欢迎来到易发表网!

关于我们 期刊咨询 科普杂志

控制技术论文优选九篇

时间:2023-03-22 17:44:01

引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇控制技术论文范例。如需获取更多原创内容,可随时联系我们的客服老师。

控制技术论文

第1篇

在一些定位精度或动态响应要求比较高的机电一体化产品中,交流伺服系统的应用越来越广泛,其中数字式交流伺服系统更符合数字化控制模式的潮流,而且调试、使用十分简单,因而被受青睐。这种伺服系统的驱动器采用了先进的数字信号处理器(DigitalSignalProcessor,DSP),可以对电机轴后端部的光电编码器进行位置采样,在驱动器和电机之间构成位置和速度的闭环控制系统,并充分发挥DSP的高速运算能力,自动完成整个伺服系统的增益调节,甚至可以跟踪负载变化,实时调节系统增益;有的驱动器还具有快速傅立叶变换(FFT)的功能,测算出设备的机械共振点,并通过陷波滤波方式消除机械共振。

一般情况下,这种数字式交流伺服系统大多工作在半闭环的控制方式,即伺服电机上的编码器反馈既作速度环,也作位置环。这种控制方式对于传动链上的间隙及误差不能克服或补偿。为了获得更高的控制精度,应在最终的运动部分安装高精度的检测元件(如:光栅尺、光电编码器等),即实现全闭环控制。比较传统的全闭环控制方法是:伺服系统只接受速度指令,完成速度环的控制,位置环的控制由上位控制器来完成(大多数全闭环的机床数控系统就是这样)。这样大大增加了上位控制器的难度,也限制了伺服系统的推广。目前,国外已出现了一种更完善、可以实现更高精度的全闭环数字式伺服系统,使得高精度自动化设备的实现更为容易。其控制原理如图1所示。

该系统克服了上述半闭环控制系统的缺陷,伺服驱动器可以直接采样装在最后一级机械运动部件上的位置反馈元件(如光栅尺、磁栅尺、旋转编码器等),作为位置环,而电机上的编码器反馈此时仅作为速度环。这样伺服系统就可以消除机械传动上存在的间隙(如齿轮间隙、丝杠间隙等),补偿机械传动件的制造误差(如丝杠螺距误差等),实现真正的全闭环位置控制功能,获得较高的定位精度。而且这种全闭环控制均由伺服驱动器来完成,无需增加上位控制器的负担,因而越来越多的行业在其自动化设备的改造和研制中,开始采用这种伺服系统。

2直线电机驱动技术

直线电机在机床进给伺服系统中的应用,近几年来已在世界机床行业得到重视,并在西欧工业发达地区掀起"直线电机热"。

在机床进给系统中,采用直线电动机直接驱动与原旋转电机传动的最大区别是取消了从电机到工作台(拖板)之间的机械传动环节,把机床进给传动链的长度缩短为零,因而这种传动方式又被称为"零传动"。正是由于这种"零传动"方式,带来了原旋转电机驱动方式无法达到的性能指标和优点。

1.高速响应由于系统中直接取消了一些响应时间常数较大的机械传动件(如丝杠等),使整个闭环控制系统动态响应性能大大提高,反应异常灵敏快捷。

2.精度直线驱动系统取消了由于丝杠等机械机构产生的传动间隙和误差,减少了插补运动时因传动系统滞后带来的跟踪误差。通过直线位置检测反馈控制,即可大大提高机床的定位精度。

3.动刚度高由于"直接驱动",避免了启动、变速和换向时因中间传动环节的弹性变形、摩擦磨损和反向间隙造成的运动滞后现象,同时也提高了其传动刚度。

4.速度快、加减速过程短由于直线电动机最早主要用于磁悬浮列车(时速可达500Km/h),所以用在机床进给驱动中,要满足其超高速切削的最大进个速度(要求达60~100M/min或更高)当然是没有问题的。也由于上述"零传动"的高速响应性,使其加减速过程大大缩短。以实现起动时瞬间达到高速,高速运行时又能瞬间准停。可获得较高的加速度,一般可达2~10g(g=9.8m/s2),而滚珠丝杠传动的最大加速度一般只有0.1~0.5g。

5.行程长度不受限制在导轨上通过串联直线电机,就可以无限延长其行程长度。

6.运动动安静、噪音低由于取消了传动丝杠等部件的机械摩擦,且导轨又可采用滚动导轨或磁垫悬浮导轨(无机械接触),其运动时噪音将大大降低。

7.效率高由于无中间传动环节,消除了机械摩擦时的能量损耗,传动效率大大提高。

直线传动电机的发展也越来越快,在运动控制行业中倍受重视。在国外工业运动控制相对发达的国家已开始推广使用相应的产品,其中美国科尔摩根公司(Kollmorgen)的PLATINNMDDL系列直线电机和SERVOSTARCD系列数字伺服放大器构成一种典型的直线永磁伺服系统,它能提供很高的动态响应速度和加速度、极高的刚度、较高的定位精度和平滑的无差运动;德国西门子公司、日本三井精机公司、台湾上银科技公司等也开始在其产品中应用直线电机。

3可编程计算机控制器技术

自20世纪60年代末美国第一台可编程序控制器(ProgrammingLogicalController,PLC)问世以来,PLC控制技术已走过了30年的发展历程,尤其是随着近代计算机技术和微电子技术的发展,它已在软硬件技术方面远远走出了当初的"顺序控制"的雏形阶段。可编程计算机控制器(PCC)就是代表这一发展趋势的新一代可编程控制器。

与传统的PLC相比较,PCC最大的特点在于它类似于大型计算机的分时多任务操作系统和多样化的应用软件的设计。传统的PLC大多采用单任务的时钟扫描或监控程序来处理程序本身的逻辑运算指令和外部的I/O通道的状态采集与刷新。这样处理方式直接导致了PLC的"控制速度"依赖于应用程序的大小,这一结果无疑是同I/O通道中高实时性的控制要求相违背的。PCC的系统软件完美地解决了这一问题,它采用分时多任务机制构筑其应用软件的运行平台,这样应用程序的运行周期则与程序长短无关,而是由操作系统的循环周期决定。由此,它将应用程序的扫描周期同外部的控制周期区别开来,满足了实时控制的要求。当然,这种控制周期可以在CPU运算能力允许的前提下,按照用户的实际要求,任意修改。

基于这样的操作系统,PCC的应用程序由多任务模块构成,给工程项目应用软件的开发带来很大的便利。因为这样可以方便地按照控制项目中各部分不同的功能要求,如运动控制、数据采集、报警、PID调节运算、通信控制等,分别编制出控制程序模块(任务),这些模块既独立运行,数据间又保持一定的相互关联,这些模块经过分步骤的独立编制和调试之后,可一同下载至PCC的CPU中,在多任务操作系统的调度管理下并行运行,共同实现项目的控制要求。

