时间:2023-03-22 17:42:34
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇水产养殖论文范例。如需获取更多原创内容,可随时联系我们的客服老师。
1.1光谱噪声去除由于实验条件如光谱仪硬件和环境光等因素影响,采集的原始光谱数据会包含噪声,需要采用光谱预处理的方法把这些噪声去除,同时保留有用光谱信息。采用SG平滑算法,经验模态分解(empiricalmodedecomposition,EMD)算法和小波分析(wavelettransform,WT)去噪算法等对光谱进行处理,并对三种去噪算法进行比较。
1.2潜在变量(LatentVariable,LV)在利用PLS方法建立模型时,非常关键的一点是所选取的对于建模最优的LV个数,LV和主成分分析中主成分类似,第一个LV贡献率最大,第二个次之,以此类推。如果选取的LV个数偏少,则无法全面代表样本的光谱特性,造成模型精度下降,影响模型的预测效果。而如果选取的LV个数过多,则会带入模型的噪声,干扰建模效果。
1.3建模分析方法用三种建模方法,分别是偏最小二乘回归(partialleastsquares,PLS),BP神经网络(backpropagationneuralnet-work,BPNN)和偏最小二乘支持向量机(leastsquaresupportvectormachine,LS-SVM)。采用PLS建模方法时,基于全谱作为模型输入,使用BP神经网络和LS-SVM建模时,把PLS回归模型得到的LV作为输入,进行对比分析。神经网络由一个输入层、一个或多个隐含层和一个输出层构成。BP神经网络是一种非线性的建模方法,广泛应用于光谱建模分析中[12]。LS-SVM是在经典支持向量机算法基础上作了进一步改进,能够同时进行线性和非线性建模分析,是解决多元建模的一种快速方法。
1.4定量模型评价标准定量模型的评价指标主要有决定系数和均方根误差(rootmeansquareerror,RMSE)。建模集决定系数用R2表示,预测集决定系数用r2表示。决定系数越接近于1,表示模型相关性越好,预测效果更好。一般来说,RMSE越小说明模型的误差越小,模型精度越高。建模集均方根误差用RMSEC表示,预测集均方根误差RMSEP表示。
2结果和讨论
2.1UV/Vis光谱图及COD浓度的统计分析图1为甲鱼养殖水样本的UV/Vis原始光谱曲线,从图中可以看出各个水样的光谱曲线的趋势相类似,没有呈现显著性差异,由于水体中硝酸盐、有机酸、腐殖质等物质对紫外光的强烈吸收,在波段200~260nm区域的吸收度明显高于其他区域。试验水体样本COD值统计结果如表1所示,模型的建模集和预测集COD值覆盖了较大范围,有助于建立准确、稳定和具有代表性的模型。
2.2基于全波长的PLS模型为了更好的分析三种消噪算法检测水体COD含量的性能,将对不同预处理方法获取的评价指标相比较,基于全谱的PLS模型的计算结果如表2所示。由表2可知,小波算法去除噪声后的光谱PLS模型取得了最佳结果,建模集的R2为0.79,RMSEC为15.89mg•L-1,预测集的r2为0.78,RMSEP为15.92mg•L-1。SG平滑和EMD算法虽然部分去除了噪声,但建模效果并没有得到相应提高。故后面建模分析在WT分析基础上进行。
2.3LV一般选取最优LV个数的标准观察RMSEP值随LV个数变化情况,如图3所示,当LV个数较少时,RMSEP值较大,随着LV个数的增加,RMSEP随之减小,当LV个数增加到6时,RMSEP的值保持稳定,LV个数继续增加,RM-SEP值也没有随着增加。取前6个LVs作为偏最小二乘支持向量积的输入建立模型。从贡献率角度解释,PLS建模得到的6个LVs分别作为LS-SVM的输入,之所以取前6个是因为这样几乎可以100%表达原始光谱有用信息,如表3所示,且降低了模型复杂度,提高模型运行速度和精度。
2.4BP神经网络模型根据前文得到的结果,将表3中选出的LVs作为BP神经网络模型输入,BP神经网络模型的计算结果如表4所示。分析表4可知,将6个LVs作为LS-SVM模型输入的结果,其建模集的R2为0.82,RMSEC为15.77mg•L-1,预测集的r2为0.81,RMSEP为16.67mg•L-1。
2.5基于LVs输入的LS-SVM模型LS-SVM模型预测结果如表5所示。采用LVs作为LSSVM模型输入,得到的结果优于基于BP神经网络模型。其建模集的R2为0.83,RMSEC为14.78mg•L-1,预测集的r2为0.82,RMSEP为14.82mg•L-1。
2.6PLS,BP神经网络和LS-SVM模型比较PLS,BPNN和LS-SVM建模方法的结果比较如图3所示,Cal表示模型的建模集(calibration),Pre表示模型的预测集(prediction)。不难发现,在LS-SVM模型和BP神经网络模型中,基于LV作为模型输入-建立的LS-SVM模型取得了最优的效果,BP神经网络模型的预测效果较优,且LS-SVM模型和BP神经网络模型都优于全波长的PLS模型结果。
3结语
1.选择本市各辖区10个池塘循环水养殖单位,主养面积5874亩,净化区面积540亩,主养品种分别为河蟹、青虾、翘嘴鲌、银鲫、青鱼、草鱼等。净化区分为池塘、沟渠两种类型,分别种植浮萍、水花生、空心菜、菖蒲、美人蕉、芦苇、轮叶黑藻等浮水、挺水、沉水类水生植物。根据包含的水生植物种类的差异,细分为单一型(单一类型)、双组型(两种类型)和复合型(三种类型),根据种植密度的差异,按30%以下、30%~70%、70%以上密度划分。净化区除种植水生植物外,还放养一定量的鲢鳙鱼、黄尾鲴、螺蚌等水生动物。
2.选择长荡湖网围养殖户3个,养殖面积55亩,主养河蟹,套养鲢鳙鱼、黄尾鲴、螺等,种植浮萍等水生植物。
3.主养品种放养规格、密度、饵料投喂、疾病防控、增氧换水、养殖管理等均按各自模式不变。
4.在8月初持续高温季节,对池塘循环水净化区净水口与网围养殖区进行抽样,委托检测机构检测pH、化学需氧量、氨氮、总磷、总氮、亚硝酸盐等指标。
5.在9月初,对池塘循环水养殖单位、长荡湖网围养殖户及其周边养殖单位(户)高温损失情况进行统计;在11月,对池塘循环水养殖单位和长荡湖网围养殖户产量、产值、效益情况进行测产统计。
6.采用SPSS数据分析软件对检测数据进行方差分析。表中数据以M(平均值)、SE(标准差)表示。
二、结果与分析
1.不同的种草水域中,pH值网围组高于池塘组,差异极显著(p<0.01),沟渠组高于池塘组,差异显著;化学需氧量网围组显著低于池塘组与沟渠组;氨氮网围组显著低于池塘组;总磷、总氮网围组最低,亚硝酸盐沟渠组最低,但各组差异均不显著(p>0.05)。
