欢迎来到易发表网!

关于我们 期刊咨询 科普杂志

数学教学管理论文优选九篇

时间:2023-03-23 15:18:27

引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇数学教学管理论文范例。如需获取更多原创内容,可随时联系我们的客服老师。

数学教学管理论文

第1篇

(一)

中学是大学的基础,大学教育要想有一个好的开端,就必须提高中学教育的质量和水平。就中学教师来说,人人都希望自己的教育与教学活动能高效率,但这并非易事,它涉及到方方面面的诸多因素,如自己的工作能力、教育的大环境与小环境等主客观原因,无论如何,学习、掌握、借鉴各种优秀的教育、教学方法则是非常必要的。作为一名数学教师,应该了解国内外先进的数学教学方法,找出各种方法的优缺点,然后根据中学的实际情况,吸收他人教学方法的长处,使自己的教学更上一个新的台阶,从而促进中学教学方法的不断完善和发展。

国内外中学数学施教的对象都是中学生,年龄段在13-18岁,心理发展阶段属于青少年期,他们具有相似的心理和认知水平,教学内容大同小异,所要达到的目标和遵循的原则基本一致;正是由于在施教对象、教学内容、教学目标等方面具有共同性,因此中学数学教学存在着可比性。比较中西方中学数学教学方法,发现有如下的相似之处:

(1)教学程序基本一致。各国中学数学讲授新课基本上采用这样的程序:老师提出问题,学生自学预习:学生在老师的指导下理解所学的内容;巩固所学的内容;检测所学的知识。

(2)讲授法是各国中学数学教学普遍采用的基本方法。不论中国还是美国,或者西方其他发达国家,数学知识的传授基本上是以讲授法为主,其他方法为辅助。

(3)普遍重视启发式教学。第二次世界大战后各国都进行了程度不同的教学方法改革,中学教学也不例外。通过教育改革各国都重视如何提高学生素质、培养能力的教学,尤其重视启发式教学思想在学科教学中的应用。①

从中学数学教学实际来看,我国的教学方法与西方发达国家的相比,存在着差别,主要表现在:

(1)教师与学生在教学过程中关系和作用不同。中国大部分的教学方法都是以老师为中心,有“重教轻学”的倾向,在教学过程中大都是采取灌输式的教学方法。这主要是我国长期的应试教育导致的。尽管我国的教育改革努力向素质教育的方向发展,但由于中考、高考对学生的影响仍然很大,使得大多数学校教育自觉或不自觉地滑向了题海战术、应试教育。这样的教学方法虽然有利于学生记住数学概念、数学公式,在一定程度上掌握了较深、较难的数学知识。但弊端是很明显的,它不能很好地调动学生的兴趣,束缚了学生学习的主动性。而国外特别是发达国家的教学方法重视学生自学能力的培养,注意探索学生的好奇心;多采用启发式教学方法,注重应用教育,鼓励学生发展。在教学过程中讲究自愿,学生享受学习的充分自由,学习比较轻松愉快。

数学教学中学生与老师的关系不同也造成教学气氛有明显的差异。发达国家中,老师和学生基本上是朋友关系,可以互相自由地交往、交流,教师在教学过程中起辅导提示的作用。课堂上老师有目的地让学生讨论,学生可以自由出入,有时老师甚至可以别出心裁地把课本搬到野外与学生们一起在明媚的阳光下、柔和的清风中愉悦地学习。这种教学方法能促进学生积极开动脑筋,增加对学习数学的快乐,减轻学生压力,造成欢快的教学气氛,但中国学生长期以来处于严格的课堂管理中,强调教室、强调自己的座位,老师也不敢放开,担心过分放松,会造成课堂上活泼有余、严肃不足和自由散漫的混乱场面,因为学习到底不是娱乐。同时由于中国传统思想习惯不同,在严重“尊师”思想的影响下造成了老师与学生之间存在不可逾越的“鸿沟”,在教学过程中教师往往过分严肃,学生过分紧张,再加上数学不同于文科,故事性的内容少,更加使学生失去学习的兴趣,学生很容易感到疲惫懈怠,致使一部分学生特别是差生把学习数学当成是服“若役”。

(2)对培养能力与个性发展的重视程度不同。在发达国家中强调个性的培养,鼓励学生自由发展,因而分层次个体教学方法使用得比较多。比如他们在教改中提出的非学校论的教学方法,及计算机程序教学法(把所要学的知识编成程序,让学生面对计算机自学)。这些方法强调自学,注重因材施教,能较好地培养学生自学能力,满足不同学生学习的需要。但这样的教学方法也存在一定的弊端,如使学生很少听到老师主动的讲解,难以与同学进行互相帮助,互相影响;此外使学生很少接触到课本以外的数学知识,影响学生的社会化。我国一般采用的教学方法大多是集中型吃“大锅饭”的统一的教学。这样的教学方法虽然有利于学生系统地掌握知识,有利于教师全面考虑、统筹安排,教师易于把握节奏。但是容易造成优差生的严重分化,教学没有针对性,不利于因材施教,实际上忽视了个性的差异。

在国外的数学教学中,注重对学生的了解和沟通。如美国一些学校使用的教学日记法,学生以日记的形式记录教学中的思维过程、心理状况,使学生与教师能经常通过日记进行交谈,教师易于了解学生的认知水平、知识经验、兴趣及个人思维风格等非智力因素的个体差异,教师能从学生的这些资料中综合出各种学生的成就抱负水平、焦虑水平、意志水平,从而设计出教学方案,提高教学水平。而我国教师过分注重智力因素,相对忽视了非智力因素,教师和学生的交流少,自然而然在他们之间形成隔膜,老师对学生的心理、情感、动机、兴趣难以了解,无法得到反馈,学生的焦虑、交际需要等得不到及时的满足。导致学生学习积极性不高。教师的教学具有很大盲目性。②

