欢迎来到易发表网!

关于我们 期刊咨询 科普杂志

监测系统论文优选九篇

时间:2023-03-21 17:13:28

引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇监测系统论文范例。如需获取更多原创内容,可随时联系我们的客服老师。

监测系统论文

第1篇

供电电压自动测控系统技术方案和特点

监控模块根据接收到以CAN通讯卡传来的指令来控制电机的停止/启动,同时检测取芯仪供电电源的运行状态,并将电压、电流、温度、运行信息及故障信息等参数通过CAN通讯传给上位机进行处理和显示。电压一次侧由芯片3875发出的移相脉冲控制H桥的IGBT模块,正弦脉宽调制(SPWM)波由SPWM输出模块编程实现,并且实现电机软起动和软停车,驱动负载电机自适应等功能。方案结构(图略)。测控系统特点测控系统采用凌阳公司的16位高速微型计算机SPMC75F2413A为核心,CAN控制器采用MCP2515,CAN驱动器采用TI公司的低功耗串行CAN控制器SN65HVD1040D,通过CAN总线能够实时地检测和传递数据,实现数据通讯和共享,更能够实现多CPU之间的数据共享与互联互通,其它电子元件均选择150℃温度的等级。此外系统还设计有散热器、风扇等。该测控系统具有极高的高温可靠性,能够确保系统在高温环境下可靠工作,控制、检测、显示的实时性好,可靠性高。测控系统采用智能化控制算法软件来实现马达机的高性能运行,其具有效率高、损耗小、噪音小、动态响应快、运行平稳等特点。

硬件电路设计

CAN通信电路检测系统采用SPMC75F2413A凌阳单片机,不集成CAN外设模块,选择外部CAN模块控制器MCP2515,该模块支持CAN协议的CAN1.2、CAN2.0A、CAN2.0BPassive和CAN2.0BActive版本,是一个完整的CAN系统,直接连接到单片机的SPI总线上,构成串行CAN总线,省去了单片机I/O口资源,电路简单,适合高温工作。CAN通信电路原理图(图略)MCP2515输出只要加一个收发器就可以和上位PC机进行CAN通信,收发器采用TI公司生产的SH65HVD140D。电机温度检测电路该系统中供电电源温度的检测由温度传感器PT100来完成。PT100与高频变压器、供电电源散热器、高频电感发热器件的表面充分接触,当器件的温度变化时,PT100的阻值也随之变化,将温度传感器的阻值转换为电压信号,电压信号放大整形送给单片机,再由单片机计算出供电电源各发热点的实际温度。当温度过高,供电电源自动停止运行。同时实时将检测到的各发热点的温度通过CAN通讯发给上位PC机。输入直流电压检测电路检测电路(图略)。供电电源为多电压变化环节,前级变换为AC/DC,仪器要深入井下工作,交流高压从地面通过长达7000m的电缆线供给,直流阻抗(电阻)值约为240Ω,一般由两根电缆导线并联使用[5]。系统不工作时,电缆导线无电流,供电电压相对较高,电机电流约1.5A。系统运行时电缆中有电流,电缆线路就会有压降,电机电流会达到3A。由于采用了高频变压器,变比约18,当负载电流增加1.5A时,原边电流就增加约27A,如果重载,原边电流增加更多,就会拉垮输入电源。所以对输入的一次侧直流电压电流进行监控就非常必要,根据检测值来调整输入的直流高压[6]。检测电路采用的是差分电路采样直流电压,检测时,直流高压加到分压电阻的两端,通过分压电阻运放调理后输入到CPU。

软件设计

CAN通信协议系统CAN总线的节点流程图。上位机向监控模块发送指令帧,帧号为0x11,用来控制电机启停和SPWM输出。监控模块向上位机发送状态帧,帧号为0x21,用来反馈电机的状态信息。软件流程图监控模块根据上位机的指令控制电机的停止/启动,同时检测取芯器供电电源的运行状态,并将参数传给上位机进行显示。软件分为两大模块,主程序模块和定时器T1中断服务模块。主程序模块主要实现上电初始化功能、CAN通讯功能和定时器T1中断设置等功能;定时器T1中断程序模块实现电机参数采样及发送,并能根据CAN总线接收的指令控制输出参数。

实验结果

上述检测系统安装在井壁取芯仪上得以成功实现运行。将安装有检测控制系统的井壁取芯仪整体放在恒温箱里面做加温运行带载实验,恒温箱145℃恒定不变,连续运行24h,每隔0.5h使电机带载运行10min,即电机憋压运行。同时改变电机的给定转速(从500r/m到3000r/m),观测测量的电机实际运行速度稳定,又根据电机的带载运行调整输入直流高温。检测控制系统经高温24h连续运行,电机在空载和带载时能够可靠运行,满足要求。(a)(b)(c)是实验时测得的CAN总线数据帧。(a)为CAN总线数据一帧的数据波形,由10个字节组成。为测控系统CAN总线数据帧发送接收,每隔120ms传送一帧数据。

第2篇

关键词入侵检测系统;CIDF;网络安全;防火墙

0引言

近年来,随着信息和网络技术的高速发展以及政治、经济或者军事利益的驱动,计算机和网络基础设施,特别是各种官方机构的网站,成为黑客攻击的热门目标。近年来对电子商务的热切需求,更加激化了这种入侵事件的增长趋势。由于防火墙只防外不防内,并且很容易被绕过,所以仅仅依赖防火墙的计算机系统已经不能对付日益猖獗的入侵行为,对付入侵行为的第二道防线——入侵检测系统就被启用了。

1入侵检测系统(IDS)概念

1980年,JamesP.Anderson第一次系统阐述了入侵检测的概念,并将入侵行为分为外部滲透、内部滲透和不法行为三种,还提出了利用审计数据监视入侵活动的思想[1]。即其之后,1986年DorothyE.Denning提出实时异常检测的概念[2]并建立了第一个实时入侵检测模型,命名为入侵检测专家系统(IDES),1990年,L.T.Heberlein等设计出监视网络数据流的入侵检测系统,NSM(NetworkSecurityMonitor)。自此之后,入侵检测系统才真正发展起来。

Anderson将入侵尝试或威胁定义为:潜在的、有预谋的、未经授权的访问信息、操作信息、致使系统不可靠或无法使用的企图。而入侵检测的定义为[4]:发现非授权使用计算机的个体(如“黑客”)或计算机系统的合法用户滥用其访问系统的权利以及企图实施上述行为的个体。执行入侵检测任务的程序即是入侵检测系统。入侵检测系统也可以定义为:检测企图破坏计算机资源的完整性,真实性和可用性的行为的软件。

入侵检测系统执行的主要任务包括[3]:监视、分析用户及系统活动;审计系统构造和弱点;识别、反映已知进攻的活动模式,向相关人士报警;统计分析异常行为模式;评估重要系统和数据文件的完整性;审计、跟踪管理操作系统,识别用户违反安全策略的行为。入侵检测一般分为三个步骤:信息收集、数据分析、响应。

入侵检测的目的:(1)识别入侵者;(2)识别入侵行为;(3)检测和监视以实施的入侵行为;(4)为对抗入侵提供信息,阻止入侵的发生和事态的扩大;

2入侵检测系统模型

美国斯坦福国际研究所(SRI)的D.E.Denning于1986年首次提出一种入侵检测模型[2],该模型的检测方法就是建立用户正常行为的描述模型,并以此同当前用户活动的审计记录进行比较,如果有较大偏差,则表示有异常活动发生。这是一种基于统计的检测方法。随着技术的发展,后来人们又提出了基于规则的检测方法。结合这两种方法的优点,人们设计出很多入侵检测的模型。通用入侵检测构架(CommonIntrusionDetectionFramework简称CIDF)组织,试图将现有的入侵检测系统标准化,CIDF阐述了一个入侵检测系统的通用模型(一般称为CIDF模型)。它将一个入侵检测系统分为以下四个组件:

事件产生器(EventGenerators)

事件分析器(Eventanalyzers)

响应单元(Responseunits)

事件数据库(Eventdatabases)

