欢迎来到易发表网!

关于我们 期刊咨询 科普杂志

工业废水处理论文优选九篇

时间:2023-03-21 17:16:07

引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇工业废水处理论文范例。如需获取更多原创内容,可随时联系我们的客服老师。

工业废水处理论文

第1篇

1.1普通工业废水特点

普通工业废水量大、污染物成分复杂,不同行业产生的废水所含污染物成分区别较大,有的废水温度高,容易造成环境的热污染;有些具有明显的酸碱度;有些含有易燃、易爆、有毒物质。针对工业废水中所含的不同成分,选择不同的处理工艺,往往需要物理、化学、生物代谢等多种不同工艺组合处理。

1.2放射性废水特点

具有放射性的重金属元素是放射性废水处理的主要去除对象,而放射性核素只能通过自然衰变来降低其放射性,所有的水处理方法都不能改变其固有的放射性衰变特性。在进行放射性废水处理的时候,我们只有通过各种方法将放射性核素浓缩到较小体积的废物内,降低处理后可排放废水的放射性核素浓度。

2普通工业废水处理方法

为了使工业废水得到净化,一般将废水中所含的污染物分离出来,或将其转化为无害、稳定的物质。我们按照处理原则,将工业废水处理方法中物理化学法分为吸附法、离子交换法、膜分离法、汽提法、吹脱法、萃取法、蒸发法、结晶法等。离子交换法在普通工业废水处理中,主要用以回收贵重金属离子。膜分离技术在70年代后大规模应用到各个工业领域及科研中,发展非常迅速。蒸发法处理多用于酸、碱废液的回收。自然界存在种类繁多的具有氧化分解有机物能力的微生物,这些微生物具有数量巨大、分布范围广、繁殖力强等特点,被广泛应用于制革造纸、炼油化工、印染纺织、食品制药等行业的废水处理中。

3放射性废水的处理方法

放射性核素使用任何水处理方法都改变不了其固定的放射性衰变特性,其处理一般都是遵循以下两个基本原则:①将放射性废水排入水体,通过稀释和扩散达到无害水平。主要适用于极低水平的放射性废水的处理。②将放射性废水浓缩后,将其浓缩产物与人类的生活环境长期隔离,任其自然衰减。对高、中、低水平放射性废水均适用。目前国内外普遍做法是对放射性废水进行浓缩处理后贮存或固化处理。

3.1蒸发法

蒸发浓缩法具有较高的浓缩倍数和去污因子,可用于处理高、中、低放废水。尉凤珍等利用真空蒸发浓缩装置处理中低水平核放射废水,对总α和总β的去污因子能达到104量级,出水满足国内放射性废水排放标准。

3.2化学沉淀法

化学沉淀法主要通过投加合适的絮凝剂,然后与废水中的微量放射性核素发生沉淀后,将放射性核素转移并浓缩到体积量小的沉淀底泥中。在进行化学沉淀法时主要投加铝盐、铁盐、磷酸盐、苏打、石灰等,同时可投加助凝剂,如粘土、活性二氧化硅等加快凝结过程。罗明标等的试验结果显示氢氧化镁处理剂具有良好的除铀效果,特别适合酸溶浸铀后的地下低放射性含铀废水的处理。

3.3离子交换法

目前离子交换主要处理低放废水,包括有机离子和无机离子两种交换体系。此法特点是操作方便、设备简单、去除效率高且减容比高,适用于含盐量低、悬浮物含量少的水体。国内外研究都表明离子交换剂对Cs的有很高的吸附容量。

3.4膜分离技术

膜处理方法是处理放射性废水相对经济、高效、可靠的方法,此法具有出水水质好、物料无相变、低能耗、操作方便和适应性强等特点等特点,膜技术的研究比较广泛。美国、加拿大许多核电站采用反渗透和超滤工艺处理放射性废水。

3.5生物处理法

生物处理法包括植物修复法、微生物法。微生物治理低放射性废水是20世纪60年代开始研究的新工艺,国内外都有人开展研究微生物富集铀的工作。美国研究人员发现一种名为Geobactersulfurreducens的细菌能够去除地下水中溶解的铀,Geobacter能够还原金属离子,从而降低金属在水中的溶解度,使金属以固体形式沉淀下来,因此,这种细菌有可能被用于放射性金属的生物处理。生物法处理流程复杂,处理周期长,运行管理难度大,国内核电厂还未采用生物法处理放射性废水。

4放射性废水和普通工业废水处理方法比较

工业废水中污染物成分复杂多样,我们采用单一的处理方法很难达到完全净化的效果,因此需要我们寻找适合的工艺进行处理。其中废水处理工艺的组成需要遵循先易后难的原则,先除去大块垃圾和漂浮物质,然后依次去除悬浮固体、胶体物质及溶解性物质。放射性废水与普通工业废水处理的一个根本区别是:能够用物理、化学或者生物方法将普通工业废水的一些有毒物分解破坏,转化为无毒物质,例如六价铬、氰、有机磷等;而用这些方法无法破坏放射性核素,不能改变其衰变辐射的固有特性,只能靠其自然衰变来降低直至消失其放射性。物理、化学或物理化学方法一般是普通工业废水处理中的预处理或深度处理方法,主要处理方法采用生物处理法。而物理化学法是目前放射性废水处理的主要方法。有些处理方法只适用于处理普通工业废水,而较难应用于处理放射性废水。

5结论

第2篇

1.1机械格栅

机械格栅主要用于拦截废水中的大尺寸悬浮物,保证后续处理构筑物、设备的稳定运行,并有效减轻处理负荷。格栅间隙为10mm,栅宽为0.7mm。

1.2集水井

集水井尺寸为6.0m×6.0m×3.0m,有效水深为2.7m,有效容积为97.2m3。

1.3调节池

调节池用于调节水量,均化水质。为避免悬浮物沉淀,池内设置潜水搅拌机搅拌。调节池尺寸为30m×20m×6.5m,有效水深6.0m,有效容积3600m3,水力停留时间为10.5h。

1.4初沉池

初沉池为辐流式,直径为21m,池边水深2.0m,有效容积667m3,表面负荷为1.0m3/(m2•h)。初沉池内设置周边传动刮泥机,转速为3.1m/min,电机功率为0.55kW。必要时投加亚铁盐进行预处理。

1.5水解酸化池

由于废水可生化性不高,采用水解酸化池对其进行水解酸化处理,以将期中难降解的复杂有机污染物分解为易降解的简单有机物,提高废水的可生化性。水解酸化池尺寸为46m×24m×6.5m,有效水深6.0m,有效容积6600m3,水力停留时间为20.0h。水解酸化池内设置弹性立体填料,体积为4500m3。

1.6CASS反应池

通过PLC编程自动控制CASS(循环活性污泥法)反应池的运行。CASS反应池4格并联,单格尺寸为40m×14m×6.0m,有效水深5.5m,污泥负荷为0.08kg/(m3•d)。运行周期为8h,进水1.5h,曝气3.5h,沉淀1.0h(曝气0.5h后),排水1.5h。

1.7混凝反应池

在混凝反应池中投加粉末活性炭和PAC药剂,利用活性炭的吸附和PAC的混凝沉淀作用去除废水中的有机物。混凝反应池尺寸为4m×4m×5.5m,有效水深5.0m,有效容积80m3,水力停留时间为0.25h。

1.8机械加速澄清池

利用机械加速澄清池机械搅拌的提升作用来完成泥渣回流和接触反应。机械加速澄清池直径为8.5m,池总深度为6.8m,分为第1絮凝池、第2絮凝池和分离室,总停留时间为2.5h。池内设置1台搅拌设备,搅拌叶轮直径为1.4m,电机功率为7.5kW。同时设置1台带有减速机的机械刮泥设备,刮臂直径为5.2m,电机功率为1.5kW。

1.9除铁除锰滤罐

在除铁除锰滤罐内曝气,通过氧化和滤层过滤及滤料表面细菌的生物化学作用去除铁和锰。除铁除锰滤罐3台,直径为3m,填料为锰砂,滤速为10.6m/h。

1.10清水池

清水池用于储存清水及提供除铁除锰滤罐反冲洗水。清水池尺寸为14m×10m×5.5m,有效水深5.0m,有效容积560m3,水力停留时间为2.1h。

2运行结果分析

该废水处理工程调试稳定运行半年,在此期间,对其运行效果进行了考察。

2.1对COD的去除效果在系统正常运行过程中

初沉池、水解酸化池、CASS反应池、澄清池和滤罐的平均出水COD分别约为1600、1500、110、80、55mg/L,整个系统COD总去除率可达97.3%,处理效果较佳。

2.2对BOD5的去除效果

废水BOD5的沿程变化如图3所示。由图3可知,在系统正常运行过程中,初沉池、水解酸化池、CASS反应池、澄清池和滤罐的平均出水BOD5分别约为440、540、25、18、10mg/L,整个系统BOD5总去除率可达97.8%,处理效果较佳。

2.3对SS的去除效果在系统正常运行过程中

初沉池、水解酸化池、CASS反应池、澄清池和滤罐的平均出水SS分别约为240、450、70、40、30mg/L,整个系统SS总去除率可达90.0%,处理效果较好。

2.4对色度的去除效果

废水色度的沿程变化。在系统正常运行过程中,初沉池、水解酸化池、CASS反应池、澄清池和滤罐的平均出水色度分别约为600、400、80、40、30mg/L,整个系统色度总去除率可达96.3%,处理效果较好。

3运行费用分析

第3篇

[论文摘要]染色废水属于典型的难生化降解废水,如何低成本、高效率的对其处理,且保证出水的稳定达标,一直是许多环境保护工作者的研究目标。本文首先对国内外染色废水处理的技术和研究方向进行了综合概述,并对各类工艺进行了比较分析,归纳出一般染色废水的主要处理工艺技术路线。

一、研究背景和意义

纺织工业是我国的传统支柱工业之一,也是出口创汇较多的行业之一,目前我国占有15%左右的国际市场份额,是世界上最大的纺织品出口国。经过多年建设,纺织工业基本成为一个门类较齐全、布局较合理、原料和设备基本立足于国内、生产技术达到一定水平的工业部门。产业综合发展能力不断增强,已形成棉、毛、丝、麻、化纤、服装、纺织机械等行业较为完整的系列体系。

