时间:2023-03-21 17:13:28
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇数学概率统计论文范例。如需获取更多原创内容,可随时联系我们的客服老师。
1.概率统计教材中数学文化元素的现状
在高校概率统计教材中,从数学文化的角度对概率统计教学进行诠释已经得到数学教育界的普遍重视,教材在数学文化价值教育方面起到至关重要的作用。高校概率统计教材在数学文化教育方面也做了大量的工作,我们以盛骤等人主编的《概率论与数理统计》(第四版)、缪全生主编的《概率与统计》(第三版)和同济大学应用数学系主编的《工程数学—概率统计简明教程》三本教材(后文中分别以教材一、教材二、教材三称之)作为例子,它们在数学文化渗透方面的特点体现在:
(1)教材设计更注重生活和技术应用领域背景的渗透
在内容编排方面,每个知识点都能注意以生活实际或当前的技术应用问题作为背景予以介绍,强调知识的直观性和应用背景,强调实际问题的解决,使得学生有比较直观的认识,能提高学生的学习兴趣和学习热情。如在介绍条件概率的定义时,教材几乎都能从掷硬币、掷骰子等简单的生活实际出发,从特殊到普遍地引出条件概率的定义。内容背景涉及较多的是产品质量分析模型(如质量、寿命、含量、误差等方面),教材一和教材三比教材二涉及应用背景的面更加广泛、量更大。在例题和习题设计方面,教材注重以解决有经济、社会、工程技术等方面实际背景的问题为主,旨在提高学生的实际应用能力。在所统计的三本教材中,具有应用背景的例题占总的例题数超过了50%,习题中有应用背景的题目在50%左右,特别是以自然科学为应用背景的题目占了绝大多数
(2)紧密结合信息技术的发展,提高统计计算能力的培养
加强数理统计的内容,注重统计方法在实际工作中的应用。如增加了假设检验问题中的P值检验法和一些统计图的应用,还介绍了bootstrap方法在数据处理方面的应用。增加Excel软件和“宏”数据分析工具的使用。信息技术的发展给概率统计的研究赋予更强大的工具,没有现代的专业统计分析软件作为研究工具,概率统计问题的研究是不可想像的,在概率统计教材中适当引入统计软件的运用是必要的。虽然现在统计分析软件的功能很强大,但需要经过专业的学习才能掌握,为适应概率统计的入门使用,盛骤等人主编的《概率论与数理统计》(第四版)中就增加了Ex-cel软件和“宏”数据分析工具在概率统计中的应用,特别是在数理统计方面的运用,这对没有经过专业统计软件学习的学生和使用者有很大的帮助。
2.高校概率统计教材数学文化元素渗透中存在的问题
(1)教材中数学史的呈现太少
呈现方式不明朗数学史的学习,能使学生了解数学在推动社会发展方面和社会发展之间的相互作用,能使学生了解数学科学的思想体系、数学的美学价值和数学家的创新精神等因素。教材中的定义、定理、法则和公式都是数学家们经过上百年甚至上千年的历史锤炼后的完美逻辑体系,这种完美的形式忽略了曲折复杂的数学发现过程,但正是这种过程隐含着丰富的数学文化元素。如对概率定义的引入,三本概率统计教材几乎都是这样表达“历史上有人做过……其结果如表……”,然后在表格中列出历史上的几个有关频率的试验,甚至有些教材只是用简短的语言一带而过,然后给出概率的统计定义,紧接着就给出概率的其他定义。这样的表达,学生缺乏对概率定义公理化过程的认识,也失去了一次培养学生提高学习概率统计兴趣与热情的机会。更重要的是,概率定义的形成本身就是数学抽象化过程的典型例子,在这个过程中,学生可以体会到数学的抽象特性和方法。遗憾的是,目前高校概率统计教材中出现数学史的地方实在太少了。据统计,教材一、教材二和教材三中出现数学史的地方仅有频率的定义中提到的德摩根、蒲丰和皮尔逊等人抛硬币试验的介绍或一些试验数据;教材二在引言中则对概率论的发展历史作了一个简介。三本教材中对数理统计的历史介绍等于0,其实概率统计教材中能出现数学史的地方比比皆是,教材可以充分利用这些素材进行呈现。
(2)应用背景相对薄弱
概率统计是一门实践性强、应用性广的学科,当前高校教材都注重生活和技术应用领域背景的渗透,社会科学的应用背景相对薄弱。这样的知识呈现方式,对提高学生的学习兴趣和应用意识都有很大的帮助。但数学文化背景的方式是多样,如重要数学名人物传、数学发展事件记、重要数学成果和概率统计在社会科学方面的应用等内容,这是体现数学文化价值的一种有效方式,也是学生从中获取数学思想方法、体会数学精神和体验数学美的重要途径,遗憾的是当前高校概率统计教材在这方面还比较缺乏。
(3)多元文化缺失
概率统计已经成为现代社会、经济、管理等学科的重要工具,高校概率统计教材在体现这些领域的应用方面有较大的篇幅,但与学生相关生活文化背景的联接方面显得不够,这容易导致学生认为很多概率统计的知识与他们生活或工作相隔遥远甚至没有关联,严重影响了学生学习概率统计的兴趣和态度。
二、概率统计教材设计
中凸显数学文化的思考现行的概率统计教材的知识系统逻辑体系已经经过多年的验证,证明是可行的。数学文化视野下的教材设计目的是,如何在现行教材的知识体系中体现数学文化的元素,数学文化很大一部分是内隐的,这就要求我们不能单纯把数学文化内隐的知识部分相关内容简单地累加到教材里面去,而应该有机地结合在概率统计外显的知识内容中去。下面谈几点构想。
1.关注数学史在教材中的作用
概率统计教材的内容安排要适当兼顾知识发现的历史,使学生能够领略到数学内容发现的过程,体会到数学知识发现过程所蕴含的数学思想、数学方法和数学精神,有利于学生数学知识体系的建构和优秀品质的形成。如在介绍“概率”的定义时,教材的编排最好能介绍概率定义形成的三个历史阶段:概率的统计定义、古典定义和公理化定义。使学生在学习概率的定义时能了解概率定义形成的历史,了解贝朗特悖论的意义,得到数学螺旋上升抽象过程的感悟,掌握数学思维的方法,从而学会批判、质疑、独立和严谨的思维品质。在学习DeMoivre-Laplace定理时可以介绍DeMoivre等人在二项分布正态逼近的研究工作,这项研究是数理统计学的基础,也是概率统计思想的重要体现,重温这段历史可以启迪学生的思维、激发学生的兴趣。回归与相关分析的发现对数理统计学发展的影响是极其重大的,这个统计模型的应用,使统计学由统计描述时期进入了统计推断的时期,它促使一个严谨的统计学框架的形成,学习该知识点内容时,很有必要向学生介绍回归与相关分析的产生历程。其实,概率统计中还有很多地方可以进行数学史介绍的,学生在了解这些知识产生的过程中将会得到浓厚的数学思维熏陶。
2.强调知识与文化的有机融合
概率统计的数学文化部分呈现要以导引的形式出现,而不能把相关内容简单地累加到教材中去,从而保护学生自我探索热情,使数学文化真正植根于学生的知识建构中去。如在“概率的基本概念”部分,有必要介绍概率定义形成的三个历史阶段,但在具体的教材呈现中,没有必要把这些历史材料详细地罗列到教材中去,如果只是简单地把数学史料添加到教材里面去,只能增加教材的容量,导致教材臃肿,变成数学史的堆积而已。而应该是在循序渐进介绍概率定义的同时,适当采用简洁和引导性的语言,营造一种宽松的数学学习环境,引导学生学会自己查找相关学习资源,让学生既能感受到概率定义的发展历史,也能掌握如何通过查找资料来进一步验证和了解这种发展的详细情况的能力。又如,在“假设检验”这一章,可以介绍历史上威尔登检验骰子是否均匀的试验,但没必要陈述这个试验的详细过程,可以以问题的形式把威尔登与皮尔逊对试验结果的争论呈现出来,使学生既能了解假设检验产生的这段历史,也可以重温探索科学的过程。
