欢迎来到易发表网!

关于我们 期刊咨询 科普杂志

电机设计论文优选九篇

时间:2023-03-21 17:12:29

引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇电机设计论文范例。如需获取更多原创内容,可随时联系我们的客服老师。

电机设计论文

第1篇

随着电力电子技术的发展,用电设备对电源的要求不断提高,开关电源正逐步向着高效率、大功率密度、高可靠性、低电磁抗干扰、无噪声、维修方便等方向发展。瞬时同步整流技术由于实现简单,响应速度快和具有自然限流等优点而得到广泛地应用。

本文在分析DC-DC技术发展的基础之上,用Buck电路,运用MAX767系列芯片研究一条简洁的途径实现DC-DC直流变换,即应用同步整流技术控制方法,来实现变换器高效工作。该变换器主电路结构简单可靠,可以实现输入:DC4.5~5.5V,输出DC5V/3.3A的设计。

分析其系统工作原理的过程,为该变换方法和应用提供了理论基础,通过同步整流技术的方法和应用MOSFET管的设计,较理想的实现了DC-DC变换器的设计要求。

最后,运用这些设计成功的设计出DC-DC直流变换器。

本文主要介绍Buck电路和MAX767系列DC设计,工作原理和主要参数的设计,并对系统的外特性和稳定性作了分析。

关键词:DC-DC直流变换;同步整流技术;MOSFET管

Abstract

Withthedevelopmentoftheelectronictechnology,thehigherrequirementofPowerSupplyareraisedincludinghighefficiency,highpowerdensity,lowEMI,andrapiddynamicresponse.Ahysterics-bandinstantaneouscurrentcontrolPWMTechniqueispopularlyusedbecauseofitssimplicityofimplementation,fastcurrentcontrolresponse,andinherentpeakcurrentlimitingcapability.

Thedesignofthefoundationofupper,withbuckcircuit,handlemax767serieschiplookintoaslipofcompactavenuerealizedc-dcdirectcurrenttransform,namelyapplicationsynchronousrectificationtechnicalcontrolmeans,camerealizeconvectorhighlyactivewroughtofthetextatanalysesdc-dctechnologicaldevelopment.beone''''sturnconvectortrunkfeederstructuresimplicitycredibility,couldrealizeimport:DC4.5~5.5v,outputdc5V/3.3A

Boththatofanalyseshissystemprincipleofoperationcourse,forbeone''''sturntransformmethodandapplicationsupplyknowclearlyrationale,throughthemediumofsynchronousrectificationtechnicalmeansandapplicationMOSFETtabledesign,compareidealrealizeknowclearlydc-dcconvector''''designrequirement.

Atthelast,handlethesebedesignedforwrought''''thoughtoutdc-dcdcconverterto.

Thedesign,combineversussystemicexternalcharacteristicandstabilitydidknowclearlyanalysesofthebothtextmostlyintroducebuckcircuitandmax767seriesDCdesign,principleofoperationandmajorparameter.

keyword:dc-dcdirectcurrenttransformsynchronousrectificationtechnologymosfettube。

主电路的设计

电力电子技术是以电力为对象的电子技术,它在主要任务是对电能进行控制和交换。现在电力电子技术已成为信息产业和传统产业之间的重要接口、弱电与被控强电之间的桥梁。

从SCR、IGBT、SITH;从相控整流电路及周波变换电路到脉宽调制和高频斩波电路,现代电力电子技术正逐渐向集成化、高频化、全控化、电路弱电化、控制数字化和多功能化发展,本文所讨论的充电机系统就是现代电子技术的产物。

2.1整流滤波电路

整流电路由三相整流桥、充电电阻R、短路开关S和滤波电容C1构成。

当电路加电时,开关S处于断开状态,电网通过整流桥和充电电阻R向电容C1充电。电阻限流作用,防止加电时产生冲击电流。

当电容充电结束后,开关S闭合,将限流电阻R短路,电路进入正常工作状态。开关S的动作是由控制电路中的软启动电路实现的。

由于整流滤波电路所使用的是不控制元件,对电网影响较少,同时,以软启动过程所实现可防止潮涌电流的产生。

2.2主电路的选型

开关电源的电路拓扑结构众多,其中正激式、反激式和半桥型适合小功率电源使用,全桥型适合大功率电源使用,其中正激电路又可以分单管正激和双管正激等多种。电路形式的最终确定,需要根据设计任务书和实际应用场合的具体情况来确定。

一般来说,功率很小的电源(1-100W),采用电路简单、成本低的反激型电路较好;当电源功率在100W以上且工作环境干扰很大、输入电压质量恶劣、输出短路频繁时,则应采用正激型电路;对于功率大于500W、工作条件较好的电源,则应采用半桥或全桥电路较合理;如果对成本要求比较严,可以采用半桥电路;如果功率很大,则应采用全桥电路;推挽电路通常用于输入电压比较低、功率较大的场合。充电机的核心部分是DC/DC功率变换电路。DC/DC变换器一般可分为自激式和他激式两种。自激式变换电路输出功率较小,频率不易控制,只用于较小故在此只介绍他激式变换电路,在他激式变换电路中,开关管的控制信号是由可调频率的震荡器给出的。下面对它激式变换电路的组成部分分别加以说明。