2.沟渠组、网围组高温损失低于池塘组,网围组高温损失最低,各组间差异不显著;池塘组与周边同比减损最高,沟渠组次之,网围组最低,池塘组与网围组差异极显著,沟渠组与网围组差异显著;总的亩均利润沟渠组高于池塘组、网围组,差异均极显著;成本利润率沟渠组最高,网围组次之,池塘组最低,各组间差异均不显著。
3.pH值各组间差异不显著;化学需氧量水生植物单一型最低,与双组型差异显著,与复合型差异不显著;氨氮单一型最低,双组型最高,两组差异显著;总磷、总氮、亚硝酸盐各组间差异不显著。
4.高温损失复合型高于双组型和单一型,各组间差异不显著;同比减损复合型最高,双组型次之,单一型最低,复合型与单一型差异极显著,双组型与单一型差异显著;总亩利双组型高于复合型、复合型高于单一型,各组间差异不显著;本利率双组型较高,各组间差异不显著。
5.各组间pH值、化学需氧量、氨氮、总磷、总氮、亚硝酸盐差异均不显著。其中30%以下组pH值最高,化学需氧量、总磷、总氮最低,70%以上组氨氮、亚硝酸盐最低。
6.30%以下组高温损失最低,30%~70%组高温损失最高,两组差异显著;70%以上组同比减损最高,30%以下组最低,各组间差异不显著;70%以上组总亩利最高,30%以下组总亩利最低,差异不显著;30%~70%组本利率高于其他两组,差异不显著。
三、小结与讨论
1.综合结果表明,池塘循环水养殖净化区与网围养殖区经水生植物净化后的pH、氨氮、总氮、总磷等水质指标均达到《太湖流域池塘养殖水排放标准》一级和《地表水水质标准》Ⅲ类水标准,COD达到《太湖地区城镇污水处理厂主要水污染物排放限值》和《地表水水质标准》Ⅴ类水标准,因此,经水生植物处理的养殖水符合排放要求,也可满足循环养殖用水要求。
2.湖泊网围水域水质优于池塘循环水净化区,池塘循环水沟渠型净化区水质好于池塘型。网围养殖高温损失、同比减损均较少,总亩利和本利率较高,可认为高温期间网围养殖水位、水温、光照条件的改变更适于水草生长,湖水自净能力增强,受高温干旱影响较小;池塘循环水养殖中,沟渠组高温损失较低,总亩利和本利率高于池塘组,同样是由于沟渠蓄水量大于池塘,加上水草的净化作用,保障了足量优质水源,而池塘组同比减损最高,表明在净化区水量偏少的情况下,种草仍然能够起到较好的抗高温作用。
3.水生植物单一型和复合型处理水质较好,单一型水生植物构成均为浮水植物,表明浮水植物处理水质效果较好,而双组型、复合型水质处理效果并不优于单一型,这与沉水类植物在富营养化的水质中生存能力弱有关。复合型同比减损显著高于双组型,说明复合型水草应对高温干旱天气能力强,但总亩利和本利率略低于双组型,说明种植和管护成本相对更高。净化区水生植物栽种类型仍需要深入研究。
水产养殖智能控制系统主要由台达TP04P一体机、溶氧温度传感器(RS485接口)、工业级GPRSDTU模块和智能监控管理系统等组成(图1)。TP04P文本一体机的COM2为内建PLC的主站口,通过MODBUSRTU协议读取溶氧温度传感器的溶氧值和温度值;COM3口为内建PLC的从站口(需新测试版软件的支持),用户借助互联网系统平台和DTU模块,通过COM3口远程监测数据和控制设备。
2控制要求
用户通过文本显示器可以读取当前水中的溶氧值和温度值,并且将其显示在首页。用户可以设定溶氧值的上下限,在旋钮旋至自动模式时,水中溶氧值一旦低于设定的下限值,便自动启动增氧机,水中溶氧值大于设定的上限值,便自动关闭增氧机。冲洗泵用于自动清洗传感器,系统工作时,清洗15minh。用户可以设定每天3个时间段强制增氧,当全设为0或错设时不起作用;可以设定每天两个时间点的自动投食,投食时长可以设定;可以设定万年历。用户的网页控制平台可以通过GPRSDTU模块实现远程监控(读取溶氧和温度、设定1个启动时间段、启停投食、远程控制增氧机的启停等)。
3实现过程
3.1溶氧传感器协议用户的溶氧传感器为MODBUSRTU协议,格式要求如下。①波特率:9600;②起始位:1;③数据位:8;④奇偶校验位:无;⑤终止位:1。本协议参照Modbus消息帧,由地址域、功能域、数据域和错误检测域4个域构成。①设备地址:1个字节,地址10为默认地址;②功能码:长度为1个字节;③数据域;④CRC校验。长度为2个字节,低字节在前,高字节在后。应答协议格式如表1所示。表1应答协议格式Tab.1Responseprotocolformat地址域功能码字节数数据区(高字节在前低字节在后)CRC161004H08H8字节低字节高字节注:数据区=温度电极电压(2B)+温度(2B)+溶解氧电极电压(2B)+溶解氧(2B)举例:发送:020400000008F1FF应答:020408102C290977179C279ED5
3.2台达文本一体机PLC程序说明(1)PLC程序先进行COM2和COM3的通讯设置,COM2作为溶氧温度传感器的主站,通讯设置和溶氧温度传感器要求保持一致。COM3作为远程平台的从站,用于通过GPRSDTU与用户平台对接,通讯设置和远程平台一致(MODBUSRTU,9600,8,N,1)。(2)通过MODRD指令将传感器检测到的温度和溶氧值读至本地D1070~D1085寄存器中,因传感器的温度和溶氧是在一个功能码里,而且是按8位存储,这就要对所读取数据进行左移8位作为高位,再与低8位合并成1个16位的数,这个数就是最终读取的数据。这里将D1075通过ROL指令左移8位,再通过WOR指令与D1076逻辑或运算,得到的结果就是温度值,同样的方法对D1079和D1080进行处理即可得到实际溶氧值。(3)通过文本显示输入的溶氧上下限值与实际溶氧值进行比较,在自动模式下,当低于下限值,就自动启动增氧机,当高于上限值就停止增氧机。(4)当增氧机启动时,自动启动定时器,累计达到50min后就立刻启动清洗机来清洗传感器,清洗机工作10min后自动复位停止,又进行累计50min再启动,就这样循环工作。
3.3台达文本一体机文本软件设置说明每个页面均可进行功能键的设置,需要注意的是,如需快捷键实现对数据的依次输入功能,可将该快捷键设定ON按钮,读写选择一体机PLC设置的M1195。因用户的溶氧传感器有两款(一款国产,另一款为哈希传感器),为方便用户的使用,程序做两个溶解氧通讯程序,文本显示单独做个按钮M512来实现切换(切换后需断电重启)[1]。
3.4台达文本一体机与GPRSDTU通信模块及网页平台的对接GPRSDTU是将串口数据转换为IP数据或将IP数据转换为串口数据、通过GPRS通信网络进行传送的无线终端设备,使用的时候完全可以把它当作本地串口使用。本案例使用的是COMWAYDTU模块(达创的DTU模块使用更方便),将本地RS485口通过互联网映射到平台端(不需要公网IP和花生壳,硬件服务商的服务器自动进行两端互联),平台端通过DTU的硬件ID自动识别用户,通过DTU硬件商提供的虚拟串口软件进行通信,使用的时候就好比本地的RS485口一样,方便组态软件及其他平台软件直接通讯[1]。