3.充分发挥现代信息技术功能
对传统的概率论与数理统计教学进行归纳,大致是:理论知识+说明举例+解题+考试。这种教学模式可以让学生掌握基础知识,提升计算能力,也有利于解决课后习题。但这种教学模式也有一定的缺陷,不难看出,它与实际脱离较大,更多地停留在书本上。学生掌握了理论知识,未必会将其运用到实际,这违背了素质教育的宗旨,不利于学生学习积极性的提高。运用数学建模的指导思想,可以有效避免传统教学模式的缺陷。数学建模的一个重要功能就是培养学生理论联系实际的能力。将数学建模思想融入教学,是概率论与数理统计教学的需要,也是顺应教学改革的需求。
二、数学建模思想融入课堂教学
教师在讲授概率论与数理统计课程时,面临着非常重要的任务。如何让学生通过学习增强对本课程的理解,并将知识合理地运用到实践中,是摆在教师面前的问题。教师要将数学建模思想合理地融入到课堂。
(一)课堂教学侧重实例
概率论与数理统计课程是运用性很强的一门课程。因此,将教学内容与实例想结合,可以有效提高学生的理解力,加深学生对知识点的印象。例如,在讲授概率加法公式的时候,可以用“三个臭皮匠问题”作为为实例。“三个臭皮匠赛过诸葛亮”是对多人有效合作的一种赞美,我们可以把这个问题引入到数学中来,从概率的计算方面验证它的正确性。首先可以建立起数学模型,三个臭皮匠能否赛过诸葛亮,主要是看他们解决实际问题的能力是否有差距,归结为概率就是解决问题的概率大小比较。不妨用C表示诸葛亮解决某问题,Ai表示第i个臭皮匠单独解决某问题,其中i=1,2,3,每个臭皮匠解决好某问题的概率是P(A1)=0.45,P(A2)=0.55,P(A3)=0.60,而诸葛亮成功解决问题的概率是P(C)=0.90。那么事件B顺利解决对于诸葛亮的概率是P(B)=P(C)=0.90,而三个臭皮匠解决好B问题的概率可以表示成P(B)=P(A1)+P(A2)+P(A3)。解决此问题的过程中,学生既感受到了数学建模的乐趣,也在轻松的氛围中学习到了概率知识。这种贴近实际生活的教学方式,不但可以提高学生学习概率的积极性,也可以增强教师从事素质教育的理念。
(二)开设数学实验课
数学实验一般要结合数学模型,以数学软件为平台,模拟实验环境进行教学。发展到今天,计算机软件已经很成熟,一般的统计计算都可以由计算机软件来完成。SPSS、SAS、MABTE等软件已经广泛得到了运用,较大数据量的案例,如统计推断、数据模拟技术等方面的问题,都可以用这些软件来处理。通过数学实验,不但可以体现数学建模的全过程,还能增强学生的应用意识,促使他们主动学习概率论与数理统计知识。学生通过软件的学习与运用,增强了动手能力,解决实际问题的能力也会有所增强。
(三)使用新的教学方法
众所周知,传统的填鸭式的教学方法很难取得好的教学效果,已经不适应现代教学的要求。实践证明,结合案例的教学方法可以由浅入深,从直观到抽象,具有一定的启发性。学生可以从中变被动为主动,加深对知识的理解。这种教学方法还能让学生的眼光从课堂上转移到日常生活,进行发散思维,学生会进一步发挥主观能动性,思考如何将实际问题数学化,如何结合概率论与统计知识解决实际问题,等等。在这种情况下,学生的兴趣提高了,教学效率自然也会得到提高。
(四)建立合理的学习方式
概率论与数理统计教学不能一味地照本宣科。数学建模并无固定模式,它需要的更多是技能的综合。教师在实际教学过程中,不应该以课本为标准,而应该多引导学生自主解决实际问题,让学生去查阅相关背景资料,以提高其自学能力。教师可以适当补充一些前言的数学知识,让一些新观念和新方法开阔学生的视野。在处理习题问题上,教师要适当引入一些不充分的问题,而不是仅仅局限于条件比较充分的问题上,要让学生自己动手分析数据、建立模型。教师应该经常开展专题讨论,引导学生勇于提出自己的见解,加强学生间的交流与互助。例如,在讲授二项分布知识时,为了加深学生对知识的领悟,教师可以用“盥洗室问题”为实例来讲授二项式的实际运用。问题:宿舍楼内的盥洗室处于用水高峰时,经常要排队等待,学生对此意见很大。学校领导决定把它当作一道数学题来解答,希望学生能从理论上给出合理的解决方法。分析:首先收集基本的资料,盥洗室有50个水龙头,宿舍楼内有500个学生,用水高峰期为2小时(120分钟),平均每个学生用水时间为12分钟,等待时间一般不超过12分钟,但经常等待会让学生失去耐心。学生希望100次用水中等待的次数不超过10次。解决方法:设X为某时刻用水的学生人数,先找到X服从什么分布。500个学生中,每个学生的用水概率是0.1,现在X人用水,与独立实验序列类似,比较适合用二项分布,因此设X服从二项分布,n=500,p=0.1,用概率公式表示为P(X=K)=CKnPK(1-P)n-K。接下来计算概率,主要关注不需要等待的概率(即X<50),P(X<50)=∑49K=0CKnPK(1-P)n-K,这个二项式分布是一个初步的模型,可按二项分布来计算。由于n较大(n=500),直接用二项分布计算过于复杂,我们可以利用两种简化近似公式来计算(泊松分布和正态分布)。经过查正态分布表,我们可以算出x=58,这说明水龙头的个数在59~62这个范围时,学生等待的时间概率比较合理。
三、课后练习反馈数学建模思想
数学课程离不开课后练习,课后作业是其重要的组成部分,对于巩固课堂知识、进一步理解所学理论具有重要作用。因此,教师要把握好课后练习环节。概率论与数理统计这门课涉及到很多随机试验,一般的统计规律都需要在随机试验中找到结果。例如通过投掷骰子或硬币可以理解频率与概率的关系,通过双色球的抽样可以理解随机事件中的相互独立性,统计一本书上的错别字可以判断其是否符合泊松分布等。通过亲自做实验,学生们不但能探求到随机现象的规律性,还能进一步巩固所学的统计理论。除了一般的练习题以外,教师可以适当增加一些与日常生活密切相关的概率统计题目,这些题目往往趣味性较强。例如,在知道彩票的抽奖方法和中奖规则后,可以明确三个问题:(1)摸彩票的次序与中奖概率是否相关?(2)假如彩票的总量是100万张,则一、二等奖的中奖概率是多少?(3)一个人打算买彩票,在何种情况下中奖概率大一些?这种课后练习对于学生趣味的提高很有帮助。
四、考核方式折射数学建模思想
作为一门课程,肯定需要考核,这是教学过程中的一个必然环节。课程考核是评估教学质量的重要方式。概率论与数理统计课程传统的考试一般采用期末闭卷考试,教师通常按固定的内容出题。这种情况下,学生为了应付考试,会把很多精力都用在背诵公式和概念上面,从而会忽视知识的实际运用。学生的综合成绩虽然也包括平时成绩,但期末闭卷考试往往占据很大比例。就是是平时成绩,其主要还是考核学生课后的习题完成情况。因此,考核实际就成了习题考试。对于学生在课后的实验,考核中往往很少涉及。这会导致学生逐渐脱离日常实际,更注重课堂考勤和作业。要改变这种情况,有必要改变传统的考核方式。灵活多变的考核方式才更有利于调动学生的积极性,激发他们各方面的潜能。考核可以适当增加平时成绩所占的比重,比如,平时成绩可以占总成绩的30%以上。平时成绩主要采用开放性考核,由课后实验或课外实践组成。教师可以提出一些实践问题,让学生自主去解决。学生可以单独完成任务,也可以组队进行,最后提交一份研究报告,教师在此基础上进行评定。
