时间:2023-03-22 17:46:49
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇航空发动机论文范例。如需获取更多原创内容,可随时联系我们的客服老师。
航空发动机强度计算作为专业必修课,从航空发动机中抽象出叶片、盘等结构,建立模型,开展结构的应力计算和强度分析,较为艰涩、枯燥,采用传统的板书教学模式,教师对于说明复杂的零部件结构和受载形式往往力不从心,此外,传统的教学方法还受到课堂板书时间、教学语言、课堂纪律等不利因素影响,从而影响学生听课的积极性,教学的进度和教学的质量。与板书教学相比,教师使用多媒体课件时,学生往往会表现出较大的兴趣。据有关调查统计,同样的内容,视听结合记忆效果比只凭看提高40%,多媒体教学正是实现视听结合的有效手段。因此,在发动机强度计算的教学过程中,采取多媒体辅助教学可以达到提高教学效率、吸引学生专注度、加深学生理解力等积极的作用。多媒体教学是指通过计算机把多媒体的符号、文字、公式、图像、声音、动画等各个要素按教学要求进行有机组合,并采用投影屏幕的形式显示出来,结合教师的讲解和引导达到合理教学过程的目的。多媒体教案与传统书面教案相比,更加美观、生动。对于发动机强度计算这类具有内容抽象而又复杂的课程,具有明显的教学效果。多媒体教学与传统教学方式相比具有以下优点。
1.多媒体教学具有生动、形象、具体可感的特点,可以解决板书不易表达的内容,抽象问题直观化,创建生动的表象。
2.多媒体教学集声音、影响、图片、文字、动画于一体,能够充分调动学生的感官系统,极大提高学生的课堂学习兴趣和专注度,激发学生学习的主动性,活跃课堂气氛。
3.多媒体教学具有知识容量大、信息量多等特点,提高单位时间授课信息量,有利于学生拓宽知识视野。
4.多媒体教学事先组织好的教学内容,有利于节约教师板书时间,使得教师更加灵活地控制教学节奏、设计教学过程、提高教学效率,同时降低教师上课的强度,避免重复板书这种机械的体力劳动。
二、多媒体教学的注意事项
随着微机和多媒体技术的发展和普及,多媒体教学正逐步取代传统的教学方式,有数据统计显示高等教育80%以上的老师已经视多媒体为必不可少的教学工具。然而,多媒体教学只是一种教学手段,如何合理地使用多媒体技术提高教学质量一直是众多教师所关注的重点。
(一)多媒体教学具有众多优势,但是使用不当,会存在以下问题
1.教师过多依赖多媒体教件,照本宣科,忽略课前备课,对讲课内容不熟悉。多媒体课件中已经事先设计好讲课的文字、图片和公式等内容,容易导致教师轻视课前备课,导致在课堂上对所讲授内容不熟悉。
2.采用他人多媒体课件,生搬硬套,缺少教师作为教学主体对课程的思考。现在多数课程都采用了多媒体课件,教师也可能通过很多途径获得相关课程的多媒体课件,直接使用他人课件就可能导致教师缺乏对所授课程的积极思考和讲课方式的精心设计。
3.多媒体教件成为教师讲解演示的工具,缺少师生之间的互动,会导致学生过于被动地接受知识,甚至缺乏学习的兴趣。
4.多媒体教件华而不实,分散学生注意力。多媒体教件可以穿插声音、影像、图片,建立一个丰富多彩的立体课堂。但是,多媒体教件也同时可能存在过度使用声、光、影,从而冲淡教学的主要内容,同时分散同学的注意力。
5.多媒体教件的优点之一是知识容量大、信息量多,然而使用不当也会使得这一优点变成缺点。单页信息量大,重点不突出,也可能导致授课速度过快的缺点。
(二)教师在多媒体教学的过程中,有必要注意以下几点,才能更好地发挥多媒体教学的优势
1.使用多媒体课件,应在课前对多媒体课件和教材充分熟悉,对内容了然于胸,并合理板书,引起学生积极性,发挥教师在教学过程中的主导作用。
2.多媒体课件中,注意课程内容的贯穿和表达。多媒体课件的内容安排要站在学生的角度来思考,每幅画面的出现要符合学生的学习思维习惯。如:逐条显示画面的信息,做好前后承接,图形配以一定的关键文字进行说明,公式的推导要像写板书一样逐条出现。
3.教师和学生同为主体,互动教学。避免教师在上面不停地讲,学生在下面沉默地听。在多媒体课件设计过程中,要实现分步提示,要适时地抛出问题,引导学生跟着教师的思路走,引导和指导学生主动学习,对学生的疑难问题及时反馈、及时解决。
4.画面简洁,只显示相关信息。要重视心理学中的有意注意和无意注意规律,减少在课件中与教学内容无关系的图像、音乐、动画等,否则会使学生把更多的无意注意放在画面和音乐上,无法专心于真正需要他们关注的教学内容,教学效果大打折扣。因此,不要在多媒体课件上使用不必要的图像或动画装饰。
5.课件上的信息要简单、准确、明了,突出重点,避免把整段文字搬上屏幕,导致学生来不及看,引起厌烦情绪。讲课注意节奏,快慢结合,对于内容简单的要加快节奏,重点、难点要慢讲,从而加深学生对所学知识的理解与消化。由此可见,虽然多媒体教学有着传统教学不可比拟的优点,合理运用多媒体手段可以提高教学效果,但是多媒体教学并非是改善教学效果的唯一途径和手段,不能因为其优点而完全抛弃板书等传统教学手段。更为理智的做法是针对不同的教学内容,采取与之相应的教学手段,综合利用各种教学方式,取长补短,相辅相成,从而达到提高教学效果的最终目的。