它将需要分析的数据通称为事件,事件可以是基于网络的数据包也可以是基于主机的系统日志中的信息。事件产生器的目的是从整个计算机环境中获得事件,并向系统其它部分提供此事件。事件分析器分析得到的事件并产生分析结果。响应单元则是对分析结果做出反应的功能单元,它可以做出切断连接、修改文件属性等强烈反应。事件数据库是存放各种中间和最终数据的地方的通称,它可以是复杂的数据库也可以是简单的文本文件。

3入侵检测系统的分类:

现有的IDS的分类,大都基于信息源和分析方法。为了体现对IDS从布局、采集、分析、响应等各个层次及系统性研究方面的问题,在这里采用五类标准:控制策略、同步技术、信息源、分析方法、响应方式。

按照控制策略分类

控制策略描述了IDS的各元素是如何控制的,以及IDS的输入和输出是如何管理的。按照控制策略IDS可以划分为,集中式IDS、部分分布式IDS和全部分布式IDS。在集中式IDS中,一个中央节点控制系统中所有的监视、检测和报告。在部分分布式IDS中,监控和探测是由本地的一个控制点控制,层次似的将报告发向一个或多个中心站。在全分布式IDS中,监控和探测是使用一种叫“”的方法,进行分析并做出响应决策。

按照同步技术分类

同步技术是指被监控的事件以及对这些事件的分析在同一时间进行。按照同步技术划分,IDS划分为间隔批任务处理型IDS和实时连续性IDS。在间隔批任务处理型IDS中,信息源是以文件的形式传给分析器,一次只处理特定时间段内产生的信息,并在入侵发生时将结果反馈给用户。很多早期的基于主机的IDS都采用这种方案。在实时连续型IDS中,事件一发生,信息源就传给分析引擎,并且立刻得到处理和反映。实时IDS是基于网络IDS首选的方案。

按照信息源分类

按照信息源分类是目前最通用的划分方法,它分为基于主机的IDS、基于网络的IDS和分布式IDS。基于主机的IDS通过分析来自单个的计算机系统的系统审计踪迹和系统日志来检测攻击。基于主机的IDS是在关键的网段或交换部位通过捕获并分析网络数据包来检测攻击。分布式IDS,能够同时分析来自主机系统日志和网络数据流,系统由多个部件组成,采用分布式结构。

按照分析方法分类

按照分析方法IDS划分为滥用检测型IDS和异常检测型IDS。滥用检测型的IDS中,首先建立一个对过去各种入侵方法和系统缺陷知识的数据库,当收集到的信息与库中的原型相符合时则报警。任何不符合特定条件的活动将会被认为合法,因此这样的系统虚警率很低。异常检测型IDS是建立在如下假设的基础之上的,即任何一种入侵行为都能由于其偏离正常或者所期望的系统和用户活动规律而被检测出来。所以它需要一个记录合法活动的数据库,由于库的有限性使得虚警率比较高。

按照响应方式分类

按照响应方式IDS划分为主动响应IDS和被动响应IDS。当特定的入侵被检测到时,主动IDS会采用以下三种响应:收集辅助信息;改变环境以堵住导致入侵发生的漏洞;对攻击者采取行动(这是一种不被推荐的做法,因为行为有点过激)。被动响应IDS则是将信息提供给系统用户,依靠管理员在这一信息的基础上采取进一步的行动。

4IDS的评价标准

目前的入侵检测技术发展迅速,应用的技术也很广泛,如何来评价IDS的优缺点就显得非常重要。评价IDS的优劣主要有这样几个方面[5]:(1)准确性。准确性是指IDS不会标记环境中的一个合法行为为异常或入侵。(2)性能。IDS的性能是指处理审计事件的速度。对一个实时IDS来说,必须要求性能良好。(3)完整性。完整性是指IDS能检测出所有的攻击。(4)故障容错(faulttolerance)。当被保护系统遭到攻击和毁坏时,能迅速恢复系统原有的数据和功能。(5)自身抵抗攻击能力。这一点很重要,尤其是“拒绝服务”攻击。因为多数对目标系统的攻击都是采用首先用“拒绝服务”攻击摧毁IDS,再实施对系统的攻击。(6)及时性(Timeliness)。一个IDS必须尽快地执行和传送它的分析结果,以便在系统造成严重危害之前能及时做出反应,阻止攻击者破坏审计数据或IDS本身。

除了上述几个主要方面,还应该考虑以下几个方面:(1)IDS运行时,额外的计算机资源的开销;(2)误警报率/漏警报率的程度;(3)适应性和扩展性;(4)灵活性;(5)管理的开销;(6)是否便于使用和配置。

5IDS的发展趋

随着入侵检测技术的发展,成型的产品已陆续应用到实践中。入侵检测系统的典型代表是ISS(国际互联网安全系统公司)公司的RealSecure。目前较为著名的商用入侵检测产品还有:NAI公司的CyberCopMonitor、Axent公司的NetProwler、CISCO公司的Netranger、CA公司的Sessionwall-3等。国内的该类产品较少,但发展很快,已有总参北方所、中科网威、启明星辰等公司推出产品。

人们在完善原有技术的基础上,又在研究新的检测方法,如数据融合技术,主动的自主方法,智能技术以及免疫学原理的应用等。其主要的发展方向可概括为:

(1)大规模分布式入侵检测。传统的入侵检测技术一般只局限于单一的主机或网络框架,显然不能适应大规模网络的监测,不同的入侵检测系统之间也不能协同工作。因此,必须发展大规模的分布式入侵检测技术。

(2)宽带高速网络的实时入侵检测技术。大量高速网络的不断涌现,各种宽带接入手段层出不穷,如何实现高速网络下的实时入侵检测成为一个现实的问题。

(3)入侵检测的数据融合技术。目前的IDS还存在着很多缺陷。首先,目前的技术还不能对付训练有素的黑客的复杂的攻击。其次,系统的虚警率太高。最后,系统对大量的数据处理,非但无助于解决问题,还降低了处理能力。数据融合技术是解决这一系列问题的好方法。

(4)与网络安全技术相结合。结合防火墙,病毒防护以及电子商务技术,提供完整的网络安全保障。

6结束语

在目前的计算机安全状态下,基于防火墙、加密技术的安全防护固然重要,但是,要根本改善系统的安全现状,必须要发展入侵检测技术,它已经成为计算机安全策略中的核心技术之一。IDS作为一种主动的安全防护技术,提供了对内部攻击、外部攻击和误操作的实时保护。随着网络通信技术安全性的要求越来越高,入侵检测技术必将受到人们的高度重视。

参考文献:

[1]putersecuritythreatmonitoringandsurveillance[P].PA19034,USA,1980.4

[2]DenningDE.AnIntrusion-DetectionModel[A].IEEESymponSecurity&Privacy[C],1986.118-131

[3]张杰,戴英侠,入侵检测系统技术现状及其发展趋势[J],计算机与通信,2002.6:28-32

第3篇

汽轮机热工监视和保护系统以及由其所组成的信号报警系统和保护控制系统,是保护汽轮机安全运行的重要设备。随着机组容量的增大,汽轮机安全监视和保护就显得更加重要,同时对汽轮机的安全监视和保护装置动作的准确性和可靠性也提出了更高的要求。原有及早期设计的保护系统大多为继电器及硬件逻辑搭接的,可靠性较差,维护量较大。汽轮机振动及监控保护系统是为了监视汽轮机在运行过程中主轴和轴承的振动状况及大轴弯曲而设计的,它由振动监视组件,速度监视组件和偏心监视组件三部分组成,每个部分可由用户的需要提供若干组件,以完成用户需要监视的测点。其中监视振动组件和偏心监视组件配涡流传感器,用来监视主轴的振动状况,涡流传感器的输出信号大小为-4—-20V,它是一个含有直流分量的交流信号,速度监视组件配电磁式传感器,用来监视轴瓦的振动情况。

