段,因为岩溶埋藏的不是很深,可以利用机械先把填充物全部挖掘出来,然后再用水泥进行回填,完成灌浆,此种地段的灌浆基本都在露天完成,施工相对容易一些,工序也较简单。对于埋层较深的岩溶,在灌浆时,一般不适合用高压喷灌浆技术,因为水泥浆进入深层岩溶时,会对里面的填产物充生排斥,然后形成固化,对进一步灌浆造成阻碍,使得灌浆面不大,影响基础的稳定,多数采用钻孔注浆技术进行处理。
3大吸浆量情况的灌注在基础灌浆
作业时,常常会遇到大量吸浆的情况,使灌浆作用不能在预计施工作业时间内完成。通常的岩缝灌浆在1~3个小时内都会结束,对于水泥浆量的消耗也都正常。但遇到大吸浆情况,这样的地层结构会使浆量消耗很大,因为灌进地层的水泥浆会从别的地方涌出,使灌浆时间延长。遇到这种情况,一定要做好相应的处理,采用妥善的解决方案,首先要进行限流,控制注浆的速度,减少注浆量,使浆液的流动速度变慢然后慢慢凝结,但一直要保持灌浆结束的最终要求才能结束。再有就是采用降低压力或者是自流的方法进行施工处置,等到泥浆全部都凝结之后,可以采取多次灌浆的方法,在进行基础灌浆施工时,可以适当将灌浆压力降低,在灌浆凝固之后,没有别的原因可按设计压力进行灌浆。
4严重漏水的情况下灌浆施工
水利施工过程中选址十分关键,但因地形地貌的不同,一些工程所处位置不得不面对复杂的地基情况,由于各种原因,常常会遇到漏水的情况,这时施工条件变得困难,如不采取有效的方案,会出现跑浆现象,消耗大量的浆液,延长灌浆时间,使成本增加。这时可采取充填级配料处理方法和采用模袋灌浆的方法进行施工,两种方法都各有优点,可以根据具体的情况适当采用。模袋变形能力强,适应环境形状的变化,有效堵塞溶洞,另外也较耐磨,而且浆液定形凝固后强度增强。充填级配料的时候如果使用砾石的效果不好,也可利用粘稠度较高的水泥冲灌级配料,水泥冲灌级配料的材料和数量应该灵活掌握。
4.1充填级配料处理方法这种方法就是用粘稠状的水泥浆,直接灌入砂砾中,水泥浆与砂砾结合而形成坚固的凝结体,从而增强地基的抗渗性能及稳固性。在灌注时,要注意砾石的直径,一般都是呈逐渐变大的趋势。对于灌入量要进行细致、准确的判断,避免浪费填料,填料可以是水泥浆,也可以是水泥、粗砂、砾石等混合物,实践证明,混合物充填是相对自然的,灌后会产生反过滤层,把一些裂缝有效堵住,同时使水利工程的抗渗水性能得到提高。
4.2模袋灌浆处理方法在水利工程建设中,常常使用模袋灌浆,利用聚酯、尼龙等材质制成模袋,在袋中进行灌浆,这些特殊材质具有较高的耐磨性,可以根据需要设计成不同形状的模袋,在灌浆阶段应用,由于模袋具有一定的透性,浆中的水分能够渗出,但浆中的颗粒存在于浆中,所以袋中能保留颗粒。使水灰比得到降低,所以一方面能缩短水泥浆的凝固时间,另一方面,凝固后的强度也大大提升,提高灌浆的质量。
5结语
各阶段的审查主要依据《细则》和《作业指导书》,在“国际合作与科技业务系统”(以下简称“系统”)信息平台的基础上,对材料和程序进行审核把关。
1.1材料完整性材料包括电子和纸质材料,完整性主要包括各阶段纸质材料按《作业指导书》资料清单要求准备,电子材料需上传“系统”,各阶段必须提交的材料包括标准文本、编制说明、开会或征求意见通知、会议纪要(含专家签名单)及意见汇总处理表等。材料格式需符合《作业指导书》相关要求,纸质材料与电子版应一致。