三、《航空发动机强度计算》课程中多媒体教学与传统教学相结合
关键词:发动机控制系统 模拟仿真 优化设计
中图分类号:V233.7 文献标识码:A 文章编号:1672-3791(2015)02(c)-0210-02
1 研究背景
研究目的:针对航空发动机控制部件进行实体建模,建立部件数据库,包含部件的结构参数与控制特性;并搭建控制系统工作特性的仿真平台,能方便地组建控制系统与分析系统的工作特性,并对系统进行优化设计,服务于教学实践。
研究意义:航空发动机的发动机性能计算机仿真不仅能够指导发动机设计、缩短研制周期、节约经费,而且具有良好的可控性、可观性、安全性、重复性和经济性等特点。建立合理、准确的航空发动机工作过程的数学模型是发动机性能仿真的基础,建立适合于各种仿真目的的发动机仿真模型是仿真试验与分析的关键。
2 发动机转速控制系部件及系统
2.1 动态特性
根据航空发动机转速控制系统的工作原理,构建转速控制系统的原理图。
当系统的输入量不变,只考虑干扰量时,系统的传递函数为
2.2 稳态特性
稳态的误差是控制系统准确度的一种量度,是控制系统性能的一项重要指标。在航空发动机控制系统中,由于发动机的外界条件经常发生变化,系统要在频繁的干扰输入下工作,因此,对干扰恢复稳定时,输出量的给定值与实际值的偏差。但作为系统稳态性能分析,需要讨论系统输入和干扰输入两种情况。
主要根据终值定理:
假设系统的干扰输入为零,即,误差传递函数为
系统的开环传递函数为
系统对单位阶跃输入的稳态误差为零,对单位斜坡输入的稳态误差为常数。
2.3 控制系统模型建立
使用AMESim对航空发动机转速调节系统建模仿真过程中,首先基于转速调节器结构原理图,经对原理图及工作过程分析,确定对建模仿真具有重要作用的系统关键元件;其次,根据各元件特点将调节器主要元件分类为机械元件、液压元件等;然后针对不同类别,对各元件采取相应的建模方法分别进行建模;最后,再根据原理图连接各关键元件,构建调节器模型。建模过程的主导思想是力求为用户提供元件尽可能多的输入参数,并具有尽可能准确的数学模型[1]。
3 控制系统的优化
对于控制系统的优化,根据性能的指标要求对系统性能的参数进行调整。其中,系统不可调整参数为油泵参数K3=1.0,K4=1.0;发动机参数TE=0.9s,KE=0.23[2],见表1。
通过参数的调整得到不同的单位阶跃响应曲线、单位脉冲响应曲线、系统的Bode图以及系统根轨迹图(见图1),对在不同参数下的稳定性、灵敏性、系统的开环频率特性和闭环系统的时域响应特性,进行分析,找到并得出最合适的控制参数。
发动机的动态特性随发动机的工作状态和飞行条件改变而改变。高空低速飞行并且发动机在低转速状态工作时,发动机的动态性能最差。因此,在完成设计状态下的系统性能分析检查后,必须在各种飞行条件下,对发动机的各种工作状态进行系统仿真,并按性能指标定量检查仿真结果。若性能不满足要求,应重新调整参数值,直至满足性能指标要求为止。如果调整参数值仍不能达到要求,应重新修改校正装置结构或重新设计。
4 发展的前景以及优势
目前研发的航空发动机控制部件及系统仿真教学平台主要是针对单转子喷气式发动机的研究,对于目前新一代航空发动机采取的控制手段是电子控制技术,即全权限数字发动机控制器FADEC。数字电子控制器能够进行复杂运算,实现更为复杂的控制规律,可以布置更多的发动机载传感器,用于监控发动机工作状态并且能使发动机控制系统具备故障诊断和故障重构能力,大大提高可靠性,实现发动机自适应控制[3]。
5 结语
该文研究的主要内容包括:首先,分析了航空发动机控制系统建模仿真技术的发展情况;其次,分析研究了液压机械式发动机及其转速控制系统的组成及工作原理,并对带比例反馈的转速控制系统的组成及工作原理进行了详细的分析研究;再次,提出了基于AMESim的航空发动机燃油调节系统建模仿真研究方法;紧接着使用该建模方法对液压机械式发动机转速转速控制系统进行了建模;最后,对开环、闭环转速控制系统性能分析研究,并对“软参数”流量系数的计算及变化情况进行详细的分析研究并得到单位阶跃响应曲线、单位脉冲响应曲线、系统的Bode图以及系统根轨迹图。
该文所建立的航空发动机转速控制系统仿真平台,通用性强,使用灵活,利用此控制系统可以实现各种发动机转速控制系统的仿真。在已研发的航空发动机控制部件及系统仿真教学平台的基础上进行完善、改进,将航空发动机电子控制技术引入进该仿真教学平台去,拓展航空发动机控制部件及系统仿真教学平台的应用范围,有利于更好地理解、学习航空发动机的工作原理。
参考文献
[1] 陈宏亮.X_8航空发动机燃油调节系统建模仿真研究[D].西安:西北工业大学,2006.