五、结语
关键词:课堂教学;概率论与数理统计;应用能力;教学模式
概率与数理统计是实际应用性很强的一门数学学科,它在经济管理、金融投资、保险精算、企业管理、投入产出分析、经济预测等众多经济领域都有广泛的应用。概率与数理统计是高等院校财经类专业的公共基础课,它既有理论又有实践,既讲方法又讲动手能力。然而,在该课程的具体教学过程中,由于其思维方式与以往数学课程不同、概念难以理解、习题比较难做、方法不宜掌握且涉及数学基础知识广等特点,许多学生难以掌握其内容与方法,面对实际问题时更是无所适从,尤其是财经类专业学生,高等数学的底子相对薄弱,且不同生源的学生数理基础有较大的差异,因此,概率统计成为一部分学生的学习障碍。如何根据学生的数学基础调整教学方法,以适应学生基础,培养其能力,并与其后续课程及专业应用结合,便成为任课教师面临的首要任务。作为我校教学改革的一个重点课题,在近几年的教学实践中,我们结合该课程的特点及培养目标,对课程教学进行了改革和探讨,做了一些尝试性的工作,取得了较好的成效。
1与实际结合,激发学生对概率统计课程的兴趣
概率论与数理统计从内容到方法与以往的数学课程都有本质的不同,因此其基本概念的引入就显得更为重要。为了激发学生的兴趣,在教学中,可结合教材插入一些概率论与数理统计发展史的内容或背景资料。如概率论的直观背景是充满机遇性的赌博,其最初用到的数学工具也仅是排列组合,它提供了一个比较简单而非常典型(等可能性、有限性)的随机模型,即古典概型;在介绍大数定律与中心极限定理时可插入贝努里的《推测术》以及拉普拉斯将概率论应用于天文学的研究,既拓广了学生的视野,又激发了学生的兴趣,缓解了学生对于一个全新的概念与理论的恐惧,有助于学生对基本概念和理论的理解。此外,还可以适当地作一些小试验,以使概念形象化,如在引入条件概率前,首先计算著名的“生日问题”,从中可以看到:每四十人中至少有两人生日相同的概率为0.882,然后在各班学生中当场调查学生的生日,查找与前述结论不吻合的原因,引入条件概率的概念,有了前面的感性认识后学生就比较主动地去接受这个概念了。
在概率统计中,众多的概率模型让学生望而生威,学生常常记不住公式,更不会应用。而概率统计又是数学中与现实世界联系最紧密、应用最广泛的学科之一。不少概念和模型都是实际问题的抽象,因此,在课堂教学中,必须坚持理论联系实际的原则来开展,将概念和模型再回归到实际背景。例如:二项分布的直观背景为n重贝努里试验,由此直观再利用概率与频率的关系,我们易知二项分布的最可能值及数学期望等,这样易于学生理解,更重要的是让其看到如何从实际问题抽象出概念和模型,引导学生领悟事物内部联系的直觉思维。同时在介绍各种分布模型时可以有针对性地引入一些实际问题,向学生展示本课程在工农业、经济管理、医药、教育等领域中的应用,突出概率统计与社会的紧密联系。如将二项分布与新药的有效率、射击命中、机器故障等问题结合起来讲;将正态分布与学生考试成绩、产品寿命、测量误差等问题结合起来讲;将指数分布与元件寿命、放射性粒子等问题结合起来讲,使学生能在讨论实际问题的解决过程中提高兴趣,理解各数学模型,并初步了解利用概率论解决实际问题的一些方法。
2运用案例教学法,培养学生分析问题和解决问题的能力
案例教学法是把案例作为一种教学工具,把学生引导到实际问题中去,通过分析与互相讨论,调动学生的主动性和积极性,并提出解决问题的基本方法和途径的一种教学方法。它是连接理论与实践的桥梁。我们结合概率与数理统计应用性较强的特点,在课堂教学中,注意收集经济生活中的实例,并根据各章节的内容选择适当的案例服务于教学,利用多媒设备及真实材料再现实际经济活动,将理论教学与实际案例有机的结合起来,使得课堂讲解生动清晰,收到了良好的教学效果。案例教学法不仅可以将理论与实际紧密联系起来,使学生在课堂上就能接触到大量的实际问题,而且对提高学生综合分析和解决实际问题的能力大有帮助。通过案例教学可以促进学生全面看问题,从数量的角度分析事物的变化规律,使概率与数理统计的思想和方法在现实经济生活中得到更好的应用,发挥其应有的作用。
在介绍分布函数的概念时,我们首先给出一组成年女子的身高数据,要学生找出规律,学生很快就由前面所学的离散型随机变量的分布知识得到分组资料,然后引导他们计算累积频率,描出图形,并及时抽象出分布函数的概念。紧接着仍以此为例,进一步分析:身高本是连续型随机变量,可是当我们把它们分组后,统计每组的频数和频率时却是用离散型随机变量的研究方法,如果在每一组中取一个代表值后,它其实就是离散型的,所以在研究连续型随机变量的概率分布时,我们可以用离散化的方法,反过来离散型随机变量的分布在一定的条件下又以连续型分布为极限,服装的型号、鞋子的尺码等问题就成为我们理解“离散”和“连续”两个对立概念关系的范例,其中体现了对立统一的哲学内涵,而分布函数正是这种哲学统一的数学表现形式。尽管在这里花费了一些时间,但是当学生理解了这些概念及其关系之后,随后的许多概念和内容都可以很轻松地掌握,而且使学生能够对数学概念有更深层次上的理解和感悟,同时也调动了学生的学习积极性和主动性,培养了他们再学习的能力。
3运用讨论式教学法,增强学生积极向上的参与和竞争意识
讨论课是由师生共同完成教学任务的一种教学形式,是在课堂教学的平等讨论中进行的,它打破了老师满堂灌的传统教学模式。师生互相讨论与问答,甚至可以提供机会让学生走上讲台自己讲述。如,在讲授区间估计方法时,就单双边估计问题我们安排了一次讨论课,引导学生各抒己见,鼓励学生大胆的发表意见,提出质疑,进行自由辩论。通过问答与辩驳,使学生开动脑筋,积极思考,激发了学生学习热情及科研兴趣,培养了学生综合分析能力与口头表达能力,增强了学生主动参与课堂教学的意识。学生的创新研究能力得到了充分的体现。这种教学模式是教与学两方面的双向互动过程,教师与学生的经常性的交流促使教师不断学习,更新知识,提高讲课技能,同时也调动了学生学习的积极性,增进师生之间的思想与情感的沟通,提高了教学效果。教学相长,相得益彰。
保险是最早运用概率论的学科之一,也是我们日常谈论的一个热门话题。因此,在介绍二项分布时,例如一家保险公司有1000人参保,每人、每年12元保险费,一年内一人死亡的概率为0.006。死亡时,其家属可向保险公司领得1000元,问:①保险公司亏本的概率为多大?②保险公司一年利润不少于40000元、60000元、80000元的概率各为多少?保险这一类型题目的引入,通过讨论课使学生对概率在经济中的应用有了初步的了解。
4运用多媒体教学手段,提高课堂教学效率