PCC在工业控制中强大的功能优势,体现了可编程控制器与工业控制计算机及DCS(分布式工业控制系统)技术互相融合的发展潮流,虽然这还是一项较为年轻的技术,但在其越来越多的应用领域中,它正日益显示出不可低估的发展潜力。

4运动控制卡

运动控制卡是一种基于工业PC机、用于各种运动控制场合(包括位移、速度、加速度等)的上位控制单元。它的出现主要是因为:(1)为了满足新型数控系统的标准化、柔性、开放性等要求;(2)在各种工业设备(如包装机械、印刷机械等)、国防装备(如跟踪定位系统等)、智能医疗装置等设备的自动化控制系统研制和改造中,急需一个运动控制模块的硬件平台;(3)PC机在各种工业现场的广泛应用,也促使配备相应的控制卡以充分发挥PC机的强大功能。

运动控制卡通常采用专业运动控制芯片或高速DSP作为运动控制核心,大多用于控制步进电机或伺服电机。一般地,运动控制卡与PC机构成主从式控制结构:PC机负责人机交互界面的管理和控制系统的实时监控等方面的工作(例如键盘和鼠标的管理、系统状态的显示、运动轨迹规划、控制指令的发送、外部信号的监控等等);控制卡完成运动控制的所有细节(包括脉冲和方向信号的输出、自动升降速的处理、原点和限位等信号的检测等等)。运动控制卡都配有开放的函数库供用户在DOS或Windows系统平台下自行开发、构造所需的控制系统。因而这种结构开放的运动控制卡能够广泛地应用于制造业中设备自动化的各个领域。

这种运动控制模式在国外自动化设备的控制系统中比较流行,运动控制卡也形成了一个独立的专门行业,具有代表性的产品有美国的PMAC、PARKER等运动控制卡。在国内相应的产品也已出现,如成都步进机电有限公司的DMC300系列卡已成功地应用于数控打孔机、汽车部件性能试验台等多种自动化设备上。

5结束语

计算机技术和微电子技术的快速发展,推动着工业运动控制技术不断进步,出现了诸如全闭环交流伺服驱动系统、直线电机驱动技术、可编程计算机控制器、运动控制卡等许多先进的实用技术,为开发和制造工业自动化设备提供了高效率的手段。这也必将促使我国的机电一体化技术水平不断提高。

第2篇

当前,电厂集控运行模式主要表现为三种模式,分别为分级阶梯控制模式、分散控制模式与综合控制模式。其中分级阶梯控制模式属于一种阶梯型分层结构,分级阶梯控制模式是将整个系统所执行的监控层次与控制层次划分为若干层次,通过层级实现相应工作,其控制模式下,将管理模式进行阶梯化与等级化,能够提高集控运行集约化管理,有助于提高电厂集控管理效率。分散控制模式与传统集控管理系统存在着较大差异,其属于一种分散化的集控模式,在具体的操作环节中,对运行超负荷、运行风险等进行分散化管理操作,其控制模式有助于避免系统操作出现事故问题,降低事故影响范围。集中控制模式,即通讯传输控制模式,属于电厂集控运行控制模式中的重要内容,建立于现代通讯技术基础之上,对电厂设备运行控制中所产生的数据信息进行分析处理,该控制模式安全稳定运行的条件较多,主要包括电厂运行模式数据管理与处理、远程网络通讯技术与计算机技术等。信息技术属于集中控制模式运行的前提性条件,多元化系统接口装置的发展与应用,为保障集中控制模式运行质量提供了可靠支撑。

2电厂集控运行控制模式应用的核心技术

电厂集控运行控制模式依托集控运行技术来实现,即为DCS系统,DCS系统作为一种综合性控制系统,其在提高电厂设备自动化水平,实现能源节约保障系统运行安全等方面发挥着重要作用。电厂自身设备具备一定的自动化水平是应用集控运行技术的重要基础。当前,在电厂工业生产领域,采取集控运行技术取代传统的单独控制技术,能够更好发挥集控运行技术的自动化与集成化优势。电厂集控运行核心技术为生产线管控技术,生产线管控技术的应用,能够通过借助网络技术与计算机技术,实现对电厂生产线中所进行的生产作业执行管理与控制操作,从而大幅提高了电厂作业自动化水平。采取4C技术可以实现对大中型生产线进行实时监督与管理控制,能够有效预防电厂设备运行安全事故发生,对集控运行中获取的信息及数据进行合理分析,加强集控运行优化操作,从而在提高电厂生产作业效率的基础上,实现电厂集控运行控制的经济性与有效性。

3提高电厂集控运行模式管理科学性以保障其运行效益

为切实保障电厂集控运行控制模式及应用效益,要求不断革新信息技术,通过深化信息技术提高集控系统运行可靠性,提高信号集中控制能力,降低工作人员负担并提高工作效率;不断加强工作人员专业素养,切实掌握集控运行控制模式操作技术,优化资源及技术配置,提高工作专业水平;高度重视操作细节,加强电厂集控运行控制系统硬件与软件维护,确保整个系统运行的安全性与可靠性。

4结语

第3篇

焙烧控制系统应用的控制技术

1边火道控制技术

由于边火道侧墙密封问题易造成漏风、温度低和边火道挥发分析出量少的特点,预热区温度不易控制,在控制模块中,提供边火道温度单独设定的方法,通过提高边火道的温度设定,解决预热区边火道温度低的问题。在焙烧实际操作时,如果高温炉室采用远程控制火道设定温度为1200℃,边火道增加30℃偏移值即设定为1230℃,这样可使高温炉室各个料箱的水平温差控制在5℃以内;处于挥发阶段的炉室,边火道加15℃的偏移值时,各料箱的水平温差最小。

2料箱温差控制技术

制品在焙烧过程中能否均匀升温,直接影响了制品品质、能耗、产能及炉口设备寿命,是焙烧控制的重要目标。公司环式炉料箱深度为6600mm,是国内最深的炉型。缩小前后温差与上下温差是面临的难题。通过优化燃烧器、负压控制、燃烧架上下游功率控制及燃烧架各火道的均衡控制等一系列技术,使得火道及料箱上下、左右、前后温差在要求的范围内。为了缩小火道的上下温差,加强了对各火道负压的调整。通过排烟架的蝶阀控制,各火道负压控制在-100~-130Pa,零压控制在-10~0Pa,现在火道上下温差由以前的50℃缩小到30℃以内,保证温度场均匀分布和产品均匀受热,保证了上层和下层产品的均质性。为了缩小炉室的前后温差,在自动控制时,采取调节上下游功率的方法,根据实际情况,控制好上下游给气量,从而达到缩小前后温差的目的。手动控制时,采用只点下游烧嘴的方法,根据实际温度情况,控制好给气量,掌握好升温速度。通过采取这些措施,目前环式炉的前后温差已经由以前的100℃左右缩小到50℃以内。