目录

摘要I

AbstractII

第一章绪论1

1.1PWM技术历史和现状1

1.2高频软开关逆变式充电机2

第二章主电路的设计3

2.1整流滤波电路3

2.2主电路的选型4

2.3软开关技术的基本概念6

2.4软开关技术的提出与发展7

2.5工作过程分析9

2.6全桥型电路的主电路元气件参数的确定12

2.7输出滤波电路的设计16

第三章滤波电路和主电路的计算18

3.1滤波电感18

3.2滤波电容19

3.3开关器件的设计20

3.4主电路设计的具体计算22

3.5驱动电路的设计27

第四章控制电路的设计及保护电路的实现31

4.1控制方案的确定31

4.2PWM信号的产生33

4.3移相及互锁电路36

4.4开关信号的产生38

4.5恒流控制电路的设计39

4.6调节器电路的设计41

4.7保护电路设计42

第2篇

在学生愿意主动来到课堂学习的前提下,吸引学生的学习兴趣更为重要。为了可以让学生兴趣盎然地参与到教学过程中来,教师在能讲述知识的前提下,还要能激发学生的学习动机,唤起学生的求知欲望。在这方面,教师可以结合实际应用,讲述一些射频集成电路在日常生活中的应用。比如,美国半导体产业协会(SIA)总裁兼执行长BrianToohey曾指出:“从物联网、智能汽车、智能家居等市场都可以看出,半导体普遍出现在每一种产品类型中,而且正变得无处不在。”仅仅在我们每天使用的智能手机中就包含RF收发器、功率放大器、天线开关模块、前端模块、双工器、滤波器及合成器等关键射频元件。而且有报告指出,2011年这些射频器件的市场规模为36亿美元,预计2011~2015年的年复合增长率为5.6%,到2016年主要的射频器件市场将达47亿美元。此外,目前应用比较广泛的WiFi及物联网都与射频集成电路有着密切的关系。这些切实应用由于与学生的生活以及将来的就业息息相关,因此,相关内容的讲述能够有效地激发学生的学习热情。

二、如何让学生成为课堂的主人

“以教师为中心”“以灌输为主要形式”的传统教学方式已经无法适应新时代的需求。如果教师仅根据教材对内容进行枯燥的讲解,无法抓住学生的注意力,学生很容易溜号,影响课堂教学质量。因此可以通过引进研究型教学模式、师生互动来活跃课堂气氛。所谓“研究型教学模式”即将教师由知识的传授者转变为学习的指导者,将学生由被动的学习转变为主动的学习。如何使学生成为课堂的主人,在教学实践中发现培养学生的问题意识是课堂教学的有效手段,教师可以通过创设开放的问题情景,引导学生进入主动探求知识的过程,使学生围绕某类主体调查搜索、加工、处理应用相关信息,回答或解决现实问题。比如,以射频技术在物联网中的应用为开放课题,学生通过查资料,分析整理,更深刻体会了射频技术在智能家居、交通物流、儿童防盗等方面的应用,使学生在学习过程中主动把“自我”融入到课程中,敢于承担责任,善于解决问题。

三、让学生走上讲台

学生是课堂的主人,因此,可以改变以往教师在讲台上讲、学生坐在下面听的传统教学模式。让学生走上讲台可以将传统的讲授方式转换为专题研讨的教学模式。教师可以提前布置专题内容,如射频器件模型、射频电路设计、射频技术发展、射频技术的应用及未来发展趋势等。有个专题内容作为核心,学生可以在老师的指导下通过检索资料,组织分析资料,最终走上讲台向老师和其他学生讲述相关的内容。通过几年的实践,发现这样可以增加学生学习的主动性和自觉性、同时也能使学生对相关的问题发表各自的观点,形成对问题各抒己见、取长补短的研讨学习方式,大大拓宽学生的知识面以及综合表述能力。

四、通过实践教学加深理解理论教学内容

理论教学是掌握一门技术的基础,但实践教学也是必不可少的。学生在掌握一定的基础理论的同时,须要通过设计实践来强化巩固。实践教学的引入,不仅能够加深学生对理论知识的深入理解,洞悉细节,提高学生的动手能力,还可以培养学生创新思维及科研能力。因此,教师可以通过设置几个开放的课程设计内容来让学生主动研究探索。在本课程的教学中,本人已经有计划地进行了实践教学活动,例如,在实践教学中,曾经给学生布置了“用于GPS的低噪放电路设计”的实践设计。在该设计过程中,学生须要深入理解多方面知识,比如明确GPS的频段、确定低噪放的电路结构,并有效评估电路性能等。为了课程设计的顺利进行,学生须要进行查阅分析资料、软件安装、软件学习、电路设计、课程论文撰写等几个环节的分析设计工作,并最终在实践中系统深刻地理解掌握课程的理论内容,为以后的工作及深造打下坚实的基础。

五、鼓励学生参与科研项目

第3篇

关键词:输配电系统规划;遗传算法;最短路算法;启发式方法

1、引言

从物理或数学意义的角度讲,不同电压等级网络的综合规划对获得全局最优解,得到总体上最大的经济效益是必要的。然而,输配电系统的同时综合规划长期以来并不被人们所重视,在实践中,人们普遍采用将各电压等级系统分层规划的策略。造成这种状况的原因主要是:

①输配电系统的网络结构不同,进而导致优化算法不同;

②各电压等级综合规划导致问题规模激增。另外,各级电网的分层管辖也是造成分层规划的一个实际原因。

本文对多电压等级、不同网络结构的输配电系统综合规划问题进行了研究,提出了基于知识的最短路遗传算法的解决方法[1].文献[1]利用最短路遗传算法求解了配电系统重构问题。实际上,网络规划问题与网络重构问题可被看成一类问题,只不过是弧费用的计算方法不同而已,即规划问题的弧费用需要用分段函数来表示,从而考虑固定投资和不同的线型。

2、不同电压等级的开环系统综合规划

在电力系统中,为了避免电磁环网,高中压配电网必定是开环运行的。这时就能利用能生成树状网络的最短路遗传算法来求解不同电压等级的开环系统综合规划问题。对于规划问题中根据安全性和可靠性的要求需要闭环设计的系统,可以先应用本文的方法得到树状网络,然后采用文献[2]的方法进行专门的联络线优化,以构成环网。最短路遗传算法是在同一个电压等级中实现的[1],这样才能直接将负荷潮流迭加到各弧的流量上。对于多电压等级系统,只需仿照标幺值计算的原理将各电压等级的电气量折算到某一选定的电压等级上,就可以采用最短路遗传算法进行网络的全局优化。