传统上一本教材、一支粉笔、一块黑板从事数学教学的情景在信息社会里应有所改变,计算机对数学教育的渗透与联系日益紧密,特别是概率论与数理统计课,它是研究随机现象统计规律性的一门学科,而要想获得随机现象的统计规律性,就必须进行大量重复试验,这在有限的课堂时间内是难以实现的,传统教学内容的深度与广度都无法满足实际应用的需要。在教学中我们可以采用了多媒体辅助手段,通过计算机图形显示、动画模拟、数值计算及文字说明等,形成了一个全新的图文并茂、声像结合、数形结合的生动直观的教学环境,从而大大增加了教学信息量,以提高学习效率,并有效地刺激学生的形象思维。另外,利用多媒体对随机试验的动态过程进行了演示和模拟,如:全概率公式应用演示、正态分布、随机变量函数的分布、数学期望的统计意义、二维正态分布、中心极限定理的直观演示实验等,再现抽象理论的研究过程,能加深学生对理论的理解及方法的运用。让学生在获得理论知识的过程中还能体会到现代信息技术的魅力,达到了传统教学无法实现的教学效果教育向素质教育的转变,是我国教育改革的基本目标。财经类专业的概率与数理统计教学,除了在教学方法上应深入改革外,在考试环节上也需要进行改革。
考试是教学过程中的一个重要环节,是检验学生学习情况,评估教学质量的手段。对于数学基础课程概率与数理统计的考试,多年以来一直沿用闭卷笔试的方式。这种考试方式对于保证教学质量,维持正常的教学秩序起到了一定的作用,但也存在着缺陷,离考试内容和方式应更加适应素质教育,特别是应有利于学生的创造能力的培养之目的相差甚远。在过去的概率与数理统计教学中,基本运算能力被认为是首要的培养目标,教科书中的各种例题主要是向学生展示如何运用公式进行计算,各类辅导书中充斥着五花八门的计算技巧。从而导致了学生在学习概率与数理统计课程的过程中,为应付考试搞题海战术,把精力过多的花在了概念、公式的死记硬背上。这与财经类培养跨世纪高素质的经济管理人才是格格不入的。为此,我们对概率与数理统计课程考试进行了改革,主要包括两个方面:一是考试内容与要求不仅体现出概率与数理统计课程的基本知识和基本运算以及推理能力,还注重了学生各种能力的考查,尤其是创新能力。二是考试模式不具一格,除了普遍采用的闭卷考试外,还在教学中用互动方式进行考核,采取灵活多样的考核形式。学生成绩的测评根据学生参与教学活动的程度、学习过程中掌握程度和卷面考试成绩等综合评定。这样,可以引导学生在学好基础知识的基础上,注重技能训练与能力培养。
实践表明,运用教改实践创新的教学模式,可以使原本抽象、枯燥难懂的数学理论变得有血有肉、有滋有味,可以激发学生的求知欲望,提高学生对课程的学习兴趣。在概率统计的教学模式上,我们尽管做了一些探讨,但这仍是一个需要继续付出努力的研究课题,也希望与更多的同行进行交流,以提高教学水平。
参考文献
[1]陈善林,张浙.统计发展史[M].上海:立信会计图书用品社,1987:119-151.
[2]姜启源,谢金星,叶俊.数学模型(第三版)[M].北京:高等教育出版社,2003.
[3]肖柏荣.数学教学艺术概论[M].合肥:安徽教育出版社,1996.
概率论与数理统计案例教学方法的应用中,案例的正确选择非常重要,选择合适的案例可以让学生能更好的进入数学知识点的学习中,身临其境的体会概率论与数理统计带来的学习乐趣,使课堂气氛变得活跃,从而提高教学质量,同时也增强了学生学习的主动性。例如:选择概率和彩票的案例进行教学,教师可以适当对彩票的相关知识进行拓展;然后将概率和彩票的中奖率联系起来,提出概率的运算思路,在其中添加统计的知识点,让学生大胆的提出问题;最后,对概率和统计进行归纳,对概率和彩票中奖率的关系进行解答,增强学生的学习兴趣,培养学生的独立思考能力,从而达到案例教学的目的,促进教学质量的不断提高。因此,正确选择案例,活跃课堂气氛,在教师的带动作用下,数学教学可以变得很轻松愉悦,概率论与数理统计的教学质量可以得到快速提高,从而促进学生综合素质能力的全面发展。
二、开放学生思维,明确教学目的
在数学教学过程中,学生是是教学的主体,每个人都有自己的思维能力,所以教师必须明确教学目的,使学生的思维得到尽可能的开放,促进学生探索创新能力的不断提高。因此,教师在选择案例时,要综合评估学生的学习能力,对概率的概念、公式进行仔细讲解,将统计知识点贯穿到整个课堂教学,使案例突出教学重点,达到知识点融汇教学的教学目的。开放课堂教学,不仅可以使学生掌熟练握更多的概率论与数理统计知识点,更能拉近学生与作者、学生与自己的师生距离,使师生之间的感情更加融洽,从而大大提高教学质量的目的。
三、有效组织教学,提高综合能力
在数学学习是整个过程中,打好基础是非重要的,因此,在概率论与数理统计的教学中运用案例教学,教师要有效组织教学,促进学生综合能力的提高。针对概率论与数理统计的难点和易点,循序渐进的提升难度,让学生熟练掌握每个知识点,培养学生敏捷的数学思维能力,不断开阔学生的视野,使学生的概率论与数理统计分析能力变得更强,从而达到提高教学质量的目的。例如:针对篮球投篮问题,根据球队人数的变化来计算投篮的概率,从最简单的计算开始,随着人数的变化,计算复杂程度也变得越来越高。这就是一个概率论与数理统计知识点逐渐加深的案例,通过这个案例教学,学生的思维能力可以不断增强,综合能力也会得到不断提高。
四、课后教学总结,不断改革创新
概率论与数理统计的教学中,案例教学方法应用的课后总结,是教师对课堂教学不足的完善,可以有效保证案例教学的教学质量,不断创新教学方法和模式,同时促进教师自我的不断提升。课后总结,分为学生的总结和教师的总结,学生通过总结,可以对案例教学进行仔细的分析,培养学生处理问题和解决问题的思路,提升学生实践动手能力;教师总结时,对重点知识进行再度印象加深,促进学生不断探索和创新,从而促进教师教学的不断创新。
五、结束语
【关键词】概率论与数理统计;自主学习;主动参与
在互联时代下的今天,学习越来越社会化,新的学习方法和技术手段的引入使得高等教育正面临着前所未有的变革,“自主学习”作为主体性教育的基础,已逐渐深入各学科教育领域.数学知识的获得,数学能力的形成,渗透了许多自主学习的因素.概率论与数理统计是众多专业的基础类必修课程之一,在高等教育这个水平上倡导自学这门课程,是为学习专业课程和储备数学知识奠定基础.因此,从当前的教育实际出发,分析和研究影响概率论与数理统计自主学习的因素,构建以提高学生自主学习能力为目的的概率论与数理统计教学策略尤其重要.
一、什么是自主学习
自主学习是指学生个体在学习过程中的一种主动而积极自觉的学习行为,它是建立在学生自己“想学,会学,坚持学”的基础之上的.国内外对自主学习的研究大致可分为三个阶段:自主学习思想的提出,自主学习的实验以及自主学习的系统研究.20世纪70年代末,国内学者对自主学习的理论与实践进行了较多研究,出现了11项以指导学生自主学习为目标的教学实验,并把相关的教学实验结果以理论形式总结了出来.此外我国的心理学者在借鉴国外自主学习研究成果的基础上开展了一些自主学习的心理学研究.至此,我国的自主学习研究进入了系统化阶段.
二、目前概率论与数理统计自主学习的现状
尽管目前国内的自主学习研究已经取得了较多的研究成果,但也存在一些问题和不足,主要有以下几个方面:研究对象多为中小学生,对大学生的自主学习研究较少;研究涉及的学科领域较单一;研究内容多侧重于有利于学生自主学习的教学模式.