3火道负压综合控制技术

通过系统运行在许可的负压范围内,实现焙烧区和预热区火道温度的自动控制,使其保持跟踪对应区域的温度设定曲线变化,从而保证各炉室实际温度曲线满足焙烧工艺的要求。上述所有控制都与火道负压综合控制相关,彼此互相影响,互相牵制,由于是在同一条火道中,因此必须对负压进行综合控制。在中控室管理机上设置优化控制软件,通过模糊控制,多变量最优控制等先进控制方法,对负压进行综合控制,以达到最优效果。

4预热炉室温度控制技术

在炭电极焙烧运行过程中,预热炉室只靠高温炉室和挥发炉室的余热,无法满足正常的升温需求,造成焙烧时间长,生产效率低。根据这一问题,利用辅助燃烧架提前加热的方法,提高预热的升温速度。投产时,工艺设定产品温度达到230℃后停止加热,出现了部分废品,因火道局部温度高导致上部保温料过烧氧化严重。根据这些问题,采取逐步降低提前加热温度的方法,经过多次试验,最终降低到180℃的预热温度。目前,挥发前期升温速度得到了有效控制,杜绝了上部保温料氧化现象,而且还降低了天然气消耗。

5焙烧炉数学模型技术

通过大量的实验及数据分析发现,焙烧炉的升温曲线对于炭电极的质量有着重要的影响,但对于6600mm深的火道来说,燃烧装置仅用少量热电偶来测量温度,不能全面反映温度场分布状况。因此通过对焙烧炉火道温度进行测试,了解火道内其他各点的温度数据,对于保证炭电极的质量、炉体的使用寿命及天然气的能耗有重要的影响。针对不同的电极规格、不同的质量要求进行了认真的摸索与试验,现在已经取得了大量成熟的数据,并建立了焙烧炉温度场、挥发分析出、烟气排放、热平衡及制品焙烧过程等一系列数学模型。

第4篇

【关键词】EPB电子驻车应用

一、EPB与传统手制动相比的优点

1.1EPB系统可以在发动机熄火后自动施加驻车制动。驻车方便、可靠,可防止意外的释放(比如小孩、偷盗等)。

1.2不同驾驶员的力量大小有别,手驻车制动杆的驻车制动可能由此对制动力的实际作用不同。而对于EPB,制动力量是固定的,不会因人而异,出现偏差。

1.3可在紧急状态下组委行车制动用。

二、EPB的功能

2.1基本功能:通过按钮实现传统手刹的静态驻车和静态释放功能。

2.2动态功能:行车时,若不踩踏板刹车,通过EPB按钮,一样也可以实现制动功能。

2.3“熄火控制”模式:当汽车拔钥匙熄火时,自动启用驻车制动,发动机不打火驻车不能解除。

2.4开车释放功能:当驾驶员开车时,踩油门,挂挡后自动解除驻车。

2.5启动约束:点火关闭,释放约束模式(保护儿童),不用操作制动踏板,即可释放约束模式。

2.6紧急释放功能:当电子驻车没电需要解除驻车时,可用专门的释放工具释放驻车。

三、拉线式EPB的组成及各部件的作用

3.1拉线。拉线和传统的驻车系统中拉线所起的作用完全一样,就是把力从EPB总成传递到驻车制动器上实现驻车功能。拉线式EPB有单拉线和双拉线两种。

单、双拉线有各自的优点和缺点。相比较起来双拉线有较大的拉线效率,拉线行程短,但布置没单拉线灵活,产生相同的拉力,控制器需要加载的力大。工作时,双拉线EPB控制器同时带动两根拉线运动,带动制动器驻车,而单拉线时,EPB控制器是只带动了一根拉线,然后通过拉索平衡器此拉线带动后面的两根拉线驻车。

单拉线式样的EPB,一根拉线带动两根拉线的原理为:第一根拉线的芯线在控制器的带动下产生移动,其带动拉线向右移动,然后因为第一根拉线受力弯曲,第一根拉线通过固定在其拉线护套上面的平衡器带动拉线1向左移动,从而实现了一根拉线带动两根拉线移动的目的。

3.2按钮。通过按或者拉按钮控制EPB驻车和解除驻车,按钮上有背景灯,提醒驾驶者是否已工作。

3.3紧急工具。在EPB因断电不工作时,实现驻车解除功能。

3.4电机。EPB工作时的动力来源,由其来带动齿轮机构工作实现驻车。(有人仅靠电子驻车纸面意思可能会担心驻车后,出现没电的情况怎么办?实际上电子驻车只是靠电触发齿轮机构工作,最终使车长时间驻车的还是机械机构,并且国家法规中也明确要求,驻车要用可靠的机械机构来完成)。

3.5齿轮机构。不同厂家EPB的此部分机构的工作原理不一定相同但其作用是一样的。都是力的传递机构,把力由电机齿轮的转动转化成拉线方向上力。其齿轮结构的工作原理如右图电机带动拉线所在的外齿轮机构和内齿轮机构旋转,因为旋转方向相反,带动连接在内外齿轮机构的拉线运动,实现驻车。

3.6ECU和传感器。ECU用来控制EPB对外的信息交流和反馈。传感器用来感应拉力的大小。

四、EPB总成的工作原理和其功能的实现原理

4.1EPB总成的工作原理。拉线式EPB工作原理为:通过开关给ECU一个通断信号,EPB的ECU控制电机进行旋转,然后由内部的齿轮机构把此力输出到拉线上,由拉线带动制动器进行驻车。

4.2EPB各功能的实现原理

(1)基本功能。最基本的功能,静态释放和静态驻车功能,通过按钮驻车和解除驻车此工作原理简单,也就是上面的EPB工作原理。

(2)EPB卖点之一的动态功能。当车在行车状态,速度大于12km/h,若按下EPB按钮,ECU指挥马达带动拉线驻车,当车轮要抱死,有滑移的倾向时,ECU通过CAN得到这个信号后,会使拉线力减小,以便不使车轮抱死,如此循环,直至车停下为止。虽然EPB有此功能,但各个EPB厂家,并不推荐客户把EPB当作行车制动器使用,并且还明确要求客户,此功能只能在常规制动器失效或不可使用踏板的紧急情况下才能使用,这是因为在行车中,驻车制动器启动后,那么就把制动力全部加在后轮,对后制动器的损害是很大的。