纺织工业按加工的原料、产品的品种和产品的加工用途等不同,主要分为上游、中游、下游三类产业,纺织工业的上游产业主要指各类纤维生产和加工,如天然纤维的棉花、羊毛和各类化学纤维等生产领域;中游产业指纺纱、织布、染色等生产领域;下游产业主要指服装加工等生产领域。

染色行业作为纺织工业中的中游行业,在纺织工业中起到承上启下的作用,即将各类纤维加工制造的坯布,通过染色和印花工艺生产出各类带色彩和图案的织物。在染色业中,棉纺染色业是最大的行业。染色行业作为湿法加工行业,其生产过程中用水量较大,据不完全统计。我国染色废水排放量约为每天300万~400万立方米,染色厂每加工100米织物,产生废水量3~5立方米。而且,染色废水成份复杂,含有的多种有机染料难降解,色度深,对环境造成非常严重的威胁。

随着工业化的不断深入,全球性的环境污染日益破坏着地球生物圈几亿年来形成的生态平衡,并对人类自身的生存环境存在威胁。由于逐渐加重的环境压力,世界各国纷纷制定严格的环保法律、法规和各项有力的措施,我国作为世界大国,对环境保护也越来越重视,并向国际社会全球性环境保护公约作出了自己的承诺。

二、废水处理方法分类

根据使用技术措施的作用原理和去除对象,废水处理法可分为物理处理法、化学处理法和生物处理法三类。具体如下:

1.废水的物理处理法

利用物理作用进行废水处理,主要目的是分离去除废水中不溶性的悬浮颗粒物。主要工艺有:

(1)格栅和筛网格栅是一组平行金属栅条制成的有一定间隔的框架。把它竖直或倾斜放置在废水渠道上,用来去除废水里粗大的悬浮物和漂浮物,以免后面装置堵塞。筛网是穿孔滤板或金属网制成的过滤设备,用以去除较细小的悬浮物。

(2)沉淀法利用重力作用,使废水中比水重的固体物质下沉,与废水分离。主要用于(a)在尘砂池中除去无机砂粒(b)在初见沉淀中去除比水重的悬浮状有机物(c)在二次沉淀中去除生物处理出水中的生物污泥(d)在混凝工艺以后去除混凝形成的絮状物(e)在污泥浓缩池中分离污泥中的水分,浓缩污泥。此法简单易行而且效果好。

(3)气浮法在废水中通入空气,产生细小气泡,附着在细微颗粒污染物上,形成密度小于水的浮体,上浮到水面。主要用来分离密度与水接近或比水小,靠重力无法沉淀的细微颗粒污染物。

(4)离心分离利用离心作用,使质量不同的悬浮物和水体分离。分离设备有施流分离器和离心机。

2.废水的化学处理法

(1)酸性废水的中和处理

酸性废水处理可以用投药中和法、天然水体及土壤碱度中和法、碱性废水和废渣中和法等。药剂有石灰乳、苛性钠、石灰石、大理石、白云石等。他的优点是:可处理任何浓度、任何性质的酸性废水。废水中允许有较多的悬浮物,对水质水量的波动适用性强,中和剂利用率高,过程容易调节。缺点:劳动条件差、设备多、投资大、泥渣多且脱水难。天然水体及土壤碱度中和法采用时要慎重,应从长远利益出发,允许排入水体的酸性废水量应根据水体或土体的中和能力来确定。

(2)碱性废水和废渣中和法

投酸中和法可用药剂:硫酸、盐酸、及压缩二氧化碳(用二氧化碳做中和剂,由于PH值低于6,因此不需要PH值控制装置)酸性废水及废气中和法如烟道气中有高达24%的二氧化碳,可用来中和碱性废水。其优点可把废水处理与烟道气除尘结合起来,缺点是处理后的废水中硫化物、色度和耗氧量均有显著增加。清洗由污泥消化获得的沼气(含25%—35%的二氧化碳气体)的水也可用于中和碱废水。

3.生物处理法

利用微生物可以把有机物氧化分解为稳定的无机物的这一功能,经常采用一定人工措施大量繁殖微生物。

(1)好氧生物处理法

应用好氧微生物,在有氧环境下,把废水中的有机物分解成二氧化碳和水的方法,主要处理工艺有:活性污泥法、生物滤池、生物转盘、生物接触氧化等,这种方法处理效率高,应用面广。

(2)厌氧生物处理法

应用兼性厌氧菌和专性厌氧菌在无氧条件下降解有机污染物,最后生成二氧化碳、甲烷等物质的方法。主要用于有机污泥、高浓度有机工业废水的处理。如啤酒厂、屠宰厂。

(3)自然生物处理法

应用在自然条件下生长,繁殖的微生物处理废水的方法。工艺简单,建设费用和运行成本都比较低,但其净化功能受自然条件的限制,处理技术有稳定塘和土地处理法。

三、染色污水处理系统的工艺设计

在染色污水处理系统的工艺设计中往往遇到以下问题:(1)工程设计人员大都是仅仅了解废水水质的情况下,根据自己的工程经验和直觉进行设计,这样往往造成工程缺陷,使建成的处理系统处理废水不能达标排放;(2)在有些设计中,因为对出水的达标要求严格,使设计出的工艺建设费用和运行费用偏高;(3)在许多现有的处理系统中,由于所要处理的水质发生改变,原有工艺不能针对目前的水质进行有效的处理。以上的这些都涉及到污水处理系统的优化改造和优化管理运行问题。

如何优化污水处理工艺,降低污水处理成本,提高污水处理效果,对于污水处理有着极其重要的意义。必须指出的是,染色废水处理系统的优化改造是一个非常错综复杂的问题,从目的上它不仅要基于污水水质分析,按照技术和经济的要求,在条件允许的范围内,利用各种方法,找出最佳的设计工艺方案,并在设计工况条件下,找出最佳的设施组合和最佳工艺参数,而且还要在污水的成份和水量一定幅度变动的情况下,找出相应的优化运行措施和最少运行成本。而在各染色废水水质各异、水量大小不一的实际工况下,要求得到一个能严格意义上普遍性的染色废水优化处理系统是不可能的,某一污水处理系统可能对某企业的废水处理是最优,但它对其他的染色厂可能就并不能做到最优,因此本论文对染色废水处理系统优化研究只是为提出一个系统优化改造和优化运行的概念和思路,并不是要提出一个能对所有染色废水有最优处理效果的处理系统。

四、系统工艺改造的总体思路

污水处理厂废水的水质为含有一定量难生物降解物质和颜色的有机废水,各染色子行业排放的废水所含污染物质不同,其相应的治理工艺流程也不同。对染色废水处理,工程上一般用物化法和生化法或两种方法相结合的处理方法。物化处理有见效快、水力停留时间短的优势,但其处理费用高、污泥产量大、污泥处理困难、存在二次污染的隐患。虽然臭氧氧化、活性碳吸附、电解等方法有较好的脱色效果,但它们较高的运行费用却使厂家无法承受。但前述的几种方法都具有稳定性好的特点。生物处理因具有处理成本较低,并能大幅度去处有机污染物和一定色度的特性使得染色废水治理采用生物治理作为主要治理单元己成为共识。但结合园区污水处理厂目前的运行现状及操作工人素质,为确保污水处理厂处理出水的稳定达标排放,因此改造扩建工艺的设计思想以强化物化处理的原则,以生物处理工艺为重心,尽量提高强化生物处理的作用。鉴于污水处理厂接受的染色废水综合性废水,是典型的难生化降解的有机废水,水质性质有其特殊性,而且各有关企业生产废水排放的水质水量的不稳定性,以及污水处理厂的运行成本及运行负荷。因此必须要有针对性的废水处理工艺,才能达到较好的处理效果。在选择处理工艺前,应在分析废水水质及其组成及对废水所要求的处理程度的基础上,确定各单元处理方法和改造工艺流程,以验证改造工艺的有效性。

五、结论

印染生产废水可生化性差,原污水处理系统又存在着设计、施工不尽合理,管理水平落后等缺陷,从而造成了处理出水污染指标达不到排放标准,运行成本高等后果。染色废水处理系统的优化改造本身就是一个非常错综复杂的问题,而作为集中式染色废水处理厂的优化就更加困难了。从目的上它不仅要在污水水质分析的基础上,按照技术和经济的要求,在条件允许的范围内,利用各种方法,找出最佳的设计工艺方案。并在设计工况条件下,找出最佳的设施组合和最佳工艺参数,而且,还要在污水的成份和水量大幅度变动的情况下,找出相应的优化运行措施和最少的运行成本。但由于客观条件的诸多限制,并且各种印染废水水质各异,水量大小不一的设计情况下,要求得到一个能严格意义上普遍性的染色废水优化方法十分困难,某一污水处理系统可能对某一区域内的废水处理是最优的,但它对其他的企业可能就并不能做到最优。因此,在加强技术创新和知识创新的同时也要为保护我们仅有的水资源提高人类意识,转变观念,为创造一个更好的环境多做努力。

[参考文献]

第4篇

关键词:废水,氨氮,饮用水

 

1.概述

氨氮的存在使给水消毒和工业循环水杀菌处理过程中氯量增大;对某些金属,特别是对铜具有腐蚀性;当污水回用时,再生水中的氨氮可以促进输水管道和用水设备中微生物的繁殖,形成生物垢,堵塞管道和用水设备,并影响换热效率,更严重的是氨氮是造成水体富营养化的重要原因。氨氮存在于许多工业废水中。钢铁、炼油、化肥、无机化工、铁合金、玻璃制造、肉类加工和饲料生产等工业,均排放高浓度的氨氮废水。某些工业自身会产生氨氮污染物,如钢铁工业(副产品焦炭、锰铁生产、高炉)以及肉类加工业等。而另一些工业将氨用作化学原料,如用氨等配成消光液以制造磨砂玻璃。此外,皮革、孵化、动物排泄物等废水中氨氮初始含量并不高,但由于废水中有机氮的脱氨基反应,在废水存积过程中氨氮浓度会迅速增加。不同类的工业废水中氨氮浓度千变万化,即使同类工业不同工厂的废水中氨氮浓度也不完全相同,这取决于原料性质、工艺流程、水的耗量及水的复用等。进入水体的氮主要有无机氮和有机氮之分。无机氮包括氨态氮(简称氨氮)和硝态氮,亚硝态氮不稳定可以还原成氨氮,或氧化成硝态氮。有机氮有尿素、氨基酸、蛋白质、核酸、尿酸、脂肪胺、有机碱、氨基糖等含氮的有机物。在一定的条件下有机氮会通过氨化作用转化成无机氮。免费论文参考网。