2汽轮机监测保护系统监视组件

振动监视组件是以单片机为核心研制的,为了对输入信号进行有效的处理,要求所选用的CPU速度快,集成度高,指令系统简单,根据目前世界上在线控制发展的趋势和市场上提供的产品,监视组件选用8098单片机。8098单片机为准16位单片机,外接芯片简单,具有16位处理速度,典型指令的执行时间为2μs,它的主要特性:十六位中央处理器;具有高效的指令系统;集成了采样保持器和四路十位A/D转换器;具有高速输入口HSI,高速输出口HSO和脉宽调制输出PWM;具有监视定时器,可以在产生软硬件故障时,使系统复位,恢复CPU工作。监视保护系统的设计方法和步骤分为:系统总体设计,硬件设计,软件设计。它是指根据测量系统的功能要求和技术特性,反复进行系统构思,综合考虑硬件和软件的特点,原则:能用软件实现的就不用硬件,但值得一提的是软件会占用CPU的时间。为了缩短研制周期,尽可能利用熟悉的机型或利用现有的资料进行改进和移值,并采用可利用的软硬件资源,然后根据系统的要求增加所需要的功能,在完全满足系统功能的同时,为提高系统工作的可靠性和稳定性,还必须充分考虑到系统的抗干扰能力。

3汽轮机监测保护系统的硬件设计

主要是指单片机的选择和功能扩展,传感器的选择,I/O口的选择,通道的配置,人机对话设备的配置。振动监视组件由三个相互联系的部分组成,分别是显示板模块,主板模块,继电器板模块。矢量监视组件原理图如下:

模拟通道设计:

8098内有一个脉冲宽度调置器PWM可用来完成数字信号至模拟信号的转换。我们将PWM用于产生键相输入比较电路的界限电压。同时8098单片机的HSO也可以软件编程构成脉冲调宽输出,我们利用HSO.0、HSO.1构成两路脉冲调宽输出,用于通频振幅及1信频振幅模拟量输出.脉冲调宽输出信号TTL电平的调制脉冲,经CD4053缓冲电平变换.使信号振幅变为0-5V,再经过RC滤波,得到直流电压信号,再经过一级同相跟随,实现阻抗变换,得到要求的0-2.5V或1-5V的直流电压信号输出,其输出阻抗R0=0.电压信号经V/I转换,便可得到0-10mA或4-20mA电流输出。

显示接口:

显示接口采用8279芯片,可直接与8098单片机相连,其工作方式可通过编程设定。接口电路采用了通用的可编程键盘,显示器接口器件8279,它是键盘显示控件的专用器件,与单片机接口简单方便,其工作方式可通过编程设置。8279的监测输入线RL0-RL7工作再选通输入方式,可输入8个拨动开关信号,以选择该系统的工作方式。

I/O通道扩展:

8098单片机本身只有32根I/O线,其中16根作为系统地址、数据总线,8根HIS/HSO线,4根模拟量输入线,还有4根多功能线,可用作TXD、RXD以及外中断输入、脉宽调制输出,这些I/O口各有用途,监视组件为了进行参数设定及响应系统监视组件信号,必须进行I/O功能扩展。当单片机提供的I/O接口不够用时,需要扩展I/O接口以实现TSI功能。8098有四个端口即p0、p2、p3、p4,共32根I/O线,监视保护系统设计时,p0一部分作为模拟量输入线;p2一部分作为串行口,另有一部分作为脉冲宽度调制输出;p3作为数据总线和地址总线低八位复用;p4的一部分提供地址总线的高八位。I/O通道扩展电路:一种以8155作为接口,另一种以8255作为接口。接口主要有8155,8255,8279,EPROM选用的是2764,掉电保护用的是EPROM2864。8155和8255是作为普通的输入和输出口使用的,它们主要用于设定开关状态的输入及报警状态的输出。8279是显示接口,用来控制显示器的显示,监控保护系统显示部分采用的是由128根发光二极管组成的两根光柱,每根光柱对应一根通道。8279的回扫线RL0-RL7用作选通输入方式。

4汽轮机监测保护系统的软件设计

主要是应用软件的设计。根据系统功能要求设计。在设计应用软件时,必须考虑到单片机的指令系统和软件功能,并与硬件统筹考虑。单片机的系统开发,其软件设计不可能相对于硬件而独立,其软件总要与硬件结合在一起,实现要求的功能。当应用系统总体方案一经审定,硬件系统设定基本定型,大量的工作将是软件系统的程序设计与调试。振动监视组件软件的设计采用模块编程法,模块法的优点是把一个较为复杂的程序化为编制和装配几个比较简单的程序,使程序设计容易实现。由于块与块之间具有一定的独立性,如果其程序模块需要修改或变动时,将只影响模块内部程序,而对其它程序模块的影响很小,或基本没影响就很方便,它主要由下面几个部分组成:标准的自检程序模块;采样以及通道计算程序模块;设定值调整程序模块,报警程序模块。

自检程序模块:该模块检查系统的电源电压是否正常,系统将以故障码的形式提示用户:系统电源出现故障,并指出哪一路电源处于故障状态。系统得自检功能由上电自检,循环自检和用户请求自检三部分组成。在自检过程中,系统解除所有形式的保护。如果自检过程中发现故障,那么监视保护系统一直处于自检状态,直至用户排除了故障为止。

采样及通道值计算程序模块:本程序模块首先对监视保护系统处于的状态进行判断,这些状态是指监视保护系统是否处于通道旁路和危险旁路,如果监视保护系统某一通道处于旁路状态,那么解除继电器报警,系统正常灯熄,旁路灯亮,同时通道指示值为0。如果监视保护系统某一通道没有被旁路,则启动该通道的A/D转换,随后将采集的数字信号进行滤波,计算得到通道值。模拟量输出通道输出代表该通道值的标准电流值0-10mA.DC或4-20mA.DC。

设定值调整程序模块:设定值包括警告设定值和危险设定值两个,它存放在EPROM2864中,即使断电,存放在其中的值也不会丢失,显示面板上的“警告”或“危险”键按下,棒状光柱上将显示警告或危险设定值,如果要对设定值进行调整,还需要按下主线路板上的设定开关,再按下面板上的“警告”或“危险”键,最好按下系统监视面板上的“?”或“?”,即可对设定值调整。在软件中,当设置点调整后,AF标志置零,程序根据AF标志判断是否需要将条调整值重新写入2864。

报警程序模块:如果两通道的测量值之差即差值超过警告或危险设定值,那么监视保护系统将处于警告或危险状态,这时显示面板上的警告或危险报警灯亮,同时将驱动警告或危险继电器,如果处于危险旁路状态,那么仅仅是两个通道的危险灯亮而危险继电器则不动作。如果监视组件处于通电抑制状态,那么将解除所有形式的报警。

显示程序模块:显示程序模块执行显示双通道的测量值、报警值以及四种故障代码。在8098内部RAM中,开设一个具有16个寄存器单元缓冲区,如80H-8FH。将缓冲区对半分成两部分,每一部分的寄存单元寄存一个通道的显示代码。将显示代码送到8279的显示缓冲区,8279可以自动扫描显示。

中断程序模块:T1的溢出周期作为输出脉冲信号的宽度,改变HSO高低电平的触发时间就可以改变方波的占空比,从而改变输出电流大小。

“大型汽轮发电机组性能监测分析与故障诊断软件系统”在仿真机上运行,能对仿真机运行工况进行监视,也能通过实时数据库与实际机组的计算机联网,对实际运行机组工作状况进行监测和分析等。

参考文献

[1]周桐,徐健学.汽轮机转子裂纹的时频域诊断研究[J].动力工程,2002,(9).

[2]刘峻华,黄树红,陆继东.汽轮机故障诊断技术的发展与展望[J].汽轮机技术.2004,(12).

[3]陆颂元,张跃进,童小忠.机组群振动状态实时监测故障诊断网络和远程传输系统技术研究[J].中国电力,2005,(3).

[4]冯小群,杜永祚.新型动态测试与信号分析系统的研制[J].华北电力学院学报,2004,(6).

[5]李录平,邹新元.小波变化在振动故障奇异信号检测中的应用[J].汽轮机技术,2005,(2).