(3)“熄火控制”模式。发动机熄火后,通过CAN把此信息传递给ECU,ECU指挥EPB驻车。

(4)EPB的另一卖点功能:开车释放功能。要实现该功能,则EBP系统需要知道驾驶员是否希望车辆开始行驶。对自动挡车辆来说,EPB可以通过变速器信息及油门信息了解车辆状态。然后ECU指挥EPB释放驻车。而对手动挡车辆来说,原有的配置所能提供的信息无法确认驾驶员的期望。为了实现该功能,需要在车辆上加装档位传感器及离合器传感器。

(5)紧急释放功能。用专门开发的紧急释放工具来实现此功能。工具的工作原理为,用专门开发的EPB工具,先插入紧急工具孔,然后旋转,使齿轮旋转带动涡杆移动,解除驻车。有时为了使解除驻车方便,或者不便于使用刚性的紧急释放工具,也可以使用易曲工具,实现过程为:把紧急释放工具由刚性改成可弯曲的易曲工具,然后根据EPB的布置位置,设计合理的导向管,设计导向管的原则为将来在使用工具时比较方便,不需要拆卸其它零件,或者钻到车下。导向管一端,另一端固定死在电子驻车工具孔上,使用时,取出紧急工具,把工具从导向管端插入,顺着导向管,把工具连接到电子驻车上,然后转动工具摇把,即可释放驻车。在开发易曲工具中需要注意的是:1.工具的易曲长度不能太长否则会因工具弯曲端过长而使传递到电子驻车的力矩解除不了驻车。2.导向管扭曲的幅度不能过于大,否则工具在通过导管时的难度就很大,甚至通不过导管。

五、拉线式EPB的布置

5.1EPB的布置

EPB的布置需要注意以下几点:

(1)若EPB布置在车身下,要设计合理的支架,力求把EPB包起来,防止车底下高速飞起的石子打在EPB壳体上。(2)注意保证EPB周围的温度不能过高,要在其工作温度范围内。(3)注意选择合理的缓冲垫来起到防震的效果。(4)EPB位置的选择,要考虑到将来紧急工具使用的方便性。

5.2拉线的布置

拉线的布置需要注意以下几点:

(1)拉线之间的间隙要求,需要满足一定要求。(2)单拉线式。EPB是由一根拉线带动后面两根拉线来实现驻车的,为了实现一根拉线带动二根拉线,所以布置时一定要保证第一根拉线的末端是可移动的,不能在此处做支架给其固定死。

六、结论

EPB是近来研究的重要成果之一。它替代了手驻车制动,用电子按钮实现停车制动,且节省了车厢内部的空间。符合现在消费者们希望在车内安装更多的基本配置和功能的这个趋势。因此设计小巧的EPB倍受青睐。目前电子驻车在国外已应用的比较普遍。在不久的将来电子驻车也会频频装配在中国的汽车上。

参考文献:

舒华,姚国平.汽车电子控制技术.北京.人民交通出版社,2002.

董辉.汽车用传感器.北京:理工大学出版社,1998.

第5篇

随着电气工程系统科技水平的不断提高,尤其是各种智能化电气设备的广泛应用,更是对控制技术提出了较高的要求,现代化的控制技术应当满足电气工程系统的如下要求:

(1)能够快捷高效的对电气系统设备完成控制。现代化的控制技术以数字信息作为载体对电气工程系统设备操作指令,必须确保对于不同设备不同指令的精准,各种失误操作指令的概率必须极低。此外,现代化的控制技术还应当具有较好的信息数据交互功能,能够及时的向控制中心进行数据信息的反馈,进而确保控制的准确性。

(2)可以实现对电气工程系统设备的全面监控。由于很多电气工程系统设备都是全天候运行,因此电气控制系统同样必须能够实现24h的全面监控,并可以准确的完成电气工程系统设备故障地点的诊断。此外,现代化的控制技术还应该依靠信息采集、信息处理以及指令反馈流程,形成全面的监控管理,确保电气工程系统能实时处于控制之下。

(3)具有较高的安全性。电气工程系统由于容易受到外部环境、系统设备故障以及管理人员操作失误的影响,很有可能造成电气工程系统故障,甚至出现系统运行安全事故。因此控制系统应该具有较好的安全性,重点可以对电气工程系统的运行异常情况进行及时准确的动作处理,避免由于控制操作造成安全事故问题的发生。

2、电气工程中现代化的控制技术应用措施分析

(1)建立完善的电气工程系统控制构架。在电气工程控制系统构建之前,首先必须明确需要控制系统处理电气工程的哪些问题,要求控制系统需要具备何种功能,同时控制系统需要具备哪些管理层次。一般在电气工程控制系统中,需要设置数据管理模块、运行监控模块、电气工程管理模块、电气工程设施养护模块、工作人员维护操作模块等几项子系统组成。

(2)合理的选用电气工程控制系统设备。控制系统设备是整个现代控制技术实现的重要基础保障,这也是控制系统效率与安全性的基础。现阶段在电气工程控制系统中主要分为作业类、信息收集传递类以及控制处理类等三类设备。其中作业设备主要是进行各种电气工程操作的动作,主要是控制电气开关、换闸以及变压稳压等电气工程设备。信息收集类设备主要是只对电气工程系统运行过程进行监控的设备,主要包括电子信号转换器、系统运行监控以及网络传输设施等一系列的设备,控制类的设备则主要包括处理器与控制终端等,在设备的选择上应该尽可能的选择各种智能化与高效化的控制设备。

(3)电气工程控制系统的环境管理。对电气工程系统设备的运行环境进行监控,也是现代控制技术管理的重要内容。对电气工程系统设施进行监控的主要目的是为了准确的掌握电气工程系统设备运行的电压稳定性、电流、温度以及湿度等外部环境状况,同时如果电气工程系统运行环境不适宜时,启动空调、除湿、稳压等设备,确保电气工程系统运行的安全稳定。

3、现代控制技术应用发展趋势

(1)智能化控制技术。电气系统的发展已经步入到了电气工程自动化的阶段,实现电气工程自动化的关键要素就是要实现对电气工程系统的智能化控制,因此在目前现代控制技术中最主要的内容就是对电气工程系统的智能化控制。智能化的控制系统主要是通过采用智能化控制技术来实现电气工程系统控制的高效、自主、远程操作。电气工程系统智能化在电气系统中的应用已经十分的广泛,例如当前电气系统中有关于系统开关量以及模拟量等各项数据的动态实时采集以及反馈处理,都是通过智能化进行控制。此外,在电气系统工程中对于电气工程系统设备运行状态的实时监测、对于故障的分析诊断以及紧急处理方面,都已经广泛的应用了智能化的控制技术。