2.水体富营养化及其危害

2.1水体富营养化现象及主要成因

“富营养化”是湖泊分类与演化方面的概念,过量的植物性营养元素氮、磷排入水体会加速水体富营养化的进程。水体富营养化现象是指在光照和其它适宜环境条件情况下,水中含有的植物性营养元素氮的营养物质使水体中的藻类过量生长,在随后的藻类植物的死亡以及异样微生物的代谢活动中,水体中的溶解氧逐步耗尽,造成水体质量恶化、水生态环境机构破坏。

当水体中含N>0.2mg/L,含P>0.02mg/L水体就会营养化。水体营养化后会引起某些藻类恶性繁殖,一方面有些藻类本身有藻腥味会引起水质恶化使水变得腥臭难闻;另一方面有些藻类所含的蛋白质毒素会富集在水产物体内,并通过食物链影响人体的健康,甚至使人中毒。如海生腰鞭毛目生物的过度繁殖能使海水呈红色或褐色,即俗称“赤潮”;沟藻属是形成赤潮的常见种类,它们所产生的毒素会被贝类动物所积累,人体食用后会引起严重的胃病甚至死亡。水体中大量藻类死亡的同时会耗去水体中的溶解氧,从而引起水体中鱼虾类等水产物的大量死亡,致使湖泊退化、淤泥化,甚至变浅、变成沼泽地甚至消亡。据统计,我国平均每年有20个天然湖泊消亡。我国广东珠海沿江、厦门沿海、长江口近海水域、渤海湾曾多次发生藻类过度繁殖引起的赤潮,造成鱼类等水产物大量的死亡,使海洋渔业资源遭到的破坏,经济损失严重。而水体一旦富营养化后没有几十年的时间是很难恢复的,有的甚至无法恢复,如美国的伊利湖是典型的富营养湖,科学家估计需要100年才能恢复。

2.2降低水体的观赏价值

通常1mg氨氮氧化成硝态氮需消耗4.6mg溶解氧。水体中氨态氮愈多,耗去的溶解氧就愈多,水体的黑臭现象就越发严重。这就影响了水体中鱼类等水生生物的生存,使其易因缺氧而死亡。富营养的水质不仅又黑又臭,且透明度差(仅有0.2m),往往影响了江河湖泊的观赏和旅游价值。随着改革开放的深入,人民群众的生活水平日趋提高,旅游已成为人们越来越广泛的需求。而水质优良的江河、湖泊、公园是城市景观的重要组成部分,也是人们生活娱乐、游泳、观赏、休闲的最佳场所。但我国的大部分湖泊已呈现出不同程度的营养态。有些通常发黑、发臭,人们已无法在其中游泳、游览了,更观赏不到鱼类在其中嬉戏的情景,大大降低了这些湖泊的利用价值。影响当地人民的生活,并且也严重影响当地的旅游业发展,造成较大的经济损失。

2.3危害人类及生物生存

当水体中pH值较高时。氨态氮往往呈游离氨的形式存在,游离氨对水体中的鱼及生物皆有毒害作用,当水体中NH3-N>1mg/L时,会使生物血液结合氧的能力下降;当NH3-N>3mg/L在24~96h内金鱼及鳊鱼等大部分鱼类和水生物就会死亡。可使人体内正常的血红蛋白氧化成高铁血红蛋白,失去血红蛋白在体内的输氧能力,出现缺氧的症状,尤其是婴儿。当人体血液中高铁血红蛋白>70%时会发生窒息现象。若亚硝酸盐长时间作用于人体可引起细胞癌变。经水煮沸后的亚硝酸盐浓缩,其危害程度更大。免费论文参考网。以亚硝酸盐为例,自来水中含量为0.06mg/L时,煮沸5min后增加到0.12mg/L,增加了100%。亚硝酸盐与胺类作用生成亚硝酸胺,对人体有极强的致癌作用,并有致畸胎的威胁。美国推荐水中亚硝酸盐的最高允许浓度时1mg/L,而我国上海第一医院建议在饮用水中的亚硝酸盐的浓度必须控制在0.2mg/L以下。

水体中的氮营养来源是多方面的,其中人类活动造成的氮的来源主要有以下几方面:1.未经处理的工业和生活污水直接排入河道和水体:这类污水的氨氮含量高,排入江河湖泊,造成藻类过度生长的危害最大。城市污水、农业污水,食品等工业的废水中含有大量的氮、磷和有机物质。据统计,全世界每年施入农田的数千万吨氮肥中约有一半经河流进入海洋。美国沿海城市每年仅通过粪便排入沿海的磷近十万吨。2.污水处理场出水:采用常规工艺的污水处理厂,有机物被氧化分解产生了氨氮,除了构成微生物细胞组分外,剩余部分随出水排入河道,这是城市污水虽经过二级常规处理但河道仍然出现富营养化和黑臭的重要原因之一。3.面源性的农业污染物,包括废料、农药和动物粪便等。

3.氨氮废水处理的研究现状及主要处理技术

氨氮处理技术的选择与氨氮浓度密切相关,而对一给定废水,选择技术方案主要取决于以下几方面:(1)水的性质;(2)处理要求达到的效果;(3)经济效益,以及处理后出水的最后处置方法等。根据废水中氨氮浓度的不同,可将废水分为3类:高浓度氨氮废水、中等浓度氨氮废水、低浓度氨氮废水。随着工业的发展,中、高浓度的氨氮废水排放日益增多。免费论文参考网。现在,由于对氨氮废水的控制日益严格,对氨氮废水的处理技术要求越来越高。工业废水的氨氮去除方法有多种,主要包括物理法、化学法、生物法等。其中物理法有反渗透、蒸馏、土壤灌溉等技术;化学法有离子交换、氨吹脱、折点氯化、焚烧、催化裂解、电渗析、电化学处理等技术;生物法有藻类养殖、生物硝化、固定化生物技术等。虽然每种处理技术都能有效地去除氨氮,但应用于工业废水的处理必须具有应用方便、处理性能稳定、适用于废水水质且经济实用的特点。根据国内外工程实例及资料介绍和环境工作者所研究的重点,目前处理氨氮废水比较实用的方法主要有折点氯化法、选择性离子交换法、氨吹脱法、生物法以及化学沉淀法等。下面就这几种方法作一简单介绍。

3.1折点氯化法去除氨氮

折点氯化法是将氯气(生产上用加氯机将氯气制成氯水)或次氯酸钠通入废水中将废水中的NH4+-N氧化成N2的化学脱氮工艺。当氯气通入废水中达到某一点时水中游离氯含量最低,氨的浓度降为零。当氯气通入量超过该点时,水中的游离氯量就会增多。因此该点称为折点,该状态下的氯化法称为折点氯化。废水中的氨氮常被氧化成氮气而被脱去,处理氨氮废水所需的实际氯气量取决于温度、pH值及氨氮浓度。氧化每克氨氮需要9~10mg氯气,pH值在6~7反应最佳,接触时间为0.5~2小时。在上述条件下,出水中氨氮浓度小于0.1mg/L。

折点加氯法处理后的出水在排放前一般需要用活性碳或二氧化硫进行反氯化,以去除水中残留的氯。1mg残留氯大约需要0.9~1.0mg的二氧化硫。在反氯化时会产生氢离子,但由此引起的pH值下降一般可以忽略,因此去除1mg残留氯只消耗2mg左右的碱(以CaCO3计)。

折点氯化法最突出的优点是可通过正确控制氯的添加量和对流量进行均化,使废水中全部氨氮降为零,同时使废水达到消毒的目的。对于氨氮浓度低于5mg/L的废水来说,用这种方法较为经济。为了克服单独采用折点加氯法处理氨氮废水需要大量加氯的缺点,常将此法与生物硝化连用,先硝化再除微量残留氨氮。氯化法的处理率达90%~100%,处理效果稳定,不受水温影响,在寒冷地区此法特别有吸引力。虽初次投资较少,但运行费用高,副产物氯胺和氯代有机物会造成二次污染,所以氯化法只适用于处理低浓度氨氮废水。

3.2选择性离子交换法去除氨氮

离子交换是指在固体颗粒和液体界面上发生的离子交换过程。离子交换法选用对NH4+离子有很强选择性的沸石作为交换树脂,从而达到去除氨氮的目的;而常规的离子交换树脂不具备对氨离子的选择性,故不能用于废水中去除氨氮。沸石具有对非离子氨的吸附作用和与离子氨的离子交换作用,它是一类硅质的阳离子交换剂,储量丰富价格低廉,对NH4+有很强的选择性。

【参考文献】

[1]沈耀良,王宝贞.废水生物处理新技术-理论与应用[M].中国环境科学出版社,2000:11-8

[2]钱易,唐孝炎.环境保护与可持续性发展[M].高等教育出版社,115-128

[3]郑兴灿,李亚新.污水除磷脱氮技术[M].中国建筑工业出版社,1998:15-87

[4]陈慧中,杨宏.给水系统中藻类研究现状及进展[J].现代预防医学,2001,28(l):79-80

[5]孙锦宜.含氮废水处理技术与应用[M].化学工业出版社.2003:15-36

[6]许国强,曾光明,殷志伟等.氨氮废水处理技术现状及发展[J].湖南有色金属,2002,18(2):29-30

[7]胡孙林,钟理.氨氮废水处理技术[J].现代化工,2001,21(6):47-50

[8]李晔.沸石改性及其对氨氮废水处理效果的研究[J].非金属矿,2003,26(2):53-55

[9]袁俊生,郎宇琪,张林栋等.天然沸石法工业污水氨氮资源化治理技术[J].环境污染治理技术与设

第5篇

[关键词]氟酸性;废水;治理与利用

中图分类号:X703 文献标识码:A 文章编号:1009-914X(2015)02-0000-01

一、前言

含氟酸性废水的治理与利用是随着科技水平不断发展而发展起来的一门新兴技术。经过几十年的不断发展,目前含氟酸性废水的治理方法已被广泛的利用,成为一门实用的技术。

二、含氟酸性废水的介绍

1、氟化物的来源

在航空发动机零件表面加工生产中,大量HF(还有部分NaF、NH3HF、NaSiF6等)用来清洗及腐蚀零件等,起反应产物主要是F-离子。氟化物槽液使用一段时间后,其有效成分逐渐降低,调整后达不到工艺要求时,槽液将报废排放。报废的槽液浓度高无法处理,只能分若干次投入漂洗水中,随漂洗水一同处理。