【关键词】综合化;航空发动机控制;课程改革;民航
“大学课程综合化既是现代社会和当代科技日趋综合的反应,又是大学与社会发展日益密切的结果,更是高等教育内部发展的逻辑要求”[1]。当前,快速发展的中国民航要求建设适应民航强国需要、支撑现代民航教育体系的人才培养体系和科技创新体系,从而不断提升为行业和社会发展服务的能力。在此背景下,为改进飞行器动力工程专业本科学生的培养质量,促进教育教学质量的提高,进行了航空发动机控制课程综合化改革的探索与实践。
1课程改革的历史必然性分析
中国民航大学的飞行器动力工程专业是一个主要面向航空维修领域的特色专业。成立六十多年来,一直紧密贴近民航发展,在课程设置上也体现了行业需求,其中的航空发动机控制课程就是这样的一门课程,主要讲授发动机控制系统基本部件的工作原理、控制特性,以及典型民用航空发动机控制系统的组成及功能特点等,希望学生能够通过本课程的学习,掌握基本的控制原理,熟悉民航主力机型控制系统的工作特点。在近年来的授课过程中,发现了一些新的问题需要加以解决,主要体现在:
1.1近年来民航主力机型的控制系统已经由传统的液压机械式控制系统全面更换为全权限的数字式电子控制系统(FADEC),在控制部件的工作原理、系统功能及运行模式上都体现除了与过去截然不同的特点,尤其是大量电子技术的引入,使得发动机控制课程融合了机械、液压、电子、流体力学、传热等多学科的知识,体现了综合化的特点,对教师教学提出了更高的要求。
1.2行业快速发展过程中引入了大量的先进发动机机型,要求学生在使用过程中快速掌握其工作特点。这就要求在课程内容上,体现知识的广度,并且贴近民航实际,在原理讲授中要有针对性,讲解过程简单易懂。
1.3二十一世纪的高等教育越来越重视创新人才的培养,由于信息科技的大量应用,使得学生可以在短期内获得大量的信息,此时更为重要的是培养学生的创新型思维以及综合运用知识的能力,因此课程设置一定要有利于学生思维广度、深度及灵活性的发展[2]。
1.4行业需求导致的学生扩招带来了教学资源的紧张,而与此同时需要进一步地培养学生的动手实践能力,因此在课程讲授中除了要体现现动机控制的特点,也要与时俱进地在教学资源配置上,尤其是在教学实验、教学的方法手段上作出改变。
2改革的具体措施
针对航空发动机控制课程出现的问题,决定针对此课程开展综合化改革。关于课程的综合化,研究者形成了以下几方面的认识:第一种是“学科之间的综合”说,既包括课程体系的综合化,也包括课程内容的综合化,还要从课程目标、学习活动方式、甚至从课程的教学组织形式进行整体分析并加以综合,形成一个有机系统;第二种是“学科、社会和学习者之间的综合”说,即课程综合化泛指课程组织结构中各要素(学科、社会、学习者)之间的各种各样的横向关系或联系。
航空发动机控制课程综合化改革的具体措施包括:
2.1课程知识点的综合化。
课程的综合化就是要强调学科领域之间的联系和一致性,避免由于过早或过分地强调各个领域的区别和界限,而导致的课程之间的彼此孤立、相互重复或脱节的状态。为了完成航空发动机控制课程内容的综合化,首先明确了综合化的目标是统整各相关学科知识,通过学生的关联式、研究式、体验式等综合化学习,克服分科课程的局限。之后,通过对航空发动机控制课程的前置课程和后续课程知识点的梳理,明确具体讲授的知识点,并在课程设置上进行了合并,主要是合并了自动控制原理课程,对自控原理相关的内容依照实际需求进行了删减,仅保留却为授课所需的内容。另外加大了控制系统特点的总结,有意识地减少课程讲授的机型数量,减少学生负担,给学生更多的自主学习时间和内容。最终,通过知识点的整理,整个控制类课程的授课学时由原先的108课时缩减为54学时。
2.2课程与行业的综合。
行业需求一直是引领课程改革的方向标,当前的航空维修工作对机务人员综合运用知识和技能的要求增高;此外,为了能使得大学更好地为社会服务,需要开展课程与行业的综合工作。在本课程的授课中,尤其是在典型发动机控制系统的讲授中,引入了航空公司所使用的培训教材,包括其所应用的CBT(计算机辅助训练)软件,同时引入企业或培训单位有经验的一线工作人员进课堂,为学生带来一手的技术资料。此外,还注重加大学生企业实践的比例,使得学生在实习的过程中消化理解课堂讲授的知识。当前,正在结合卓越工程师计划的开展,力图开门办学,进一步夯实学生的理论基础、实践技能。
2.3课程与学生的综合。
在新世纪里,人的全面发展包括四层内涵:完整发展、和谐发展、多方面发展和自由发展[3]。传统的大学课程设置和传授都是以分科课程为主导的,很难实现人的这种全面发展的需要,会导致人的发展的片面化。因此在航空发动机控制课程的综合化改革中,要改变课程分割的局面,同时要大力转变传统单向的以教师为中心的授课方式,转为以学生为主的课程学习。具体措施除了课程内容的综合外,还体现在小班授课和借用网络平台进行沟通交流,组织学生进行现场教学和体验式的教学。通过大作业的方式,组织学生进行科研课题形式的思考和研究,使得其能综合运用所学的内容。
2.4课程与教师的综合。
随着课程综合化改革的推广与深入,教师教学能力及其结构的更新和提高,已经成为教育改革面临的重要问题。总之,“课程改革需要教师提高教学能力”[4]。在课程改革中,教学过程的不确定性对教学提出了更高的要求,由于学生成为学习的主体,教师更应关注学生的个别化发展;改变课堂学习方式,探究与合作成为师生教学活动的主体;课堂应该更为的开放[5]。综上,在实际的课程综合化改革中,除了通过培训、交流、讲义编写、课程开发等工作,逐渐提高老师的专业技能外,还需要教师把教学内容和教学方法手段有机的结合起来,整合教学内容和教学方法,灵活运用多种教学策略,开发课程资源,引导学生学会学习,并整合相应的教学环境[6]。在航空发动机控制课程综合化改革中,为了营造这种环境,专门在专业教室内进行授课,综合运用网络、多媒体、控制部件实物等启发和引导学生学习和思考。
2.5教学与科研的综合。