(2)电气系统模糊控制技术。电气系统模糊控制技术主要是采用现代控制理论作为基础,通过结合自适应控制技术、人工智能技术以及神经网络技术实现控制。在电气工程系统控制中采用模糊控制技术,主要是针对无法准确的确定数学模型的复杂控制系统,通过在控制规则上设置具有一定模糊条件,来弥补电气工程控制系统中的一些非线性以及不确定因素的运行控制手段。模糊控制技术是一种以模糊数学、模糊语言以及模糊规则形成理论基础的自动控制系统,通过采用计算机控制技术形成控制与反馈的具有闭环结构特点的现代数字控制系统,对于不确定系统的控制非常实用。

(3)非线性控制技术。当前在电气工程系统控制中,线性控制理论技术已经得到了广泛的应用,但是由于线形控制技术主要是基于电气工程设备运行中局部的稳定性来进行数学模型的简化设计,在线性控制理论中并未充分的考虑到电气工程设备的非线性因素,因此在电气工程系统中引入非线性分析与控制方法则可以有效的解决这些问题。非线性控制系统的控制方式主要有两种,一种是将非线性系统的某一邻域做反馈线性化的处理,同时利用微分几何理论等现代控制理论进行反馈显性化。另一种则是直接的将变结构方法、鲁棒控制或者是智能控制等非线性控制理论进行实际的工程应用。

4、结语

第6篇

关键词列车自动控制,无线通信的列车控制,互联互通

基于通信的列车控制(Communication2BasedTrainControl,简为CBTC)系统采用先进的通信、计算机技术,对列车实现连续控制。它摆脱了轨道电路对列车占用的判别方式,突破了固定闭塞的局限性,可以实现移动闭塞。本文将从列车控制技术的发展着手,探讨无线CBTC的技术经济优势及对于实现互联互通和项目设备国产化的优越性,并对其在国内的应用前景提出了看法。

1列车控制技术的发展和CBTC

列车自动控制(ATC)系统的发展依赖于市场的需求以及各种新兴的技术基础。过去25年中微处理器的发展以及过去5年中移动通信的发展,对ATC技术的发展产生了重要的影响。微处理器的件为基础的系统的演变,而移动通信技术的发展也将极大影响ATC系统发展的进程(见图1)[2]。

图1列车控制技术的发展

无线CBTC采用无线通信系统,通过开放的数据通信网络实现了列车与轨旁设备实时双向通信,信息量大,并通过采用基于IP标准的列车控制结构,可以在实现列车控制的同时附加其它功能(如安全报警、员工管理及乘客信息等)。

目前国际上诸如Alcatel,Alstom,Siemens,Bombardier和Westinghouse等信号供应商。均开发出了各自的CBTC系统并在全球得到了广泛的应用。

2无线CBTC与互联互通

2.1无线CBTC的技术与经济优势

由于无线CBTC可采用移动闭塞的制式,列车能以较小的间隔运行,可使运营商实现“小编组,高密度”的运营模式,这使系统可在同样满足客运需求的基础上,缩短旅客的候车时间,缩小站台长度和候车空间,降低基建投资;同时,由于系统核心通过软件实现,使其在硬件数量上大大减少,因而可以降低维修费用,从而降低系统生命周期成本。

2.2采用无线CBTC可实现互联互通

在城市轨道交通领域,互联互通指的是接口间的列车控制的安全标准、导轨的模型化以及列车控制信息传递协议等。因此,要达到真正的互联互通,就必须重新设计系统接口[3]。由于无线CBTC的各控制子系统间的逻辑接口均通过数据通信系统实现,数据通信系统采用开放式的国际标准后,子系统间的接口也可实现标准化;而通过采用序列号、循环冗余校验等方法进行对安全关联数据的保护和接入防护,可有效保证开放数据通信系统的数据安全,因此采用无线CBTC将会有利于实现互联互通。

在对既有的点式列车自动防护(ATP)传输系统或编码数字轨道电路的改造中,采用无线CBTC对其车载设备和轨旁设备进行一定的改造后(主要是增加网络接口和无线控制子系统),可实现既有信号系统与无线CBTC的叠加,从而达到既有线路与新的无线CBTC线路的互联互通。

通过模块化的结构、强有力的接口设计和事件描述,无线CBTC强调系统应用层和开发层的独立性,而强调应用层之间的接口标准。采取开放式的国际标准可以使国内厂商从系统部分元件的国产化着手(如通信系统等),逐步实现整个系统的国产化。

2.3国外的互联互通项目

2.3.1欧洲的城市轨道交通管理系统UGTMS

城市轨道交通管理系统(UrbanGuidedTransportManagementSystem,简为UGTMS)[4]是由欧洲委员会于2000年提出的一个研究项目,旨在欧洲范围内建立一个城市轨道交通领域内的共同标准和规则,以提高公共交通系统的使用效率和安全,降低系统和社会成本,并使交通系统更加灵活以满足运营商的需要。项目的参与者来自于运营商、系统供应商和科研院校。研究范围包括:信号与联锁、列车控制、列车管理系统、供电监控及维护辅助系统等。UGTMS的目标是定义一个完全开放系统的功能、系统要求及接口的规范。

UGTMS分三个阶段进行:第一个阶段的主要任务是回顾和评价欧洲铁路运输管理系统(ERTMS)的功能需求规格书,进行ERTMS以及柏林、伦敦、马德里、纽约和巴黎的先进项目与UGTMS的基准比较(Benchmarking),定义UGTMS的功能需求规格书(FRS)。第二个阶段将完成FRS,建立系统需求规范书(SRS),建立功能接口标准I/F形式/安装/功能接口规范书(FORMFitFunctionalInterfaceSpecifications,简为FFFIS)。第三个阶段将进行实际规模的示范线试验。

与UGTMS同时进行的还有国际电联IEC(In2ternationalElectro2technicalCommission)的标准化项目IECWG40,旨在建立城市轨道交通线路、线网的交通控制,以及管理系统的功能、系统和接口规范。共有7个国家(法、中、加、日、德、意、美)及15个运营商和供应商参与这个标准化项目。

2.3.2巴黎公共运输局(RATP)的地铁13号线

经过公开招标,RATP选择了阿尔卡特的6530SeltracS30作为地铁13号线的解决方案。该技术将使列车的运行间隔从现有的105s缩至90s。它采用无线数据通信,通过虚拟闭塞方式来提高线路通过能力。系统可实现列车自动运行(ATO)和列车自动防护(ATP)功能。此外,设计上的模块化使系统可实现线路的混合模式运行,并预留了向无人驾驶模式发展的空间。为了不影响线路的正常运营,升级改造工作均在晚间进行。阿尔卡特的系统可以叠加在现有的系统之上,因此可以顺利完成系统的升级改造。13号线将于2005年完成现场测试。