4结束语
1.1混凝沉淀技术
混凝沉淀技术就是利用化学原理,将混凝剂加入水中,对水中的污染物进行有效去除,石灰铁盐与有机絮凝剂等常用的混凝剂因为其具有一定的毒性,所以不能直接在养殖用水中应用,而是用在水产养殖排水水质的处理上。
1.2臭氧氧化技术
臭氧如果具有强氧化性,就能在水中迅速自行分解,避免造成二次污染,具有除臭、杀菌、脱色以及去除有机物的作用,是一种比较有效的绿色氧化药剂,这种技术主要运用于海水工厂养殖排水水质的处理中,具有较强的氧化作用,能够有效分解、溶解以及降解水中的有机物。
1.3紫外辐射技术
紫外辐射技术利用紫外辐射对水体进行消毒,不仅能够破坏水中残留的臭氧,还能将大量的病菌杀死,具有无毒、高效以及低成本的特征,紫外辐射技术是一种比较成熟的养殖排水水质改善技术,主要应用于水产生殖排水的循环过程中。
1.4其他处理技术
在对水产养殖排水水质进行改善处理的过程中,离子交换技术以及电化学技术也是一种水质处理技术,但是离子交换技术主要在水族馆或者科研项目中运用,应用范围较小,而电化学技术还处于试验阶段,不完全适用于生态农业园的需求。
2生物处理技术
2.1人工浮床净化技术
人工浮床净化技术通过模拟自然界的各种变化规律,利用高分子材料和混凝土等载体,对水生植物进行种植,使其发挥清除水体污染物的作用,这种技术能够净化水质、美化水体景观,为生物创造生存空间的功能,促进周围生物的多样性发展,加强其生态系统的完善,能够很好地适用于生态农业园区的水产养殖排水中。
2.2人工湿地净化技术
人工湿地净化技术能够按照水体的具置和实际情况,模拟湿地的结构与功能,综合净化与处理污水,构成水体、基层、微生物以及水生植物等人工湿地的主要元素,对铵、氮、硝酸盐以及亚硝酸盐等化学物质进行有效清除。
2.3水生动物净化技术
水生动物净化技术就是将水生动物放养于水产养殖所用水体中,不仅能够起到净化水质的作用,还能提高生态农业园水产养殖的经济效益,是一种兼具实用性与经济性的水质净化技术。
2.4水生植物净化技术
水生植物主要有沉水植物、浮叶植物以及漂浮植物,通过水生植物在生态农业园水产养殖区域的种植,能够抑制水体中藻类的生长,并且具有一定的观赏价值,同时能够有效起到净化水体的作用,实现一定的经济效益。
3结语
枯草芽孢杆菌和地衣芽孢杆菌很早便被用于饲料,农业部公告第1126号《饲料添加剂品种目录》(2008)中微生物一栏依然只有这两种,而2013年农业部公告第2045号《饲料添加剂品种目录》(2013)中微生物一栏则增加到6种,增加了用于养殖动物的迟缓芽孢杆菌和短小芽孢杆菌,用于肉鸡、生长育肥猪和水产养殖动物的凝结芽孢杆菌及用于肉鸡、肉鸭、猪和虾的侧孢短芽孢杆菌。此外,在允许添加的酶制剂中,还有淀粉酶、β-葡聚糖酶、麦芽糖酶、β-甘露聚糖酶、蛋白酶、角蛋白酶和木聚糖酶可由芽孢杆菌生产。相信随着研究的进一步深入,可用于饲料的芽孢杆菌种类会越来越多。芽孢杆菌在饲料加工、储藏和饲喂中均有相应的特性保证其活力和性能不减,依次为饲料加工时可在不利的环境条件下形成孢子,可耐高温、耐酸碱和耐挤压,可经受制粒工艺的要求;储存运输中处于休眠期的孢子不消耗饲料的营养成分,保证饲料品质不降低;饲喂后芽孢进入动物肠道,可耐受消化液,在适宜的环境下迅速萌发,此过程可产生多种酶类及代谢产物。此外,芽孢杆菌除了添加于饲料外,还可作为一种水质调节剂,调节水体环境。
2饲用芽孢杆菌的益生功能研究进展
2.1维持肠道微生态平衡
目前,关于芽孢杆菌维持肠道微生态平衡的机制,普遍认可的主要有以下三个方面:一是生物夺氧。枯草芽孢杆菌属好氧性细菌,而病原菌也多为好养性细菌,枯草芽孢杆菌在肠道中的生长繁殖必然消耗氧气,对病原菌造成颉颃作用,同时造成肠道厌氧环境,有利于肠道原籍优势菌繁殖,维持肠道正常生态平衡的作用;二是定植抗力。枯草芽孢杆菌及因其生长繁殖更加有利的动物肠道原籍优势菌都会在肠道内占据一定的位点,导致病原菌可结合位点减少,从而因无法定植而被排斥;三是产生抑菌物质。芽孢杆菌生长繁殖中产生的乙酸、丙酸和丁酸等挥发性脂肪酸可降低动物肠道pH,从而有效抑制病原菌生长。此外因生长环境有利,一些原籍优势菌可产生更多的细菌素和类细菌素等抑菌代谢物。
2.2促进营养物质的消化吸收
枯草芽孢杆菌进入动物肠道后,能迅速在肠道中萌发并增殖,产生多种消化酶,增强动物肠道对饲料的消化能力,促进营养物质的消化利用。芽孢杆菌不仅能产生蛋白酶、淀粉酶和脂肪酶等,还可诱导动物机体内源消化酶的分泌,产生的非淀粉多糖酶可以降解内源酶难以降解的植物性复杂糖类,如纤维素、果胶和葡聚糖等,有利于肠道更好地利用糖类,提高饲料转化率。另外,枯草芽孢杆菌在生长代谢的过程中能产生其他多种营养物质,如维生素、氨基酸和促生长因子,参与动物自身新陈代谢,促进营养物质的消化吸收。
2.3增强机体免疫力
研究表明,芽孢杆菌可促进动物免疫器官发育,加快免疫系统的成熟,T淋巴细胞及B淋巴细胞的数量增多,使动物肠道相关淋巴组织处于免疫准备状态。其机制可能是芽孢杆菌进入动物肠道后,可作用于肠道集合淋巴结的抗原结合位点;此外,芽孢杆菌可通过调节动物肠道的微生态平衡,特别是对双歧杆菌的调节,间接增强动物的免疫力。
3饲用芽孢杆菌在水产养殖中的应用
肠道微生态的平衡是水产动物保持健康的重要保障,肠道微生态平衡一旦被打破,肠道环境会更利于病原菌的生长繁殖。当前,集约化养殖带来的水体负荷过大和水质恶化等环境胁迫,极易导致水产动物肠道微生态失衡,使水产动物表现为病理状态。因此,基于维护肠道微生态平衡的考虑,芽孢杆菌,尤其是枯草芽孢杆菌在水产养殖中得到了越来越广泛的应用。目前,芽孢杆菌在水产养殖中的应用主要有以下两种方式:直接投放于水体,起到改善水质和颉颃病原菌的作用;添加于饲料中投喂,起到改善生长性能、增强免疫功能、调节肠道菌群及保护肠道黏膜组织形态等作用。
3.1作为水质改良剂改善养殖水体的水质
芽孢杆菌能及时分解水体中的有害污染物质,将有机质分解为小分子有机酸、氨基酸及氨为单胞藻提供营养,净化和稳定水质。尹文林等(2006)研究发现:枯草芽孢杆菌具有降解养殖水体氨氮、亚硝酸盐氮和硫化物等作用。而张峰峰(2009)认为:虽然能够降低水体pH及显著降低水中硝酸盐和亚硝酸盐含量,但不具有提高水体中溶氧含量和降低硫化物含量作用。赵迷淼等(2003)发现:施用枯草芽孢杆菌后,对虾养殖池中的亚硝酸盐和硫化氢等有害物质减少,施用芽孢杆菌的池塘化学含氧量(COD)值每次测量都低于未施用芽孢杆菌的池塘,且从施用前的9.5下降到8.2(施用10d),总碱度(ALK)降低,pH也稳定在适宜对虾生长的水平。
3.2作为饲料添加剂提高水产动物的生长性能