概率论与数理统计知识体系既来源于自然世界,又与学生在现实生活中不断的积累有关.但是,在学生的长期学习过程中,由于教师教学方式缺乏灵活性和数学知识结构自身的复杂性与延伸性,往往使得学生对自主学习产生了畏惧心理,自主学习意识淡薄,自主学习能力急待提高.
通过文献资料法和访谈法对目前学生的概率论与数理统计自主学习的现状进行了调查,得出如下结论:
(一)概率论与数理统计自主学习水平整体一般
以课程代码为04183的全国高等教育自学考试中概率论与数理统计课程内容和考核要求为例,该门课程考核的知识点共34个,又分为识记、领会、简单应用、综合应用四个认知层次.对于前期微积分课程基础较好的同学而言,自主学习该门课程中的大数定理与数理统计内容也较困难,总体自主学习水平一般.
(二)女同学自主学习水平的宽度和深度均高于男同学
女同学在自主学习的目标、方法与学习管理上都比男同学较好,女同学认真仔细的性格特征能使她们更快地适应自主学习的学习氛围,也能较好地对自己的自主学习过程进行监控管理.
(三)随着多媒体工具的介入,自主学水平急待提升
到了大学阶段,随着认知能力的提高和社会经验的丰富,学生们更趋向于选择灵活便捷的学习方式,幕课与微课的出现为自主学习提供了一定的辅助作用.但是,学生自主学习的积极性、主动性和自主学习的方法、策略都有待提高.
三、改进概率论与数理统计自主学习策略
综上可知,影响概率论与数理统计自主学习的因素主要有学生已有的数学必备知识、学生自主学习的主动性、已掌握的数学学习方法与技能、具体学习内容的难易程度等等.
由此,对概率论与数理统计自主学习提出一些建议:
(一)进一步培养学生对概率论与数理统计课程自主学习的主动性与积极性
在数学课堂教学过程中,教师的主要目的在于构建学生主体,创设学生自主学习的环境,提供学生自主学习的机会.通过引导学生意识到课程的重要性,帮助学生设置合理的学习目标,实施多种教学方式,创设问题情景等方法,不断提升学生的主体性意识,真正发挥学生的创造性思维.
(二)指导对概率论与数理统计课程自主学习的方法和策略
数学是高度概括抽象的理论科学,在其中使用了大量形式化、符号化的语言,因此数学自主学习更需要讲方法和策略.分层次学习法,专题学习法,小组探讨研究法等学习方法的指导,能进一步提升自主学习的效率.
(三)提倡学生采用多种类移动在线学习方式,全面辅助提高自主学习的效果
在互联网技术高速发展下的今天,知识的传播速度大大提高.作为更容易对新生事物产生兴趣并接受它的新时代大学生,在概率论与数理统计的自主学习过程中可合理采用微课、慕课等学习方式,以达到预期的学习效果.
(四)建立适当的学习效果评价模式,促进学生自主学习的深入进行
评价模式的建立是为了促进学生自主学习的发展,科学的评价与及时的反馈是概率论与数理统计课程自主学习的推动剂.在实施中,要遵循定性与定量相结合、过程与结果相结合、个体与全面相结合的原则,重视个体差异,注重鼓励性评价.
总之,学生自主学习能力的培养需要长期的积累,学生主体能力的发挥更多地依赖于教师的引导和学生的主动参与.实现自主学习是新时期素质教育的要求,也是学生全面发展的需要.
【参考文献】
相关热搜:统计学 统计学原理
ThomsonScientific国家科学指标数据库2004年数据显示,中国数学论文在1999~2003年间篇均引文次数为1.03,同期国际数学论文篇均引文次数是1.3,这表明中国数学研究的影响力正在向世界平均水平靠近。相较于物理学、化学和材料科学等领域,中国数学研究的国际影响力是最高的。
我们以美国《数学评论》(MR)光盘(1993-2005/05严为数据来源,用统计数据揭示国际数学论文的宏观产出结构。通过对《MR》收录中国学者发表数学论文每年的总量及其在63个分支上的分布统计,将中国数学论文的产出置于一个相对明晰的国际背景之下,借以观察中国数学的发展态势。此外,我们还以中国科学院文献情报中心《中国数学文献数据库》(CMDDP为数据来源,统计了中国数学论文在63个分支领域的分布,并对其中获国家自然科学基金资助或国家自然科学基金委员会数学天元基金资助的论文情况进行了定量分析。上述数据库均采用国际同行认可的《数学主题分类表》(MSC),分别在国际、国内数学领域具有一定的影响力和相当规模的用户群。
《MR》光盘收录发表在专业期刊、大学学报及专著上的数学论文,其收录范围非常广泛。1993~2004年共收录论文769680篇,其中有74988篇是由中国学者参与完成的,我们称之为中国论文。这里中国论文是指《MR》的论文作者中至少有一位作者是来自于中国(即《MR》光盘中所标注的“PRC”)。12年中,中国论文数占世界论文总数的9.74%。
《CMDD》收录中国国内出版的约300种数学专业期刊、大学学报及专著上刊登的数学论文,此外,还收录了80种国外出版的专业期刊上中国学者发表的论文,并对那些获国家自然科学基金或国家自然科学基金委员会数学天元基金资助的论文进行了特别标注。
2.1《MR》收录中国论文的统计分析
考虑到二次文献的收录时差,为保证数据的完整性,选取的是1993~2004年的文献数据,检索结果如图1所示。数据显示,《MR》12年来收录的中国论文呈现出稳步增长的势头,中国论文的增长速度要大于《MR》总论文数的增长速度。
2.2《MR》收录论文在数学各分支上的分布
为避免重复计数,在对63个数学分支进行统计时,均按第一分类号统计。按2000年《MSC》提出的修订方案,将1993~1999年的数据进行了合并和调整。图2显示了国际数学论文在63个数学分支上的分布。
数学各分支占论文总产出的百分比在一定程度上反映了该领域的研究规模,而相应分支学科的研究热点变化也是统计中着重揭示的问题。在实际统计中,跟踪热点变化主要是通过这63个数学分支的时间序列分析完成的。统计数据揭示的主要特征和趋势如下:1993〜2004年,国际数学或与数学相关论文产出百分比最高的前10个分支依次是:量子理论(81)、统计学(62)、计算机科学(68)、偏微分方程(35)、数值分析(65)、概率论与随机过程(60)、组合论(05)、运筹学和数学规划(90)、系统论/控制(93)、常微分方程(34),这10个分支的产出占总体产出的42.5%。
隹某些分支领域表现出良好的增长势头,如统计学领域的论文数量近3~4年增长较快,有取代量子力学成为现代数学最大板块的趋势。对统计学进一步按照次级主题分类进行统计,结果表明论文产出主要集中在非参数推断(62G)方向(见图3)。
2.3《MR》〉收录中国论文在数学各分支上的分布
MR收录中国学者的数学论文的主要特点表现在以下几个方面:
參1993~2004年论文产出百分比最髙的前10个分支领域依次是偏微分方程(35)、数值分析(65)、常微分方程(34)、系统论/控制(93),运筹学和数学规划(90)、统计学(62)、组合论(05)、概率论与随机随机过程(60)、动力系统和遍历理论(37)、算子理论(47),这10个分支的产出占总体产出的52.25%。
偏微分方程(35)是中国数学论文产出的最大分支,对偏微分方程的二级分类进行细分,结果见图5。
从图中可以看出数理方程及在其它领域的应用(35Q)所占比重较大。同时,根据对35Q的下一级分类的追踪发现,关于KdV-like方程(35Q53)、NLS-like方程(35Q55)的论文有增加的趋势。
差分方程(39)、Fourier分析(42)、计算机科学(68)、运筹学和数学规划(90)、对策论/经济/社会科学和行为科学(91)、系统论/控制(93)、信息和通讯/电路(94)表现出一定的增长势头。
结合环和结合代数(16)、逼近与展开(41)、一般拓扑学(54)、大范围分析/流形上的分析(58)、概率论与随机过程(60)等表现出下降趋势。
与《MR》收录数据的主题分布所不同的是中国的量子力学和统计学均没有进入前5名,量子力学排到了第12位,且有下降趋势。计算机科学(68)、常微分方程(34)在《MR》中分别排在第3位和第10位,而中国数学论文中,常微分方程位居第3,计算机科学位居第11。