对于互联互通的接口标准,RATP采用开放的国际标准而不是由某个企业作为”领跑者”制定。据悉,巴黎3、5号线的信号系统升级也已开始公开招标,并且这次招标是将系统的车载部分、轨旁部分和通信系统部分分成了5个合同包分别进行招标,其中车载2个,轨旁2个,通信系统1个。

2.3.3纽约地铁(NYCT)的Canarsie线

在Canarsie项目一期中,NYCT要求3个供应商在一个信号改造区段示范其CBTC技术。经过示范,NYCT认为CBTC是最适合改造其信号系统并实现互联互通的方案,并选择了一家供应商(Siemens)作为项目“领跑者”和另外两家供应商(Alcatel,Alstom)作为“跟随者”。在项目二期,CBTC将被安装并作为NYCT的CBTC技术的标准。按照安装合同,“领跑者”必须提供详细的互联互通的接口规范以便两个“跟随者”能按照规范生产兼容产品并进行示范试验。

对于互联互通的气隙接口标准,纽纽地铁采用了由“领跑者”制定的非开放的标准,Alcatel决定购买其通信设备,而Alstom决定开发兼容产品。

3在中国城市轨道交通的应用

3.1在武汉和广州的应用

2002年5月,武汉轻轨率先一步,决定使用阿尔卡特公司的SeltracS40系统。该系统采用移动闭塞技术,能够实施可靠的列车自动监控(ATS)并能使4节编组列车以80km/h的最高速度在高架双线上安全运行。系统通过指挥中心的主电脑控制列车运行,可实现无人驾驶、定点停车和无人自动折返,但为了安全需要仍配备了司机。系统采用车载信号系统,另外仍安装轨旁信号机以作应急用。此外,系统还设有一套“功能后退模式”,以确保在极罕见的情况下系统发生了影响正常运营的故障时运营不会中断。其首期工程将在2004年投入运营。

2003年5月,广州地铁3号线也决定采用SeltracS40作为其列车控制系统。该系统可使列车行驶速度高达120km/h,并大大缩短行车间隔,从而大幅度提高运营效率。该线将在2006年投入运营。

3.2在上海的应用前景

随着通信及计算机技术的不断发展,采用无线CBTC作为新的列车控制技术或替代原有的信号系统已经成为国际上大多运营商的共识。

上海目前的5条轨道交通线路采取了4种不同的信息制式,互不兼容。按照市委和市政府“站高一点,看远一点,想深一步”的精神,考虑到上海市轨道交通即将形成网络的前景,对新建线路信号系统的规范化以及对既有信号系统的升级改造以实现全网的互联互通已经成为当务之急[5]。因此,在选择ATC系统技术与制式时,必须充分考虑以下几点:

第一,有利于实现不同线路间的互联互通,应采取开放式的国际标准而非某一家供应商的标准;

第二,积极吸取国内外的经验教训,开放市场,鼓励竞争,减少备件品种,防止垄断,减少培训,降低系统的生命周期成本,实现系统可持续发展;

第三,对于新建线路,必须充分考虑成本-效益比,以及为将来的系统升级预留空间;

第四,对既有线路的升级改造,必须考虑既有系统的充分利用和近期实施的可能性,分步实施,逐步升级。

无线CBTC具有卓越的技术经济优势,同时由于采取了开放的国际标准,使系统有可能实现互联互通,并有利于实现项目设备国产化,因此无线CBTC在国内的应用前景是十分广泛的。

参考文献

1黄钟.上海城市轨道交通ATC系统的发展策略.城市轨道交通研

究,2003(1):6

2AlcatelTSD.Seltrac移动闭塞系统结构和功能.2003

3PeterLudikar.Takingalogicalapproachoffersinteroperabilitybene2fits.RailwayGazatteInternational.June2002:307

第7篇

《计算机控制技术》这门课程在不同高校的课程设置有很大的不同。有的高校侧重于以计算机为主线,着重讨论直接数字控制系统、以及现场总线控制系统等计算机控制系统。有的高校侧重于硬件系统的设计和仿真,而对软件却是一带而过。有的高校针对的是计算机控制技术的数学描述及控制算法。应该说各个高校在教材的选取和教学环节的进行中都有自己的独到之处,但是对于针对本校学生的实际情况,这些是远远不够的。在经历了若干个环节的教学和实践中,我对计算机控制技术这门课程的教学改革的方法和实践有自己的一些认识。

2课程教学改革的方法和实践

2.1教学环节突出侧重点

针对本校学生的实际水平,在教学环节中突出侧重点。由于本课程的第一部分主要涉及计算机控制的基础知识、数学模型及控制原理和分析方法。这一部分内容在前期的自动控制原理、复变函数中都有所讲述,那么在本课程的学习中主要是针对课程内容进行复习和总结,而不作为重点内容进行讲授。而第二部分中,讲述的是计算机控制技术的算法和应用以及系统仿真的算法。该部分是众多学科实践与应用的理论支撑,包括了经典控制算法如PID控制算法及其改进等,复杂控制算法如最少拍控制及达林算法等以及数字滤波等数据处理方法,同时包括了系统仿真算法。这一部分作为重点内容讲授。而第三部分是控制系统的MATLAB仿真和SIMULINK仿真。该部分需要学生动手实践来完成,实际应用也很广泛,在讲授中同样以举例的方式让学生能亲身体会到软件方面的使用。

2.2教学与教材有机结合

针对《计算机控制技术》这门课程的特点,现有的高校教材可谓是形形,各有各的特点,那么如何使学生更好的学习课程内容而又不依赖于教材呢?或者说如何使学生更好的理解教材内容而更深入的学习课程知识呢?这就要求将教学与教材有机的结合起来。针对本校学生特点,不能拘泥于一本教材来学习本课程,因此,在教学过程中,第一部分内容也就是前期的计算机控制技术基础知识和数学模型等内容,主要针对学生现有教材以及自动控制原理等教材进行讲解,第二部分内容主要是计算机控制技术的算法和应用以及系统仿真的算法。该部分的内容想对比较难,计算量大,因此既应用现有教材,还参考于海生等编著的《计算机控制技术》以及汤楠等编著的《计算机控制技术》等教材,针对算法的部分,结合不同教材的例题,使学生更好的理解算法的来源。第三部分即控制系统的MATLAB仿真和SIMULINK仿真,该部分更多的需要学生自己动手操作,那么在上课的过程中针对例题给学生通过多媒体演示的方法,引入知识点来提高学生学习的积极性。

2.3有效利用实验环节

《计算机控制技术》这门课程不但有独立的理论和方法,而且有相当强的实践性和应用性。因此,要学好这门课程,必须有效的充分的利用实验环节。本门课程安排在第六学期开设,该课程的实验的设置充分结合课堂内容,考虑以实际应用为主,主要安排了数字滤波器、数字PID控制算法、最小拍控制、大林控制算法等等。并为了提高学生的学习兴趣以及拓展学生的知识面,还安排了选做的步进电机控制、温度控制系统等现实中广泛应用的实验环节。