芽孢杆菌添加于饲料中可改善动物的生长性能、增强免疫功能、调节肠道菌群及保护肠道黏膜组织形态等作用。这里重点阐述对动物生长性能的改善作用,主要在以下两方面发挥作用。一是产生多种水解酶,可促进营养物质在动物体内的消化利用。芽孢杆菌在生长繁殖过程中可产生蛋白酶、淀粉酶和脂肪酶等消化酶,促进相应营养物质的消化利用。丁贤等(2004)在凡纳滨对虾、刘小刚等(2002)在异育银鲫上都验证了此作用。此外,芽孢杆菌还能分泌非淀粉多糖酶,如果胶酶和葡聚糖酶等,可降解饲料中复杂糖类。其次是产生营养物质直接供动物吸收利用。芽孢杆菌在生长繁殖过程中可产生维生素、氨基酸、有机酸和促生长因子等多种营养物质,参与机体新陈代谢,直接为机体提供营养物质。与此同时,还可促进动物对钙、磷和铁的利用,促进维生素D的吸收。
4小结
一是具有比较性。这是“洼地效应”的核心特征,是开展经济活动的基础,更是抓好产业布局的关键,决策群体可以通过不同区域之间的区位、交通、资源、人才、技术、政策等因素的比较,根据需要做出适合产业发展的最佳组合。二是具有趋向性。趋向性即是一种形象性的概括,也是遵循市场规律的体现,市场在资源配置过程中,由于供需、成本、政策导向、资源开发等关系的作用下,引发资本流向发生改变,形成新兴的产业集聚鄂尔多斯的羊绒、镜泊湖旅游、深圳特区都是“洼地效应”的趋向性体现。三是具有周期性。洼地效应也是一个历史发展过程,有其产生、发展、壮大、消亡的客观规律,起始“洼地效应”不是那么,伴随着“底层”设施建设、各项规章制度制定,“洼地效应”才会慢慢显现出来,随着资金、技术、劳动力的不间断流入,市场开始饱和起来,对外依赖开始加大,竞争逐渐严重,“洼地效应”逐渐消失,也跟水流一样,随着位势的降低速度不断趋缓。
2.八五五农场创造“洼地效应”的比较优势
前面我们从理论层面对“洼地效应”进行了简要分析,在汲取科学发展要素的基础上,下面我们以发展水产养殖业为重点,分析八五五农场产业发展的潜力和优势。
2.1区位优势
八五五农场,隶属黑龙江农垦总局牡丹江管理局,位于密山市境西北部与宝清县、七台河市交界处。场部距密山市区60里路程。结合自然条件下的地理环境和发展乳肉禽蛋产业的区位要求,八五五农场具备了发展水产养殖的区位优势。
2.2设施优势
场区内有小的河流5条。北为挠力河水系的上、中游,南为穆陵河水系的上游金沙河、小裴德河,还有沟壑水线密布全场。总长度954千米,流域总面积760平方千米,流径总量1.25亿立方米,水域450公顷,占总面积的0.8%。场内已建数座水库,一是金星水库,库容三百六十万立方米,可以灌溉稻田200公顷;另一座是红星水库,库容九百四十万立方米,水面300~400公顷,可灌溉水田470公顷,有抽水站一座,可灌大田270公顷。另有育红、金沙、青一、新西河水库。形成了干、支、斗、农、毛配套齐全的立体化水利灌溉格局,辐射全场6个管理区,24个基层作业站,目前完善的灌渠设施系统是农场发展水产养殖的特有优势。
2.3存续优势
所说的存续是指农场区域内存在经营的水产养殖基地和废弃续留的养殖基地,据畜牧水产部门统计,全场现有大小鱼池52个,其中经营性鱼池24个,续留性鱼池28个,其中第二管理区的笨养活养鱼基地占地5公顷,第四管理区的水汪汪水产泥鳅养殖基地占地4.7公顷,原东灌渠废弃引渠待养殖水面达到7公顷,这些存续养殖场是农场重新规划和打造水产养殖产业的基础。
2.4市场机遇优势
目前,农场水产养殖相比水产养殖先进地区仍处于相对落后阶段,全场渔业年总产量36吨左右,仅占市场的16%以内。据调查牡丹江垦区渔业也处于起步阶段,产量远远满足不了人们消费需求。随着经济发展人们对水产品的需求量越来越大,特别是水库地产鱼类,近年来价格一直居高不下,兴凯湖鲤鱼价格从前几年的每斤80元飙升到现在的每斤200元以上由此可见水产养殖的前景巨大。
3.发展水产养殖产业的定位思考
“洼地效应”是在基础产业比较优势凸显的基础上形成的资本集聚过程,对于八五五农场来说江水养殖产业尚处于初级开发阶段,但是从比较优势上分析,农场已经具备了创造洼地效应的环境和条件。
3.1发展网箱养鱼
即利用境内河流沿线水流平缓、水质清新,使用网箱进行鱼类饲养。
3.1.1可行性分析
一方面,主要由于水本身的流动再加上鱼类的活动具有类似流水池的特性,箱内外的水质不断更新推动溶氧和饵料持续得到补充,代谢物和残饵时排出箱外,箱内水质始终能保持良好状态。另一方面,网箱把鱼类限制在有限的空间内,避免凶猛鱼类、风浪的危害和侵袭,能量消耗低,营养积累增加,利于生长和育肥。容易控制凶猛鱼类的危害和竞争者的威胁,存活率高;容易捕捞,商品率高,经济效益好等特点。
3.1.2效益评估分析
我们在对密山市网箱养鱼科技区多年的实践看到:100平方米的网箱养鱼产量,和25亩池塘养殖量相同,1个工人可以管理3-4个网箱正常生产运行,而一个20亩的池塘至少需要3个工人。从下面分析的数据来看,在在正常生产和正常销售的情况下,每个网箱效益计算如下:在2014年1个网箱数产量达到2400千克,成本为3.1万元,总产值为16.8万元,纯利润就达13.7万元。排除非可抗自然因素外,每个网箱的年利润相当于种植16-18公顷水田,以八五五农场200个可扶持的低收入的家庭计算,人均1个网箱,可以实现3000万/年的增产,数量变化可导致几何数增长,网箱养江鱼的前景非常可观。
3.2发展泥鳅养殖
即充分利用闲置的沙坑、洼塘和稻田定向养殖。
3.2.1可行性分析
一是从需求角度上看,因为泥鳅的营养和药用价值非常高,拒不完全统计,国内市场需求量每年达到30-40万吨,主要消费国的韩国和日本每年需求量也在30万吨以上,但目前国内市场供应量不到40%,出口量更是有限,由于污染、过度捕捞等因素加速了国内外对泥鳅的需要,据水产专家介绍,淡水养殖的泥鳅有着非常广阔的发展前景;二是从资源条件上看。八五五农场得天独厚的水田优势,适合发展稻田养殖和洼塘养殖,辖区内河流水里拥有大量的天然泥鳅,就可以得到免费的泥鳅鱼苗,而且天然的鱼苗适应能力强,成活率高,大大降低了养殖成本。
3.2.2效益评估分析
一是稻田养殖,据水利部门调查显示:稻田养泥鳅病害少、省工省饲料,有利于管理,综合效益高,水稻、泥鳅互生一举两得,每亩稻田可产泥鳅50斤左右,去掉成本,产值在200元/亩,以全场水田计算,每年直接增收近五千万元。二是洼塘养殖,即采取专业化、规模化养殖的模式,据畜牧水产部门提供信息,全场现有适合定点养殖的洼塘50余处。
4.形成水产养殖
“洼地效应”的潜在要求前面我们综合分析了八五五农场创造洼地效应的比较优势和布局产业的客观条件,但是能否形成这种效应使之达到最大化的效果,笔者认为还需在产业延伸配套上做好准备工作。
4.1完善的仓储设施
这是水产养殖的必备条件之一,水产品具有流动性、保鲜性、季节性强的特点,所以具备“夏保鲜、冬冷藏”的库藏设施能够使经营者在开放的市场条件觅寻良机获得最大收益。
4.2完善的运输设备