科研与教学是高等学校的两个重要职能。高等学校一方面通过科学研究探索真理,发展知识,构成了社会发展的思想库;一方面通过教学挖掘和开发人的潜在能力,为社会发展积累有知识和创造性的人力资本。但在高等教育的实践过程中,如何处理教学与科研的关系却一直是一个重要的命题[7]。因此在航空发动机控制课程的综合化改革中,有意识地将教学与科研进行了综合,在教材的编写、实验室的建设过程中,将最新的科研成果引入了教堂,使得学生能够接触到最新的科研进展;另外还通过引入科研机构的教师参与授课,将名师带入课堂,也促进了知识内容与体系的更新;同时,对在教学过程中发现的有科研潜力和兴趣的学生,也适当分配了一些科研辅助工作,注重在科研过程中培养其能力和兴趣。
3综合化改革实践与分析
目前,航空发动机控制课程的综合化改革已经在试点班进行了一轮的授课,各项措施得到了落实,在实践过程中,通过对综合化改革的反思,得到了以下看法。
3.1包括综合化改革在内的课程改革是一个长期化的过程,需要教师、学生及教务工作者在一轮一轮的授课中动态地处理遇到的问题,只有坚持以学生为中心的思想,坚持提高教育教学质量这一根本性目标,才能解决前进中遇到的困难,并且要得到更广泛的参与和支持,不仅仅是来自教师的力量,更重要的还得有行业和科研机构的支撑,才能使得课程在瞬息万变的时代中历久弥新。
3.2综合化改革中需要进一步地更新思想观念,打破本位意识,打破课程与课程间的孤立和隔离,打破学校与社会和行业间的距离,融合教学与科研,真正地实现课程的综合化。
3.3在改革中要不断地加强师资队伍的建设。可以说教师是主导改革进程的参与者,但更应该成为领导者,只有教师能力上去了,才能更好地建设包括教材、实验室在内的教学资源,才能在课堂上有意思的引领学生,才能真正地将改革的意图贯彻好,将改革的目标实现好。
3.4高等学校的课程改革,尤其是一些主干核心课程的改革要慎之又慎,本着对学生负责的态度,要量力而行,扎扎实实地推进,可以考虑的是以试点班的形式进行验证后再进行推广。
参考文献
[1] 李茜妹,大学课程综合化研究,山西大学硕士学位论文,2006;
[2] 姜艳萍,高校课程综合化改革与创新人才的培养,山西师范大学研究生学位论文,2001;
[3] 扈中平,“人的全面发展”内涵解析[J],教育研究,2005(5):3-8;
[4] 戚业国,陈玉琨,学校发展与教师的专业发展[J],教育理论与实践,2002(8);
[5] 喻晓东,课程综合化与教师课堂教学行为的变化――对柳州市小学新课程实验教师的个案研究,广西师范大学硕士研究生学位论文,2003;
[6] 王宪平,课程改革视野下教师教学能力发展研究,华东师范大学博士学位论文,2006;
[7] 郭祥群,洪艺敏,融教学科研为一体,提升本科教学的质量,高等理科教育,教育教学研究专辑,2003。
关键词:航空发动机 轴承 故障
中图分类号:TH133 文献标识码:A 文章编号:1007-9416(2016)05-0000-00
在飞机发动机中,最关键的零部件之一是主轴轴承,根据统计,主轴轴承故障占飞机机械故障的60%以上,因此,主轴轴承故障定期检查和及时排除对飞机的性能和飞行安全有着直接影响,对提高飞机运行的可靠性、降低维修费用也起到重要作用。
发动机轴承故障检查仪通过检测和分析航空发动机手动转子试车时的轴间和其他滚动轴承的振动值,结合监听耳机声音的来判断轴承是否存在故障以及进行故障定位。
1 项目方案
发动机轴承故障检查仪采用模块化设计,系统电路设计分为5个模块,即信号输入模块、信号调理模块、数据处理模块、显示驱动模块和电源模块。在分别规定其相互间的接口信号及要求后,对5个模块进行设计,并按接口要求完成整个产品的整合与测试。其模块结构如图1所示。
2 硬件设计
2.1 信号输入模块与信号调理模块
信号输入模块实现振动信号的采集、放大与放大比例选择,与信号调理模块接口,并对信号按照用户的选择进行调理。
信号放大器根据用户选择的“1:1”或“1:10”开关设定合适的放大倍数;滤波器的截止频率可以通过编程来设定,这样可以实现用户对工作频段的选择;系统采用AD公司的AD736 有效值转换器将振动加速度信号转换成有效值信号;AD转换器 采用AD公司的7822,用于将模拟信号转换成数字信号传输给处理模块。
2.2 数据处理模块
数据处理模块根据频率选择按钮选择的频段对滤波器的截止频率进行设定,同时发送控制信号给AD转换器,接收AD转换器的数据,进行振动加速度有效值的百分比转换后,发送控制信号给LED驱动电路。
2.3 显示驱动模块
该模块根据数据处理模块计算的结果点亮相对应的发光二极管,用来表示振动加速度的有效值大小,同时驱动用来指示用户所选择频段的发光二极管。该模块还将调理和匹配后的振动信号输出到耳机,供判断故障使用。
由于需要驱动的发光二极管较多,设计对单片机的IO口进行了扩展,扩展后驱动模块可以满足驱动发光二极管的需要。
2.4 电源模块
电源模块主要功能是在面板电源按钮被按下后后,由按钮控制芯片输出使能信号,控制DC-DC转换器开始工作,提供给电路+5V和-5V的稳定电压。当面板电源按钮再次按下后,按钮控制芯片切断DC-DC转换器的工作。
3 软件设计
软件为单片机程序,采用C语言进行设计,软件的框图如图2所示。
4 测试情况
发动机轴承故障检查仪测量数据见表1。
由表中数据可以看出,实测结果均与理论数值相符,该设备达到了设计要求。
5 结语
发动机轴承故障检查仪操作简单、使用方便、性能稳定,为发动机维护提供了可靠的保证,目前已应用到了某型飞机发动机的轴承故障检测中。该设备还可扩展应用于燃汽轮机和其它机械手动转子试车时的轴间和其它滚动轴承的振动检测。
[关键词]航空发动机 地面起动 供油量 起动时间
中图分类号:V235.13 文献标识码:A 文章编号:1009-914X(2017)13-0123-01
1 起动过程简介
航空发动机从零转速加速到慢车转速的过程称为起动过程。发动机的地面起动一般包含以下三个阶段[1],第Ⅰ阶段:燃烧室点火燃烧之前,在起动机的辅助下,将发动机的转子加速接近至点火转速。当高压转速到达时,向燃烧室中喷入燃油并点燃。第Ⅱ阶段:待燃烧室内燃油点燃形成稳定的火源之后,涡轮便开始进入工作状态,发出功。第Ⅲ阶段:当发动机转速达到时,涡轮的输出功率已明显远大于压气机所需要的功率,此时,可以断开起动机与发动机之间的联接,发动机依靠涡轮的扭矩独自将发动机从加速到慢车转速,至此,完成发动机的整个起动过程(图1)。