2.4重视教学中的考核方式

考核是评价学生学习、了解教师教学效果的一个重要杠杆。而仅仅通过期末考试的方法来对学生进行考核的话,有可能使学生平时不注重学习,期末搞突击,考后知识还给老师。我们把考核分为了4种:

①课堂作业。每次作业计10分,按照作业次数折合成满分10分的平时成绩。

②课堂表现。针对学生的课堂状态以及回答问题的正确率和积极性,计10分平时成绩。

③实验环节。针对各个实验中学生的预习情况、实验过程中的参与情况,实验结果的准确度来评价,满分计10分。

④期末考试。期末考试成绩折合成70%,再加上以上3项的成绩即为学生的总体考核成绩。这样分配更加合理,也充分调动了学生的积极性。

3结语

第8篇

不断升级的系统、不断革新换代的电气设备,给电气工程功能设置提供了多种可能,但同时,也为现代控制技术的应用提出了更多服务要求,其中最为突出的几方面内容有:

(一)能高效、准确控制电气工程现代控制技术以数字信息为载体,所以通常利用发送数字、代码、信息的方式指令,来完成控制操作。为确保多个指令能够第一时间发送出去、准确传送到指定功能模块、正确指导系统工作,系统必须设置独立、且具备抗干扰能力的信息交流中心,依靠其交互功能,实现信息的生成、传播、控制与管理。

(二)能全面监控电气工程运行状态大多数电气工程的装置和设备都是全天候运行的,长时间工作,势必会导致运行故障的发生,为此,现代控制技术还要担负起监控电气工程运行状态的责任,24小时监督工程内各系统设备的运行状态,如发现故障,应立即报警信息,同时,指明故障位置、故障源、故障影响,以及相关故障资料。工作人员接收到信息后,可第一时间做出反映,修复系统、设备,使电气工程尽快恢复运行。

(三)具有较高的安全性对于电气工程而言,“安全”是生产不可忽视的重要原则之一,因此,为避免内、外部环境因素给电气工程造成运行障碍和影响,现代控制技术不但要具备监控能力,还要拥有较强的自清自查能力,可独立清除、控制安全隐患。同时,现代控制技术还应针对电气工程众多管理项目,设置单元模块(如:运行监控模块、电气工程设施养护模块、数据管理模块、工作人员维护操作模块、电子工程管理模块等),通过层层过滤的方式,提高技术应用的安全性。只有这样,现代控制技术才能为电气工程提供安全、可靠的运行环境。

二、现代控制技术在电气工程中的应用

(一)帮助电气工程创建完整的控制系统众所周知,电气工程由多个系统结构构成,要想让这些单元结构能够独立、连续的完成工作,现代控制技术应承担选择功能、设置功能、计划功能、解释功能等多种责任。首先,在各功能模块上设置监控器,监测它们的操作行为、运行状态,并以数据的形式记录,转存到数据库中,如此,控制技术既可以依靠“复制数据”找出控制方式,又能随时检索系统运行信息,查找故障问题;其次,创建中枢系统、装置、设备的联动控制机制,以“作业任务”的形式分配任务,以便于系统可以同步、集中处理重要“运行信息”,不耽误电气工程正常工作;最后,因为电气工程系统、装置、设备的运行功能复杂、多样,所以要想正确下达指令,明确指令内容要求相对困难,利用现代控制技术,可将许多复杂的指令编撰成“编码”,由翻译器统一处理,如此一来,不仅方便了操作,电气工程控制管理效率、水平也会大大提升。

(二)科学选择控制系统设备计算机网络技术的发展,给电气工程控制管理提供了多个便利条件、多种选择可能,所以,作为控制管理的中枢,现代控制技术必须慎重选择控制系统设备,使其与电气工程形成配合,达到最佳管理效果。一方面,控制系统设备要具备信息分类、收集、检索、处理功能,将复杂、且数目庞大的电气工程数据集中整合到数据库中,根据管理、控制需要,高效检索、准确处理、顺利传递出去;另一方面,控制系统设备还应具备信息翻译、解释、转换能力,因为电气工程中的装置、设备不可能使用统一的编码、指令形式,所以如果两个运行系统、装置的指令信息代码不同,控制设备应能够兼容分辨,做出正确的处理和判断,完成智能化、自动化控制。

(三)加强电气工程内、外部环境管理电气工程内、外部工作环境的监测工作是其安全生产工作的重中之重,所以,现代控制技术管理工作的重要内容便是环境监测、管理,主要内容包括:监控电气工程电流、温度、湿度、电压、电功率等基础运行指标数据,如发现阶段时间内这些指标数据出现较大波动变化,会立即发出报警信号;管理、控制电气工程内其他非主要工作设备的运行状态,比如启动空调、除湿设备、稳压设备、变压设备、变频设备等。

三、现代控制技术应用发展趋势

未来几年,电气工程将走上“自动化”发展道路,并逐步引入“智能化控制”系统,实现电力、电能的高效化、安全化生产。由此可见,现代控制技术会向“智能化控制技术”、“模糊控制技术”、“非线性技术”领域发展。因为,智能设备是实现自动生产的必要保证和唯一手段,所以无论是电气工程的生产管理过程,还是信息传递过程,能够独立、自主、准确完成控制行为的智能设备必然会走上电气工程发展的历史舞台,成为技术发展的主力军。此外,针对电气工程无法在模糊条件下落实控制手段这一问题,模糊控制技术也为其提供了很好的解决方法,通过采用计算机控制技术形成控制与反馈的具有闭环结构特点的现代数字控制系统,其应用价值更高。非线性控制技术的研发,主要依赖于线性控制理论发展,为向电气工程提供稳定、简约的控制系统,非线性控制技术将电气工程中的非线性系统的某一邻域做反馈线性化的处理,同时利用微分几何理论等现代控制理论进行反馈,如此,显性化数据便可正确、完整的呈现给控制管理者,帮助其做出科学、合理的控制决策。

第9篇

关键词:自动变频;节能节水;灌溉系统;研究

目前全球淡水资源日趋紧张,在我国有很多地方农田和生活用水紧张的情况相当严重,有的已出现断水现象,因此节水问题已成为全社会共同关注的严重问题。

早在1997年,在桐乡市政府支持下,经市水利勘测设计所设计并在河山含村示范区等地建成低压地下管道灌溉试点工程,由于田间用水量变化大,为了解决水量流量的实时调控,泵站的出水池新建了高大的蓄水池,蓄水池内安装了液位控制器,串接于电机控制柜的控制回路中,初步解决了用水量、出水量的实时调控。“液位自动控制节水灌溉系统”于1998年获浙江省水利厅科技进步三等奖,2004年获浙江省水利厅优秀工程设计奖。2005年秋,桐乡市水利局在石门镇民丰村明渠灌溉的庙桥浜泵站试用手动变频调速控制水泵运行,取得较好地效果,受到当地群众的高度赞誉。