1.2程序符合性程序审查主要包括标准项目是否属于《水利技术标准体系表》[8]范围内,体系外项目需通过专家论证和进入体系论证,通过签报后方可列入体系内;项目需通过年度计划论证、大纲审查、征求意见、送审稿审查和报批稿审定、审签等几个环节,对于局部修订的标准,通过年度计划论证后,可略过大纲审查和征求意见;大纲审查、征求意见和送审稿审查三个环节需会签主管机构,原则上尚未通过会签的标准项目不予审查。若主持机构和主编单位相同,应由主管机构召开各阶段审查工作会。
2审查过程中存在的主要问题
对各阶段材料审查主要集中在编制说明、标准文本、意见汇总处理表、会议文件、变更情况等。
2.1格式不符合要求《作业指导书》包含22个附件和附表,对标准项目建议书、申报书、工作大纲、编制说明、意见表及其处理表、变更申请表等内容的格式均有明确规定和要求。但是在审查过程中发现不少提交的材料格式仍千差万别,除不符合相关要求外,材料的往复修改和审核也从一定程序上影响了标准编制进度。
2.2内容填写不全主要集中在编制说明基本信息填写不完整;技术要素未填写或填写不全、未正确界定、与相关标准协调性不足等;意见汇总处理表中部分采纳或不采纳意见未说明理由或沟通情况、采纳情况未在标准文本中得到落实等。
2.3标准文本存在的主要问题从标准文本看,其编制内容及过程应符合《标准的编写》相关要求。标准的体例格式是标准的表现形式,是标准区别于任何其他行政文件及科技著作的显著特点,其是否规范不仅直接关系到标准质量,而且影响到标准被接受的程度和执行的效果。体例格式主要依据GB/T1.1《标准化工作导则第1部分:标准的结构和编写》、SL1《水利技术标准编写规定》及《工程建设标准编写规定》,水利技术标准可分为工程建设类与非工程建设类,其体例编写格式应符合表1的规定。主要问题包括体例格式未按要求编写,语言不够简练,规范性、指导性不强,内容纳入角度不当,技术含量不高,层次结构划分不合理,科学性欠缺等。不少标准在审查或征求意见时,邀请单位或专家地域范围及专业领域较窄,仅限于某一相关或熟悉的领域,未邀请相关业务司局、标准化专家参会,专家代表性不足,造成标准使用范围或对象过于单一,甚至出现标准审查质量不过关,严重影响标准质量,造成后期标准被暂缓或结题的现象。无论是水利技术行业标准还是国家标准,参会或征求意见的单位和专家都应具备一定代表性。邀请参会或征求意见的单位或专家不能与编写组人员重复,应避免发生自编自审的情况。对于征求意见阶段反馈意见条数较多、处理时部分采纳或不采纳条数较多且沟通尚未达成一致情况的单位或专家应邀请参会。标准审查应邀请相关标准关联度较高的主编单位或主要起草人参会;邀请相关业务司局人员参会;邀请标准化专家参会。如果是国家标准,为保证审查的全面性,应邀请相关部委、其他非水利行业单位专家参会。
3建议
3.1加强标准的编写及体例格式等相关内容的宣贯培训在主编单位开展编制工作前,对编制组及管理人员展开标准编写及体例格式等方面的培训,尤其是GB/T1.1、SL1及《作业指导书》的培训。同时,应结合具体的标准和相关要求,与编制组就常见问题进行交流和探讨,从一定程度上提高标准编制质量,加快编制进度。
3.2提高水利技术标准基础工作的研究目前水利技术标准的审查主要依据《作业指导书》和“系统”,不少主编单位反映在实际操作过程中,需提交的材料较多,程序较为繁琐,加大了工作量,影响了编制进度,“系统”的操作人性化不足,行标审查和国标审查要求应不同等问题。因此,应真正从提高标准质量、切实做好管理工作的角度出发,除加强培训和沟通外,应做好相关基础工作的研究,优化顶层设计,简化材料和程序。