2 起动油量对发动机起动情况的影响
从式中可见,某型发动机转速与油量呈函数关系,对其地面起动过程来说,选择合适的起动供油规律至关重要。
试验在地面环境温度达到36~38℃时进行,当大气温度较高时[2],虽然滑油、燃料的物理性质变化都会更有利于起动,但由于空气流量的减小,燃烧室内容易形成过分富油燃烧,从而导致温度过高。故高温条件下对起动油量的考核最苛刻,起动油量选择不恰当极易导致温度上升过快而超温。
3 试验结果分析
3.1 试验方法
试验设计过程中尽量避免其他因素对试验的影响,仅分析起动供油量对发动机起动的影响。试验点选择过程中尽量保证环境温度和压力变化不大。
起动过程中起动机脱开的逻辑是:起动到达一定时间或者发动机n2转速大于一定值。发动机起动试验过程中,为了避免起动机功率影响,起动过程中尽量保证起动机进口空气参数一致。
试验过程中选择4种供油规律,通过分析4种供油规律的起动机脱开转速、起动机脱开时的排气温度、起动过程中最大的排气温度和起动时间来分析起动油量对地面起动的影响。
3.2 试验结果分析
由于在高温天气起动,起动过程中起动时间较长,4种方案的起动机脱开均为时间脱开。
a)方案1
选择起动油量为下图2中方案1。起动过程中,转速上升缓慢,起动机脱开转速为41.2%,后3阶段排气温度上升至接近起动极限排气温度,S后停止起动发动机。
从起动不成功的现象看,2阶段起动机脱开时排气温度为4方案中最高,可见起动前期温度上升较快,而后期排气温度上升至其起动排气温度最大值,故将起动供油规律调整为方案2,在原始供油基础上2阶段段减6%油,控制前期过快上升的温度;对起动机脱开后3阶段油量也进行更改,减4%油,抑制排气温度上升。
b)方案2
采用方案2后再次起动,发动机起动成功,起动机脱开时转速48.4%,较方案1有明显提高,脱开时排气温度降低23℃,但起动过程中最大排气温度接近极限温度,起动时间82s。从起动机脱开加速至慢车转速时间(起动3阶段)为32s,后期发动机转速上升缓慢,起动时间仍较长,排气温度最大值也较高。
c)方案3
方案2虽然能够起动成功,但其排气温度在起动机脱开时已经较高,最大排气温度接近极限,起动时间较长。故采用方案3,2阶段在方案2的基础上再减4%的油量,抑制前期过快排气温度增长;起动机脱开后发动机转速上升缓慢,在起动3阶段增加油量。从表1中可知,采用方案3后起动发动机成功,起动时间缩短3s,排气温度最大值比方案2高5℃,起动机脱开转速为45.1%,脱开时排气温度比方案2低31℃,起动时间缩短2s,从起动的情况来看,采用方案3后,虽然起动机脱开时排气温度较低,起动2阶段转速上升较慢,起动时间较长。而发动机排气温度在3阶段上升过快,起动后段增加油量不可行。
d)方案4
方案4相对方案1在起动2阶段减小5%左右,起动机后段后油量和方案1相同。发动机起动成功,起动时间较方案2减少6s,起动排气温度最大值较方案3减小29℃,起动机脱开转速47.4%,脱开时排气温度减小11℃,相较与其他几次规律较好。
方案4减少了2阶段段供油量,抑制了前期过快增长的温度,同时又不至于使转速上升过慢,使排气温度控制在较为合理的范围内;在3阶段期的供油与方案1相同,使起动机脱开后涡轮带转阶段转速上升在合适范围之内(表1)。
4 结论
通过实验得到以下结论:
a)对于起动供油规律为转速-油量规律的发动机,合适的起动供油规律至关重要,选择合适的起动供油规律能有效的降低排气温度最大值,缩短起动时间;
b)所选择的4个方案中4号方案起动时起动油量较为合适,抑制排气温度过快上升,发动机转速上升快,起动时间短。
参考文献
Li Bifeng;Li Furong;Di Yazhou;Wang Xiaofei
(Naval Aeronautical and Astronautical University Qingdao Branch,Qingdao 266041,China)
摘要:为了挖掘隐藏在飞参数据背后的信息知识,应用数据挖掘技术对航空发动机健康状态进行判别研究。利用飞参数据中与发动机健康状态相关的九个参数和典型的故障数据,分别建立了神经网络和决策树模型,通过结果的比较,确定了最佳分类预测模型。
Abstract: In order to tap the information and knowledge hidden behind the flight data, we use data mining technology to judge and research the health status of aero-engine. Making use of nine parameters and typical fault data related with engine health, the models of neural network and decision tree were established respectively, and the optimum model of classification and prediction was determined by comparing the results.
关键词:飞参数据 神经网络 决策树 Clementine
Key words: flight data;neural network;decision tree;Clementine
中图分类号:V23文献标识码:A文章编号:1006-4311(2011)19-0019-02
0引言
飞参数据是由飞参采集记录设备所记录的与飞机飞行性能、设备状态有关的实时飞行数据。主要用行事故调查、飞机设计、机务维修和飞行质量评估。随着参数量的增加,采样率的提高,记录时间的延长,飞参系统记录的数据量也急剧膨胀,为飞参工作人员利用地面数据处理软件确定机载设备系统的故障以及帮助地勤维护人员视情维修带来了巨大的挑战。目前,各种飞参地面数据处理软件依赖逻辑运算判据对机载设备的故障状态定性进行描述,积累了海量的描述性故障数据,为数据挖掘技术在飞参数据智能处理中的应用带来了广阔的应用前景。