一、“自控变频节能节水灌溉系统”的总体设计

一是引入变频调速技术、压力传感技术、可编程控制技术于农田灌溉。由变频器、压力变送器、压力显示器、可编程控制器、可编程时控器、相序保护器和空气开关、断路器、交流接触器、时间继电器、热继电器、按钮、指示灯、仪表等电器集成(均为国产)的智能型自动控制柜“自控变频节能控制柜”,作为“自控变频节能节水灌溉系统”的指挥中心,能根据田间用水量的变化,自动变频调速调节水泵出水量,自动进行工频变频切换和单泵双泵切换,自动按设定时间开机停机。在泵站建设中,针对平原水网地区泵站规模较小的特点,采用了涵洞式引水道、竖井式水泵室,使引水道和水泵井四周的土压力相互平衡,比传统的开敞式引水道有限地节省了工程量,减少了土方开挖和回填土,方便了施工。

二是将“液位自动控制节水灌溉”中的高蓄水池,改为较小的地下压力水池,建在泵房地面之下。既节省了工程量,又减少了耕地占用。水池壁上预埋安装压力变送器和水位观察管的镀锌钢管,水池边上设置调压溢流管。选用专门为本地区低压管道灌溉研制且不需要加引水、适于自动开机的HDB系列导叶式混流泵。用UPVC双壁波纹管作为地下管道,用钢筋混凝土预制接头,施工方便,漏水少,管壁糙率小。干管和部份支管的进口处安装蝶阀控制,部份渠尾设置调压管。用专利产品、工程塑料制造的FN-150(100)农田灌溉节水阀作为田间放水阀,使用寿命长,不需维修,可做到滴水不漏。一只放水阀控制面积约5亩左右。

二、关键设备“自控变频节能控制柜”的原理和工作过程

田间用水量的信息,通过管网压力的变化,传递到压力水池中,压力水池中安装的压力变送器,把压力信号变成电模拟量,输入变频器控制回路,变频器根据输入的模拟量,自动将连接水泵电机的主回路的交流电频率变化,使管网压力不断向设定的“控制压力”接近,达到恒压供水。从而使水泵根据田间用水量自动调节供水量,达到节水节能目的。一个泵站安装两台水泵,为了节省投资,采用一台变频器控制两台电机,由于田间用水量的变化涉及到单泵供水或双泵供水,需单泵双泵切换和工频变频切换,用可编程控制器设定条件进行控制,还要设置“最高压力”、“最低压力”等参数。

控制柜的电路,有变频器-电机主回路和控制回路两大部份,控制回路有压力变送显示电路、可编程控制器外接电路、可编程时控器外接电路、变频器外接电路、交流接触器互锁电路、手动控制电路、电机工况显示电路、直流电源外接电路等,另外还设置了相序保护器、热继电器等。

控制柜的工作过程,以一台变频器控制两台电机的控制柜为例。首先合上电源空气开关,接通电源,按照“自控变频节能控制柜使用维护简要说明”在变频器控制面板上设置好“控制压力”,在压力显示器上设置好“最低压力”、“最高压力”,在可编程时控器上设置好开机停机时间(或在时间继电器上设置好停机时间),把“功能转换旋钮”旋到“自动”,然后即可正常工作。其工作过程为:

当到达时控器设定的开机时间,如果压力变送器检测到的压力低于“最低压力”,1号机组(两台机组中功率较大的一台)首先变频软起动,可见压力显示器中数值逐渐上升,水位观察管中水柱同步上升,如此时田间用水量不多,一台水泵水量已够,则压力上升到“控制压力”以上,变频器即自动降频,压力降低到“控制压力”以下,变频器即自动升频,使水泵保持恒压供水,田间用水量的变化反映在水泵转速的变化上。

如果田间用水量逐渐增加,1号机组的出水量不够了,此时尽管电机以最大频率即50Hz运行,但压力显示器中数值还是逐渐下降,待下降到设定的加泵压力即“最低压力时”,控制柜等待五分钟,如果不是特殊的波动造成,五分钟的压力都低于最低压力,此时才将1号机组自动转为工频运行,将2号机组自动变频软起动,可见压力显示器中数值逐渐上升,如此时两台水泵供水量已够田间用水,则压力上升到“控制压力”后,即保持恒压供水,田间用水量的变化反映在2号机组转速的变化上。如果田间用水量继续上升,两台水泵的供水量也不够了,尽管两台水泵都以最高频率50Hz运行,供水压力还是逐步下降,此时,应关闭或调小部份节水阀,用水量减少到二两台水泵供水量以下,供水压力就会恢复到设定的“控制压力”。

如果田间用水量逐步减少,管道和压力水池中的压力会稍微上升,正在变频运行的2号机组转速随即降低,水泵出水减少,以保持恒压供水。如果田间用水量进一步减少,小于1号机组的出水量,但仍大于2号机组出水量,当供水压力超过设定的“最高压力”,这时首先将正在工频运行的1号机组自动停机,然后自动将正在变频运行的2号机组转成工频运行,再自动变频软起动1号机组。如果田间用水量进一步减少,小于2号机组的出水量,这时即使1号机组频率和转速降到最低,水池压力还是超过“最高压力”,则正在工频运行的2号机组自动停机。如果田间用水量再进一步减少到接近于零,则1号机组以最低频率(设置为15HZ)运行,使管道压力保持一定数值,以备田间可以随时用水。

可编程时控器到达设定停机时间,正在变频运行的1号机组变频软停机。也可以将“功能转换旋钮”从“自动”转向“停止”。如果按下“紧急停车按钮”,任何情况之下,两台机组都会立即停机。

三、该系统的改进意见

任何技术都是在不断改进的,“自控变频节能节水灌溉系统”也是在综合许多先进技术的基础上改进的,今后也将随着技术的发和进步不断改进。经过一个灌溉季节的实践,笔者认为应对系统做如下改进:

一是对于只有一台水泵的泵站,可以利用变频器内置简易PLC编程控制,可降低控制柜造价。

二是对于只有一台水泵的泵站,可以取消压力水池,以进一步降低泵站造价,逆止阀、调压管仍旧保留。对于两台或两台以上水泵的泵站,压力水池还是需要的。

三是针对现有泵站管理人员文化程度偏低的现象,建议今后选配泵站管理人员时,最好文化程度能在初中以上,便于熟练掌握控制柜各种功能的应用,最大限度地发挥先进设备的功能。

相关文章
相关期刊