1993~2004年《中国数学文献数据库》收录论文统计分析
1993~2004年《CMDD》收录中国学者发表的论文总数达到93139篇。从这些论文在63个数学分支上的分布中可以看出,这63个数学分支学科的发展是不平衡的。对这63个数学分支的论文产出的时间序列分析发现,有些分支增长较快,如运筹学和数学规划(90),对策论/经济/社会科学和行为科学(91),有的变化不大,如几何学(51-52)。
通过对《CMDD》的数据统计,表明中国数学文献的学科分布有如下特点:
參1993〜2004年论文产出百分比最高的前10个数学分支依次是数值分析(65)、运筹学和数学规划(90)、常微分方程(34)、偏微分方程(35)、统计学(62)、系统论/控制(93)、计算机科学(68)、组合论(05)、概率论与随机过程(60)、对策论/经济/社会科学和行为科学(91),这10个分支的产出占总体产出的56.0%。
一些分支表现出良好的成长性。如数理逻辑与基础(03)、矩阵论(15)、实函数(26)、测度与积分(28)、动力系统和遍历理论(37)、Fourier分析(42)、变分法与最优控制/最优化(49),运筹学和数学规划(90)、对策论/经济/社会科学和行为科学(91)、生物学和其它自然科学(92)、系统论/控制(93)、信息和通讯/电路(94)。
參一些分支所占比重下降。如逼近与展开(41)、一般拓扑学(54)、概率论与随机过程(60)、统计学(62)、数值分析(65)等。
參在排名位于前10位的数学分支中,量子理论(81)在《MR》、PRC(《MR》的中国论文)和《CMDD》中所占比重有较大的差异,其余的9个分支尽管所占比重不同但基本上都能进人分布的前10名,例如,计算机科学(68〉在《MR》数据组的排名是第3位,到PRC和《CMDD》数据组就下降到第11位和第7位,在《MR»数据组的排名分别是第8位和第10位的运筹学和数学规划(90)和常微分方程(34),在PRC数据组中,则上升到第5位和第3位,在《CMDD》数据组则为第2位和第3位。这些排名的变化可以部分地揭示出中国在量子理论、计算机科学的交叉研究等方面稍有欠缺,但在数值分析、运筹学(含数学规划)等方面,中国具有相对的竞争优势。
组合论(05)在《MR》、PRC和((CMDD》中所占比重较为一致,分别位居第7、第7和第8位。数据表明组合论中的二级分类图论(05C)的论文产出比例最高,对图论主题进行进一步分析,发现这几年成长较快的图论领域的研究论文大多集中在图和超图的着色(05C15),其次是因子、匹配、覆盖和填装(05C70)。在图论的这两个三级分类上,中国学者的论文产出与国外非常吻合。
本文中的“基金资助”指的是国家自然科学基金或国家自然科学基金委员会数学天元基金的资助。为统计方便,二者统一按基金资助处理。1993~2004年《CMDD》收录的获基金资助的论文共计27662篇,受资助力度达到30%左右。表8显示,获基金资助的论文近年来有不断上升的趋势。2005年《中国数学文摘)>第6期附表1说明《中国数学文摘》和《CMDD》2005年收录的论文受基金资助的比例达40%以上。《CMDD》收录的获基金资助的中国论文在数学各分支上的分布特点如下:
在数量上,前10个分支领域为:数值分析(65)、系统论/控制(93)、偏微分方程(35)、运筹学和数学规划(90)、计算机科学(68)、常微分方程(34)、统计学(62)、概率论与随机过程(60)、组合学(05)、对策论/经济/社会科学和行为科学(91),这10个分支占总体产出的60.2%。
在63个分支领域上,基金资助比例最高的前10个分支是:K-理论(19)、多复变量与解析空间(32)、质点和系统力学(70)、大范围分析/流形上的分析(58)、拓扑群/Lie群(22)、动力系统和遍历理论(37)、经典热力学/热传导(80)、概率论与随机过程(60)、系统论/控制(93)、位势论(31)。
关键词:概率统计;数学软件;Maple
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)31-0083-02
一、传统概率统计教学中的问题
(一)重概率轻统计
我国概率统计教学中普遍存在“重概率轻统计”的问题,具体表现为:(1)大多数工科院校概率统计课程只能讲授到参数估计中的点估计部分。因为学时较少,统计推断中重要的区间估计和假设检验只能作为自学内容。(2)大部分教师对于概率部分内容非常熟练,但是统计部分内容较为生疏。
造成这种现象的原因主要有以下几点:(1)公共基础课概率统计学时一般较少,例如安徽理工大学概率统计课一般为48学时;(2)统计推断部分内容,实用性很强,计算量也比较大,动辄数百个数据。因此,如果不借助软件仅靠人工计算确实难度很大。(3)考研概率部分的试题一般不考统计部分内容。
(二)重理论轻应用
概率统计特别是统计推断部分的内容有着很强的应用背景,例如:近些年的全国大学生数学建模大赛的赛题,几乎都涉及到统计学的内容。对已给数据进行初步的检验、分析比较、分类筛选、总结回归等,这些都是评阅要点中明确指出的重要得分点。由于教学中没有涉及统计推断部分的内容,造成很多参赛学生只能临场边学边做,十分被动。
由于长期轻视统计应用的教学,造成很多数学专业的学生在毕业设计时选题范围十分狭小,很难写出高水平的毕业论文。
(三)重解题技巧,轻视对学生动手能力的培养
长期以来概率统计相关习题主要以手工计算为主,因此过分强调解题技巧。例如,古典概型的题型中需要很多排列组合的技巧、计算一些连续型变量的函数型分布和函数型数字特征时需要用到很多积分技巧等。但是很多实际的问题,例如以统计推断为背景的题型,往往更加强调学生的动手能力。包括对大数据的处理能力(分析数据、标准化数据等),以及借助常用软件计算一些常用统计量的值等。由于平时疏于这方面的教学,很多学生遇到一些简单的实际问题往往束手无策。
二、多种数学软件辅助教学的优点
引入多种数学软件辅助教学的优点主要体现在以下方面。
1.概率统计总课时有限,不可能系统地学习某一特定的统计软件。针对不同问题的特点,选择最为有效、最简单的数学软件来解决。这样可以节约大量的时间,增加效率。本文在第四部分会结合实例进一步说明。
2.通过多种软件的使用,可以最大程度地扩展学生的知识面,使学生学到在传统课堂教学中无法获取的实用知识。
三、多种数学软件辅助教学的具体措施
具体如何来改善传统概率统计教学,提高教学效率和学生的实际动手能力?各学校可以根据具体实际情况结和自身条件因地适宜地选择不同的措施。下面给出一些建设性的意见。
1.开设概率统计教学实验课。概率统计总课时并不多,课堂时间在专门介绍应用以及各种软件的使用确实时间不够。因此,可以在原有的课时基础上专门增加3~4次实验课,结合各种软件讨论和解决概率统计别是统计部分内容。
2.录制教学视频或者直接收集相关资料。因为各学校的课时都比较紧张,如果无法开设单独的实验课可以录制视频,或者直接给学生提供相关的资料。最好能够建立相关的监察机制,这样可以更好地引导和督促学生自主学习。
3.开展相关的毕业设计和毕业论文。在高年级学生中的毕业设计和毕业论文选题中有针对性地加入一些统计类型的课题。
4.利用数学建模平台建立跨学科交流平台。每年一次的全国大学生数学建模比赛给各学科提供了一个重要合作契机。统计学在数学建模中有着举足轻重的作用,几乎每年都会有与数据处理、数据检验和分析等相关的题目。可以把历年来有关概率统计内容的题目在学生中进行推广,也能提高学生的概率统计实际应用能力。
五、结束语
通过本文第四部分可以看出,很多概率统计的问题如果借助数学软件来解决可以省去很多烦琐的计算过程,有利于解决更加复杂的实际问题。如果能够在平时教学中加入适当的数学实验课,学习相关软件的使用,不仅可以提高学生的学习兴趣而且还可以一举解决传统教学中的诸多问题。
参考文献:
[1]唐国强.Excel在概率计算中的应用[J].安阳大学学报,2003,3(1):55-57.