3.3完善专家库建设专家在标准审查中起着至关重要的作用,一方面需完善相关领域专业技术型专家库建设,另一方面也要加强标准化专家库的建设,积极吸收不同领域的专家,完善和优化专家库,为不同标准提供专家咨询和指导。
2007年,水利部信息中心配合水利标准主管部门—水利部国际合作与科技司设计开发了《国际合作与科技业务系统》,该业务系统包括3个子系统,分别为:国际合作业务子系统、科技业务子系统和标准化业务子系统。标准化业务子系统(以下简称“信息化系统”)通过标准化管理功能模块、数据库系统和标准报表等功能,极大的提高了工作人员的效率,满足了水利技术标准日常管理的基本需求。随着管理程序的日益完善和标准数量的不断增多,一些问题便凸显出来,主要为以下3个方面。一是2010年以来,水利部先后出台了《水利技术标准制修订项目管理细则》、《水利标准化试点示范项目管理细则》、《水利工程建设标准强制性条文管理办法(试行)》和《水利技术标准制修订作业指导书》等有关标准化工作的管理规定,对标准管理从立项、编制到实施以及监督管理等各阶段工作以及职能划分都有了更明确的界定。目前的信息化系统,已经不能完全满足新的管理规定的要求。二是近几年水利技术标准数量日益增多。截至目前,现行水利技术标准体系有958项标准,其中在编标准有260余项,对标准的管理工作提出了新的要求,信息化系统已经不仅仅局限于数据的查询和统计,更应增加数据分析和跟踪的要求。三是目前标准的协调性问题和交叉重复现象日益明显,因此迫切需要标准的相关数据资源的建设。基于以上几点,有必要对目前的信息化系统进行改进,拓展其功能,增加系统的灵活性,使其能尽最大可能满足不断发展的管理需求。
2改进信息化系统的几点设想
2.1新增标准督办子模块
目前在编标准有260余项,为了保证标准编制的进度,有必要对编制进度滞后标准进行跟踪和监督。依照标准化管理工作的内容,目前的信息化系统的标准化管理功能模块主要分为12个功能子模块,分别为:立项、起草、征求意见、审查、报批、、备案、宣贯、实施、复审、标准监管和变更管理[1]。目前标准制定时间最长不应超过3年,修订时间最长不应超过2年;其中,等同采用、修改采用国际标准或水利行业标准级别调整为国家标准时,可采用征求意见、审查和报批3个阶段。局部修订可采用审查和报批两个阶段,局部修订时间最长不应超过1年[2]。标准督办模块按照以上时间要求,实现对在编标准从立项到报批阶段的时间进度的跟踪和监督。
2.2新增在编标准阶段时间设置功能
目前在信息化系统中,在编标准在立项、起草、征求意见、审查和报批阶段各个时间段是固定值,为了适应不断完善的管理工作,新增在编标准阶段时间设置功能,即将在编标准阶段时间设计为可以改变的值,这样可以很大程度上增加了系统的灵活性。新增功能包括各个阶段时间点的修改和保存等。
2.3建立水利相关标准数据库
目前,水利标准数据库中有1300多项标准数据,是信息化系统的基础数据库。标准在编制前和在编制过程中,经常需要查找相关标准,标准编制人员经常需要到不同的部门和网站去查找,查询的准确度和效率受到了很大的影响。建立水利相关标准数据库,可以使编制人员能快速准确的查询到相关标准,对于提高标准的协调性具有重要的意义。水利相关标准数据库应包括相关标准名称、标准编号、标准主管单位、标准类别和标准时间等。
2.4建立水利标准技术要素数据库
标准的技术要素是标准编制的比较重要的指标。建立水利标准技术要素数据库,可以方便查询到技术要素所应用的标准,可以减少甚至避免标准内容的交叉重复现象。水利标准技术要素数据库应包括技术要素名称、技术要素类别、技术要素说明、使用标准等。
3结语