第4篇

网络安全管理技术

目前,网络安全管理技术越来越受到人们的重视,而网络安全管理系统也逐渐地应用到企事业单位、政府机关和高等院校的各种计算机网络中。随着网络安全管理系统建设的规模不断发展和扩大,网络安全防范技术也得到了迅猛发展,同时出现了若干问题,例如网络安全管理和设备配置的协调问题、网络安全风险监控问题、网络安全预警响应问题,以及网络中大量数据的安全存储和使用问题等等。

网络安全管理在企业管理中最初是被作为一个关键的组成部分,从信息安全管理的方向来看,网络安全管理涉及到整个企业的策略规划和流程、保护数据需要的密码加密、防火墙设置、授权访问、系统认证、数据传输安全和外界攻击保护等等。在实际应用中,网络安全管理并不仅仅是一个软件系统,它涵盖了多种内容,包括网络安全策略管理、网络设备安全管理、网络安全风险监控等多个方面。

防火墙技术

互联网防火墙结合了硬件和软件技术来防止未授权的访问进行出入,是一个控制经过防火墙进行网络活动行为和数据信息交换的软件防护系统,目的是为了保证整个网络系统不受到任何侵犯。

防火墙是根据企业的网络安全管理策略来控制进入和流出网络的数据信息,而且其具有一定程度的抗外界攻击能力,所以可以作为企业不同网络之间,或者多个局域网之间进行数据信息交换的出入接口。防火墙是保证网络信息安全、提供安全服务的基础设施,它不仅是一个限制器,更是一个分离器和分析器,能够有效控制企业内部网络与外部网络之间的数据信息交换,从而保证整个网络系统的安全。

将防火墙技术引入到网络安全管理系统之中是因为传统的子网系统并不十分安全,很容易将信息暴露给网络文件系统和网络信息服务等这类不安全的网络服务,更容易受到网络的攻击和窃听。目前,互联网中较为常用的协议就是TCP/IP协议,而TCP/IP的制定并没有考虑到安全因素,防火墙的设置从很大程度上解决了子网系统的安全问题。

入侵检测技术

入侵检测是一种增强系统安全的有效方法。其目的就是检测出系统中违背系统安全性规则或者威胁到系统安全的活动。通过对系统中用户行为或系统行为的可疑程度进行评估,并根据评价结果来判断行为的正常性,从而帮助系统管理人员采取相应的对策措施。入侵检测可分为:异常检测、行为检测、分布式免疫检测等。

企业网络安全管理系统架构设计

1系统设计目标

该文的企业网络安全管理系统的设计目的是需要克服原有网络安全技术的不足,提出一种通用的、可扩展的、模块化的网络安全管理系统,以多层网络架构的安全防护方式,将身份认证、入侵检测、访问控制等一系列网络安全防护技术应用到网络系统之中,使得这些网络安全防护技术能够相互弥补、彼此配合,在统一的控制策略下对网络系统进行检测和监控,从而形成一个分布式网络安全防护体系,从而有效提高网络安全管理系统的功能性、实用性和开放性。

2系统原理框图

该文设计了一种通用的企业网络安全管理系统,该系统的原理图如图1所示。

2.1系统总体架构

网络安全管理中心作为整个企业网络安全管理系统的核心部分,能够在同一时间与多个网络安全终端连接,并通过其对多个网络设备进行管理,还能够提供处理网络安全事件、提供网络配置探测器、查询网络安全事件,以及在网络中发生响应命令等功能。

网络安全是以分布式的方式,布置在受保护和监控的企业网络中,网络安全是提供网络安全事件采集,以及网络安全设备管理等服务的,并且与网络安全管理中心相互连接。

网络设备管理包括了对企业整个网络系统中的各种网络基础设备、设施的管理。网络安全管理专业人员能够通过终端管理设备,对企业网络安全管理系统进行有效的安全管理。

2.2系统网络安全管理中心组件功能

系统网络安全管理中心核心功能组件:包括了网络安全事件采集组件、网络安全事件查询组件、网络探测器管理组件和网络管理策略生成组件。网络探测器管理组件是根据网络的安全状况实现对模块进行添加、删除的功能,它是到系统探测器模块数据库中进行选择,找出与功能相互匹配的模块,将它们添加到网络安全探测器上。网络安全事件采集组件是将对网络安全事件进行分析和过滤的结构添加到数据库中。网络安全事件查询组件是为企业网络安全专业管理人员提供对网络安全数据库进行一系列操作的主要结构。而网络管理策略生产组件则是对输入的网络安全事件分析结果进行自动查询,并将管理策略发送给网络安全。

系统网络安全管理中心数据库模块组件:包括了网络安全事件数据库、网络探测器模块数据库,以及网络响应策略数据库。网络探测器模块数据库是由核心功能组件进行添加和删除的,它主要是对安装在网络探测器上的功能模块进行存储。网络安全事件数据库是对输入的网络安全事件进行分析和统计,主要用于对各种网络安全事件的存储。网络相应策略数据库是对输入网络安全事件的分析结果反馈相应的处理策略,并且对各种策略进行存储。

3系统架构特点

3.1统一管理,分布部署该文设计的企业网络安全管理系统是采用网络安全管理中心对系统进行部署和管理,并且根据网络管理人员提出的需求,将网络安全分布地布置在整个网络系统之中,然后将选取出的网络功能模块和网络响应命令添加到网络安全上,网络安全管理中心可以自动管理网络安全对各种网络安全事件进行处理。

3.2模块化开发方式本系统的网络安全管理中心和网络安全采用的都是模块化的设计方式,如果需要在企业网络管理系统中增加新的网络设备或管理策略时,只需要对相应的新模块和响应策略进行开发实现,最后将其加载到网络安全中,而不必对网络安全管理中心、网络安全进行系统升级和更新。

3.3分布式多级应用对于机构比较复杂的网络系统,可使用多管理器连接,保证全局网络的安全。在这种应用中,上一级管理要对下一级的安全状况进行实时监控,并对下一级的安全事件在所辖范围内进行及时全局预警处理,同时向上一级管理中心进行汇报。网络安全主管部门可以在最短时间内对全局范围内的网络安全进行严密的监视和防范。

第5篇

在今天,我国科学技术蓬勃发展带动了各个领域有不同程度的进步和发展。煤矿行业之所以能够有很大程度的进步,与科学技术的有效运用分不开。目前应用于煤矿开采中的煤矿安全监控系统就是最好的证明,其合理而有效的运用,大大提高了煤矿开采的安全性。但煤矿安全监控系统并没有达到非常完美的程度,其也存在多想不可忽视的问题。具体表现为。

1.1传感器质量和性能较差

传感器作为安全监测监控系统的重要组成部分,保证其质量和性能是高效运用安全监控检测系统的关键之一。但事实上,目前我国大多数煤矿开采中所应用的安全监测监控系统就存在传感器质量和性能较差的情况,传感器质量和性能较差具体表现为载体催化元件的应用效果差,容易影响传感器的正常使用;传感器制作工艺技术比较落后,会降低传感器的使用性等。因各种因素而促使传感器的质量和性能降低是安全监测监控系统当前存在的问题之一,需要通过有效的措施来调整和优化,才能够保证传感器合理而有效的应用。

1.2通信协议不规范

所谓的安全监测监控系统通信协议不规范是指其缺乏符合矿井电气防爆等特殊要求的总线标准,所以现有生产厂家的监控系统的通信协议几乎都采用各自专用的,互不兼容。此种情况的存在使得我国安全监测监控系统的通信协议表现出不规范这一特点。而通信协议不规范的情况将会无法实现资源贡献,相应的安全监测监控系统的更新和升级就会受到一定的影响和阻碍,安全监测监控系统的应用效果受到一定程度的抑制。所以说,煤矿安全监测监控系统通信协议不规范也是导致此系统无法高效运用的因素之一。

2增强煤矿安全监控监测系统运行效果的有效措施

煤矿开采是一项危险性较大的工作,在进行煤矿开采作业的过程中存在很多危险因素,一旦危险因素未得到有效的控制,很容易导致安全事故发生,不仅影响煤矿正常开采,还会导致人身受损。安全监测监控系统合理而有效的运用能够大大改善此种现状,当然是是以保证安全监测监控系统高效运用为前提。如何才能够实现煤矿安全监测监控系统高效运用?作者结合相关的资料,提出以下几点建议。