2、氟化物通常处理方法

氟化物通常采用钙沉淀法,化学反应方程式:Ca2++2F-=CaF2,由于CaF2的溶解度是16mg/L,即使加入过量的Ca2+,使Ca2+生成CaF2,理论上还是有8mg/L的F-存在于溶液中。在生产上,处理含氟废水,含氟量能处理到15~20mg/L,要使含氟废水处理到10mg/L内的排放标准,就需要对含氟废水进行深度处理。

三、含氟酸性废水处理的方法

1、沉淀法

(一)、化学沉淀法

化学沉淀法主要应用于高浓度含氟废水处理,采用较多的是钙盐沉淀法,即石灰沉淀法,通过向废水中投加钙盐等化学药品,使钙离子与氟离子反应生成CaF2沉淀,来实现除去使废水中的F-的目的。该工艺简单方便,费用低,但是存在一些不足。处理后的废水中氟含量达15mg/L后,再加石灰水,很难形成沉淀物,因此该方法一般适合于高浓度含氟废水的一级处理或预处理,很难达到国标一级标准。另外,产生的CaF2的沉淀包裹在Ca(OH)2颗粒的表面,因此不能被充分利用,造成浪费。

近年来,一些专业人士对工艺进行了大量的研究,在加钙盐的基础上,加上铝盐、镁盐、磷酸盐等,除氟效果增加的同时提高了利用率。在加石灰的基础上加入镁盐,通过石灰与含镁盐的水溶液作用,生成氢氧化镁沉淀实现对氟化物的吸附。在废水中加入硫酸铝、明矾等铝盐,与碳酸盐反应生成氢氧化铝,在混凝过程中氢氧化铝与氟离子发生反应生产氟铝络合物,生产的氟铝络合物被氢氧化铝矾花吸附而产生沉淀。另外,可以在水中加入氯化钙、复合铁盐作混凝剂和高分子PAM作絮凝剂,在不增加现有设备处理设备的基础上,提高了废水处理效果。

(二)、混凝沉淀法

混凝沉淀法是通过在水中加入铁盐和铝盐两大类混凝剂,在水中形成带正电的胶粒,胶粒能够吸附水中的F-而相互并聚为絮状物沉淀,以达到除氟的目的。混凝沉淀法一般只适用于低氟的废水处理,一般通过与中和沉淀法配合使用,实现对高氟废水的处理。由于除氟效果受搅拌条件、沉降时间等因素的影响,因此出水水质会不够稳定。

铁盐类混凝剂一般需要配合Ca(OH)2使用,才能实现高效率,并且处理后的废水需要用酸中和后才能排放,因此工艺比较复杂。铝盐除氟法是在水中加入硫酸铝、聚合氯化铝、聚合硫酸铝等的铝盐混凝剂,利用Al3+与F-的络合以及铝盐水解后生产的A1(OH)3矾花,去除废水中的F-,效果不错。由于药剂投加量少、成本低,并且一次处理后出水即可达到国家排放标准,因此铝盐混凝沉降法在工业废水处理中应用较为广泛。

2、吸附法

吸附法是将装有活性氧化铝、聚合铝盐、褐煤吸附剂、功能纤维吸附剂、活性炭等吸附剂的设备放入工业废水中,使氟离子通过与固体介质进行特殊或常规的离子交换或者化学反应,最终吸附在吸附剂上而被除去,吸附剂还可通过再生恢复交换能力。为了保证处理效果,废水的pH值不宜过高,一般控制在5左右,另外吸附剂的吸附温要加以控制,不能太高。该方法一般用于低浓度含氟废水的处理,效果十分显著。由于成本较低,而且除氟效果较好,是含氟废水处理的重要方法。

3、其他方法

除了上述两种比较常用的方法外,还有一些方法虽然没有被普遍应用,但是已经成为行业人士研究的对象,在一些特种含氟废水处理中取得较好的效果。其中包括离子交换法、电渗析、反渗透膜法等方法。反渗透技术借助比渗透压更高的压力,使高氟水中的水分子改变自然渗透方向,通过反渗透膜被分离出来,先主要应用于海水淡化和超纯水制造工艺中。当前使用的反渗透膜主要有低压复合膜、海水膜和醋酸纤维素膜等。电渗析法是外加直流电场,利用离子交换膜的选择透过性,使水中的离子能够定向迁移。离子交换法是使用离子交换树脂或离子交换纤维实现除氟离子的一种方法。离子交换树脂需要用铝盐进行预处理和再生,因此费用会比较高。与离子交换树脂相比,离子交换纤维耗资小,而且比表面积较大,吸附能力强,交换速度及再生速度快,并且处理后不会给水体带来任何污染,反而具有清洁作用,是一种理想的深度去除水中氟离子的方法。

四、含氟酸性废水治理与利用的实验

1、熟石灰合适加入量的确定

熟石灰的加入有两个作用:1)通过Ca2+离子先去除一部分F-离子;通过OH-离子调节溶液pH值,为沉淀剂CaCl2和混凝剂PAC的良好发挥打下基础。取100ml含氟废水样中加入不同量的熟石灰,搅拌3min,然后静置30min后,随着熟石灰的加入,废水中pH值逐渐升高,当加入至一定浓度时,再增加熟石灰的量,废水中pH值增加不大,在后续废水处理过程中,还需加混凝剂PAC来降低废水中F-的浓度及pH值,因混凝剂PAC有弱酸性,故从成本和这方面考虑,选pH值为11.82,即熟石灰的加入量为0.75g/l。

2、CaCl2加入量的确定

在熟石灰加入量为0.75g/l,pH值为11.82的废水样中加入不同量的氯化钙,搅拌3min;在熟石灰加入量为0.75g/l,pH值为11.82的废水样中加入不同量的氯化钙,随氯化钙加入量增加,废水处理液中的残余氟离子质量浓度逐渐变小,至一定值后,残余氟离子质量浓度变化量逐渐不明显。当氯化钙加入量为4g/l,废水中残余氟离子浓度达到最低值12.0mg/l。因此,选择按4g/l的量加入氯化钙。

3、混凝剂PAC合适加入量的确定

在确定的pH值和氯化钙加量的废水样([F-]=12.0mg/l,pH=7.41)中,加不同量的混凝剂PAC,先快速搅拌2min,再慢速搅拌4min;静置30min后,取上清液测pH值和氟离子浓度。

随PAC的加量的增加,废水处理液中残余氟离子质量浓度逐渐降低。当PAC的加量为400mg/l时,显示静置30min后,废水处理液中残余氟离子质量浓度达到9.3mg/l,达到排放的标准;当静置时间为2h,废水处理液中残余氟离子质量浓度进一步降低为8.6mg/l;且PAC的加量分别为300mg/l、400mg/l的废水处理液中残余氟离子质量浓度均达到国家规定的含氟废水排放一级标准值≤10mg/l的要求。有研究表明:投加PAC的效果的优于Al2(SO4)3,要达到相同的效果,PAC的投加量要远远小于Al2(SO4)3的投加量。

4、含氟废水处理的工艺流程设计

根据含氟废水的处理结果,我们设计了一套现实可行的废水处理工艺流程。该流程主要有:集水池,用于收集废水;反应池,用于生成CaF2沉淀;竖流沉淀池,用于快速分离CaF2沉淀物;排水池,用于收集并排放处理后的上清液;污泥池,用于浓缩沉淀污泥。通过压滤机将沉淀污泥进行脱水处理,压滤成饼。

含氟废水流入集水池,将集水池的废水抽入反应池加熟石灰和氯化钙进行化学沉淀反应;反应完全后的废水溶液全部抽入竖流沉淀池加PAC进行絮凝处理,按规定时间静置后,将竖流沉淀池的达标排放清液抽入排水池,沉淀物则被抽入污泥池;将排水池的达标排放清液向外排放或循环利用;将污泥池的沉淀物抽入压滤机进行脱水处理,并压滤成饼,供给氟化物生产制造商或建筑材料生产商作生产原料使用,变废为宝。

五、结束语

含氟酸性废水处理方法在各个领域中有广泛应用,随着科学的进步,含氟酸性废水处理方法会越来越先进,其所发挥的作用也会越来越大。

参考文献

[1] 张玲,薛学佳,周任明.含氟废水处理的最新研究进展[J].化工时刊,2012.

第6篇

关键词:生物脱氮工艺 短程硝化反硝化 同时硝化反硝化 厌氧氨氧化

1.短程硝化反硝化

短程硝化反硝化生物脱氮(shortcut nitrification denitrification)是由荷兰Delft技术大学开发出来的脱氮新工艺[1-3]。其基本原理是将NH3-N氧化控制在亚硝化阶段,然后进行反硝化。反应方程式可表示为:

短程硝化反硝化的生物脱氮途径与传统硝化反硝化相比,在处理高浓度有机氮废水中具有潜在的优势:⑴短程硝化反硝化生物脱氮比传统硝化反硝化生物脱氮节省了25%的耗氧量;⑵在反硝化过程中是以有机碳源作为电子供体,短程硝化反硝化仅需传统硝化反硝化60%的有机碳源,节省了40%的碳源。理论上计算,传统硝化反硝化C/N为2.86:1,短程硝化反硝化C/N为1.71:1,即较低的C/N下就可以实现短程硝化反硝化反应;⑶缩短了反应历程,提高了脱氮效率。在好氧过程中短程硝化反硝化生物脱氮比传统硝化反硝化生物脱氮减少了由NO2--N氧化为NO3--N的过程,缩短了总的反应历程。另外,在短程硝化反硝化过程中由于省去了由NO3--N到NO2--N这一转化过程,反硝化碳源不再为硝酸盐还原菌优先利用,也不存在硝酸盐还原酶对亚硝酸盐还原酶的竞争性抑制,加速了脱氮效率。