[2]李晓毅,徐兆棣.概率统计教学与数学建模思想的融入[J].沈阳师范大学学报,2008,26(2):245-247.
[3]韦程东,唐君兰,陈志强.在概率论与数理统计教学中融入数学建模思想的探索与实践[J].高教论坛,2008,(2):98-100.
[4]阿荣.Maple在概率论与数理统计教学中的应用[J].中央民族大学学报(自然科学版),2012,2(21):67-71.
《概率论与数理统计》的内容以及教师授课一般都存在着重理论轻实践、重知识轻能力的倾向,缺少该课程本身的特色及特有的思想方法,课程的内容长期不变,课程设置简单,一般只局限于一套指定的教材。《概率论与数理统计》课程内容主要包括3大类:①理论知识。也就是构成本学科理论体系的最基本、最关键的知识,主要包括随机事件及其运算、条件概率、随机变量、数字特征、极限定理、抽样分布、参数估计、假设检验等理论知识,这些是学习该课程必须要掌握的最重要的理论知识。②思维方法。指的是该学科研究的基本方法,主要包括不确定性分析、条件分析、公理推断、统计分析、相关分析、方差分析与回归分析等方法,这些大多蕴涵在学科理论体系中,过去往往不被重视,但实际上对于学生知识的转化与整合具有十分重要的作用。③应用方面。《概率论与数理统计》在社会生活各个领域应用十分广泛,有大量的成功实例。
因此,在课程设置上,不能只局限于一套指定的教材,应该在一个统一的教学基本要求的基础上,教材建设应向着一纲多本和立体化建设的方向发展。在教学进度表中应明确规定该门课程的讲授时数、实验时数、讨论时数、自学时数(在以前基础上适当增加学时数),这样分配教学时间,旨在突出学生的主体地位,促使学生主动参与,积极思考。
2教学形式
1)开设数学实验课教学时可以采用以下几个实验:在校门口,观察每30s钟通过汽车的数量,检验其是否服从Poisson分布;统计每学期各课程考试成绩,看是否符合正态分布,并标准化而后排出名次;调查某个院里的同学每月生活费用的分布情况,给出一定置信水平的置信区间;随机数的生成等等。通过开设实验课,可以使学生深刻理解数学的本质和原貌,体味生活中的数学,增强学生兴趣,培养学生的实际操作能力和应用能力。
2)引进多媒体教学多媒体教学与传统的教学法相比有着不可比拟的优势。一方面,多媒体的动画演示,生动形象,可以将一些抽象的内容直观地反映出来,使学生更容易理解,同时增强了教学趣味性。如在学习正态分布时,可以指导学生运用Matlab软件编写程序,在图形窗口观察正态分布的概率密度函数和概率分布函数随参数变化的规律,从而得出正态分布的性质。另一方面,由于概率统计例题字数较多,抄题很费时间。制作多媒体课件,教师有更多的精力对内容进行详细地分析和讲解,增加与学生的互动,增加课堂信息量。对于教材中的重点、难点、复习课、习题课等都可制作成多媒体课件形式,配以适当的粉笔教学,这样既能延续一贯的听课方式,发挥教师的主导作用,又能充分体现学生的认知主体作用。比如在概率部分,把几个重要的离散型随机变量、连续型随机变量的分布率、概率密度、期望、方差等列成表格;在统计部分,将正态总体均值和方差的置信区间,假设检验问题的拒绝域列成表格形式,其中所涉及到的重要统计量的分布密度函数用图形表示出来。这样,学生觉得一目了然,通过让学生先了解图形的特点,再结合分位数的有关知识,找出其中的规律,理解它们的含义及联系,加深了学生对概念的理解及方法的运用,以便更容易记住和求出置信区间和假设检验问题的拒绝域。这样,不仅使学生对概念的理解更深刻、透彻,也培养了学生运用计算机解决实际问题的能力。
3)案例教学,重视理论联系实际《概率论与数理统计》是从实际生产中产生的一门应用性学科,它来源于实际又服务于实际。因此,采取案例教学法,重视理论联系实际,可以使教学过程充满活力,学生在课堂上能接触到大量的实际问题,可以提高学生综合分析和解决实际问题的能力。如讲授随机现象时,用抛硬币、元件寿命、某时段内经过某路口的车辆数等例来说明它们所共同具有的特点;讲数学期望概念时,用常见的街头用随机摸球为例,提出如果多次重复地摸球,决定成败的关键是什么,它的规律性是什么等问题,然后再讲数学期望概念在产品检验及保险行业的应用,就能使学生真正理解数学期望的概念并能自觉运用到生活中去;又如讲授正态分布时,先举例说明正态分布在考试、教育评估、企业质量管理等方面的应用,然后结合概率密度图形讲正态分布的特点和性质,让同学们总结实际中什么样的现象可以用正态分布来描述,这样能使学生认识到正态分布的重要性及其应用的广泛性,从而提高学生的学习积极性,强化学生的应用意识。
另外,也可选择一些具有实际背景的典型的案例,例如概率与密码问题、敏感问题的调查、血液检验问题等等。通过对典型案例的处理,使学生经历较系统的数据处理全过程,在此过程中学习一些数据处理的方法,并运用所学知识和方法去解决实际问题。
3考核方法
考试是一种教学评价手段。现在学生把考试本身当作追求的目标,而放弃了自身的发展愿望,出现了教学中“教”和“学”的目的似乎是为了“考”的奇怪现象。有些院校概率统计课程只有理论课,没有实验课,其考试形式是期末一张试卷定乾坤,虽然有平时成绩,主要以作业和考勤为主,占的比率比较小(一般占2O),并且学生的作业并不能真实地反映学生学习的好坏,使得教师无法真正地了解每个学生的学习情况,公平合理地给出平时成绩。而这种单一的闭卷考试也很难反映出学生的真实水平。
所以,我们首先要加强平时考查和考试,每次课后要留有作业、思考题,学完每一章后要安排小测验,在概率论部分学完后进行一次大测验。其次注重科学研究,每个学生都要有平时论文,学期论文,以此来检查学生掌握知识情况和应用能力.此外还有实验成绩。最后是期末考试,以A、B卷方式,采取闭卷形式进行考试。将这4个方面给予适当的权重,以均分作为学生该门课程的成绩。成绩不及格者.学习态度好的可以允许补考。否则予以重修。分数统计完后,对成绩分布情况进行分析,通过总体分布符合正态分布程度和方差大小判断班级的总体水平,并对每道题的得分情况进行分析,评价学生对每个知识点的掌握情况和运用能力,找出薄弱环节,以便对原教学计划进行调整和改进。总之,通过科学的考核评价和反馈,促进教学质黾不断改进和提高。
[参考文献]
[1]茆诗松.概率论与数理统计[M].北京:高等教育出版社,2006.