2.1研发高质量、高性能的传感器

传感器作为煤矿安全监控监测系统的重要组成部分之一,其合理而有效的应用能够提高安全监测监控系统的运行效果。而我国目前所应用的安全监测监控系统的传感器质量和性能不佳,直接影响安全监测监控系统的合理应用。针对此种情况,作者建议应当充分利用不断创新的科学技术来研发高质量,高性能的传感器,将其安装在安全监测监控系统中,以此来提高监控系统的应用性,为安全高效的煤矿开采创造条件。

2.2统一化规范化通信协议

上文中已经充分说明当下我国煤矿安全监测监控系统通信协议不规范,通信协议不规范将造成设备重复购置、系统补套受制于人和不能随意进行软硬件升级改造等后果。为了尽量避免此种情况出现在安全监测监控系统中,应当对安全监测监控系统通信协议进行调整和约束,促使其规范化和统一化,从而保证我国所应用的安全监测监控系统能够实现资源共享,升级安全监控检测系统,使其合理而有效的应用。当然,实现通信协议统一化和规范化并不是非常容易的,需要我国推出很多规范性规程和标准对通信协议进行规范化处理。只有推出统一的。规范的通信协议,才能够保证安全监测监控系统能够采用统一的数据库、统一的数据格式、统一的升级模式、统一的系统资源,促使煤矿安全监测监控系统能够更加高效的应用。

2.3专家诊断、决策系统的优化

尽管目前应用于煤矿开采中的安全监测监控系统具有良好的应用性,但同时它也存在不可忽视的问题,只有有效的处理安全监测监控系统存在的问题,才能够真正意义上实现系统的优化,促使其性能更强,应用效果更好。如何才能够实现煤矿安全监测监控系统的优化?作者建议有此方面的专家对安全监测监控系统进行详细的、深入的、全面的诊断,准确的诊断出煤矿安全监控监测系统存在的质量问题,并针对煤矿安全监测监控系统存在的问题进行详细的分析,制定合理的改善措施,改变系统功能单一、简单的情况,使其性能、质量等方面得到良好的优化,更加合理的应用于煤矿开采中。

3结束语

第6篇

运动目标检测是将运动的目标(如车辆、人等)从视频图像序列中提取出来,是视频的后续处理,如日标分类、目标跟踪以及行为理解等机路视觉的高级应用的纂础。本文采用的运动目标枪测算法结合了混合高斯建模和帧间差分算法,以及形态学的闭运算.为后续处理提供1个连通的、去噪的运动目标二值图。混合高斯建模m是通过使用K(一般取3一S)个高斯概率密度函数来精确地量化图像中每个像索的值。K个高斯分布按照优先级进行排序,然后与像素伍进行匹配判断,若匹配,则用该像素值对高斯模型进行均值、方筹的更新:若像素值与K个分布都不匹配,则新增加一个高斯分布,均值为当前的像素俏.方差初始化为一个较大的值:对十未匹配的高斯分布,其均值和方差保持不变。排匹配完一个像素,需修改所有的高斯分布的权重系数,对于匹配的分布模型.则增大其权重;对于不匹配的分布模型,则降低其权重。因此,K个高斯分布表征的是图像序列中最频繁出现的像素值的模型,即背景模型,只要选取一个合适的阂放.就可把这些高斯模型合成一幅背景图像,进而得到运动的前景图。混合高斯建模能够动态地维护和更新背景,对环境具有较强的适应性,尤其是解决了背景环境受频繁扰动,如下雨、树叶扰动、水波纹等情况一下.难以提取的问题。帧间差分w}的原理是对视频图像序列中相邻两帧或者足多帧作差分运算.利用两帧图像之间的差异来提取运动目标。帧间差分算法简单,运算速度快.对环境有较强的的适应性,但是,帧图2显示的是运动前景提取的效果。可以看出,图(b)是高斯背景建模算法提取的前景图.图中右上角有一辆车运动速度慢,且显示的颜色大部分是相同的黄色,且高斯背景更新地比较慢,因此,该车大面积被判定为背景,检测的效果不佳。图(c)是帧间差分算法提取的前景图,图中检测的汽车内部存在空洞部分图(d)是结合两种算法得到的运动二值图.由图可知,本文提出的弊法规避I单独使用高斯背景建模和帧间差分算法的缺陷,融合r两种算法的优势,得到一个更准确的前景图。图(e)是经过闭囚运算输出的连通、消噪的二位图。

2.车辆识别算法

车辆识别的主要内容是通过分析交通视频图像,从中获取车辆的特征,用于从运动物体'R”提取出汽车。本文车辆的识别是通过对汽车轮廓的再分析,提取出轮廓内连通区域的面积和包括汽车轮廓的最小四边形的长宽比值作为汽车的特征量,进行汽车的识别。轮廓提取算法输入的是一幅运动二值图,目的是对连通的图像进行边界跟踪,从而得到一个有序的、压缩的、表征目标轮廓的边界点集。本文的轮廓提取算法采用的是八领域的边界跟踪算法。图中“P”代表当前像素点,其周围8个像素点为点P的八邻域,八邻域的方向码如图3所示。八领域边界跟踪算法c5},}i先,系统从左到右,土到下对二值图像进行扫描。如果点P(i.J一”为0o”且点P(i.J>为‘'t',则记点P(i.,l)为边界跟踪的起始点PO,同时,设八领域的搜索方向码dir的初值为70其次,按逆时针方向依次判断当前点尸的八邻域像素值是否为“I"。若当前搜索的像素r}不为.t.,则d介十主,继续搜索,直到找到下一个边界点,记为汤.同时记下该像素对应的坐标值和力‘向码。母一个新边界点的搜索,都要设置d行起始方向,dir的设置由公式1给出。不断重复这个步骤,直到pn=p0。,边界搜索结束,得到一个闭合的目标轮廓。dir=(dlr+7)mod6,diro为偶数(dir+6)mod氏dir为奇数(I)本文的设计中,搜索的足连通域最外层的边界,即物体的轮廓。轮廓数据的压缩.采用的是压缩同一方向的点集,只用直线的两端点来表示的方法。得到了物体的轮廓后,进而计算该轮廓内连通区域面积的大小以及包围轮廓的最小四边形的长宽比值,用十从众多的运动物体中筛选出汽车。图9所示是汽车的识别结果,输入的二值图像(a)中,包含了行人和自行车以及大片的噪声,利用本文提出的汽车识别算法,有效地在这些物体中提取出了汽车,如图(h)所示。

3.车辆跟踪算法

目标跟踪算法需要具备实时性以及稳定性,用于跟踪的目标特征ipk不仅满要具备尺度变化、旋转不变性,还要求数据最小,具备独特性。目前存在的跟踪算法如粒子滤波算法、Camshift}0}算法,[1标特征量如灰度直方l妇、角点、纹理等信息都不适宜路面车辆的跟踪。本文提出了质心跟踪算法。2i#辆汽车都有自己独一无几的行}i}1轨迹,同一时刻不Il的汽车其质心位置相差比较大,日_同一辆汽车在前后两ipr;i的质心位置变化较小。此外,可以采用前后两帧物体质心的距离来进行汽车的匹配和跟踪。质心是包围物体轮廓的最小四边形的中心。运动物体以前后两帧质心的欧式距离作为匹配和跟踪的依据,通过设置一较小的距离闽值n,对该趾离进行判断。在距离阂值范围内的认为是同一物体。质心匹配是通过两个双链表的查询和比较来实现的。两个链表.一个是.}y前链表,一个是历史链表,分别用于保存当前帧和前一帧所有物体轮廓对应的信息。要匹配前后两l随对应的物体,就要在历史链表中找到与当前链表一一对应的物体,并用当前链表的数据对历史链表中对应物体节点的信息进行更新。因此,历史链表随时问更新,动态地保存着运动物体的信息。匹配算法的关键在于维护和更新历史链表。历史链表的更新操作分为3种悄况.一是对于新出现的物体,则应在历史链表中添加该物体对应的节点信息:二是对于消失的物体,则应该在链表中删除对应的节点信息:二是对于找到匹配的物体,则应用当前链表中物体的信息对历史链表中对应的节点信息进行更新:因此.历史链表的更新午要完成保持对原有物体跟踪的同时,动态地添加新物体和删除消失的物体。图4是质心跟踪算法的效果图。图中显示的是连续4帧的汽车跟踪画而,跟踪到的汽车以不同的数字编码表示。图巾,同一辆汽车的标号始终未变.说明,路面车辆这4帧图像中得到了准确地匹配和跟踪。因此,本文提出的质心跟踪算法实时、有效、且准确无误。