2.同时硝化反硝化

同时硝化反硝化(simulataneous nitrification denitrification)工艺,简单地说,是在同一个反应器中同时实现硝化和反硝化。Munch.Elisabeth V等研究了SBR法中的同时硝化反硝化现象[4。G.Bertanza运用延时曝气法对废水处理过程中的同时硝化反硝化现象进行了三年的研究[5]。试验结果表明:处理系统中的氧化还原电位在120~180mv范围内(此时DO浓度均在1.5mg/L以下)同时硝化反硝化的处理效果最好,总氮去除率可达到60%~70%。

根据以上可知,同时硝化反硝化现象确实存在于多种废水处理工艺中。目前大多数学者认为其机理的探讨主要从微环境理论、微生物学和生物化学的角度来研究:

⑴从微环境角度来看,由于微生物个体形态非常微小,一般属μm级,影响生物的生存环境也是微小的。由于微生物种群结构、基质分布、代谢活动和生物化学反应的不均匀性,以及物质传递的变化等因素的相互作用,在活性污泥菌胶团和生物膜内部会存在多种多样的微环境类型。即使在好氧性微环境占主导地位的活性污泥系统中,也常常同时存在少量的微氧、缺氧、厌氧等状态的微环境。

⑵从生物学和生物化学角度来看,主要有两种观点存在:一种是Lloyd等及Robertson和Kuennen提出的好氧反硝化的概念,认为好氧反硝化菌和好氧反硝化酶系的存在导致了这种现象。目前已知的好氧反硝化菌有Pseudoonas、Spp、Alcaligensfaecalis、Thiosphaera、Pantotropha等[6],这些菌种为好氧反硝化的解释提供了生物学依据。另一种是Bock等提出的好氧反氨化的概念,即在有氧气限制的情况下,NH3-N直接转化为氮气。

同时硝化反硝化有以下优点[7]:⑴硝化过程中消耗碱度,反硝化过程中产生碱度,这样同时硝化反硝化能有效地保持反应器中pH值稳定,而且无需添加外碳源,考虑到硝化菌最适pH值范围很窄,仅为7.15~8.16,因此这一点是很重要的。⑵同时硝化反硝化意味着在同一反应器、相同的操作条件下,硝化和反硝化应能同时进行。如果能够保证在好氧池中一定效率的反硝化与硝化反应同时进行,那么对于连续运行的同时硝化反硝化工艺污水处理厂,可以省去缺氧池的费用,或至少减少反应池容积。对于仅由一个反应池组成的序批式反应器来讲,同时硝化反硝化能够降低实现完全硝化反硝化所需的时间。同时硝化反硝化系统提供了今后降低投资并简化生物脱氮技术的可能性。然而,对于同时硝化反硝化的机理还缺乏深入的认识与了解,要使该项技术实用化还有大量研究工作有待完成。

3.厌氧氨氧化

1990年,荷兰Delft技术大学Kluyver生物技术实验室开发了ANAMMOX工艺。该工艺的特点是:在厌氧的条件下,以NO3―为电子受体,将NH3-N转化为氮气。最近研究表明NO3―是一个关键的电子受体。由于这类细菌是自养菌,因此不需要添加有机物来维持反硝化。试验研究发现:厌氧反应器中NH3-N浓度的降低与NO3―的去除存在一定的比例关系[8]。发生的反应可假定为:

最近研究表明,NO2―也可以作为电子受体进行如下反应:

根据化学热力学理论,上述反应的ΔG<0,说明反应可自发进行的。厌氧氨氧化过程的总反应是一个产生能量的反应,从理论上讲,可以提供能量供微生物生长。因此,可以假定厌氧反应器中存在微生物,它可以利用NH3-N作为电子供体还原NO3―-N,或者说它可以利用NO3―-N作为电子受体来氧化NH3-N。

从方程式2-17和2-18可以知道,该工艺不需要氧气和外加碳源,处理低C/N的高浓度NH3-N废水很有前景的。

4.固定化微生物脱氮技术

固定化微生物技术是指通过化学或物理的方法将游离的细胞或微生物加以固定,使之成为不溶于水但仍具有高的生物活性固定生长体的一项新技术[9]。

固定化微生物技术是20世纪60年代直接从固定化酶技术发展起来的一项新技术,最初主要用于工业微生物的发酵,70年代后期由于水污染问题的日益严重,迫切要求开发高效的废水处理新技术,于是人们开始考虑将固定化微生物技术引入废水处理领域。该技术可将筛选的优势菌种或微生物加以固定,从而构成一个高效的废水处理系统,与传统的悬浮生物处理法相比较具有处理效率高、稳定性强、产泥量少、无污泥膨胀、固液分离效果好、装置容积小等优点,在废水处理,尤其是特种工业废水处理领域中显示出广阔的应用前景。固定化微生物脱氮技术就是利用固定化微生物技术的特点,将硝化菌和反硝化菌固定在一起,以保证反应器的菌体浓度和脱氮性能,成为近10多年来生物脱氮领域研究的热点之一。国内外学者对硝化菌和反硝化菌单独固定及固定化细胞的脱氮性能作了详细的研究,在日本已有将固定化硝化菌用于废水处理能力11300m3/d的工业装置[10]。

[1] Jetten M S M et al,Towards a more sustainable municipal wastewater treatment system[J]. Wat Sci Tech,1997,35(9):171-180.

[2] W Verstraete,S Philips.Nitrification-denitrification processes and technologies in new contexts[J],Environmental pollution,1998,10(2):717-726;

[3] 冯叶成,王建龙,钱易,生物脱氮新工艺研究进展[J],微生物学通报, 2001,28(4): 88-91;

[4] Munch ,Elisabeth V, Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors[J], Water Research,1996,30(2):227-284;

[5] G.Bertanza,Simultaneous nitrification-denitrifiction technique in extended aeration plants:pilot and real scale experiences[J], Water Science and Technology, 1997, 35(6):53-61;

[6] Robertson LA,Van Niel EWJ,Torremams,Rob AM,Kuenen JG,Simultanseous nitrification and denitrification in aerobic chemostat of Thiosphaera pantotropha[J],Appl Environ Nicrobiol, 1988, 54(1):12-18,28;

[7] 李丛娜,吕锡武,稻森悠平,,同步硝化反硝化脱氮研究[J], 给水排水, 2001,27(1):22-25;

[8] 白莉,杨云龙,生物脱氮新技术[J],科技研讨,2003,13(7):101-102;

[9] 杨麒了,李小明,曾光明,谢珊,刘精今,固定化微生物脱氮技术[J], 环境污染治理技术与设备, 2002.10,Vol.3 No.10 :58-60;

第7篇

关键词:给水排水工程;毕业设计;选题

中图分类号:TU9903;G642477 文献标志码:A 文章编号:

1005-2909(2012)03-0133-03

毕业设计是理论与实践相结合的学习过程,是对四年专业学习一次全面、彻底的总结和应用,同时也是培养学生结合工程实际提高分析、解决问题能力的必要环节。毕业设计对巩固、深化和拓展学生所学知识,培养学生独立思考能力和创新能力具有重要意义[1]。毕业设计由多个环节组成,其中选题是做好毕业设计的基础,决定了毕业设计的研究方向和研究内容,直接影响毕业设计质量[2]。给水排水工程专业是涉及多学科知识体系并且与工程实践紧密结合的综合学科[3],在此笔者根据其培养目标及教学基本要求和教学工作实践,对给水排水专业毕业设计的选题工作进行探讨。

一、现状及问题分析

给水排水工程专业的毕业设计题目可以分为设计和论文两大类,设计类主要包括给水排水管道系统、给水系统、城市污水处理厂、工业废水处理厂(站)、建筑给水排水等;论文类有各种水处理的试验研究和其他专题研究等,因此,给水排水毕业设计可供选题的范围非常广泛。学校给水排水专业近几年毕业设计题目和选题人数见表1。

(3.5%)由表1中可以看出,目前给水排水专业的毕业设计大多是设计类题目,论文

类的题目比较少。在设计类题目中,城市污水处理厂、建筑给水排水和给水排水管道系统设计的题目占有较大比重,约占毕业设计题目的75%左右。结合学生毕业设计成果对近年毕业设计的题目进行分析,发现存在以下几个方面的问题。

(一)选题与工程实际结合不紧密

设计类题目可以是直接选自工程实践中的实际课题,也可以是明确工程背景下的模拟课题。由于采用实际课题不易把握工程量和时间进度,选题难度较大;而模拟课题工作量和时间进度容易掌握,便于指导教师按照毕业设计的要求进行安排和组织教学,因此目前毕业设计题目大多是模拟课题。模拟课题由于缺少实际工程背景,涉及实际问题较少,需要学生分析的客观资料不多,导致一些学生的毕业设计缺乏深度,图纸与工程实际有较大差距。

(二)题目范围过大

闫怡新,等 给水排水工程专业毕业设计选题探讨

毕业设计是从调查研究、查阅文献、收集资料、理论分析、制订设计方案到设计、计算、绘图以及编制技术文件等过程对学生综合能力的全面锻炼。宏观的题目会使学生感觉无从下手,顾此失彼。目前学校给水排水专业学生毕业设计工作的总学时只有14周左右。在这14周的时间内,除了要完成设计说明书的撰写和绘图工作外,还要进行外文资料的阅读翻译以及答辩的准备工作等。一些毕业设计的题目范围过大导致学生对设计说明书的撰写不够细致,涉及范围虽广但不深入,工程制图也过于简单,与实际工程相差较远,还有的学生为了应付差事,出现一些抄袭行为。

(三) 选题内容重复性高

给水排水专业的毕业设计多集中于城市污水厂、建筑给水排水及给水排水管道系统的设计等,虽然其题目较多,但是设计内容比较固定。例如,城市污水处理厂的设计虽然可以根据不同的处理规模和处理工艺给出较多的设计题目,如奥贝尔氧化沟、卡鲁赛尔氧化沟、三沟式氧化沟、TE氧化沟、A2O、A/O、SBR、CASS、UCT工艺等,但是由于城市污水水质变化不大,而且其处理模式比较固定,基本上都是粗格栅—提升泵房—细格栅—沉砂池—生物处理系统—二沉池—消毒池,重复性内容较多,导致学生抄袭现象有增加趋势。特别是近年来毕业设计成果均有电子版本,网络上甚至出现了给水排水专业的全套毕业设计成果可以下载,更为学生抄袭提供了方便。