3、开环与非开环混合输配电系统综合规划

如果需要进一步将开环与非开环系统综合规划,或配电系统允许弱环运行,最短路遗传算法就不能直接应用了。

但是,经过下述2个改变以后,最短路遗传算法即可近似地求解上述问题了。

3.1节点入度限制

首先,应允许在不需要放射运行的节点构成环。这可通过检测和限制节点入度数的方法来实现。最短路遗传算法中,在形成寻路网络Gm时,当某个中间节点k的入弧数Nin-x-m=1时,则其余指向该节点的有向弧(潮流必为0)均舍弃,这保证了最终形成的网络为放射状。现在,对每一节点规定最大入弧数,即最大入度Nin_k_MAX,若节点k属于放射状运行系统,则令其为1,否则令其为该节点最大允许的进线数。Nin_k_m记录节点k入弧数的变化情况,其初始值为0,并有机会逐渐增加。当时,其余指向该节点的有向弧(潮流为0)均舍弃。即实现了不同运行方式系统对网络结构的要求。经过以上改进的最短路遗传算法就可以解决开环与非开环系统综合规划在网络结构方面的要求。虽然,从原理上说它得到的只是较优解。

但可证明当各负荷大小趋近于0时,这种方法得到的解就会与全局最优解一致。当负荷越大时,其解越可能偏离最优解,因为此时该负荷有很大可能是由多个实际电源点供电。由于负荷通常在较低电压等级,而允许成环网运行的网络是在很高的电压等级,且低压负荷的容量比高压环网系统中元件的容量要小得多,所以,可近似地认为负荷点是由一个(实际)电源点供电,因此用最短路遗传算法获得的解将接近于实际最优解。

3.2有功潮流

由于网孔的出现,使得以负荷复电流(或功率)直接迭加构成线路中潮流的方法失去了合理性。因为只有一个虚拟源点,对于同时由2条以上供电路径供电的节点来说,可能会导致矛盾的节点电压。为了避免这种情况,此时可只考虑有功功率的优化。实际上对于允许环网的系统规划问题,现有的方法[3]也全是只考虑有功优化,而无功配置和电压控制由专门的无功优化来完成。这是因为:一方面,无功设备的投资一般要比线路、变压器和有功电源的投资小得多;另一方面,无功潮流在一定程度上可独立于有功潮流的控制。

4、基于知识的高效最短路算法

尽管最短路遗传算法不会有维数灾问题。

但是基本的Dijkstra最短路算法的计算时间复杂性是O(N2),其中N是规划问题的网络流模型的节点数,因此,基于最短路算法的局部优化算法的计算时间复杂性是O(N3)(认为负荷数与节点数成一定比例);若遗传算法的种群个体数和最大代数取固定值,则最短路遗传算法的计算时间复杂性是O(N3)。可见随问题规模的增大,最短路遗传算法的计算时间也将很长。实际上,直接在输配电系统规模非常庞大的网络上利用常规的最短路算法为某一个负荷点寻找供电路径是很不必要的。对于一个负荷点来说,整个系统中可能为其供电的元件只是很小的一部分。如果能根据输配电系统的实际信息把这一小部分元件提取出来后再应用最短路算法,则最短路算法的寻路时间将大大缩短。而由前面的分析可知,最短路算法的计算时间复杂性决定了整个算法的计算时间复杂性。我们称这个被提取出来供寻找负荷m的最经济供电路径的网络为寻路网络Gm.用以提取寻路网络的方法应具备以下特点:

①易于计算机实现。

②在保证不丢失最优解的基础上,尽可能缩小寻路网络。下面,以一个实例来说明如何实现基于输配电系统知识的最短路算法。

若现有10kV,66kV,220kV,3个电压等级系统,要寻找负荷m的最优供电路径,则可按以下步骤提取寻路网络Gm.

(1)将输配电系统按电压等级分层,负荷点通常在最底层10kV层,虚拟电源点在最高电压等级层220kV层。

(2)定义元件Aij到负荷点m的距离为式中为元件Aij的起点坐标;XB-ij、yE-ij为元件Aij的终点坐标;Xm、Ym为负荷点m的坐标;Kij-m为元件Aij到负荷点m的距离调节系数,通常取1,可用于考虑一些特殊供电情况。按最大供电半径Rm选择出可能给负荷点m供电的10kV区域:若10kV元件(线路、变压器或变电站)与负荷点m的距离大于Rm,则认为其不可能为m供电,因此不加入寻路网络。反之,则将相应的元件加入负荷点m的寻路网络。

(3)通常希望尽可能通过具有主干线型或可靠性高的主干网络传送电能,并且减少电能在主干线型和次要线型间的转换。因此,规定最大精细寻路半径rm.在此半径之外,凡是具有非主干线型或位于次要分支线路或非主干路由(对于规划问题由于许多路由上线型未确定,因此这里用“非主干路由”一词)上的元件都不加入寻路网络,而在此半径之内的元件全加入寻路网络。

(4)经上述步骤形成的10kV系统范围内的寻路网络Gm_10包含有若干66kV/10kV变电站,它们对于10kV负荷点m来说是可能的供电点,而对于66kV系统来说是可能的负荷点。对这些变电站的每一个均采用与步骤(2)、(3)类似的方法,可得到其在66kV系统范围内的寻路网络,这些网络的并集构成负荷m在66kV系统范围内的寻路网络Gm_66.

(5)同理,Gm_66中所包含的220kV/66kV变电站也可看成220kV系统的负荷点。采用与步骤(4)同样的方法可获得负荷点m在220kV系统范围内的寻路网络Gm_220.当然,Gm_66中也可能包含发电厂,此时,可认为其是通过一条无损耗、无费用的虚拟弧,由设于220kV系统的虚拟源点供电。

(6)获得负荷点m在整个输配电系统的寻路网络为显然,经过以上步骤处理后,得到的负荷点m的寻路网络Gm要比初始的整个网络要小得多,因此最短路算法的计算量也将大大缩小。

5、结论

本文对多电压等级、不同网络结构的输配电系统的综合规划问题进行了研究。在解决了电压等级折算问题后,给出了基于最短路遗传算法的纯开环输配电系统综合规划的方法。以此为基础,通过控制节点出入度,并且只针对有功潮流进行优化,又提出了开环与非开环混合的输配电系统综合规划问题的近似解决方法。为了解决输配电系统规模大而造成的计算量问题,给出了基于输配电系统知识的最短路算法的实现方法。

参考文献

[1]余贻鑫,段刚(YuYixin,DuanGang)。基于最短路算法和遗传算法的配电网络重构(Shortestpatyalgoithmandgeneticalgorithmbaseddistributionsystemreconfiguration)[J].中国电机工程学报(ProceedingsoftheCSEE),2000,20(9):44-49.