4.功能模块设计

该模块主要实现交通监控中常用的功能。如车流量的统计、车辆行驶方向的判断、车辆行驶速度的分析:记录车辆的违章行为,如逆向行驶、违章停车、越线等。基于车辆的匹配和跟踪功能的实现,结合其他图像分析的技术,还能便捷地实现其它路面车辆分析技术中所用到的功能。图5显示了一个简单的车辆监测系统的界面,画面中包含了3个信息、:跟踪到的汽车镶-辆汽车以其质心处的数字标号表示):汽车的行驶方向(以矩形框不同的颜色区分,黑表示向右行驶,白色表示向左行驶):不同行驶方向下的车流量(画面的左上角和右上角以对应的颜色表示出车流量的统计情况)。

5.结束语

第7篇

1.1系统数据库设计

数据库是数据管理系统的核心和基础。根据地铁隧道保护区变形监测的内容和特点对系统数据库进行合理设计,使所创建的系统数据库成为存储信息与反映信息内在联系的结构化体系,从而有效、准确、及时地完成系统所需要的各项功能。数据库设计包括数据库结构设计、数据库表设计和数据库安全设计。

1.1.2数据库表的设计

系统数据库表的设计主要包括项目信息表的设计、用户信息表的设计、监测点属性表的设计、水平位移监测成果表的设计和沉降位移监测成果表的设计。

1.1.3数据库安全设计

数据库的安全是指对数据库出现问题的预防和处理,包括以下几部分:1)数据库备份与恢复数据库的备份方式有两种:一是全库备份(将整个数据库全部信息进行备份);二是增量备份(对变化的数据进行实时备份)。数据库的恢复同样包含以上两种方式。在数据库的备份和恢复过程中,可以根据需要选择合适的方式。2)数据库权限数据库权限管理按所属角色和角色权限进行管理,即将所有用户按使用数据的情况划分为不同的角色,每一个角色再赋予相应的权限。

1.2系统功能设计

根据系统需求和数据库设计将系统功能分为项目管理、监测点信息管理、监测成果管理及系统管理四大模块,每个功能模块都由具体的子模块来支持和实现。

1.2.1项目管理

1)可以通过在数据库表中输入或者程序中录入添加项目信息,可以预览所有项目信息并选择要打开的项目名称。2)可以对具体某一项目信息进行预览,包括项目名称、工程概况、工程地质概况、基坑与地铁位置关系等信息的查看、修改并进行保存。

1.2.2监测点信息管理

1)监测点属性预览。查看监测点的点名、测段、车道、具置、里程、材料等属性信息。

2)监测点查询。在程序界面选择监测点的属性数据类别和属性值条件,即可查询出满足用户要求的测点信息,还可以将查询结果导出到EXCEL中进行编辑打印。3)监测点管理。可以对查询到的监测点属性信息进行删除、修改;可以添加新的监测点并保存至数据库中,用户可以在系统程序界面的相应空格中填入数值并保存至系统数据库中,也可以将EXCEL格式或文本数据格式的数据自动导入系统数据库存并保存,在导入数据之前只需将所要添加的数据按照指定格式存储至EXCEL或记事本即可。监测点分布图在项目管理界面打开具体项目后会自动加载,管理者可以很直观地看到监测点的分布状况。

1.2.3监测成果管理

监测成果的输入和管理方法与监测点的输入和管理方法相似。由于测量作业的规范性,系统不允许对监测成果进行修改;监测成果的输入可以通过手动输入和数据文件导入两种方法保存至系统数据库中,添加数据过程中,程序动态显示更新的数据和添加后数据库中所有的数据信息;通过选择测点的主要属性值,设置测期、两期变化量、累计变化量等监测成果条件来查询满足用户要求的测点成果,查询结果可导入EXCEL表进行保存、打印。监测成果分析:通过应用不同的数据分析方法和方式对各种监测数据进行处理分析,同时,根据前期数据和相关辅助资料进行预报分析,其中,分析过程和方式采用表格和曲线图形方式进行。

1)监测点稳定性分析应用相关稳定性分析方法(如统计分析方法、经验分析方法)并结合监测现场实际,对不同类型监测点稳定性进行分析评判。

2)图表分析通过不同的图表形式(以沉降监测为例,如沉降量曲线图、沉降速率曲线图、沉降速率对比曲线图等)进行分析,更加直观地了解地铁结构的变形情况和趋势。

3)监测数据预报分析根据稳定性分析及监测历期的成果,应用相应的预报方法(如经验方法、统计方法等),结合相关资料对变形趋势进行预报分析,为用户掌握结构变形的趋势提供参考。

1.2.4系统管理

1)系统用户管理

用户角色与管理权限设置,保证系统数据安全;用户登录系统的过程必须在系统日志中进行登记,包括用户名、登录时间、对系统的操作过程及在系统中滞留的时间等。系统管理员定期将系统用户使用情况向主管领导汇报。在征得主管领导同意后,系统管理员可以根据实际情况添加用户或提升、降低某些用户的使用级别,必要时可以禁止某些用户的使用权限。

2)系统日志管理

本系统为系统管理员提供系统日志的检查和备份功能,使系统管理员通过对系统日志的查看,了解系统的使用情况及存在的不足和问题,及时处理系统存在的隐患,保证系统的高效运行。

3)数据库备份与恢复

为了保证管理系统或计算机系统经灾难性毁坏后,能正常恢复运行,必须进行数据库的备份与恢复。系统采用自动备份与人工备份相结合的方式,确保系统的安全稳定运行。1.2.5退出若相关操作尚未完成或存在不确定因素,提示用户完成相关操作,避免操作失误。

2系统的开发与应用

此次研究开发工作是在充分了解地铁隧道保护区变形监测内容和过程的基础上完成的。在开发过程中,通过需求分析、系统建设目标,制定了系统开发计划、方案和技术路线,通过具体了解变形监测信息管理分析过程确定了系统开发平台与工具。系统以WindowsXP/7为操作平台,利用可视化编程语言编写客户端程序,利用客户端程序将数据导入到服务器的数据库存储,对服务器数据进行处理。数据库采用的是ACCESS2003数据库,它具有强大的数据处理与分析能力,有较高的可伸缩性及可靠性。系统的开发采用VisualBasic6.0作为开发语言,应用ADO技术与数据库有机的联系在一起。

在数据库设计阶段,根据监测项目和数据管理及数据分析的需要详细设计了数据库表。同时在数据库安全方面也做了详细设计。在功能设计阶段,根据管理分析监测数据的流程划分了系统具体的功能结构,并对每个功能模块进行了详细的设计。在设计数据管理模块过程中,应用ADO对象与SQL联合数据库编程技术,完成了VB对数据库的管理,实现了VB中对数据库的查询、添加、删除、修改等功能。为了保证数据库的安全,还增加了对数据库的恢复与备份,以防造成监测成果和项目信息的丢失。在设计数据分析模块过程中,图表分析采用MSchart控件生成监测成果曲线图(以沉降监测为例),包括沉降量曲线图、沉降速率曲线图、过程线图等,通过结合平差数据及相关曲线图的分析,可以更加直观地了解地铁隧道保护区的变形状况。