随着生活水平的提高,人们对食品安全的高度重视,餐饮市场对水产品的质量要求提高,保鲜运输已经成为水产配送的重要环节,所以对于水产养殖产业具备与仓储配套的配送运输设备成为必要条件。
4.3完善的加工体系
1.1过滤技术膜过滤技术与机械技术是过滤技术的2种主要方式。膜过滤技术通过利用具有不同孔径的膜对颗粒物进行滤除,对不同粒径的颗粒物进行有效截留,超滤技术与横流式微滤是有效去除小粒径颗粒物的方法,主要应用于具有较高养殖经济价值的水产品的废水处理;机械过滤利用过滤设备根据吸附作用对养殖排水中的饵料进行去除,还能有效清除养殖生物的排泄物以及重金属等污染物。
1.2泡沫分离技术泡沫分离技术主要将大量空气注入污水,在微小气泡上附着水的表面活性物,在气泡上升至水面时形成泡沫,在这种情况下采用分离水面泡沫的方法就能有效去除污水中的悬浮态污染物,这种技术能够将溶解氧提供给养殖水,避免有毒物质的积累,但是因为生态农业园中的淡水养殖缺乏足够的电解质,不能形成较多的泡沫,所以会导致其应用效果不佳。
1.3其他处理技术其他水产养殖排水水质改善技术还包括机械增氧技术与排换水技术两种,此外,反渗透技术、高分子重金属吸附技术以及活性炭吸附技术也是有效改善水产养殖排水水质的技术与手段。
2化学处理技术
2.1混凝沉淀技术混凝沉淀技术就是利用化学原理,将混凝剂加入水中,对水中的污染物进行有效去除,石灰铁盐与有机絮凝剂等常用的混凝剂因为其具有一定的毒性,所以不能直接在养殖用水中应用,而是用在水产养殖排水水质的处理上。
2.2臭氧氧化技术臭氧如果具有强氧化性,就能在水中迅速自行分解,避免造成二次污染,具有除臭、杀菌、脱色以及去除有机物的作用,是一种比较有效的绿色氧化药剂,这种技术主要运用于海水工厂养殖排水水质的处理中,具有较强的氧化作用,能够有效分解、溶解以及降解水中的有机物。
2.3紫外辐射技术紫外辐射技术利用紫外辐射对水体进行消毒,不仅能够破坏水中残留的臭氧,还能将大量的病菌杀死,具有无毒、高效以及低成本的特征,紫外辐射技术是一种比较成熟的养殖排水水质改善技术,主要应用于水产生殖排水的循环过程中。
3生物处理技术
3.1人工浮床净化技术人工浮床净化技术通过模拟自然界的各种变化规律,利用高分子材料和混凝土等载体,对水生植物进行种植,使其发挥清除水体污染物的作用,这种技术能够净化水质、美化水体景观,为生物创造生存空间的功能,促进周围生物的多样性发展,加强其生态系统的完善,能够很好地适用于生态农业园区的水产养殖排水中。
3.2人工湿地净化技术人工湿地净化技术能够按照水体的具置和实际情况,模拟湿地的结构与功能,综合净化与处理污水,构成水体、基层、微生物以及水生植物等人工湿地的主要元素,对铵、氮、硝酸盐以及亚硝酸盐等化学物质进行有效清除。
3.3水生动物净化技术水生动物净化技术就是将水生动物放养于水产养殖所用水体中,不仅能够起到净化水质的作用,还能提高生态农业园水产养殖的经济效益,是一种兼具实用性与经济性的水质净化技术。
线粒体DNA非编码区由两个tRNA基因分离,D-loop区域就处在这个非编码区中[2]。在线粒体DNA中,D-loop区是重链和轻链的复制起点,也称之为“控制区ControlRegion”,其进化压力较小,是线粒体DNA基因组序列和长度变异最大的区域,Horai等[3]发现该区域的基因变化速度比细胞核DNA和其他细胞器的基因快5倍,同时也是进化最快的部分。因此,选择D-loop区作为鉴定种群遗传状况的分子标记直接有效。利用D-loop的序列在群体遗传学上进行分析的工作在20世纪70年代就已经展开了,那时候仅仅用于分析区域内种间的亲缘关系。现今,D-loop区已经广泛被用作非常高效的工具来推断不同区域内种间或种内的亲缘关系和遗传状况。D-loop区中仍然细分为3个部分,中央保守区、终止序列区和保守序列区。其中终止序列区包含了线粒体DNA终止复制的相关序列,是变异最大的部分[4],最具研究和分析价值。在进行数据结果分析时,由D-loop序列分析得到的单倍型多样性指数和核苷酸多样性是两个评价群体遗传资源或者群遗传多样性的重要指标。
1.1野生群体遗传多样性分析
1.1.1D-loop部分序列分析D-loop序列分析中,由于并不是整个D-loop序列都发生碱基的插入或者替换,可以采取对保守序列区或者终止序列区的部分区域进行扩增。由于这两个部分的进化比中央保守区迅速得多,只对这一区段的序列进行分析也能代表物种的遗传多样性和进化过程。张仁意等[5]对青海4个不同湖水采集的155尾裸鲤(Gymnocyprisprzewalskii)个体的线粒体DNA的D-loop区中部分序列进行扩增,得到754bp的序列长度,分析发现155个样本中有34个单倍型,但4个群体中可鲁克湖群体的单倍型多样性和核苷酸多样性远低于其他种群;进一步的遗传分化系数的分析表明,该地区已经产生一定的遗传分化,但由于地理隔离的原因,系统发育树结果还没有发展出明显的单枝,加之该区域群体的遗传多样性偏低,需要进行重点保护。
郑真真等[6]对全球大青鲨(Prionaceglauca)进行了D-loop区中694bp扩增分析,采集了来自中东太平洋、中西太平洋、中东大西洋、西南大西洋和印度洋5个海域的165尾个体,分析发现145个单倍型,变异程度非常大。进一步分析后发现5个区域的大青鲨种群的单倍型和核苷酸都处于较高水平,种质资源较好;但是遗传分化指数显示5个区域存在强烈的基因交流,种群遗传分化水平较低。邹芝英等[7]采集了8尾长鳍鲤(Cyprinuscarpiovar.longfin),扩增得到600bp的部分序列,找到了与终止区域相关的6个特征序列;对这些特定的区域分析得到6个单倍型,13个变异位点,显示了较好的种质资源状况,核苷酸多样性数值与其他鱼类接近,遗传状况中等,由于该物种稀有且仅存在偏远地区,保护珍惜水产动物资源已经迫在眉睫。向燕等[8]为了了解3种鲟鱼:达氏鲟(Acipenserdabryanus)、中华鲟(A.sinensi)和史氏鲟(A.schrencki)亲鱼的遗传状况和遗传背景,对线粒体D-loop区部分序列进行分析,扩增得到400bp的序列,49尾亲鱼个体一共得到仅18个单倍型,并且对于单倍型系统发育树分析后,发现集中在6个单倍型中,说明这些群体很有可能来自同一母亲;不过各单倍型遗传距离较远,说明父本来自不同的个体;其结果提示,在生产中仍要采用不同单倍型进行人工繁育,以避免近亲而导致种质退化。