第4篇

设备安装

1)总配电柜挂墙安装底边距地1.2m,配电箱为嵌墙暗装,安装高度为底边距地面1.4m。2)除注明外,开关底边距地1.3m、插座底边距地0.3m暗装。开关选用跷板开关,插座均采用安全型插座。

导线选择及敷设

1)室外电源进线由上一级配电开关确定校验后再行最终确定。2)进线选用YJV22-1kV铠装铜芯电力电缆,应急照明支线选用ZR-BV-500V铜芯阻燃导线;照明支线选用BV-500V聚氯乙烯绝缘铜芯导线。干线、分干线沿桥架或穿SC钢管暗敷设;支线均穿SC管沿墙及楼板暗敷设,保护层厚度不小于15mm。3)消防配电线路敷设具体要求可参见《建筑设计防火规范》相关条文。

照明系统

1)光源:一般场所选用T8三基色荧光灯管配节能型电子镇流器或紧凑型三基色节能灯。2)在走廊、主要出入口等处设置疏散照明。安全出口灯、疏散指示灯,以及应急照明灯采用带蓄电池的灯具,应急照明供电时间应保证不低于30min。应急照明灯具应带不燃型保护罩。应符合GB13495和GB17945国家标准。3)照明配电装置的线路,增设一根PE保护接地线。4)开关、插座和照明灯具靠近可燃物时,应采取防火保护措施。其他类型灯具防火保护措施可参见《建筑设计防火规范》相关条文。

节能措施

1)光源:灯具均选用三基色灯具高效节能型,荧光灯灯管为节能型三基色T8灯管。采用电子镇流器或节能型电感镇流器,灯头补偿功率因数应大于0.9。荧光灯灯具效率应满足GB50034-20043.3.2-1表要求。照明灯具选择镇流器应符合GB50034-20043.3.5表要求。2)照度要求:门厅100lx,走道50lx,宿舍100lx,图书阅览室300lx,活动室100lx。3)照明功率密度最大值要求:门厅6W/m2,走道4W/m2,宿舍7W/m2。图书阅览室11W/m2,活动室7W/m2。

避雷、接地系统及安全防范措施

1公寓楼避雷

1)此项公寓楼工程避雷级别按三类设计。公寓楼的避雷设施应能满足阻止直击雷和雷电波的侵入,在地下1层总配电箱旁设总等电位箱。2)接闪器:在公寓楼屋顶避雷接闪器为10的镀锌圆钢;避雷带在檐口顶板明敷或在屋面明敷;网格公寓楼应小于20m×20m或者24m×16m,采用镀锌圆钢作避雷带支架,支架间距为1m,高为0.1m。避雷带与做引下线的柱内主筋应可靠焊接,所有外露焊接部分应做防腐。3)接地极与引下线的施工做法按相关图集及规范要求设计,这里不再详述。

2接地系统及安全措施

1)本公寓楼的各接地系统的接地共同采用同一的接地极,接地电阻要求应小于1Ω,实测电阻不满足要求时,要增加人工接地极。2)在公寓楼的地下室设总等电位联结,要求MEB箱应与各类金属管道及强,弱电进线管以及避雷引下线和基础接地极等做必要联结。3)公寓楼的接地形式为TN-C-S系统,电源线在入楼处做重复接地。4)引至进线柜PE母排的MEB线采用BV-1×16铜线,穿PC25管沿墙、地板暗敷设,其余MEB线采用40×4镀锌扁钢沿地下室底板暗敷设,预埋件与基础钢筋网连接,做法参见国标02D501-2。5)水平与竖向敷设的金属管道及桥架两端就近与接地干线相连。6)过电压保护:在总电源配电柜内设置第一级电涌保护器(SPD)。7)综合布线引入端等处设过电压保护装置。8)接地支线必须独立和接地干线相互联结。9)带有淋浴设施的厕所应设局部等电位联结,并在厕所内引两根大于16钢筋到LEB箱,应将厕所的金属管件做联结,局部等电位箱暗装底距地0.3m。

综合布线系统

1)由室外引来的数据网线(大对数电缆)至1层的弱电总箱,再由配线柜配线给各层的用户。机房设备由电信部门设计,本设计仅负责总配线架以下的配线系统。2)本公寓楼网络和通讯设计为非屏蔽综合布线系统,出桥架后穿镀锌钢管暗敷。网络的垂直干线选择光纤,水平一般可以选用超5类电缆。3)语音与数据插座,可用RJ45超五类型插座。

第5篇

近年来,我国电子技术获得突飞猛进发展,新型元器件和集成电路得以广泛应用,电集成化与复杂化显然已成为新时期电路设计的发展趋势。为更好满足当代电路设计需求,利用电子线路CAD技术取代传统的手工操作很有必要。在电子线路CAD技术的辅助下,电路设计的精密度将获得可靠保障。电子线路CAD技术的应用,其实是电路设计者在电路设计理论上具有可行性的基础上,通过计算机绘图、设计软件等工具,完成实际的设计工具。在电子线路CAD技术的帮助下,电路设计工作的效率与质量均将得以显著提升。目前,电子线路CAD技术在电子设计中的应用主要包括以下内容:

1.1电路图的设计。作为电子设计中的重要环节,设计结构完善、功能全面的电路图很有必要,这是确保电子设计最终产物能够正常使用的根本保障。在电子设计者进行电路原理图的设计工作时,完全可以借助Protel工具,实现原理图的输入。Protel蕴藏着资源丰富的电子器件库,在Protel的辅助下,设计者在绘图期间能够结合设计需求,灵活使用各类电子器件,大大简化了设计的工作量,同时提高了电路原理图的精密度。譬如,使用者绘制完成元器件后,可以根据自己的想象,将其放在任何一个位置,仅需通过拖动就能实现,无需进行其他调整参数等操作。