(四)论文类题目较少

给水排水专业的论文类题目中,主要是采用生物、物理和化学等方法来进行各种水处理的试验研究。论文类题目中虽然涉及的专业知识范围较小,但是对具体问题研究深入,有利于考上研究生或将来从事相关工作的学生继续学习或研究。然而受试验条件的限制,给水排水专业的论文类题目一直较少。

二、 对毕业设计选题改进的建议

(一)加强毕业设计与工程实际相结合

为使毕业设计更好地与工程实际相结合,有人提出选择实际课题进行真题真做的毕业设计模式[4]。这固然是使毕业设计贴近工程实际的好方法,但是由于设计时间和学生的设计能力有限,采用学生毕业设计的图纸作为实际工程的施工依据显然并不合适,所以真题真做在给水排水专业的毕业设计中不可行。但是毕业设计选用真题,有利于激发学生对毕业设计的兴趣和积极性,增强学生对设计工作的责任感,并且真题可为学生提供更为详实的设计资料,促进学生在设计过程中对诸多因素进行综合考虑,提高解决实际问题的能力。因此,在毕业设计中可以采用真题假做的方式,一方面制造一个实战的氛围,让学生感到在参与一项真正的设计工作;另一方面,虽然是模拟,但仍然按照实际工程的标准来要求,使学生高水平完成设计课题。真题假做吸取了实际课题和模拟课题的优点,既发挥了模拟课题对学生进行综合能力训练比较方便快捷的长处,又使毕业设计更切合工程实际,在给水排水专业的毕业设计中应以提倡[5]。

第8篇

关键词:高级氧化技术,水处理中,应用

中图分类号: TK223.5 文献标识码: A

前言

水是生命之源也是人们生活和生产过程中必不可少的物质,随着经济的飞速发展水环境保护已然成为了当前人类社会广泛关注的一个问题。目前我国的经济发展情况也使水资源得到了最大限度的利用,而且高浓度的有机废水对我国宝贵的水资源造成了威胁,由此产生的水环境保护也提上了议程。然而利用现有的生物或物理处理方法,对可生化性差、相对分子质量从几千到几万的物质进行处理,想达到处理效果会比较困难,因此高级氧化技术就应运而生了。

1、高级氧化技术的概念

高级氧化技术(Advanced oxidation technologies,AOTs),AOTs 是指应用高活性自由基(如•OH,•OOH,O2•−和SO4•−)氧化分解水体中的有机污染物质。

AOTs 是近年来新兴的水处理工艺,能够非常有效的降解水体中有机污染物,近年来受到的关注和研究比较多。AOTs 的优势在于能够在温和的操作条件下,通过反应可以直接将污染物矿化或通过强氧化性提高它们的可生化性,同时该技术还在环境荷尔蒙等微量有害化学物质的处理方面有很大的优势,能够将绝大部分有机物完全矿化或分解。而且反应体系通常对温度和压力要求不高,设备要求不高,易于管理,操作简单等。

•OH 是已知的氧化能力最强的强氧化剂之一(·OH +H++e-—H20,E0=2.80V),可诱发链反应,具有较高的电子亲和力(569.3kJ),且无选择性,它能够通过填充有机污染物未饱和的碳碳键和夺取大多数有机污染物分子中的H 原子等反应途径迅速地降解污染物;一般情况下可单独使用就可以达到很好的处理效果,也可以联合其它水处理技术使用。能够提高污水的可生化性,因此可以作为生物处理过程的预处理,能将大多数有机污染物迅速的氧化分解,并最终矿化为CO2、H2O 和无机盐。

2、Fenton 氧化技术及其在污水处理中的应用

过氧化氢与催化剂Fe2+构成的氧化体系通常称为Fenton 试剂。在传统Fenton 试剂的基础上人们通过对反应条件的改变和联合开发出了一系列有针对性的类Fenton 试剂,如光-Fenton 试剂和电-Fenton 试剂等,研究方面涉及了pH 值、温度、反应时间、氧化剂种类和浓度、催化剂种类和浓度等方面的因素。目前相关研究已有以芳香烃、多氯烷烃、多氯联苯、染料、除草剂等有毒有机物质为对象进行探索,在废水处理中得到了广泛的应用和研究。

羟基自由基的主要来源有两个:(1)阳极水的氧化。(2)在溶解态亚铁离子Fe2+存在的状态下氧气被不断还原产生过氧化氢H2O2。H2O2和Fe2+结合产生Fenton试剂,在Fenton反应中生成的Fe3+通过不同方式还原为Fe2+,该路线使Fenton能够循环反应。由过氧化氢作用还原的Fe3+有两步完成,同时还会产生过氧自由基(·O2H)。链反应产生的羟基自由基和过氧自由基都有氧化性,·OH在水溶液中是非常强的氧化剂,几乎可以将所有有机化合物氧化为CO2和水。它既可以与有机物发生诸多反应如脱氢、加成、电子转移、自由基复合反应等,也可以作为强氧化剂与无机溶质反应。·OH与饱和烷烃以及许多不饱和的分子如醛和酮类发生的反应是脱氢反应:·OH可以直接脱除烷烃分子上的氢,生成容易被氧化的烷烃自由基R·,形成链反应,最终可使烷烃分解。因此,污染物能够被它们降解,大部分污染物的降解是通过有强氧化性的·OH实现的。

Fenton 试剂经常与其他工艺联合作用,有研究中试试验表明,在运行条件最佳时处理混合废水,结果显示经混凝、Fenton 氧化、絮凝法处理后, CODCr 从5826 mg/L降低到200 mg/L,去除率达到了96.6%;色度从800 倍降到了2 倍,去除率达到99.8%;SS 从582 mg/L 降到3 mg/L,去除率达到了99.3%。

3、Oxone/Co2+氧化技术及其在污水处理中的应用

Oxone(单过氧硫酸氢盐化合物,2KHSO5·KHSO4·K2SO4)是一种流动性好的白色颗粒状粉末,它是由两分子单过氧硫酸氢钾(KHSO5),一分子的硫酸氢钾(KHSO4)和一分子的硫酸钾(K2SO4)三种盐组成的三重盐,是一种用途广泛且对环境友好的酸式过氧化物氧化剂。Oxone 的氧化势能是来自于它的高酸化学性质,它是单过硫酸H2S2O5中的第一个中式盐,其活性物质为单过氧硫酸氢钾KHSO5,简称PMS。最近,氧化剂过硫酸盐(S2O82-)和单过硫酸盐(PMS,HSO5一)成为了热门话题。这些氧化剂能够通过各种途径(过渡金属催化,加热或者UV)激发氧化性能产生硫酸基自由基(SO4.-)[66-69]。单过硫酸盐之所以得到广泛应用,在于其氧化还原电势(1.82V),比H2O2(1.76 V)还要高,而且在氧化降解过程中比过硫酸盐(S2O82-)更高效。PMS 不同于H2O2 和K2S2O8,它是由一个SO3 一取代HOOH 的不对称过氧化物,其自身独特的结构也使其很容易被激发和活化。PMS 还成功的应用于很多污染治理的反应中,例如氧化分解双酚A和处理石油污染的污泥,PMS 对于这些难降解的污染物都起到了很好的去除作用。PMS 的应用领域还涉及到假牙清洁剂、衣物的漂白剂、羊毛防缩处理、擦光剂、线路板蚀刻剂,淀粉氧化、木材清洗和贵重金属提炼等方面。

催化剂对于该方法有很重要的影响,为了找到催化过硫酸盐最有效的过渡金属,AniPsitakis等人对几种过渡金属Ag+,Co2+,Fe2+,Fe3+,Mn2+,Ni2+,Ce3+,Ru3+和V3+对过硫酸氢钾的催化能力进行了比较研究,结果表明不同金属离子的催化效果依次为Co2+> Ru3+> Fe2+> Ce3+> V3+> Mn2+> Fe3+> Ni2+,从催化氧化能力和经济成本分析,Co2+是PMS最好的催化剂,用量小,且催化效率高。在降解工业污水方面,Co2+/PMS具有以下几方面的优势:

(1) Co2+/PMS系统对污染物具有较高的的矿化度:在降解2,4-二氯酚和橙黄二的研究中都取得了高于90%的矿化度。

(2) Co2+/PMS系统能在更宽的pH范围内应用,降解2,4-二氯酚的实验证明Co2+/PMS能在pH 2.0-8.0范围内取得了良好的去除效果。而Fenton试剂在pH超过3.0时就不能表现出良好的催化活性,Co2+/PMS能在中性环境中表现出更高的效率,这个有点决定了该系统能够更好的服务于污水处理,因为大部分被污染的自然水体的pH范围在6.0-8.0。

结语

高级氧化技术是降解废水生化处理水的有效方法,具有很大的开发潜力和良好的应用前景。本论文较为深入地开展了Fenton 氧化法和Oxone/Co2+氧化法深度处理废水的研究,并对Oxone/Co2+氧化法处理前和最优结果处理后的有机污染物成分进行了分析与对比,从而为高级氧化技术处理废水生化处理水提供了理论依据。

参考文献

第9篇

关键词:聚合氯化铝 絮凝剂 处理生活污水 技术论证

一、 背景和意义

1997年1月20日, 联合国发出了淡水资源短缺的警报:“缺水问题将严重制约下世纪的经济和社会发展,并可能导致国家间的冲突”。这份题为《对世界淡水资源的全面评估》的报告指出,目前全世界1/5以上的人口,即12亿人面临“中高度到高度缺水的压力”。该报告还预测,到2025年,世界人口将激增到83亿,全世界将有1/3的人口遭受“中高度到高度缺水的压力”。

随着工业的发展和人口急剧增长,淡水紧缺问题已引起世界各国的普遍关注,我国面临的淡水紧缺问题尤其严峻。我国水资源居世界第六位,但人均水量仅为世界人均水量的四分之一,居109位,加之淡水资源的时空分布不均和我国人口分布不均、社会发展不均,造成部分城市淡水资源严重紧缺。目前全国有300多个城市缺水,50多个城市严重缺水。淡水资源紧缺已严重影响这些地区的人民生活和经济发展,每年造成直接经济损失数千亿元。