[2]徐荣聪.游华.课程案例教学法.宁德师专学报,2008,(2):145~147
论文摘要:以培养21世纪林业应用型人才为目标,对农林类统计基础课从教学内容、教学手段、教学方法以及对学生学习的考核方法进行了系列改革与思考,结果表明:在教学中应针对不同专业,实行不同的教学要求;应教会学生如何把实际问题归结为恰当的统计问题,同时应培养学生利用统计理论和统计软件分析解决实际问题的能力。
统计类课程是高等林业院校大部分专业开设的一门交叉性、实用性很强的专业基础课。主要包括概率论与数理统计、应用概率统计、试验设计与统计分析以及多元统计分析等。这类课程不仅是很多后续专业课(如测树学)的学习基础,而且,由于统计学提供了丰富的数据分析方法,几乎所有的实际部门和研究领域都有它的应用。科研、经济、生物、林业、医药、环境、工程、管理、工农业生产等都是统计学应用的主要领域。本文根据林业发展的需求,针对目前高等林业院校统计类课程教学中存在的问题,提出一些建议,以供同行参考。
1.现状与问题
历史上,人们习惯把概率统计看成是数学的一个分支,由此采用纯数学的方法研究这门学科。这导致在教学中,教师通常比较注重课程的系统性和逻辑性,偏重于对概念和理论知识的讲解而脱离实际应用。学生也习惯于中学时代的学习方法,死记硬背,生搬硬套而应付考试。结果是考完就丢,连最基本的数据处理能力都缺乏。同时,林业院校的数学教研室与综合性大学或是理工类大学相比,存在很大的差距。主要表现为缺乏科研方面高水平的学科带头人,缺乏能影响决策的高级学术权威,这导致教师参加学术活动的机会很少,信息化教育的研究进展缓慢。最严重的是,统计学作为一门交叉性、实用性很强的学科,他必须与其他专业相结合,服务于其他专业方能显示其价值。但在实践中,上统计课的老师不一定有相关的专业知识,而专业课老师其统计学功底往往不可能很好。如何进行统计学与专业知识的结合,这本身需要引起更多的关注。基于上述问题,笔者在十余年的教学工作中逐步选取了一些新的教学方法对传统的课堂教学做了一些改变,这些尝试主要有以下几个方面。
2.几点建议
2.1引进多媒体辅助教学
最早引进多媒体辅助教学主要是因为传统的“黑板十粉笔”的教学方法信息量小,板书占据了大部分时间,学生的知识面难以得到扩展。为了提高教学内容的广度与深度,也为了与计算机结合,笔者采用了多媒体辅助教学。这个方法在实际应用中确实节约了板书时间,加大信息量,同时多媒体中的图形显示,动画模拟,声像结合的学习环境的确有效地刺激了学生的形象思维。但在学习中也暴露了一些问题:概率统计毕竟有很多需要逻辑推理的知识,对公式的推导若不边板书边讲解,学生很难听懂;而信息量大学生抓不住重点,结果有些学生反映不佳。由此可见,虽然多媒体教学有很多优点,但对于统计教学而言,传统的教学手段也不能忽视。在教学中,应根据教学内容灵活选择采用传统教学方式还是多媒体教学方式,或是采用多媒体与传统教学相结合的教学手段。要以丰富教学内容、提高教学效率为最终的目的来合理选择教学手段。只有这样,才能切实提高教学效率和教学效果。
2.2注重培养学生分析问题和解决问题的能力
传统的教学方式是知识传授型的,教师更多是重视数学基础和各种统计方法的推导,把统计课作为数学课来教授。这样做的结果是学生缺乏统计思想的培养和实际操作能力的训练,重理论轻实用,最终不能把实际问题归结为恰当的统计问题,更谈不上利用合适的统计方法去分析解决。为了改变这一现状,在不影响本课程体系的完整性下,笔者针对部分班级,适当降低概率论部分的难度,仅从直观性、趣味性的角度把概率论作为统计的基础知识加以介绍,而把授课的重点放在数理统计各种方法的介绍和应用上。以西南林学院资源学院地理信息系统02级学生为例,在学到统计部分时,我要求学生分组下去搜集数据(样本),但学生并不懂该如何下手,有的学生将别人分析好的数据也当作原始数据收集大多数学生学了数据处理方法却不会用。为使学生真正学会使用统计的方法处理海量数据并提取有用信息,每学一部分知识,我要求学生使用自己收集的数据实践该种统计方法。例如,在学到样本统计量时,我要求学生逐个计算这些样本统计量,并分析所算值代表样本的何种信息;在学到方差分析时,我请学生检验不同样地的树木其总体均值是否存在显著差异;在学到回归分析时,又让同学们对居民的教育状况与家庭收人进行调查分析,看看二者有无联系。在实践各种统计方法的同时,我向学生传授科学论文的写作知识,要求学生将每部分的分析结果写成论文的形式上交。这些理论联系实际的教学方法要求学生从最基础的数据收集做起,逐步学会使用不同的统计方法分析数据,最后解决实际问题。解决了学生拿到数据却不知从何处人手的难题,提高了学生分析和解决问题的能力。 2.3针对不同专业,实行不同的教学要求
在长期的一线教学中,笔者曾和许多专业老师探讨过数理统计在各专业上的应用,发现了一个重要的事实:即不同专业,对统计教学的要求是不同的。例如,电子与信息技术专业,其对概率论知识的使用就比较多,针对这个专业,就必须强化这部分的知识。而林产化工专业对概率论知识用的相对较少,在数理统计诸多方法中对方差分析使用较多,在有限的学时内,若不在教学内容上体现差异性,学生学习了不能结合专业知识加以运用,学习的积极性也难以提高。因此,笔者认为,在保持概率统计内容的完整性的基础上,应当结合不同专业,在内容的深浅及安排上有所调整,要多与专业老师进行交流,制订适合该专业的教学大纲,因材施教,因人施教。
2.4开设统计实验课
数学实验是随着人类思维、数学理论和计算机等现代科学技术发展而形成的一种独特的研究方法。它将数学直觉、形象思维与逻辑思维结合起来,有利于培养学生应用数学知识借助计算机手段来解决实际问题的综合能力和素质。事实_f:,统计类课程的教学如果不借助计算机这一工具,学生不了解也不会使用统计软件,将会使他们陷人枯燥的计算而忽略了统计分析的功能。其解决问题的能力和速度将大打折扣。目前比较通用的统计软件主要有SPSS,MatIab,SAS等。这些软件语法简练、使用方便,为统计实验课提供了良好的应用平台。试验课能提高教学效果,学生根据理论课上学到的方法、原理在实验课上使用软件完成重复而复杂的计算工作,才能真正提高其解决实际问题的能力。
2.5多方面综合考评提高学生的综合素质
考试是教学过程的一个重要环节,是检验学生学习,评估教学质量的手段。对统计类课程的考核方法,若单纯使用闭卷的方法,学生为应付考试把精力花在概念、公式的记忆上,对实用问题不感兴趣,学生的主动性难以发挥,解决实际问题的能力也难以得到锻炼。为此,我认为学生的考试成绩可由三部分组成:理论部分即概率论可进行闭卷考试;数理统计为实用部分,这部分的考核可以论文形式进行,由学生自己调查数据,利用各种统计方法分析数据并提取有用信息,最后以科学论文的形式提交;实验考核宜上机,考查学生对统计软件使用的熟练程度以及用软件解决实际问题的能力。三部分考试各占一定比例(由老师自定)。这种考核方法即可解决统计课程公式多且计算量大不便闭卷考试的问题,同时可以全面考察学生的学习情况,给出较为客观的成绩。
总之,不管采用何种考核形式,命题的指导思想应结合相关专业,应注重理解而不在于死记硬背,注重考核能力和培养能力,通过不断摸索、创新,选择出能激发学生学习兴趣和反映学生真实学习水平的考核方法。