Kumazawa等[9]研究发现,D-loop的5'端和3'端有串联重复序列,这段的变异速率较快。Abinash等[10]在北美不同区域采集淡水扁头鲶(Pylodictisolivaris),对35bp的串联重复区进行分析检测,从美国35个水系采集了330尾样本,分析结果发现,在东南墨西哥湾的70%样本出现串联重复的变异,而采自密西西比河95%的样本和墨西哥湾西南沿岸的扁头鲶没有出现这个区域的变异;系统发育的计算结果表明,在70万年和205万年左右出现群体分流;从地理位置上看,密西西比河的支流进入墨西哥湾西南沿岸流域,而东南墨西哥湾为另一条流域;该结果表明种群的遗传结构受到地域特殊性的影响。D-loop区部分序列的结果分析能满足一定程度的遗传多样性和遗传状况分析,可以得到可靠的结果数据帮助人们进行资源保护和简单的育种工作。随着科技进步和测序水平的改善,进行全序列的测序渐渐进入研究者的视野,全长序列将获得更加完整和正确的结果。
1.1.2D-loop全序列分析D-loop的多态性一种是来源于碱基的突变、插入和替换形成的不同单倍型,不仅种间有差异,种内个体间也存在差异,只是重复的差异小于种间的差异。而且在个体中D-loop一旦发生差异,线粒体DNA会稳定地将这种差异遗传下去,这种差异在个体间表现为线粒体DNA分子的长度变异,因此对D-loop全长进行分析研究更能体现整体的变异程度。肖明松等[11]在淮河淮滨段、凤台段、蚌埠段、洪泽湖段采集84尾野生乌鳢(Ophicephalusargus)进行种群资源的研究,分析发现33个单倍型,检测了单倍型多样性(h)、核苷酸多样性(Pi)、遗传分化指数(Fst)、遗传距离以及中性检验、错配分析和NJ树,发现其h和Pi较高,表明种群平均多态性相对较好;但在遗传距离的分析中发现所有群体的差异都较小,这可能是由于在淮河流域中不同支流的种流程度较高造成的,所以变异发生在种内,而种群之间的分化较少。董志国等[12]对大连、东营、连云港、舟山、湛江和漳州6个地区的野生三疣梭子蟹(Portunustritubercatus)进行D-loop全基因组区的遗传多样性及群体遗传结构的分析,选择单倍型多样性和核苷酸多样性作为重要指标,并加入了群体遗传分化指数的分析,进行Tajima’sD中性检验和单倍型间的分子变异分析,发现不同地区梭子蟹的遗传多样性很高,产生一定的遗传分化;不过在系统发育关系分析中,地理距离对遗传距离没有显著的关系,原因仍需要进一步研究。赵良杰等[13]在千岛湖汾口、富文、临岐3个大眼华鳊(Sinibramamacrops)主要繁殖区域采集了115尾个体,对样品进行了形态学和D-loop序列测定后,分析形态主成分和各个基因遗传学分析指标,发现千岛湖各地的大眼华鳊之间有丰富的基因交流,并没有形成容易灭绝的小种群,表明各个地理群体仍然有丰富的遗传多样性,面对一定的灾害时有一定的弹性,不过这样的良好状况仍然需要政府和渔民对该区域的种质资源进行保护。高志远等[14]对海南松涛水库南丰镇、番加乡、白沙群体的长臀鮠(Cranoglanisbouderius)的D-loop序列全场进行分析,44尾个体中发现11个单倍型,但在分析中发现单倍型较高,而核苷酸多样性较低,认为是由于海南岛偏僻的地理位置难与大陆长臀鮠进行基因交流,推断在历史中可能出现过严重的瓶颈效应;中性检测也表明没有任何整体或局部的种群扩张,数据皆表明该地域长臀鮠正处在较危险的境地,需要进行种群的保护措施。
1.2养殖群体遗传多样性分析目前,国内对水产动物养殖过程中出现的生长不良与病害频繁大多归结于饲料与环境的问题。诚然,营养和免疫是养殖的关键,但是由于人工育种和繁育杂交造成的种质资源下降也是重要因素之一。养殖户往往在育种过程中,没有考虑到育种群体的遗传状况,导致近亲杂交,子代产生各种问题。徐钢春等[15]对灌江纳苗养殖刀鲚(Coilianasus)的子三代品种与在淡水生活环境下湖鲚(C.nasustaihuensis)两个群体的遗传多样性进行了比较和分析,进行单倍型和核苷酸分析后,发现养殖刀鲚的遗传多样性要优于湖鲚,这可能是由于刀鲚仅是子三代,还未经历大量的人工繁殖和育种,保留了较好的遗传状况;而湖鲚由于其陆封型的特点,导致其种质资源渐渐下降,需要进行放流等活动保证种质资源。姚茜等[16]对来自浙江湖州某公司的养殖群体、缅甸引进的群体和两者杂交的“南太湖1号”群体的罗氏沼虾(Macrobrachiumrosenbergii)的D-loop区进行分析,共16尾群体分析得到14个单倍型,结果表明缅甸引进的群体核苷酸多样性最高,浙江湖州人工养殖群体的多样性最低,说明人工育种对遗传多样性有较大的影响。通过遗传距离和遗传分化指数分析发现,杂交群体更加偏向本地种群。在今后的育种工作中,可在杂交代中选取优秀性状的沼虾,与缅甸种群杂交,以获得更优秀的品种,为今后的人工繁育打下基础。李胜杰等[17]将珠江水产研究所养殖品种大口黑鲈(Micropterussalmoides)与北方和佛罗里达两个野生群体进行D-loop区的遗传分析,在23尾采集的样品中,5尾个体含有两种单倍型,北方11尾个体发现9种单倍型,而佛罗里达仅有1种单倍型。在遗传距离分析上发现,珠江水产研究所的养殖群体与北方群体更加接近。对于单倍型多样性和核苷酸多样性分析,结果表明养殖群体与国外种群相比,其遗传多样性处于较低水平,需要开展种质的保护工作,应引入国外品种进行杂交,改善国内养殖群体的遗传结构,提高遗传多样性,丰富大口黑鲈的种质资源。
1.3亲缘与起源分析D-loop区串联重复的现象虽然丰富,但是不同动物的重复位置不一致,重复的序列和重复的单元也不一致,所以相近物种之间对比分析有助于明确不同物种的关系。郝君等[18]对乌克兰鳞鲤(Cyprinuscarpio)、鲫(Carassisauratus)、鲢(Hypophthalmichthysmolitrix)、鳙(Aristichthysnobilis)、草鱼(Ctenopharyngodonidellus)和乌苏里拟鲿(Pseudobagrusussuriensis)6种不同鱼的线粒体D-loop区进行测序,分析了种内、种间遗传结构差异,发现作为分子标记对系统分化效果的差异,6种不同鱼的碱基含量、碱基差异、遗传距离和系统发育都有显著的差异,构建的D-loop序列的NJ系统树展示了6种鱼的分类地位,肯定了D-loop区比邻近区段的tRNA和12sRNA在鱼类识别、分类、种类鉴定和遗传多样性分析上更加可靠。侯新远等[19]对5种虾虎鱼类进行了系统进化关系的研究,分析了河川沙塘鳢(Odontobutispotamophila)、鸭绿沙塘鳢(O.yaluensis)、中华沙塘鳢(O.sinensis)、葛氏鲈塘鳢(Perccottusglenii)及尖头塘鳢(Eleotrisoxycephala)这6种虾虎鱼类同源长度约为830bp的D-loop序列,通过系统发育树和遗传距离分析,得到6种鱼类的亲缘关系即河川沙塘鳢、鸭绿沙塘鳢、中华沙塘鳢、平头沙塘鳢聚为一支,尖头塘鳢、葛氏鲈塘鳢和褐塘鳢等聚为另一支,为鱼类资源的分类和利用提供了基础。