1.2模拟数据。电子线路CAD技术还能起到模拟数据的作用,以便设计者根据模拟电路运行产生的数据,检验电路设计有无异常。同时,可结合模拟数据,对电路进行更深层次的分析。Protel软件本身自带多种模拟功能,设计者可通过模拟功能的运用,对电子设计在通电情况下的温度、瞬态、灵敏度等情况有一个初步的了解,以确保该电路的功能是否达到预期效果。另外,还可利用数据模拟,了解电路各环节的运行情况,以便设计者及时察觉线路异常,并尽快采取措施进行调整。

1.3设计PCB板。利用Protel软件,将电路设计图进行布线,最终形成的电路板即为PCB板。PCB板的设计,离不开电路原理图的导入,而电路原理图的导入工作,势必需要借助Protel软件的数据模拟功能。同时,为确保PCB板的设计达到理想效果,电路原理图与PCB板中的各类元器件的电气特点务必要保持一致。只有这样,设计者才能借助Prote软件的布线功能完成布线工作,并在后期,通过人工调整的方式,进一步改善布线工作的效果,使电路布线更加精确、整洁。

2运用电子线路CAD技术提高电子设计课程教学质量的有效建议

电子线路CAD课程是一门理论与实际结合性很强,具有一定实践性的新兴课程,是当代电子信息技术专业的核心课程之一。电子线路CAD课程的主要目的,是帮助锻炼学生PCB板的设计能力,能够结合设计需要,完成各种类型的PCB板布局与布线。作为电子信息技术专业的高职学生,务必要掌握:CAD软件的应用能力、原理图绘制能力、原理图元件制作能力。PCB板设计能力、新元件封装制作能力、单面PCB板设计与编辑。双面PCB板设计与编辑,并了解一定的有关多层PCB板设计与编辑以及电子线路仿真知识。结合电子线路CAD技术在电子设计中的应用情况来看,为能有效完成电子线路设计工作,全面落实电子线路CAD技术的教学很有必要。然而,从目前教学工作开展情况来看,在高职电子设计课程的教学工作中,电子线路CAD技术的应用并没有达到理想效果。学生在对电子线路CAD技术始终无法真正掌握电子线路CAD技术,也不能通过灵活应用该技术,顺利完成电子设计工作。学生对该技术的学习,往往只是停留在对理论知识的理解,对实践操作方面的内容,多呈现出临时性记忆的特点,一旦离开教师的辅导或一定时间未接触,就会出现无从下手的情况。针对这一问题,结合发达国家成功经验,发现运用以行动为向导的项目教学法效果更佳。告知电子设计课程在教学过程中,应遵循以下基本原则:

(1)先整体后具体。在开展CAD技术的教学工作时,教师应提前对该技术的应用价值与学习意义进行介绍,告知学生这一知识要点的学习难度与学习目的,使学生做好充分的心理准备后,再进行各项目的教学与实践;

(2)循序渐进。学生初步接触CAD技术时,教师注意引导学生进行简单尝试,带领学生运用该技术进行难度系数低的电子设计,然后不断增减难度,由浅入深,加强学生运用该技术的能力。比如说,相较于高频电子产品,低频电子产品的电路设计更为简单,教师在带领学生进行学习时,应从低频电子产品的设计入手,待学生完全掌握操作技能后,再逐渐转向高频电子产品的电路设计;

(3)鼓励创新。在使用CAD技术进行电子设计时,教师应在学生CAD技术掌握到一定程度时,鼓励学生积极创新,进一步增强学生电子线路CAD技术应用的灵活性;

(4)要求学生将理论落实到实践。子在学生运用CAD技术完成电子设计任务时,教师应要求学生将设计转化为成品,而不是停留在电脑的设计。将设计转化为成品,能有效激发学生学习成就感,使学生更加直观的感受到CAD技术的魅力,今后愿意更加专注地投入学习。

3结束语

第6篇

1RF2514的引脚功能

RF2514各引脚的排列如图1所示。各引脚的功能如下:

引脚1,9(GND1,3):模拟地。为获得最佳的性能,应使用较短的印制板导线直接连接到接地板。

引脚2(PD):低功耗模式控制端。当PD为低电平时,所有电路关断。当PD为高电平时,所有电路导通工作。

引脚3(TXOUT):发射器输出端。输出为晶体管集电极开路(OC)方式,但需要一个提供偏压(或匹配)的上拉电感和一个匹配电容。

引脚4(VCC1):TX缓冲放大器电源端口。

引脚5(MODIN):AM模拟或者数字调制输入。信号通过该脚输入可以把调幅信号或者数字调制信号加到载波上,而通过该脚外的一个电阻则可对输出放大器进行偏置。该脚的电压不能超过1.1V,过高的电压可能会烧坏芯片。

引脚6(VCC2):压控振荡器、分频器、晶体振荡器、鉴相器和充电泵电源。该端与地间应连接一个中频旁路电容。

引脚7(GND2):数字锁相环接地端。

引脚8(VREFP):偏置电压基准端,用于为分频器和鉴相器提供旁路。

引脚10,11(RESNTR-,RESNTR+):该脚可用来为压控振荡器(VCO)提供直流电压,同时也可以对压控振荡器的中心频率进行调节。10脚与11脚之间应连一电感。

引脚12(LOOPFLT):充电泵的输出端。该脚与地之间的RC回路可用来控制锁相环的带宽。

图2

引脚13(LDFLT):用来设定锁定检测电路的阈值。

引脚14(DIVCTRL):分频控制端。该脚为高电平时,选中64分频器,反之,选中32分频器。

引脚15(OSCB):设计时可将该脚直接连接到基准振荡器晶体管的基极,由于该基准振荡器的结构是Colpitts的改进型,因此应在15脚和16脚之间连接一个68pF的电容。

引脚16(OSCE):设计时将该脚直接连接到基准振荡器晶体管的发射极,同时在该脚与地之间还应连接一个33pF的电容器。

图3

2RF2514的内部结构

RF2514是一个具有锁相环的AM/ASK甚高频/超高频发射器。它由功率放大器、集成压控振荡器、鉴相器和充电泵(PhaseDetector&ChargePump)、分频器(Prescaler32/64)、锁存检测(LockDe-tect)和直流偏置(DCBias)等电路组成,其原理框图如图2所示。

第7篇

前导0计数器电路实现的功能:从数据的高位往低位计算连续0的个数,若出现1,则停止计数.