1基于发动机飞参故障数据的数据挖掘
数据挖掘是一个以数据为中心的循序渐进的螺旋式数据探索过程,主要包括业务理解、数据理解、数据准备、建立模型、方案评估和方案实施等多个阶段。根据某航空部队所反馈的有关飞参数据故障现象的描述,问题大多出在发动机上。因此,数据挖掘过程围绕航空发动机的健康状态进行,包括数据预处理、建立模型和结果分析三大环节。
1.1 数据预处理一般来说,在整个数据挖掘实施过程中,70%的工作量用于进行数据预处理,主要是提高数据质量。针对发动机健康状态所描述的故障现象,涵盖起飞阶段、空中飞行阶段以及着陆阶段所出现的左发动机超转、右发动机超转、双发超转、转速相同情况下左发动机或右发动机排温不正常、排温相同情况下左发动机转速或右发动机转速不正常、左发动机或右发动机最高排温偏低等方面。通过对所描述飞参故障数据的分析,发动机健康状态y可定义为四个类别,即左发动机故障、右发动机故障、两个发动机均故障、正常,分别用数值1、2、3、4表示(注意此处故障包括具有故障征兆的含义)。事实上,新生成的发动机健康状态属性y是对定性故障描述数据的一个定量处理。而依据故障现象描述及飞参判据从51个参数中筛选与发动机健康状态有关的9个参数,分别为指示空速、左发排气温度、右发排气温度、左发高压转速、右发高压转速、左起落架放下、右起落架放下、襟翼放下25度、襟翼放下35度,用参变量xi(i=1,2,…,9)表示。经过参数筛选和新属性生成,接下来就需要对数据进行合并、抽样处理。数据合并生成112901个样本,抽样后生成60411个样本。数据预处理节点流程见图2明确变量角色节点之前。
1.2 神经网络与决策树算法作为数据挖掘算法,神经网络与决策树是常用的分类预测方法,其分类也甚多,这里主要介绍所使用的BP神经网络和决策树中的C5.0算法。
BP神经网络是一种前馈式、多层、感知机网络。图1是含有一个隐层的BP网络结构,输入向量为X=(x1,x2,…,xn),输出向量为Y=(y1,y2,…,ym)。
隐层的输出Uj及网络输出yk的计算公式如下:
U■=f■w■x■+θ■ j=1,2,…,p(1)
y■=f■w■U■+θ■k=1,2,…,m(2)
式(1),(2)中,wij是输入层与隐层的连接权值,wjk是隐层与输出层的连接权值,f是(0,1)型Sigmoid激活函数,即:
f(z)=■(3)
网络的确定主要由训练数据对隐层的连接权值ωij、ωjk和阈值θj、θk进行调解,以达到最佳输入输出的映射关系。
决策树是一个可以自动对数据进行分类的树形结构,是树形结构的知识表示,可以直接转换成分类规则。决策树算法是以一组样本数据集为基础的一种归纳学习方法,着眼于从一组无序、无规则的样本数据中推理出决策树表示形式的分类规则[1]。而C5.0作为决策树算法之一,是C4.5的商业化版本,其核心与C4.5相同。下面对C4.5算法进行描述[2]:
输入:R-候选属性的集合(可以是连续值),C-分类属性,S-训练集。输出:一棵决策树。
方法:
①创建结点N。如果训练集为空,则返回结点N并标记为Failure;如果训练集中的所有记录都属于一个类别,则以该类标记结点N;如果候选属性为空,则返回N作为叶节点,标记为训练集中最普通的类。
②for each 候选属性attribute_list。
③if 候选属性是连续的 then 对该属性进行离散化。
④选择候选属性attribute_list中具有最高信息增益的属性D。标记结点N为属性D。
⑤for each 属性D的已知值di。由结点N长出一个条件为D=di的分支。
⑥设Si是训练集S中剩的训练样本的集合。
⑦if Si为空。加上一个树叶,标记为训练集中最普通的类。
⑧else 加上一个由C4.5(R-{D},C,Si)返回的结点。
1.3 Clementine建模及结果分析选择Clementine12.0软件作为数据挖掘工具,xi(i=1,2,…,9)为条件属性,发动机健康状态y为决策属性,分别建立BP神经网络和决策树模型,从60411个样本中抽取70%的样本作为训练样本,30%样本作为检验样本,执行的结果作为结点加入数据流中。数据挖掘流程如图2。条件属性值经[0,1]标准化处理后的决策树分类预测结果见表1。其中1_Training 是训练样本,2_Testing是检验样本,$C-故障类别是故障类别的预测值,$CC-故障类别是预测置信度。
表2给出了BP神经网络和决策树分类预测精度的对比。通过比较可以看出,BP神经网络和决策树的分类预测精度都非常高,两者差距不大,但是从执行效率上相比,决策树明显优于BP神经网络,仅用时34秒,所以选择决策树作为航空发动机健康状态的分类预测模型比较理想。
2结论
航空发动机作为飞机的核心部件,其健康状态直接影响飞行质量和飞行员的安全。通过对发动机飞参故障数据的分析处理可知,面对海量的飞参数据,将数据挖掘技术应用于航空发动机健康状态的分类预测是可行且具有推广价值的。
参考文献:
[1]廖芹,郝志峰,陈志宏.数据挖掘与数学建模[M].北京:国防工业出版社,2010.2.
[2]纪希禹.数据挖掘技术应用实例[M].北京:机械工业出版社,2009.4.
Abstract: In this article, effective anti-interfere measures are found through practice and experiment on the multi-function test bed where multi -type models engine are tested, leading to breakthrough in solving signal interference. The successful application of
anti-inference technology has not only solved the problem of test bed construction but also formed a series of effective operable measures for the reference of peers.