系统应用过程:按照系统数据库中数据表的字段格式建立正确的数据库表,根据实际情况确定工程项目信息、测点属性信息和监测成果信息。将整理后的信息数据分别录入数据库中;通过系统连接数据库,对项目信息、测点属性信息和监测成果信息进行管理,并对监测成果进行分析成图和监测预报分析,并分析地铁隧道结构变形情况。该系统在南京某地铁保护区监测信息管理中得到了很好应用,实际应用表明该系统具有如下特点:

1)系统应用ADO技术将数据库与系统有机结合在一起,使VisualBasic语言与ACCESS数据库的优势得到最大的发挥,客户端界面简洁,操作简单,功能强大,真正实现了地铁隧道保护区变形监测内外业一体化操作。2)数据管理方便,具有高效的数据库,统计、查询功能界面友好。3)数据分析模块采用曲线图更加直观地呈现出地铁隧道保护区变形的过程与趋势,并运用回归分析模型对变形进行预测。4)系统开发应用的成功为今后地铁隧道保护区安全监测专家系统的研究开发积累了一定的经验,值得二次开发和完善。

3结束语

第8篇

系统概述

待检测车辆需要经过检测通道,如图1所示。将红外摄像头放置于通道中间,获得车底部热感应图像。为了获取较广的视角以及较小形变的图像,红外摄像头安放的仰角为40°。由于监控室与检测通道的距离较远,且通道数较多,因此需要通过光端机将所获取的视频传输给监控室控制台PC机。检测软件根据本文提出的检测算法对捕获到的图像进行分析,若判断车辆底部藏人则向系统发出报警信号,以便其通过控制安全杆做出相应拦截措施。视频传输示意图,如图2所示。

软件设计

软件设计采取的基本实现策略是先定位后检测。首先进行运动车辆检测,其次根据车辆的自身特征,定位可疑目标在车辆底部可能的藏匿部位。当区域定位完成后,对该区域进行感兴趣区域(RegionOfInterest,ROI)的选取。最后对ROI进行检测,判断是否藏人。检测系统流程图如图3所示。通过对车辆的扫描检测过程,查出藏匿于车底的可疑目标,实现自动检测。

1图像去噪

图像去噪是图像预处理的一个环节,也是整个图像预处理中的关键一步。在对运动车辆定位的过程中,针对车辆与环境对比度大、信息丰富,受噪声影响较小等特点,只需对图像采用常规的均值滤波进行处理。而在检测目标时,为了在去除噪声的同时,最大程度的保存目标的边缘信息,采用了基于开关控制的组合滤波。滤波器的基本思路是将图像划分为三类区域:孤立噪声点区、平坦区和边缘信息区。其主要处理原则为:孤立噪声点区的灰度与其邻域往往有较大的差异,可按照椒盐噪声进行处理,选用中值滤波器;平坦区往往包含高斯噪声,可采用加权均值滤波器加以消除;边缘信息区包含了图像的细节信息,应作为保留区域不做处理。将处理后的三个区域加以合成,即得到了去噪后的图像。

滤波器性能的关键在于分类开关的设计,借用顺序统计滤波的思路,将滤波器设计成N×N的掩模算子,N为奇数,使该掩模在整个图像上滑动,对它所覆盖的图像中的像素点xi进行排序,得到序列x(1),x(2)……x(N^2),利用排序结果设计下面的分类规则:a、b为排序后的位置偏移量,Ta和Tb为阈值。基于开关控制的组合滤波算法就包括这么几个步骤:(1)对掩模覆盖的图像像素点进行排序;(2)利用分类规则进行三个区域划分;(3)对孤立噪声点区进行中值滤波,对平坦区进行均值滤波;(4)将处理后的区域合成,得到去噪图像。

2车辆检测及目标区域的定位

2.1运动车辆检测

对于实时性要求较高的场合,运动目标的检测一般用背景差分法和帧间差分法。背景差分法是利用序列中当前帧图像与背景图像的差分来消除背景、提取运动目标区域的一种技术。背景差分法可根据实际情况设定差分阈值,所得到的结果直接反映了运动目标的大小、形状和位置,可以得到比较精确的运动目标信息,但该方法应用于红外目标检测时易受环境温度、天气等外界条件变化的影响。帧间差分法是利用视频序列中连续的两帧或多帧图像的差异来检测和提取运动目标。该方法对场景的变化不太敏感,适用于动态环境,稳定性好。不足之处是:1)无法抽取完整的运动目标,仅能得到运动目标的边界;2)运动目标提取效果依赖于帧间时间间隔的合理选择。本文针对待检测目标所处背景在短时间内为静态背景,而较长时间内背景会发生动态变化的特点,并结合两种方法的优点,设计出改进的背景差分法。算法原理图如下:其中F(K)为当前帧,B为通过隔帧帧差法求得的当前背景图像,D为差分结果图,R为二值化图像。

该算法继承了帧间差分法对场景变化不太敏感的优点,能准确更新背景差分法所需要的当前背景图,进而提取出完整的运动目标。下面是采用基本背景差分法和改进后背景差分法,在不同时候背景更新保存的背景图片。基本背景差分法在系统长时间运行之后,会出现背景更新出错,检测流程紊乱,从而产生检测系统失效现象。而采用改进的背景差分法,即使是经过长时间运行,系统也能确保背景更新的准确。

2.2目标区域定位

由于运动车辆特性已知,在其运动的过程中,可以通过对目标局部图像进行特征提取,定位可疑区域。目标的一般特征包括点、边缘、区域和轮廓。点特征对图像的分辨率、旋转、平移、光照变化等有很好的适应性,常用的点特征描述算子如SIFT、SURF等都具有很高的精度,但这些算法复杂度高,难以满足实时检测的要求,并且红外图像特征点往往较少,采用点描述算子并不能达到令人满意的效果。因此本文根据实际目标的特性,采用了对线、面特征进行描述的方法来标注运动车辆。运动的车辆受车底传动抽、燃烧室以及空间限制,目标一般躲藏于车厢后轮位置。

为了准确定位目标区域,目标区域进入视场之前的运动车辆局部特征需要重点描述。车厢底部进入摄像头视场时如图6(a)所示。为了提取车辆的直线特征,需要对车底图像进行边缘提取。常见的边缘检测算子有:Laplace、Sobel以及Canny等。由于Laplace算子常常会产生双边界,而Sobel算子又往往会形成不闭合区域,对后面直线检测都会产生不利的影响。

Canny算子克服了上述算子的缺陷,能够尽可能多的标识出图像中的实际边缘,并且能够将较小的间断点进行连接,因此能够形成较为完整的边界线。Canny算子是最优的阶梯型边缘检测算法,本文采用选用Canny算子进行图像的边缘检测。边缘检测结果如图6(b)所示,较为明显且具有特征不变性的为直线边缘。当可能藏人的区域进入摄像头视场时,车底图像的直线特征随之消失(如图6(c)),因此可以利用图像的直线特征来定位后轮检测区域。Hough变换检测直线是较为理想的直线检测方法,由PaulHough于1962年提出。经过Hough变换后,根据已知的目标直线位置、角度、长度,选取符合条件的直线。图6(b)、(c)中白色粗线为所检测出的目标直线。

受环境因素的影响,车底直线特征可能并不明显,因此单一的直线特征提取难以满足检测精度要求,如图7所示情况。实验发现车底面特征不易受到周围环境、温度的影响,因此可以进行面特征提取。选定区域为图6(b)中虚线框内,满足要求的特征为梯度小于一定阈值,即具有平滑特征,判断方法是计数虚线框内边缘点数,判断其是否小于给定阈值。采用Sobel内核计算图像差分其中src为输入图像,dst为输出图像,xorder为x方向的差分阶数,yorder为y方向的差分阶数。

由于当车底藏人时,其进入摄像头视场会阻断车底原有的平滑特征如图6(d),因此当平滑特征消失时,这时判断是否符合定位位置特征,若符合即可进行定位检测;若车底没有藏人时,车底平滑特征会持续到车尾部位才结束,这时只需判断到达车尾就可以结束检测流程。