1.1设计理论本文设计一个108位前导0计数器电路,采用2位分组的并行计数算法,电路设计原理如下:如图2所示,前导0计数电路将数据位宽平分为高半位和低半位两个部分,然后分别对两部分前导0个数进行计算,在下一级计数逻辑对上面两个计数器结果进行汇总.当n=2时,相当于4位前导0计数电路;当n>2时,相当于2n位前导0计数电路.

1.24位前导0电路设计如图3所示,Count[1:0]可以表示Data[3:0]不全为0时前导0个数;当Data[3:0]全为0时,前导0的个数为4,Count[1:0]最多也只能表示3,因此需要Z信号作为Count的拓展位[4].当Data[3:0]全为0时,前导0个数是4,拓展位Z=1,count[1:0]=2′b00,Z与Count[1:0]组成3位二进制计数值,为3′b100,正好可以表示Data[3:0]全为0时前导0的个数4.

1.38位前导0电路设计8位前导0电路是在两个4位前导0得出的计数结果后再做一次选择,对前面两个4位前导0的计数结果进行汇总.8位前导0的电路结构如图4所示.图4中,左上方电路计算高4位前导0个数,右上方电路计算低4位前导0个数.当高4位全为0时,则需将高4位前导0个数与低4位前导0个数相加;当高4位不全为0,则只需输出高4位前导0个数即可.当Data[7:0]不全为0,Count[2:0]即可表示前导0的个数;当Data[7:0]全为0,则Count[2:0]=3’b0,Z=1,构成二进制1000可以表示成8个0.从8位前导0电路结构,再结合4位前导0电路结构,由此找出前导0电路设计规律,为108位前导0电路设计提供结构的拓展.将8位前导0电路结构进行模块层次化,如图5所示.图5所示,浅灰色模块(四端口模块)是1个NR2D和1个INVD,深灰色模块(三端口模块)是1个AN2D,上一级的白色模块是3个MUX2D,下一级白色模块(五端口模块)是5个MUX2D.在大位宽前导0电路设计中,每向下增加一级模块,模块的个数就会增加一倍,白色模块的MUX2D就会增加2个,浅灰色和深灰色模块的逻辑单元不变.

1.4108前导0电路设计将64位、32位和12位这三个前导0电路进行拼接,组成的108位前导0电路结构如图6所示.如图6所示,从上到下分别是第一级模块、第二级模块、第三级模块、第四级模块、第五级模块、第六级模块、第七级模块.各个模块的内部逻辑电路如图7所示,其中白色模块n(n≥2)是指模块的级数。

2电路优化

2.1Z信号树逻辑优化图6中深灰色模块(三端口模块)是Z信号树逻辑模块,Z信号树经过优化之后如图8所示.

2.2Count树逻辑优化图6中白色模块(五端口模块)构成Count树,Count树由MUX2D逻辑单元构成.由于MUX2D标准单元存在传输管,导致标准单元延时大,以及单元驱动能力弱的情况[5].因此需要将传输管逻辑单元优化成速度快、稳定性好的CMOS互补逻辑单元。将MUX2D传输管逻辑单元通过逻辑换算,使之成为互补的CMOS逻辑单元,可以有效提高Count树的计算速度和稳定性.根据Count树中白色模块(五端口模块)所处的模块级数,分奇偶两种情况分别进行逻辑换算和重组,优化之后的逻辑结构如图9所示.从图9发现,优化后的逻辑电路中有反相器存在,并且随着模块级数增加,反相器个数也在增加.因此有必要将反相器提取出来,以一个大尺寸的反相器来代替这些分散的反相器,这样既可以满足驱动的需要,也可以用来减少面积.于是进一步优化之后的电路结构如图10所示.

2.3单元尺寸优化在同一级有关联的相邻两个模块,由于扇出不同造成负载不一样,因而不同模块内部单元尺寸的调整顺序也不一样.108位前导0电路逻辑单元尺寸调整的顺序如图11所示.从图11可以看出,首先优化第1条路径的尺寸,按照阿拉伯数字依次增大的顺序,依次进行不同路径的模块单元尺寸调整,最后优化第13条路径.每条路径都是顺着箭头的方向,对各个模块依次进行单元尺寸的调整.

3性能比较

在108位前导0电路设计完成过后,提取电路设计的网表进行PT分析,通过PT分析获得到时序和面积结果.然后分别与传统前导0计数器的RTL级代码[6]进行DC综合的结果,以及8位分组的RTL级代码进行DC综合的结果进行比较,如表1所示.通过比较发现,传统前导0的RTL级代码进行DC综合的时序和面积都太大,相对而言8位分组前导0的RTL级代码进行DC综合的时序却要比它要好得多,这也是当前一直使用8位分组前导0的RTL级代码的原因.然而本文设计的2位分组的108位前导0电路,进行PT分析的时序比8位分组DC综合的时序少了19%,但面积却比8位分组的差了20%.由于计数器的运算速度对浮点加法的运算是至关重要的,在面积相差不大的情况下这个电路设计仍然是非常成功的.