关键词: 航空发动机;试车台;抗干扰;信号;技术
Key words: aero-engine;test bed;anti-inference;signal;technology
中图分类号:V263 文献标识码:A 文章编号:1006-4311(2013)27-0056-02
0 引言
某系列航空发动机配装的综合调节器对信号的处理一直存在一些干扰现象,严重制约科研生产过程,多年来一直没有得到有效解决。在研究探索航空发动机综合调节器调防干扰措施的基础上,借助多年的多机种试车台如何实现信号防干扰的经验,在某试车台新增功能改造中,成功应用了抗干扰技术,最终验证了这些措施的有效性和可行性。
1 信号干扰的类型
信号干扰主要分为电磁感应引起的磁耦合、静电感应引起的电耦合、不同金属接触点产生的附加电势、由于振动产生的干扰以及不同地电位引起的干扰。前四种属于串模干扰,后者属于共模干扰。大功率的变压器、交流电机、电源周围都存在有很强的交变磁场,导线处在这种变化的磁场中会产生感应电势,通过磁耦合在电路中形成干扰叫磁耦合干扰。这种干扰信号与有用信号串联,当信号源与测试设备相距较远时,干扰越强烈。将导线远离这些强用电设备,调整走线方向以及减小导线回路面积都能有效防止干扰。把两根信号线以较短的结距进行绞合,干扰信号就能降为原有的1/10~1/100。导线之间存在着电容效应,由于某导线电位发生变化,相邻的导线上的电位也发生变化。干扰源是通过电容性的耦合在回路中形成干扰,这种干扰叫电耦合干扰,如图1。
发动机到综调的线路就存在几路高频信号,互相之间就产生这种电耦合干扰,而且还很突出,是试车台设备干扰的主要形式。把信号线扭绞能使电场在两信号线上产生的电位差大为减小,采用静电屏蔽后,能使干扰减小到1/100~1/1000。附加电势干扰主要是由于不同金属产生的热电势以及金属腐蚀等原因产生的热电势,当它处于电回路时会成为干扰,这种干扰大多数以直流的形式出现,在接线端子板处容易产生热电势。目前试车台综调线路都要经过端子板转接,这种干扰也是存在的。目前,为了方便测量和施工,副屏柜内仍然需要设计端子板方式走线,但为了保证电缆只允许在副屏柜内断一次,两端要求屏蔽层在端子板处对接,要保证屏蔽层的覆盖面积尽量最大。导线在磁场中运动产生感应电动势,也同样会产生干扰。因此在振动的环境中把信号导线固定是很有必要的。试车台上振动较大,环境恶劣,选用合适的桥架走线及挂钩捆绑固定走线有效消除这类干扰。工程中不同接地点之间往往存在电位差,尤其在大功率的用电设备附近,当这些设备的绝缘性能较差时电位差更大。这种地电位差有时能达1~10伏以上,它同时出现在两个信号导线上,如图2所示。这种干扰叫不同电位引起的干扰。
由于共模干扰和信号相叠加,不直接对测量设备产生影响。但能通过测量系统形成对地的泄漏电流,漏电流通过电阻的耦合就能直接作用于测量设备,产生干扰。试车台上这种干扰较为突出,是我们研究的主要方向。
2 干扰的抑制方式
抑制干扰通常采用的方式有信号导线的扭绞、屏蔽、接地、平衡、滤波、隔离等方法。抑制串模干扰采用绞线、屏蔽、接地很有效,抑制共模干扰就是要保证单点接地,并要求接地点靠近系统地,而且接地可靠,有时候二次仪表“浮地”或者对设备进行两层屏蔽也可以抑制共模干扰。如果将屏蔽层在信号侧与仪表均接地,则地电位差会通过屏蔽层形成回路,由于地电阻通常比屏蔽层的电阻小的多,所以在屏蔽层就会形成电位梯度,并通过屏蔽层与信号导线间的分布电容耦合到信号电路中去,因此屏蔽层必须一点接地。
3 试车台抗干扰措施
3.1 根据信号特点选择优质合适的电缆 选用质量好、品质优的航空专用电缆是抗干扰的基本基础,针对试车台特殊环境和线路的特殊性,消除耦合干扰最有效的办法就是选用合适的屏蔽导线。比如:针对位移传感器特殊信号,其激励信号带有温度补偿功能,需要选用三芯绞合屏蔽的航空电缆,其反馈信号是交流输出,选用双芯屏蔽线最为合适;滑油压力、防喘等信号选用双芯屏蔽信号线;点火信号因为电流较大而且带有冲击干扰,需要使用截面积较大的屏蔽电缆;离子火焰传感器信号传输的是离子电流信号,需要特殊的低噪声电缆,而且要求两端接地。不需要使用屏蔽的地方不能使用屏蔽线,免得造成屏蔽间的信号干扰。另外,电缆的敷设也很关键,强信号导线应离开弱信号电路导线单独布置,在必需靠近的场合中应该尽可能的将两者垂直布置;干扰敏感的元件应避免靠近干扰源摆放,必须靠近时采取立体交叉的方式;电缆走桥架原则上是交直流分开敷设,控制电缆、测量电缆与动力电缆分开。
3.2 注意电缆屏蔽层的细节处理 选用电缆只是防干扰的第一步,关键是如何进行屏蔽线的处理,这也是我们摸索出来的宝贵经验所在。第一,整个信号传输过程中信号线的屏蔽层不能中断,信号线也要尽量减少接点,接点处必需将屏蔽对接,信号线尽可能的减少断点,原则上不超过2次,中断一次干扰增加近5~10倍。而且中途屏蔽层对接的地方,屏蔽层不易太长,原则上不大于200mm为好。第二,整个信号线的屏蔽层中途不能接地,中途接地会造成信号干扰增大,而且接地效果明显下降。屏蔽层原则上只在一端接地。目前,经过多次试验发现,在综调或者电调插头处将关键信号的屏蔽层接地最为有效。
3.3 对地线的特殊要求及接地方式 防干扰还有一项指标很重要,那就是一个试车台要有单独的地线接地极,接地电阻小于1Ω(通常是小于4Ω)。经过多年的研究试验,试车台需要做两个接地极,为了保证符合国家规范要求,两个接地极间设有电容,平常处于断开状态,一旦出现强雷雨天气,电容能够击穿使两个接地极变为一体。接地极一个用于动力接地及普通信号测量接地,包括计算机接地;一个用于发动机控制测量系统专用接地,来保证综调或者电调信号不扰。
4 结束语
通过防干扰技术在某试车台的应用,证明了该技术的成功及作用,为国内航空试车台乃至四代机试车台建设提供一个成功典范,具有深远的价值和不可估量的重大意义。
参考文献:
[1]区建昌.电子设备电磁兼容性设计理论与实践[M].电子工业出版社,2010.