进入21世纪,我国人口继续增长,将达到16亿高峰,对土资源的开发将达到临界状态,对水的需求也将进一步增加。1993年全国工农业生产和城乡居民生活用水已达到5250亿m3 ,人均用水纺450m3 。根据人口增长,工农业生产发展,如不节约用水,初步估计2030年需增加供水2000~2500亿m3 才能满足各方面的需要。黄、淮、海三流域2010年以后,随着人口的增加,人均水资源将不足400m3 ,当地水源已无潜力可挖,缺水只有远距离从长江调水才能得以解决。而长距离调水成本高、投资大、资金筹措困难,并还受到社会和环境等因素制约,工程的实施难度极大。因此,首先需要采用各种高新技术,通过节约用水、利用雨水、污水处理回用、海水利用等途径,千方百计努力提高工农业用水的效率。

随着工农业生产的迅速发展和人民生活水平的不断提高,对水的需求量也越来越大,与此同时,水资源的污染也日趋严重,人类可取的水资源正在逐渐减少。我国是水资源贫乏的国家之一,人均水量仅为世界人均水量的1/4,目前国内已有300 多个城市缺水,日缺水量约1000万立方米以上,严重地影响了国内的工业生产和人民生活。工业用水一般占城市用水的70%-80%,节约用水、合理用水的处理 受到各行各业的普遍关注,各种水处理剂的需求量也日益增加。聚铁、铝盐具有絮凝体形成速度快、矾花密实、沉降速度快、对低温高浊度原水处理效果好、适用水体pH值范围广等特性,同时还能去除水中的有机物、悬浮物、重金属、硫化物及致癌物,无铁离子的水相转移,脱色、脱油、除臭、除菌功能显著,且价格便宜,与其他净水剂相比,有着很强的市场竞争力,其经济效益也十分明显,值得大力推广应用。

目前我国每年的废水排放量约365亿吨,年处理量仅100亿吨,处理率不足 1/3。目前世界水处理市场中,包括聚铁在内的无机絮凝剂已占有3/4以上的市场份额。我国水处理剂工业虽已具有了一定的规模和水平,但仍远远不能满足大量的工业废水及民用水处理的要求,与国外先进水平相比还有不小的差距。业内人士预计? 今后几年国内水处理剂的生产将有较快的发展,年需求量将达到30万吨左右,其中絮凝剂的需求量为18万吨。

二、 关键技术和预期水平效益

现代废水处理方法主要分为物理处理法、化学处理法和生物处理法三类。

物理处理法:通过物理作用分离、回收废水中不溶解的呈悬浮状态的污染物(包括油膜和油珠)的废水处理法。通常采用沉淀、过滤、离心分离、气浮、蒸发结晶、反渗透等方法。将废水中悬浮物、胶体物和油类等污染物分离出来,从而使废水得到初步净化。

化学处理法:通过化学反应和传质作用来分离、去除废水中呈溶解、胶体状态的污染物或将其转化为无害物质的废水处理法。通常采用方法有:中和、混凝、氧化还原、萃取、汽提、吹脱、吸附、离子交换以及电渗透等方法。

生物处理法:通过微生物的代谢作用,使废水溶液、胶体以及微细悬浮状态的有机物、有毒物等污染物质,转化为稳定、无害的物质的废水处理方法。生物处理法又分为需氧处理和厌氧处理两种方法。需氧处理法目前常用的有活性污泥法、生物滤池和氧化塘等。厌氧处理法,又名生物还原处理法,主要用于处理高浓度有机废水和污泥,使用处理设备,主要为消化池等。与物理、化学方法相比较,生物法具有运行费用低、处理效果好的特点。但生物法存在着处理时间相对较长、废水中含有有毒物质存在时难以使用等缺陷。生物学家和工程技术人员正不断努力,通过改良微生物菌种、改良处理工艺等手段提高生物处理的效果。

通过各种手段对废水进行处理后再排放可减少污染,但彻底消除污染的方法是不产生污染物 。科学家们正在不断努力,一方面,寻找更有效的废水处理方法,消除污染物;另一方面,研制设计出新的清洁生产工艺,减少污染物的产生。

下面我们来着重谈谈化学处理法中的絮凝法:

强化絮凝过程需要提高两方面的技术:

(一)、发展新型高效能絮凝剂

(二)、发展高效絮凝反应器,技术上取得新的突破。

同时做到相互协同发展,进而将这两方面优势有机地结合起来,建立新型絮凝工艺技术系统,从整体上改进水处理絮凝过程的质量和面貌。

在研究开发新型高效絮凝剂方面

无机高分子絮凝剂(IPF)

无机高分子絮凝剂(IPF)无疑是当前研究的重点。由于它比传统絮凝剂具有适应性强、无毒、可成倍提高效能且相对价廉等优点,因而近年已得到广泛重视,正逐步发展成为混凝过程的主流药剂。其中,聚合氯化铝是当前工业生产技术最成熟、效能最高、应用最为广泛的无机高分子絮凝剂品种。同时,以聚合氯化铝产品作为基本原料,还可衍生制备出多种系列的适合于不同水质处理状况的复合型无机高分子絮凝剂。如聚合铝铁、聚合硅铝以及有机复合型絮凝剂。

尽管大量的混凝实践证明聚合铝絮凝剂比传统铝盐凝聚剂的混凝效能提高2~3倍。但对于这类新型药剂为何会突出地高效尚缺乏全面深入的科学验证和理论诊断,一般的认识和处理方法尚停留在沿用传统凝聚剂的概念或主观推断,尚缺少直接的实验验证。实际上,在聚合铝应用基础方面,从形态分布及其转化规律,聚合反应控制参数及其制备条件,投加后的形态转化及其稳定性,高效凝聚絮凝机理及效能,以及应用工艺技术等诸多方面,均有别于传统凝聚剂,这些问题只有经过全面系统深入地研究,才能够得到较确切的解答,同时促进这类新型药剂的进一步提高并扩展其应用范围。

基于上述原因,我们就以现代化学及絮凝理论为基础,追踪当前国际研究发展动向,同时结合实际生产工艺及水处理实践,从混凝理论的发展,聚合铝水解形态转化及其分布特征,絮凝形态稳定性及电动特性,以及高效凝聚絮凝效能,作用机理与絮凝动力学,聚合铝高效絮凝应用实践等多方面进行了全面深入、系统地研究,为深入揭示聚合水解-聚合反应过程及形态转化规律,阐明聚合铝水解聚合形态与凝聚作用机理及絮凝动力学的相互关系,建立定量聚合铝的表面吸附沉淀模式提供科学理论研究的基础。同时也为进一步改进聚合铝产品质量,提高凝聚剂絮凝效能,拓宽应用范围提供必要的应用基础理论研究依据。最终为推动和发展我国无机高分子絮凝剂的基础应用理论研究,提高工业化生产技术水平及其应用实践作出贡献。

有机高分子絮凝剂

高分子絮凝剂种类

目前应用于水处理中的高分子凝剂,为分子量由数万至数百万的高分子水溶性有机聚合物。有机高分子絮凝剂具有在颗粒间形成更大的絮体及由此产生的巨大表面吸附作用。因而,近年来国内外在研究和应用方面都进展得很快。絮凝剂的种类很多,按其来源可分为天然和人工合成的两大类。

天然高分子絮凝剂

淀粉、单宁、纤维素、藻朊酸钠、古尔胶、动物胶和白明胶等等。天然高分子絮凝剂可经过各种化学改性以适应不同的需要,如淀粉可改性为糊精、苛化淀粉、含磷酸盐-CH2OPO(CH)2和含胺基-CH2CH2NH2的淀粉等。一般来说天然高分子絮凝剂价格低廉,但分子量较低且不稳定,使用时用量高,效果不佳且排放时有可能产生BOD等问题。所以,除考虑到毒性而使用人工合成的高分子絮凝剂。其中用得最为广泛的要属分子量为300万以上的聚丙烯酰胺及其衍生物。实践证明,不同的高分子絮凝剂,对不同的水质处理效果相差很大,其最佳效果的用量幅度很小,超过一定范围,反而会形成复稳。

高聚合度的水溶性有机高分子聚合物或共聚物的分子中,含有许多能与胶粒和细徽悬浮物颗粒表面上某些点位起作用的活性基团,分子量在数十万至数百万。根据聚合物单体上活性基团在水中的离解情况,按官能团分类可分为非离子型、阴离子型和阳离子型三类。表1是许多高分子絮凝剂的主要官能团。

国内外常用的具有代表性的高分子絮凝剂有:非离子型-聚丙烯酰胺(简写为PAM,分子量在150万-900万,商品浓度一般为8%)、聚氧化乙烯;阴离子型-聚丙烯酸(PAA)、聚甲基丙烯酸水解聚丙烯酰胺(HPAM)、聚磺基苯乙烯;阳离子型-丁基溴聚乙烯吡、聚二丙烯二甲基胺(PDADMA)。用量一般为废水量的百万分之一至百万分之二。

当絮凝剂为离子型,且其电性与胶粒表面电荷相反时,絮凝剂就考虑到降低ξ电位和吸附桥连的双重作用,絮凝效果就特别显著;而当其点性与胶粒表面电荷相同时,则要求双方的电荷都不太强。为要充分发挥絮凝剂的吸附桥连作用,应使它的长链生长到最大限度,同时让可离解的基团达到最大的离解度且得到充分的暴露,以便产生更多的带电部位,并与微粒有更多的碰撞机会,结果絮凝效果可提高数倍。

表1:高分子絮凝剂的主要官能团

非离子型官能团 ——OH 羟 基

——CN 腈

——CONH2 酰 胺

阳  离  子  官  能  团 ——NH2 伯 胺

——NH—R 仲 胺

——N—RR 叔 胺

R——N—RR 季 胺

阳离子型官能团 ——COOH 羧 酸

——SO3H 磺 酸

——OSO3H 硫酸脂

当然,絮凝剂的选择及使用量要根据废水的具体性质而定,总的原则是所用的絮凝剂必须价廉、易得、高效、使用量少。生成的絮凝物易沉降分离。使用无机絮凝剂时要注意其适用的pH值范围,一般在投加无机盐絮凝剂后再添加pH调节剂。对高分子絮凝剂,为了充分发挥其在水中的化学架桥作用,应选用能在水中均匀分散、溶解,具有吸附活性基因的高分子化合物、水容性高分子化合物。为了使其在水中处于较大的分散状态,一般先用纯水或软水溶解配成一定浓度的溶液,然后再加到待处理的废水中去。因为这些高分子化合物往往会受到水质的影响。使分子的扩散和离子基的离解受到抑制,处理效果下降。