4结束语

第8篇

1.1传感器电路设计外部电容与片内电阻一起构成一个低通滤波器,用于限制ADXRS646速率响应的带宽。3dB频率由和设置:可以精确控制该频率,因为在制造期间被调整至。在RATEOUT脚(1B,2A)和SUMJ引脚(1C,2C)之间连接的任何外部电阻将导致:由于陀螺仪的18kHz谐振频率会造成解调时的高频噪声,因此在陀螺仪的输出管脚由电阻和22nF电容(2.2kHz极点)组成低通RC输出滤波器,以衰减解调尖峰引起的高频噪声。

1.2控制电路与模数转换电路设计选用C8051F410单片机对整个系统进行控制,C8051F410具有与8051兼容的高速CIP-51内核,与MCS-51指令完全兼容。C8051F410资源丰富,具有24个I/O引脚,同时还具有时钟振荡器等功能模块。ADS1274是TI公司生产的24位无失码高性能模数转换器,具有最高144kSPS数据采样速率,功耗低,在52kSPS(高精度模式)采样速率下,单通道功耗仅为31mW,工作温度范围广,最低温度-40°C最高温度+125°C,非常适合应用于条件苛刻的工业控制领域。该芯片模拟前端具有4个单端输入通道,模拟部分采用5V供电,内核为3.3V或者1.8V供电。模拟输入电压为———0.3V~6V。采用THS4521作为AD转换器的驱动器,THS4521极低功耗轨至轨输出全差动放大器,带宽高达145MHz,数据转换速率高达490V/μs,直流开环增益为119dB,宽范围供电电压:+2.5V~+5.5V,单通道电流仅为1.14mA。C8051F410与ADS1274通过标准SPI接口进行通信,设计采用3线制的主、从方式。C8051F410控制ADS1274,C8051F410通过SCLK时钟管脚提供并控制ADS1274提供SPI的时钟信号。单片机的MOSI引脚与ADS1274的DIN引脚相连,向ADS1274发送数据,实现配置寄存器,设置工作模式等功能。C8051F410的MISO引脚与ADS1274的DOUT相连,接收AD转换的数据。ADS1274的RDY引脚与单片机的P0.3引脚相连,当ADS1274完成模数转换以后,RDY引脚有高电平变为低电平,通知单片机模数转换完成,准备读取数据。

1.3恒流电源电路LM2904系列运算放大器是TI公司生产的低功耗双运算放大器。ADXRS646型MEMS陀螺仪需要的供电电压为6V,由LM2904构成的放大电路可以产生两路稳定的6V电压,输出抖动小于5mV,输出电流可以达到40mA,满足MEMS陀螺仪的供电要求。由LM2904构成的基本电压放大电路。放大电路的输入电压5V,电压的放大倍数为1.2倍,由此可以得出两路输出A和B均为6V。

2软件设计

数据采集装置上电后首先对C8051F410进行初始化设置,通过配置寄存器,设置SPI通信模式、内部振荡器的工作频率以及看门狗的监测时间。然后对ADS1274进行AD采样率、工作模式和通信模式等模块的初始化。选择ADS1274的差分模拟输入通道AIN1、AIN2、AIN3进行数据采集,模拟电压输入范围为0~5V,数据寄存器配置为24位。向ADS1274发送开始转换命令,单片机开始计时,计时时间未结束,传输采集的数据;计时时间到,继续开始AD转换。采集后的角速率数据经过单片机简单处理后,由RS232串口输出。

3实验分析与结论

第9篇

计算机系统所要求解决的问题日趋复杂,与此同时,计算机系统本身的结构也越来越复杂。而复杂性的提高就意味着可靠性的降低,实践经验表明,要想使如此复杂的实时系统实现零出错率几乎是不可能的,因此人们寄希望于系统的容错性能:即系统在出现错误的情况下的适应能力。对于如何同时实现系统的复杂性和可靠性,大自然给了我们近乎完美的蓝本。人体是迄今为止我们所知道的最复杂的生物系统,通过千万年基因进化,使得人体可以在某些细胞发生病变的情况下,不断地进行自我诊断,并最终自愈。因此借用这一机理,科学家们研究出可进化硬件(EHW,EvolvableHardWare),理想的可进化硬件不但同样具有自我诊断能力,能够通过自我重构消除错误,而且可以在设计要求或系统工作环境发生变化的情况下,通过自我重构来使电路适应这种变化而继续正常工作。严格地说,EHW具有两个方面的目的,一方面是把进化算法应用于电子电路的设计中;另一方面是硬件具有通过动态地、自主地重构自己实现在线适应变化的能力。前者强调的是进化算法在电子设计中可替代传统基于规范的设计方法;后者强调的是硬件的可适应机理。当然二者的区别也是很模糊的。本文主要讨论的是EHW在第一个方面的问题。

对EHW的研究主要采用了进化理论中的进化计算(EvolutionaryComputing)算法,特别是遗传算法(GA)为设计算法,在数字电路中以现场可编程门阵列(FPGA)为媒介,在模拟电路设计中以现场可编程模拟阵列(FPAA)为媒介来进行的。此外还有建立在晶体管级的现场可编程晶体管阵列(FPTA),它为同时设计数字电路和和模拟电路提供了一个可靠的平台。下面主要介绍一下遗传算法和现场可编程门阵列的相关知识,并以数字电路为例介绍可进化硬件设计方法。

1.1遗传算法

遗传算法是模拟生物在自然环境中的遗传和进化过程的一种自适应全局优化算法,它借鉴了物种进化的思想,将欲求解问题编码,把可行解表示成字符串形式,称为染色体或个体。先通过初始化随机产生一群个体,称为种群,它们都是假设解。然后把这些假设解置于问题的“环境”中,根据适应值或某种竞争机制选择个体(适应值就是解的满意程度),使用各种遗传操作算子(包括选择,变异,交叉等等)产生下一代(下一代可以完全替代原种群,即非重叠种群;也可以部分替代原种群中一些较差的个体,即重叠种群),如此进化下去,直到满足期望的终止条件,得到问题的最优解为止。

1.2现场可编程逻辑阵列(FPGA)

现场可编程逻辑阵列是一种基于查找表(LUT,LookupTable)结构的可在线编程的逻辑电路。它由存放在片内RAM中的程序来设置其工作状态,工作时需要对片内的RAM进行编程。当用户通过原理图或硬件描述语言(HDL)描述了一个逻辑电路以后,FPGA开发软件会把设计方案通过编译形成数据流,并将数据流下载至RAM中。这些RAM中的数据流决定电路的逻辑关系。掉电后,FPGA恢复成白片,内部逻辑关系消失,因此,FPGA能够反复使用,灌入不同的数据流就会获得不同的硬件系统,这就是可编程特性。这一特性是实现EHW的重要特性。目前在可进化电子电路的设计中,用得最多得是Xilinx公司的Virtex系列FPGA芯片。