实验表明,基于这种车箱底部中间区域光滑特征去定位检测对环境适应能力强,而基于两侧直线特征定位的方法又能够比较准确的定位到目标区域。综合上述两种思路,设计出的定位流程如下图8所示:应用中是否满足直线以及平滑特征是通过检测连续多帧图像来实现的,这样可以尽量减少偶然因素导致的定位失败。

3藏人的检测

3.1基于高亮度特征的ROI的选取

如图9为定位之后的待检测目标图。为了排除车底本身热源的干扰(如车轮)缩小检测范围,必须对原图进行ROI的选取。行进过程中的车轮一般在红外图像中会呈现高亮度特征。基于此特征,从图片左右两侧分别搜索列像素平均灰度值最高的部分(最可能为车轮内钢圈),加上一定偏移量即可求出ROI左边界位置(PositionofLeft,PL)。ROI下边界线也采用同样的方法,上边界采用默认值。当车轮不明显时采用默认感兴趣区域即可下面图9为采用固定ROI选取和基于高亮度特征的ROI提取结果对比。实验表明,这种基于具体特征的感兴趣区域提取方法,对于车轮出现的偏差具有良好的适应性,即使车辆行驶时发生较大的偏移也能做出正确的ROI选取。

3.2目标的检测

对于已知形状、外貌以及姿态等特征目标检测采用特征匹配、直方图反向投影等方法都能取得较为理想的效果。但对于躲藏姿势未知并且本身形状较为模糊的红外目标,采用匹配的方式效果并不明显。

红外目标与目标区域的周围存在一定的灰度差异,改变了原有区域梯度小、较为平滑的特征。针对这种改变采用评价函数f(x,y)对目标区域进行评估,若达到一定的阈值,即可预判车底藏人。评价函数依据不同区域可疑信息权重不一样而选定(ROI内中间部位权重较高、四周权重较低),表示如下其中T为警戒阈值,Warnflag为预警标志。具体检测步骤如下:

1)对原图的感兴趣区域进行组合滤波处理;

2)对感兴趣区域进行边缘梯度检测(图10);

3)采用评价函数对目标区域进行评分并判断是否超过给定阈值;

4)重复步骤1-3,若连续三帧超出阈值则发出报警指令,否则表示无人。对应的报警截图如图11所示

实验结果

为了验证系统工作的稳定性以及算法的可靠性,在不同的货检口岸、时间段、天气条件进行了多次实验。测试结果如下。结果表明,在不同月份检测误报率十分低,漏报率也能满足相应指标。设计出的车底藏人自动检测系统有很高的实用价值,达到了预期的目标,说明了这套检测系统的可靠性和准确性。软件界面如图12所示。

第9篇

关键词温湿度监测;网络通讯;数据传输;XSL/B-08BS1

1引言

档案馆库房的温度、湿度变化,是影响档案材料老化变质的重要因素。因此,控制档案馆库房的温度、湿度是档案馆库房管理的重要任务,一旦档案馆库房的温湿度失控,就会对档案材料的安全管理产生重大隐患。传统的方法是通过人工进行检测,对不符合温度及湿度要求的库房进行通风、去湿和降温等工作,但这种方法费时费力,效率低并且测试的温度和湿度误差大、随机性大。为此,我们研制了档案馆库房管理的远程智能监测系统。这个系统能够对档案馆内每个库房中各库位的温度及湿度的变化情况进行实时自动监测,并可以对历史数据进行分析比较,一旦出现异常现象便于及时处理,有效地提高了档案管理的预见性和工作效率。

2系统结构设计

本系统的硬件以XSL/B-08BS1巡检仪和主控PC为核心,其设备包括交换机、显示器、打印机、键盘、鼠标等等。系统结构图如图1所示。

图1系统结构原理图

3系统工作原理

各个档案馆库房通过XSL/B-08BS1巡检仪实时采集数据[1],同时,XSL/B-08BS1巡检仪通过网络将数据实时传输主控PC,供工作人员监测。其中,主控PC对XSL/B-08BS1巡检仪数据的读取主要是利用串行通信控件ComPortLibrary。

3.1ComPortLibrary控件

ComPortLibrary作为第三方控件可以非常方便的扩展到Delphi语言环境中,其中主要的事件与方法为:ComPortRxChar,WriteStr和ReadStr。

WriteStr和ReadStr分别为写串行数据和读串行数据,ComPortRxChar为串行口接收数据事件。在使用中,通常把ReadStr函数设置在ComPortRxChar事件处理函数中,详细使用方法请阅读ComPortLibrary的帮助文件。

3.2XSL/B-08BS1巡检仪

XSL/B-08BS1数据巡检采取了基于TCP/IP协议的网络成熟技术[2],能实现中远距离数据传输。仪表的基本功能单元包括模拟量输入,输出,开关量输入,输出,参数存储器。这些单元都能通过不同的命令与计算机进行数据传送,计算机也能通过控制权转移的方法,直接操作仪表的模拟量输出和开关量输出:由于仪表内部有独立的输出缓冲区和计算机控制输出缓冲区,因而可实现控制的无扰动的切换[3]。

3.3通信协议

XSL/B-08BS1巡检仪使用的通讯命令有很多,包括通讯和测量等参数值的设置,现以读取巡检仪测量值命令为例[3]加以说明:

命令#AABBDD

说明本命令读回指定仪表1个或数个通道的测量值和告警状态。

#为定界符。

AA(范围00~99)表示指定仪表二位十进制地址;

BB(范围01~96)表示需读回测量值的开始通道号的二位十进制数;

DD可省略(范围01~96)表示需读回测量值的结束通道号的二位十进制数。

例:命令:#010103

回答:=+123.5A=-051.3B=+045.7@

本命令读取地址为01的仪表第01通道至03通道的测量值。XSL/B-08BS1的具体通讯协议请参考使用手册。

4系统软件设计

温湿度监测系统软件采用C/S结构,以Delphi作为开发环境,利用SQLSever2000作为后台数据库,并利用第三方控件ComportLibrary进行读取数据。本软件最大的好处是类似Windows的图形界面和操作方法,使用多窗口管理技术,简单、易操作。其完成的主要功能是:数据实时监测,历史数据分析、报警设置、设备管理、输出报表和图形显示等。系统结构框图如图2所示。(1)用户管理模块:主要是对操作软件的用户进行管理,包括用户的添加删除,密码管理,用户权限管理等等。

(2)系统设置模块:是对监控系统软件基本参数的设置,例如温度、湿度的报警临界参数设置,各个库房所在传感器的地址参数的设置。

(3)数据显示模块:对档案馆各个库房温度、湿度的实时采集。实现窗体图3所示。

图3温湿度实时采集显示窗体

(4)设备控制模块:当温度、湿度超过预设值以后,对报警开关的控制,以及对档案馆内温度调节设备,湿度调节设备的控制。

(5)历史数据分析:这个模块的主要功能是对以往各个库房温湿度记录的查看、分析、统计,可以通过软件针对每一年、每一月、每一天的平均温度或者某一天某一时刻的温度,湿度进行查询,并且包括了对历史数据温度,湿度曲线的观测,以及各个时段温度,湿度报表的打印。其中曲线绘制的功能实现窗体如图4所示。

图4温湿度曲线的显示窗体

5结束语

采用先进的温湿度监测系统,再加上安装优质的温湿度调制设备,是加强档案室库房温湿度管理的重要条件,分析研究温湿度变化规律,调控档案室库房的温湿度,是企业的档案安全管理的重要保证。

参考文献

[1]郑国祥.谈档案室库房温湿度自动监控系统的应用[J].浙江档案.2004,(01):34-34

[2]张秀德.利用XSL/B-08BS1实现环境参数采集监测的应用[J].农机化研究.2006,(1):199-201

[3]张程志.基于ComPortLibrary控件的Delphi串行数据采集系统的软件设计[J].水利科技与经济.2007,(8):614-615

[4]王文珍,张成利.Delphi语言编程通过串口实现温度测量[J].计算机与现代化2005,(7):52-54

[5]张秀德.基于ComPortLibrary的Delphi串行数据采集系统的软件设计[J].工业控制计算.2004,(12):53-57

相关文章
相关期刊