马波等[20]在额尔齐斯河采集了两种类型的银鲫(C.auratusgibelio),对几种鲫鱼的可量性状和D-loop区进行分析,得到了优势种群的生长性状,确定了它们的遗传学特征和分类学地位,同时通过D-loop区的单倍型共享率研究了两种鲫的起源和遗传特征,这些结果对我国将来进行银鲫育种有很大帮助。Klaus等[21]利用D-loop序列对欧洲鲤鱼(C.carpio)137的起源进行研究。在此之前对于欧洲鲤鱼也有过很多关于起源的研究:Zhou等[22]发现一些欧洲养殖的鲤鱼起源可能在德国和欧洲,而俄罗斯主要养殖的鲤鱼起源在亚洲。Zhou等[23]在德国镜鲤和伏尔加河的野生鲫鱼利用D-loop区全序列获得独特的3种单倍型;而Mabuchi等[24]在日本鲤鱼中发现有两个D-loop区单倍型与Zhou等报道的欧洲发现的单倍型非常相似。Klaus等[21]的研究结果指出欧洲和中亚所有的鲤鱼品种有一个共同的祖先,而且有可能是在后冰河时期传播到中亚或者欧洲。对于这种现象,可能是由于在育种过程中,没有进行规范的养殖记录,导致各种群出现杂交现象。而且,养殖户挑选具有优势性状的品种进行,容易导致其他稀有单倍型的消失,从而使得种质资源慢慢下降。
1.4个体内异质性分析同一个体内存在多种重复序列数目不同从而表现为异质。高祥刚等[25]采用克隆技术,在我国海域随机采集了3头斑海豹(Phocalargha),每尾个体任选14个克隆菌,对它们的线粒体DNAD-loop区的终止序列区进行扩增测序,发现其个体内存在多种不同的串联重复单位,即存在异质现象,说明我国的斑海豹种质资源保护较好,进化状态比较积极。张四明等[26]在野生的中华鲟种群种间和个体体内检测线粒体DNA的长度变异情况,发现中华鲟有较多个体的异质性,表现出良好的遗传多样性。由此可见,个体的异质存在是导致线粒体DNA中控制区D-loop长度变化的主要原因,而个体的线粒体DNA长度异质性是直接推动动物物种遗传多样性的重要途径。综上所述,可以发现线粒体D-loop区的序列分析已经在水产行业取得大量进展,D-loop区基因的插入、突变和替换都是影响多样性的关键,而个体内的异质和串联重复的高频率变化不仅存在于水产动物个体中,也存在于种群内,甚至在不同物种之间都对野生水产动物的起源、亲缘关系、遗传多样性、遗传结构和动物进化程度起着重要的作用。在养殖群体中,D-loop区的分析正在渐渐起到重要的作用,若结合微卫星、RFLP等其他分子标记技术,将来对人工育种和对亲鱼、亲虾的选育工作有重大意义。
2细胞色素b序列(cytb)
线粒体DNA中编码蛋白质的基因有还原型辅酶I的亚基、ATP合成酶的亚基、细胞色素c氧化酶的3个亚基和细胞色素b[27]。Zardoya等[28]研究认为,cytb的进化速度适中,适合进行种内和种间的遗传分析。现今利用cytb序列多数用于种内和种间的遗传分化分析、遗传图谱建立和遗传多样性调查,并辅以其他标记技术进行组合分析。王晓梅等[29]获取中华绒螯蟹(Eriocheirsinensis)cytb序列的PCR产物后,利用DGGE技术分析了温州、仪征、江都、南京、盘锦和合浦地区的中华绒螯蟹的遗传多样性,并与合浦绒螯蟹(E.japonicahepuensis)对比,发现中华绒螯蟹与合浦绒螯蟹遗传距离较大,在亲缘关系上具有显著的差异,但是仍有部分遗传标记相同,说明存在一定的基因交流。
黄小彧等[30]利用cytb序列检测了长江支流贵定与干流合江和宜都的中华倒刺鲃(Spinibarbussinensis)群体的遗传多样性,分析群体的遗传距离,结合地理因素分析了该物种的种质资源现状,发现合江的遗传多样性最好,而支流群体与干流群体的遗传分化较大,地理隔离使同一物种的基因交流程度降低。夏月恒等[31]利用cytb序列对中国近海3个地区的鮸鱼(Miichthysmiiuy)的遗传多样性进行分析,通过对地理环境和历史因素的解释,认为中国鮸鱼基因型的单倍型多样性高和核苷酸多样性低可能是因为种群在某个时期突然扩张,使单倍型突变大量产生,但这段时间对于提高核苷酸多样性时间不足,所以产生了如此差别;且Fst结果极低,说明该地区遗传分化程度很低,加上不同地理的单倍型网络图交错呈现,有可能是因为种群由于扩张之后还未达到平衡,需要对该地区进行保护。钟立强等[32]调查了长江中下游5个湖泊的黄颡鱼,利用cytb序列分析了不同地区遗传多样性和遗传分化的程度,60尾个体检测出37个单倍型,Fst分析显示这5个种群的变异大部分都来自群体内,说明各个种群间有一定的基因交流,系统树显示它们没有分化成谱系。司从利等[33]从长江贵定和乐山两个群体的泉水鱼cytb序列分析其遗传状况、结构和多样性程度,发现这两个群体由于三峡大坝的地理因素,已明显受到严重的影响,出现高度的遗传分化,建议对该物种进行分区保护,提高遗传多样性,丰富种质资源。
司从利等[34]在广东、广西等地基于cytb序列分析了华南居氏银鱼(Salanxcuvieri)的遗传现状,从邻接树上可发现有一定的分支,认为地理因素正在逐渐影响遗传结构,推测琼州海峡的地理位置可能影响广东、广西种群间的遗传交流;中性检测结果表明在更新世晚期发生扩增,地球当时的气候影响了该种群的遗传多样性;根据现状,建议分地区对该种群进行人为保护,避免出现种质退化。李伟文等[35]两年中在7个远洋捕捞点采集了黄鳍金枪鱼(Thunnusalbacares),扩增了cytb部分序列得到663bp,108尾个体仅有24个单倍型,且单倍型多样性和核苷酸多样性都处于较低水平,群体的遗传多样性较差;Fst分析得到变异大多发生在群体内部,表明其遗传分化程度较低,并且基因交流非常强烈,种质资源正在衰退,这与人类破坏环境和大面积捕杀有密切关系。谢楠等[36]利用cytb对鲂属(Megalobrama)4种鱼类及长春鳊(Parabramispekinensis)进行了系统分类。但在结果分析过程中仅靠cytb的信息难以准确将不同品种进行区分,仍需要配合其他标记进一步研究。
3其他标记与组合分析
16SrRNA序列、12SrRNA序列和COI序列在线粒体基因组中变异速度较慢,保守性较高,因此很难由其单独作为验证工具来进行遗传分析,往往需要结合其他的基因片段,才能同时作为鉴定种内亲缘关系和物种遗传多样性程度的工具。刘萍等[37]选取了山东青岛中华虎头蟹(Orithyiasinica)野生群体的16SrRNA和COI基因片段研究其遗传多样性,但是发现16SrRNA变异程度较小,效果不佳;在遗传距离和系统进化研究中,两种技术检测了不同蟹之间的亲缘关系以及它们的进化分化时间,利用NJ系统进化树发现中华虎头蟹与梭子蟹类的亲缘关系最近,并采用“分子钟”对4个蟹类的分化时间进行计算。吴玲等[38]对沿海6个群体的白氏文昌鱼(Branchiostomabelcheri)和日本文昌鱼(B.japonicum)分别进行COI和16SrRNA序列的研究,发现两种鱼种内遗传多样性较高,但还没有明显的遗传分化;其中茂名群体和威海群体具有最高的核苷酸多样性,很有可能为这两类鱼的祖先。