2进化电子电路设计架构

本节以设计高容错性的数字电路设计为例来阐述EHW的设计架构及主要设计步骤。对于通过进化理论的遗传算法来产生容错性,所设计的电路系统可以看作一个具有持续性地、实时地适应变化的硬件系统。对于电子电路来说,所谓的变化的来源很多,如硬件故障导致的错误,设计要求和规则的改变,环境的改变(各种干扰的出现)等。

从进化论的角度来看,当这些变化发生时,个体的适应度会作相应的改变。当进化进行时,个体会适应这些变化重新获得高的适应度。基于进化论的电子电路设计就是利用这种原理,通过对设计结果进行多次地进化来提高其适应变化的能力。

电子电路进化设计架构如图1所示。图中给出了电子电路的设计的两种进化,分别是内部进化和外部进化。其中内部进化是指硬件内部结构的进化,而外部进化是指软件模拟的电路的进化。这两种进化是相互独立的,当然通过外部进化得到的最终设计结果还是要由硬件结构的变化来实际体现。从图中可以看出,进化过程是一个循环往复的过程,其中是根据进化算法(遗传算法)的计算结果来进行的。整个进化设计包括以下步骤:

(1)根据设计的目的,产生初步的方案,并把初步方案用一组染色体(一组“0”和“1”表示的数据串)来表示,其中每个个体表示的是设计的一部分。染色体转化成控制数据流下载到FPGA上,用来定义FPGA的开关状态,从而确定可重构硬件内部各单元的联结,形成了初步的硬件系统。用来设计进化硬件的FPGA器件可以接受任意组合的数据流下载,而不会导致器件的损害。

(2)将设计结果与目标要求进行比较,并用某种误差表示作为描述系统适应度的衡量准则。这需要一定的检测手段和评估软件的支持。对不同的个体,根据适应度进行排序,下一代的个体将由最优的个体来产生。

(3)根据适应度再对新的个体组进行统计,并根据统计结果挑选一些个体。一

部分被选个体保持原样,另一部分个体根据遗传算法进行修改,如进行交叉和变异,而这种交叉和变异的目的是为了产生更具适应性的下一代。把新一代染色体转化成控制数据流下载到FPGA中对硬件进行进化。

(4)重复上述步骤,产生新的数代个体,直到新的个体表示的设计方案表现出接近要求的适应能力为止。

一般来说通过遗传算法最后会得到一个或数个设计结果,最后设计方案具有对设计要求和系统工作环境的最佳适应性。这一过程又叫内部进化或硬件进化。

图中的右边展示了另一种设计可进化电路的方法,即用模拟软件来代替可重构器件,染色体每一位确定的是软件模拟电路的连接方式,而不是可重构器件各单元的连接方式。这一方法叫外部进化或软件进化。这种方法中进化过程完全模拟进行,只有最后的结果才在器件上实施。

进化电子电路设计中,最关键的是遗传算法的应用。在遗传算法的应用过程中,变异因子的确定是需要慎重考虑的,它的大小既关系到个体变异的程度,也关系到个体对环境变化做出反应的能力,而这两个因素相互抵触。变异因子越大,个体更容易适应环境变化,对系统出现的错误做出快速反应,但个体更容易发生突变。而变异因子较小时,系统的反应力变差,但系统一旦获得高适应度的设计方案时可以保持稳定。

对于可进化数字电路的设计,可以在两个层面上进行。一个是在基本的“与”、“或”、“非”门的基础上进行进化设计,一个是在功能块如触发器、加法器和多路选择器的基础上进行。前一种方法更为灵活,而后一种更适于工业应用。有人提出了一种基于进化细胞机(CellularAutomaton)的神经网络模块设计架构。采用这一结构设计时,只需要定义整个模块的适应度,而对于每一模块如何实现它复杂的功能可以不予理睬,对于超大规模线路的设计可以采用这一方法来将电路进行整体优化设计。

3可进化电路设计环境

上面描述的软硬件进化电子电路设计可在图2所示的设计系统环境下进行。这一设计系统环境对于测试可重构硬件的构架及展示在FPGA可重构硬件上的进化设计很有用处。该设计系统环境包括遗传算法软件包、FPGA开发系统板、数据采集软硬件、适应度评估软件、用户接口程序及电路模拟仿真软件。

遗传算法由计算机上运行的一个程序包实现。由它来实现进化计算并产生染色体组。表示硬件描述的染色体通过通信电缆由计算机下载到有FPGA器件的实验板上。然后通过接口将布线结果传回计算机。适应度评估建立在仪器数据采集硬件及软件上,一个接口码将GA与硬件连接起来,可能的设计方案在此得到评估。同时还有一个图形用户接口以便于设计结果的可视化和将问题形式化。通过执行遗传算法在每一代染色体组都会产生新的染色体群组,并被转化为数据流传入实验板上。至于通过软件进化的电子电路设计,可采用Spice软件作为线路模拟仿真软件,把染色体变成模拟电路并通过仿真软件来仿真电路的运行情况,通过相应软件来评估设计结果。

4结论与展望

进化过程广义上可以看作是一个复杂的动态系统的状态变化。在这个意义上,可以将“可进化”这一特性运用到无数的人工系统中,只要这些系统的性能会受到环境的影响。不仅是遗传算法,神经网络、人工智能工程以及胚胎学都可以应用到可进化系统中。虽然目前设计出的可进化硬件还存在着许多需要解决的问题,如系统的鲁棒性等。但在未来的发展中,电子电路可进化的设计方法将不可避免的取代传统的自顶向下设计方法,系统的复杂性将不再成为系统设计的障碍。另一方面,硬件本身的自我重构能力对于那些在复杂多变的环境,特别是人不能直接参与的环境工作的系统来说将带来极大的影响。因此可进化硬件的研究将会进一步深入并会得到广泛的应用而造福人类。

相关文章
相关期刊