关键词:电火花,表面强化,涡轮导向器,金相组织,显微硬度
电火花表面强化是利用电极材料与金属材料表面间的脉冲火花放电,将电极材料熔融到金属表面,形成合金化熔渗层。电火花放电属于高能量密度放热,亦成电火花熔覆或称为脉冲电弧显微堆焊,可以提高零件的硬度、耐磨性、腐蚀性及热硬型等表面性能。电火花强化工艺方法简单,装备造价低,经济效益明显,因而广泛应用模具、导轨及齿轮、轧辊工件面的表面涂覆强化。此外还可以采用不同电极材料对工件表面的性能进行改性处理,亦可收到非常明显的工艺效果[1-6]。
航空发动机的涡轮导向叶片,普遍采用高温镍基合金制成,使用过程中这些部件经常出现裂纹等损伤。高温合金价格昂贵,如果受损部件一次性报废,势必造成极大的浪费,因此如何良好修复航空发动机的涡轮导向叶片等热端部件是一个亟待解决的问题。本文尝试采用电火花技术对受损部件进行修复。
1 试验步骤1.1 试验条件
试样用阴极射线从涡轮导向器上切下,材料为镍基高温合金K418,其化学成分(质量分数,%)为:C0.08~0.16,Cr11.5~13.5,Ti0.5~1.0,Fe1.0,Mn0.5,Al5.5~6.4,Si0.5,Nb1.8~2.5,Zr0.06~0.15,Mo3.8~4.8,B0.008~0.02,余为Ni。试样经100号粗砂纸打磨,再用丙酮清洗试样表面、干燥以脱脂。
试验设备为3H-ES型金属表面强化修复机。输入电压AC220 V,单相50/60 HZ,功率1500 W,频率70~700 HZ。采用HXS-1000型号的显微硬度仪,测试试样的显微硬度。
电极为旋转式,强化电极材料与试样材料相同。试验中采用氩气保护。
1.2 试验数据
为了尽可能从较少的实验中寻找出结论,采用正交实验法。电火花修复试验工艺参数如表1所示。
表1 试验工艺参数
关键词:TRIZ理论,创新设计,机械产品,
二十一世纪全世界范围内机械产品激烈竞争,各个国家都很重视如何提高产品的设计水平,增强其竞争实力。而产品设计最主要的目标就是对产品进行创新,满足消费者的需要并且占据市场更重要的位置,所以,要想增强机械产品自身的竞争实力,最根本的途径就是重视创新设计。创新设计理论又叫做TRIZ理论,是设计的核心理论,目前已经在机械产品创新设计中被广泛应用,可以提现企业的核心竞争力。1946年,前苏联G.S.Altshuller创立了TRIZ理论,指的是发明问题的解决理论。以这个理论为基础,军事工业得到了很大的发展。二十世纪九十年代开始流入美欧,在某些企业当中开始应用并且推广,取得了很多发明专利,随之也产生了经济效益,当很多国家兴起了TRIZ理论研究和推广的热潮。1998年之后,TRIZ理论开始在中国出现,不少科研机构把TRIZ理论作为技术创新的首选,积极的进行探索。这篇论文主要是探讨TRIZ理论主要内容以及在机械产品创新设计中的应用。
1.TRIZ理论基本内容概述
TRIZ理论的观点是,发明问题的关键是解决冲突,而解决冲突需要遵守相关的原则:对系统的某个零部件或者性能进行改进时,不可以影响到系统或者相邻的其他零部件以及性能。冲突主要包括技术冲突和物理冲突,物理冲突指的是如果对一子系统出现相反的要求时所出现的冲突,系统的某个部分同一时间出现两种相反的状态,主要是由一个参数造成的。技术冲突的含义是系统的某个部分性能增强造成了有害以及有用两种结果,也可以理解为有益作用被引入或者有害作用被消除,造成其他的一个或者几个子系统性能降低,这种问题主要是由两个参数造成的。
G.S.Altshuller在理论当中提出了四十条冲突解决原理,也就是发明原理以及冲突解决矩阵的含义,各种领域的相互冲突的特性通过高度的概括,抽象成为三十九个技术特性参数(也叫做通用工程参数),矩阵中的行代表冲突恶化的参数,列代表冲突改善的参数。针对技术冲突,可以以冲突矩阵为基础,找到对应的发明原理,从而找到解决问题的办法;针对物理冲突,通常利用分离原理了可以找到解决办法,发明原理和分离原理之间具有一定的关系,一条分离原理,可以对应很多条发明原理。
2.TRIZ理论在机械产品创新设计中应用
2.1.TRIZ理论在机械创新设计中应用的步骤程序
将TRIZ理论应用到机械创新设计当中,主要的步骤是:对机械系统问题进行分析,明确关键的技术功能,找到造成系统中问题的参数,对冲突的类型进行判断。如果系统中的问题主要是由一个参数造成的,属于物理冲突;如果是由两个参数造成的,属于技术冲突。可以通过分离原理解决物理冲突,对分离方法进行确定,包括时间分离、空间分离、整体和部分的分离、基于条件的分离,根据实际的分离原理和解决冲突的发明原理的对应关系,找到解决问题的办法。技术冲突,第一步要确定恶化技术特性参数和改善技术特性参数,再以冲突矩阵为基础,找出对应的发明原理,从而找出解决问题的办法。最后,把推荐的对应的发明原理应用的具体的问题上,对每一个原理在具体问题上的实现和应用进行探讨。
2.2.呆扳手的创新设计案例
设计初期的呆扳手在松开或者拧紧六角螺母或者螺栓时,因为螺母或者螺栓受力点在两条棱边,很容易变形,因此无论是松开还是拧紧都比较困难。而新的设计需要避免原来设计当中的缺陷。后来美国一项以冲突矩阵为基础的专利解决了这个问题。这个专利是从三十九个通用工程参数当中选择一对特性参数:1)提高质量的参数:物体所产生的有害因素,可以对螺母或者螺栓减少磨损。2)可以造成负面影响的参数:制造精度,全新的改进有可能造成制造的困难。然后把上面的两个参数代进冲突矩阵,可以得到下面四条发明理论,即是:维数变化、小对称、抛弃与复制、修复。通过分析维数变化以及小对称这两条发明原理可知,经过创新的呆扳手工作面的某些点可以和螺母或者螺栓的侧面相接触,而不仅仅是接触棱边,因此解决了这个问题。
通过这个实例可以说明,机械产品的某些参数或者特性进行改进之后会造成其他参数和特性的恶化,可以通过冲突矩阵来解决这种技术冲突,这说明在机械产品设计当中应用TRIZ理论时具有价值的。
2.3.某飞机的航空发动机引擎罩的创新设计案例
某飞机的航空发动机引擎罩在设计时,表现出来的技术冲突是:一方面希望发动机可以吸入较多的空气,另一方面又希望发动机罩和地面之间的距离可以不减少。把它转化为物理冲突:应该将发动机罩的直径加大,这样有利于吸入空气,但是直径又不宜过大,避免机罩和路面的距离减少。
这个物理冲突可以用空间分离原理进行解决。空间分离所对应的发明原理当中有No.4不对称原理。根据这个原理,可以把原来的对称设计变更为不对称的设计。如下图所示。
图1:发动机罩改进设计方案示意图
3.结束语