1.1在应用围堰技术的过程中,要注意结合当地的特点
围堰是一种临时性作为挡水工具的一种建筑物,由于其主要是用来进行挡水工作,因此,在对其进行设计的过程中,一定要保障结构设计的合理性,并且注意保障结构的稳定性,使得结构能够抵抗强大水流的冲击,从而达到防水的目的。一般来说,围堰工程的类型有多重,而每种围堰在进行施工的过程中,都需要依据当地的环境、地理条件以及当地的资源情况进行合理的围堰选择和围堰设计,只有这样,才能够保障围堰工程可以正常的使用,其所具有的挡水功能才能够真正的发挥出来。假设水利工程周边环绕的是浅水区,而且河水的最大深度小于1.5m,而且水流的速度相对较慢,针对这样的环境条件,在对水利围堰工程进行设计的时候,不需要将其结构的防渗水性设计的过强,所采用的围堰类型可以是土石围堰。然而,当水利工程周边的水域较深,水流速度又相对较快,而且在河床中包含多种较为坚硬的岩石时,针对这种情况,所需要选择的围堰种类应该是钢板桩围堰。钢板桩围堰不仅能够有效的抵抗水流的冲击,还能够使得围堰的本身结构更加的牢固,在受到强大压力的时候,能够充分的保障其自身的稳定性,而且钢板桩能够深入到坚硬的岩石中,以保障其自身的稳定性,这对于提高水利工程的整体施工效率具有积极的影响意义。
1.2水利工程中的围堰施工
一般来说,围堰施工的现场都比较狭窄,而且在周围会存在很多的干扰因素,这些干扰因素本身就会对围堰的结构造成影响,如果施工的工期比较赶,这样就会进一步使得围堰施工的难度提升,从而对围堰工程的施工质量就会产生影响,所以,要想能够保障围堰施工的质量,就需要对其高程进行及时的填筑,这样可以为下一步的施工打下坚实的基础,同时,要注意准备相应的材料,对各种材料进行有效的选择,保障在施工的过程中,各种施工材料可以准备完毕,并且可以随时进行利用。而就围堰施工的工序来来说,其具体的工序如下:
1.2.1在对围堰进行施工的过程中,需要先从围堰的一面进行入手,逐渐向渠底进行挖掘,在将尾水出口的围堰基础进行全面的清理之后,就可以开始进行下一步的清水处理,对水下存在的大块物体进行深度清理,然后利用一些堰体石料以及粘土进行回填处理,在回填到设计的高程时,就需要对出口段部位的围堰进行保护处理,合理的对围堰展开保护后,就可以开展进行下一步的施工,直到水利工程施工完成之后,就可以将临时搭建的围堰进行拆除。
1.2.2在利用粘土以及堰体石料进行回填施工的时候,要注意对回填土原料进行合理的选择,保障每个工序之间都能够衔接得当,而堰体要采用分段施工的方式进行搭建。合理的利用机械进行相应的挖掘工作,汽车进行原材料的运输以及废弃物的输出,一般来说,堰体的填筑分层高度要尽可能的控制在80cm范围内。
1.3水利围堰基坑排水
所谓的水利围堰基坑排水主要分为两个部分,其一就是在围堰形成之前进行基坑一次性排水,其二就是在围堰形成之后进行基坑经常性排水。汛期坝体过水,围堰形成后的经常性排水又包括围堰内侧基坑一次性排水和经常性排水。①围堰基坑一次性排水,堰体水下填筑形成后,开始排除基坑内集水。排水量主要为基坑内积水、渗透水、雨水及施工弃水。②基坑经常性排水,基坑排水包括基础渗水、天然降水及施工弃水。根据围堰地基渗水特性及各施工工作面用弃水情况估算。
1.4水利围堰联接技术
围堰防汛墙相互之间的联接实况会对河道工程项目的施工进度产生重要影响。因此,如何保障防汛墙之间的紧密联接需要引起施工单位的高度重视。河道工程项目围堰在施工之前应该安排相关人员对围堰周围的环境进行实地考察。如果接口处出现了问题,应及时采用沙包或者粘土袋进行填充。
2结束语