翁朝红等[39]对近江蛏(Sinonovacularivularis)、缢蛏(S.constricta)、小刀蛏(Cultellusattenuatus)、尖刀蛏(C.scalprum)和大竹蛏(Solengrandis)的COI和16SrRNA部分序列进行测序和分析,在进行遗传距离和系统演化分析后,结果表明近江蛏已进化至独立为一个种,并且通过聚类分析推断近江蛏应归属于竹蛏超科,解决了这几种蛏分类归属。郁建锋等[40]结合12SrRNA和16SrRNA的序列为太湖流域河川沙塘鳢的分类提供了重要的帮助,发现了大量的变异位点和简约位点,而且在两种标记的验证下,比较得出太湖流域河川沙塘鳢与福建流域河川沙塘鳢已经存在一定的遗传差异。同时,系统发育树分析表明,太湖流域河川沙塘鳢与其他鳢已存在遗传分化差异。王庆容等[41]对长江中上游舞阳河、乌江、雅砻江、岷江和金沙江5个野生鲇(Silurusasotus)群体的亲缘关系和遗传差异进行了分析,对比了核苷酸和单倍型多样性,发现舞阳群体与其他群体的亲缘关系较远。杨慧荣等[42]同时利用D-loop和cytb的序列对长江水系的赤眼鳟(Squoliobarbuscurriculus)进行了遗传多样性的分析,通过遗传变异率、单倍型多样性等指标发现长江赤眼鳟遗传多样性较高,种质状况较好;同时,根据Fst和分子变异等级差异分析发现,不同水系的群体存在明显的遗传分化;系统发育树证明了珠江水系赤眼鳟与长江水系赤眼鳟正在逐渐分化为两类群体,并提出cytb序列在变异显著的群体间更能发挥作用。
孙希福等[43]利用cytb序列和D-loop序列分析了江豚(Neophocaenaphocaenoides)在鼠豚类及一角鲸类的分类地位,系统发育树表明,江豚的遗传距离与一角鲸科较为接近,并确定棘鳍鼠海豚、太平洋鼠海豚及黑眶鼠海豚3种群有较近的亲缘关系,否定了之前仅凭借形态学的分类方式。毕潇潇等[44]在某一水产品公司采集了来自美国与荷兰的狭鳕(Theragrachalcogramma)、太平洋鳕(Gadusmacrocephalus)、蓝鳕(Micromesistiuspoutassou)和远东宽突鳕(Eleginusgracilis)4种不同属的鳕鱼,利用16SrRNA、cytb和COI序列比较了它们的序列结构,根据核苷酸分歧速率以及NJ系统发育树,将太平洋鳕、狭鳕和宽突鳕归为一支,也显示了它们较接近的遗传距离,给分类学提供了非常重要的理论基础。
4展望
线粒体分子标记技术主要用于物种的遗传多样性分析、亲缘、亲权分析和物种进化程度分析。该基因组功能重要且能稳定遗传,是物种个体基因组中变化速度较快且保留较好的部分。对D-loop区的序列进行测序、比对、计算和分析后能得到物种的种属分类、遗传结构、历史发育情况和遗传多样性状态。而且,D-loop区稳定的母系遗传,使得分析起源有较好可靠性,聚类分析结果准确。同时,细胞色素b和16SrRNA等序列虽然进化速度较慢,但其稳定性的特征可以得到较好保留,获得的插入、替换和缺失等突变可以持续遗传,以作为数据分析的可靠依据。在进行不同情况的分析时,可以结合一到两种分子标记技术,作为重要的辅助参考标记。
综上,在水产行业的遗传分析中,野生群体的遗传多样性是将来进行育种和引进的关键,通过线粒体分子标记技术对野生经济水产动物的遗传结构和遗传多样性分析是高效、准确和可靠的。其中单倍型多样性和核苷酸多样性表现了分子结构的变异程度,体现了野生群体种质资源的现状;遗传分化特征能表现群体的基因交流状况,表明了群体间自由的自由度;分子变异等级分析可以让我们了解不同地域群体突变的来源,表现了群体遗传结构的差异;中性检测等分析从分子层面揭示了鱼类的系统发育状况。
乳酸菌是水产养殖中广泛使用的菌。乳酸菌可以分解糖类产生乳酸,为革兰氏阳性,厌氧或兼性厌氧生长,耐酸,在pH3.0~4.5时仍可生长,适应于胃肠的酸性环境。常用的是嗜乳酸杆菌,菌株为杆状,两端圆形。
乳酸菌是鱼肠道中的正常菌群,能在鱼肠道中定植,定植后能合成动物所需要的多种维生素,如维生素B1、叶酸等;在动物体内通过拮抗降低pH,阻止致病菌的侵入和定植,维持肠道内的生态平衡;能阻止和抑制有害物质,抵抗革兰氏阴性致病菌,增强抗感染能力;降解动物体内氨、粪臭素等有害物质;活菌体和代谢产物中的活性物质能增强机体肠黏膜的免疫调节活性,增强体液免疫和细胞免疫,增强机体调节活性,促进生长。
二、乳酸菌产品在水产上的应用
1.泼洒降pH值
乳酸菌制剂泼洒进入水体后,在适合的条件下繁殖,分泌乳酸等代谢产物降水体的pH值,具有持效的特点。乳酸菌因厌氧或兼性厌氧,在池底会长得好。使用:将乳酸菌产品用50倍以上池水稀释后全池均匀泼洒,每亩水面(水深1米)使用乳酸菌制剂100克以上(1克活菌量≥50亿个)。使用注意事项:①晴天上午使用,使用时及时有效增氧2小时以上,当晚注意有效增氧;②使用时配合红糖溶解泼洒效果更佳;③避免与氧化剂、抗生素或消毒剂同时使用。
2.乳酸菌内服
乳酸菌是目前广泛应用的一类益生菌,是温血动物胃肠道中的优势菌群。乳酸菌在饲料添加剂中具有重要地位,在美国FDA公布的42种微生物中有近30%是乳酸菌类。乳酸菌虽不是鱼类肠道内的优势菌群,但普遍认为乳酸菌是鱼类肠道的正常菌群成员。在鱼类养殖中,通过添加含乳酸菌的饲料可抵御致病菌侵袭、提高苗种成活率,有促进生长的作用。乳酸菌产生的代谢产物能降低日粮pH值,使胃内pH值下降,酶的活性提高;胃肠道微生物区系改善。有些有机酸是能量转换过程中重要中间产物,可直接参与体内代谢,提高营养物质消化率。乳酸菌作为鱼类益生菌,在肠道内具有较好的定植能力,而且在水产动物中,这种定植无明显的宿主特异性。乳酸菌内服的缺陷性:该菌在生长过程中不形成芽孢,抗逆性差,易失活而难以保藏,在饲料中添加使用受到一定限制。
3.乳酸菌发酵饲料
近年来,使用乳酸菌产品发酵水产饲料后再投喂,诱食、增食效果好,提高成活率明显。尤其在南美白对虾的养殖上,使用发酵饲料可以增加投喂量,缩短摄食时间、降低发病率,接受度颇高。
常见的虾饲料发酵有两种方式:①充分发酵,乳酸菌、饲料、水充分混合,密闭容器,放置于常温下发酵培养5天以上,闻之有酸香味,pH在4.0左右表示培养成功;②快速发酵,发酵20小时左右。先把200克菌粉(1克活菌量≥50亿)放入14千克水中溶解,加入20千克干饵料混匀,密闭容器(如果是湿饵料,加水到物料用手捏住有水快速滴下即可)。根据气温变化大概24~48小时发酵好,有一股酸香味,可投喂。发酵饲料的注意事项:①饵料中不要添加抗生素或消毒剂;②饵料发酵成熟再使用;③发酵时每40千克饲料添加500克红糖效果更佳。
三、乳酸宝菌