在絮凝反应器方面

目前处于主流的反应器有:隔板反应池、涡流式反应池、机械搅拌反应池、静态混合器、文丘里管道混合器、机械加速澄清池、固定絮凝器等等。为了使胶体脱稳和絮体颗粒增大密实,并降低能耗、药耗,就需要对絮凝设备结构构造进行深入研究,开发出新型高效的絮凝设备。根据涡流理论设计的多极涡流管式混合器和通过一系列格网以增加水流紊动度来提高絮凝效果的竖流往复折流式絮凝反应器便是其中效果较好的两种絮凝设备。

三.应用情况和开发利用前景

絮凝过程既是最古老的水质净化处理方法,又是当今众多水处理工艺技术中应用最广泛、最普通的单元操作工艺技术。絮凝过程作为众多处理工艺流程中不可缺少的前置关键环节,其效果的好坏往往决定后续工艺流程的运行工况、最终出水质量和成本费用,因此,它始终是水处理工程中重要的研究开发领域。我国现有近百余家絮凝剂生产厂,年总产量约30万吨,但大多为粗放型小规模的乡镇企业。企业多、产值低,工艺技术落后、高能耗、重污染、低品位是目前我国无机高分子絮凝剂生产存在的普遍而突出的问题。

高效复合型絮凝剂是在原有无机高分子絮凝剂基础上创新发展的新型品种,具有价廉、高效、多功能,反应速度快,凝絮颗粒密实、沉降快等特性。比传统产品具有显著除浊、脱氮除磷以及油,COD和BOD等作用功能。在当前饮用水微污染物净化处理工艺,城镇污水强化絮凝工艺,纳污河流整治以及工业废水净化处理过程中都将得到广泛应用。因此,国内外市场应用前景十分看好。社会环境效益与经济效益十分可观。

目前市场上流行的絮凝剂主要有:季胺盐型阳离子高分子化合物、ZBH-502 聚合氯化铝(PAC)、ZBH- 净水王系列高效复合混凝剂、ZBH-聚硅酸系列混凝剂、ZBH-聚丙烯酰胺系列絮凝剂、ZBH-201絮凝脱色剂、ZBH-202 季铵型絮凝剂、ZBH-203 除油絮凝剂(油水分离剂)、二氯异氰脲酸钠、HB-901 杀菌灭藻剂、HB-902 固体活性溴杀菌灭藻剂、HS-916清洗剂系列、高效阳离子有机高分絮凝剂JY-02、多功能复合型絮凝剂JYF系列、Polyelectrolyte(DMCTH)、阳离子高分子絮凝剂JC-48XX系列、阳离子絮凝剂 HYC—601、乳液型E-HYM阳离子絮凝剂、阴离子絮凝剂HY─3、阳离子絮凝剂HYM、聚合硫酸铁(PFS)等等。

四、影响絮凝效果的因素

絮凝剂对胶体分散系的混凝过程,实质上是絮凝剂-溶剂、絮凝剂-胶体、胶体-溶剂这三种关系综合作用的结果。为了提高絮凝效果,就必须根据废水中胶体和细微悬浮物的性质和浓度,正确地控制絮凝过程的工艺条件。影响絮凝的因素很多,现归纳如下:

1、水温  絮凝剂的水解与温度有关,一般说来,水温20~30℃为宜。每当温度升高10℃时,水解速度增加1倍。温度尤其对铝盐的絮凝效果影响较大,当水温低于5℃时,铝盐的水解速度极慢,作用显著降低。温度在10~15℃下,生成Al(OH)3絮团是无定形,松散不易沉降,水温低,水的耗滞系数大,阻力增加,碰撞次数减少,影响絮凝效果。这时可投加高分子助凝剂以改善处理效果,或用气浮法代替沉淀法作为后续处理过程。而当温度升高时,絮团比较紧密,易于沉降。

2、pH值  铝、铁盐絮凝剂水解产物中主要起絮凝作用的是多核多羟基阳络离子的电性中和作用和吸附桥连作用,其次是氢氧化物沉淀的卷带网捕作用。如用铝、铁盐处理废水时,水解反应式为:

MeA + H2O ===== MeOH + H+ + A—

Me+ + H2O ===== MeOH + H+

其中,Me+代表絮凝剂中的阳离子;A—代表絮凝剂中的阴离子。由水解方程式可知,水解进行结果使溶液pH值降低。若原水碱度不足,要中和新增加的H+离子时,应投入碱类药剂以提高碱度。一般投入助凝剂,如加入石灰或苏打(约20mg/L,以CaO计)。是典型的两性化合物

在酸性溶液中  Al(OH)3 + 3H+ ==== Al3+ + 3H2O

在碱性溶液中  Al(OH)3 + OH— ==== AlO2 + 2H2O

当PH

当4

当6

当PH>8时,呈[Al(OH)4]、[Al8(OH)26]2—等铝的离子。

所以溶液最适宜的pH值为6.4~7.8。铁盐絮凝时pH值在5~7范围内,Fe(OH)3絮团可以迅速形成,最佳的pH值为6.0~6.4;但有的资料指出以pH值9~11为佳。

(3)混凝剂的种类及用量 混凝剂品种的选择除了考虑来源、成本等因素外,还应该考虑以下问题:当水循环使用时,混凝剂不应带入对生产有害的物质;絮凝剂的用量取决于胶体的浓度、电性正负和电荷数量以及絮凝过程的pH值。各种絮凝的最佳用量范围是互不相同的。

无机盐絮凝剂的用量与作用离子的电荷有关。例如,使带负电胶体脱稳所需的Na+、Ca2+和Al3+的用量大体成1:10-2:10-3的比例。使胶体絮凝的絮凝剂用量范围随胶体浓度的增大而变宽,随絮凝剂分子量的增大而变窄。高分子絮凝剂,使胶体絮凝和再稳的计量要比铝铁盐低得多,在使用高分子絮凝剂时尤其要十分注意使用量。

(4)搅拌强度和时间

絮凝工艺过程包括混合、反应和分离三个阶段。混合阶段的基本要求是使药剂迅速而均匀地扩散到废水中,并形成微絮凝,因而搅拌强度要大,但时间要短。在反应阶段则要求水流有适当的速度梯度,既要为微絮凝的成长创造良好的碰撞机会,又要防止已形成的絮凝体被打碎,因而搅拌强度要比混合阶段小,但时间要比较长。上述两个阶段的搅拌强度和时间要求,由它们各处的速度梯度G或速度梯度与停留时间乘积GT值来体现。一般水处理中,混合阶段的G值约为500~1000s—1,混合时间为10~30s,一般不超过2min;在反应阶段,G值约为10~100s-1,停留时间一般为15~30min,GT值在104~105范围内,主要是使水中微粒凝聚成矾花并增大而沉淀(或上浮)的过程。在废水处理中,搅拌强度和时间应取低限值。

(5)水样

对不同水样,由于废水中的万分不同,同一种絮凝剂的处理效果可能会相差很大。

(6)助凝剂

有时当单用絮凝剂不能取得较好的效果时,可以投加某种称为助凝剂的辅助药剂来调节、改善絮凝条件,提高处理效果。助凝剂主要起以下几方面的作用:

① 通过投加酸性或碱性物质来调整pH值。

② 通过投加活化硅胶、骨胶、PAM等改善絮凝体结构,利用高分子助凝剂的吸附架桥作用以增强絮凝体的密实性和沉降性能。

③ 通过投加氯、臭氧等氧化剂,在采用FeSO4是,可将Fe2+氧化Fe3+为,当废水中有机物过高时,也可使其氧化分解,破坏其干扰或使胶体脱稳,以提高絮凝效果。

常见的助凝剂有PAM、活化硅胶、骨胶、海藻酸钠、氯气、氧化钙、活性炭等。

五、聚合铝水处理领域应用概况

在水处理工程领域中,聚合氯化铝絮凝剂在国内外的需求量日益激增,尤其在给水处理中已逐渐取代传统的凝聚剂而成为主流絮凝剂。大量的应用实践证明,使用聚合氯化率替代传统的铁、铝盐混凝剂,可明显提高水厂的净化效能、降低处理成本、改善出水水质。其主要优点表现在:

(一)、优良的凝聚除浊脱色和去除腐殖质的效果及较广泛的使用pH范围

聚合氯化铝不仅具有强烈的凝聚除浊效果,而且也具有明显脱色及去除腐殖质的效果。在相同处理条件下达到最佳絮凝作用,聚合铝所需剂量比传统铝盐要减少2/3之多。在相同剂量条件下,使用聚合铝能够获得比传统铝盐更低的残余浊度,因而可以以较低剂量得到相同的处理结果。此外,聚合铝使用的pH范围比传统铝盐要宽的多。

(二)、良好的低温混凝处理效能及沉降效能  一般在低温水(

(三)、较低的残留铝含量  聚合铝处理后水中的残留铝含量十分低,传统硫酸铝处理水中的残留铝含量一般为150~255μg/L,而聚合铝处理水质中的残留铝含量只有40~55μg/L。

(四)、操作简便  采用聚合铝盐处理时操作过程相对传统的处理方法要简便得多。

主要参考文献

1 朱亦仁编著.环境污染治理技术.北京:中国环境科学出版社,2002

2 丁忠浩编著.有机废水处理技术及应用.北京:化学工业出版社,2002

3 汤鸿霄,钱易,文湘华等著.水体颗粒物和难降解有机物的特性与控制技术原理,上卷.北京:中国环境科学出版社,2000

4 杨岳平,徐新华,刘传富编.废水处理工程及实例分析.北京:化学工业出版社,2003

5 高廷耀,顾国维主编.水污染控制工程(第二版),下册.北京:高等教育出版社,1999

6 栾兆坤.混凝、过滤理论研究发展与应用实践——聚合氯化铝在微絮凝—深床直接过滤工艺中的净水效能及作用机制.第一届澳门环境与城市发展研讨会特邀报告论文集,1999

7 常青,傅金镒,郦兆龙编著.絮凝原理.兰州:兰州大学出版社,1993

相关文章
相关期刊