(3)培养学生的数学意识与应用数学教育的思想存在差异。国外的教学方法一般注意培养学生的数学意识。重视应用数学教育,具体反映在注重数学与日常生活的联系,数学中采用的例子尽量来源于现实生活。如日本的CRM教学法(复合的现实数学教学法),在教学过程中选取一些学生熟悉的事物,针对其中所包含的数学知识进行讨论和探索,最后得出结论。这种教学方法深化了学生对数学知识的理解,有利于培养他们利用数学眼光看问题和建构数学模型的意识,培养了用数学方法解决实际问题的能力,学生毕业后能较好地适应社会的需要。当然如果过分地联系难免有牵强附会之嫌。我国的教育目标虽然说重视应用教育,但至今未有与之协调的教学方法,事实上成了纸上谈兵,仍然只是从数学本身的结构出发培养学生的数学素质,造成曲高和寡的情形。另一方面,中国当前的教育方法对培养学生的解题能力非常有效,善解题是中国教学方法中比较突出的特点,这从数学奥林匹克竞赛中取得的突出成绩可以看出。

(4)教学中使用的工具和教学媒体也存在着差异。国外由于经济和科技发达,直观教学手段有了极大提高,计算机辅助教学及各类教学媒体普遍被使用。随着我国教育的改革,中国也力争改善教学手段,如多媒体教学,但由于经济、科技等方面的原因,多媒体的普及远远不是近期可以实现的。③

(二)

当前我国的教育改革在极力推进由应试教育向素质教育的转轨,因而以后教学的关键是如何提高学生的素质。所谓的全面素质可以概括为“四素质三能力”,即:文化科学素质、思想道德素质、身体心理发展素质、劳动技术素质等四素质和逻辑思维能力、应用能力、创造能力等三能力。故通过中外数学教学方法的比较,结合我国的实际情况,按照素质教育的要求,我认为改进教学方法应从以下几个方面入手:(1)重视教师和学生的交流,改善教师与学生的关系,加强对学生的全面了解,调动学生的积极性;(2)重视能力的培养,真正做到使学生的素质全面发展;(3)改进教学方法必须与改革考试制度相联系,不破除升学率的压力,就无法使教师与学生从考试的繁重负担中解放出来。必须改变考试凌驾于教学之上,考试是“指挥棒”的不合理状况,使考试成为教学的检测手段,起辅助教学的作用。

教学有法,但无定法,世界上没有一种放之四海而皆准的教学方法,因而对任何好的教学法都不能完全照搬,而应根据实际情况,吸取合理的思想和有效的成分,创立一套合符实际的教学方法;在教学中不要固守一两种教学方法,而要根据不同的教学内容、不同的学生采取相应的教学方法,因材、因人施教是教学方法的唯一出发点。

主要参考文献

①王子兴主编《数学教育学导论》,南宁:广西师范大学出版社

第2篇

一.数学入诗

一去二三里,烟村四五家,

亭台六七座,八九十枝花。

这是宋代邵雍描写一路景物的诗,共20个字,把10个数字全用上了。这首诗用数字反映远近、村落、亭台和花,通俗自然,脍炙人口。

一片二片三四片,五片六片七八片。

九片十片无数片,飞入梅中都不见。

这是明代林和靖写的一首雪梅诗,全诗用表示雪花片数的数量词写成。读后就好像身临雪境,飞下的雪片由少到多,飞入梅林,就难分是雪花还是梅花。

一窝二窝三四窝,五窝六窝七八窝,

食尽皇家千钟粟,凤凰何少尔何多。

这是宋代政治家、文学家、思想家王安石写的一道《麻雀》诗。他眼看北宋王朝很多官员,饱食终日,,反对变法,故把他们比作麻雀而讽刺之。

一篙一橹一渔舟,一个渔翁一钓钩,

一俯一仰一场笑,一人独占一江秋。

这是清代纪晓岚的十“一”诗。据说乾隆皇帝南巡时,一天在江上看见一条渔船荡桨而来,就叫纪晓岚以渔为题作诗一首,要求在诗中用上十个“一”字。纪晓岚很快吟出一首,写了景物,也写了情态,自然贴切,富有韵味,难怪乾隆连说:“真是奇才!”

一进二三堂,床铺四五张,

烟灯六七盏,八九十枝枪。

清末年间,鸦片盛行,官署上下,几乎无人不吸,大小衙门,几乎变成烟馆。有人仿邵雍写了这首启蒙诗以讽刺。

西汉时,司马相如告别妻子卓文君,离开成都去长安求取功名,时隔五年,不写家书,心有休妻之念。后来,他写了一封难为卓文君的信,送往成都。卓文君接到信后,拆开一看,只见写着“一二三四五六七八九十百千万万千百十九八七六五四三二一”。她立即回写了一首如诉如泣的抒情诗:

一别之后,二地相悬,只说是三四月,又谁知五六年,七弦琴无心抚弹,八行书无信可传,九连环从中折断,十里长亭我眼望穿,百思想,千系念,万般无奈叫丫环。万语千言把郎怨,百无聊赖,十依阑干,九九重阳看孤雁,八月中秋月圆人不圆,七月半烧香点烛祭祖问苍天,六月伏天人人摇扇我心寒,五月石榴如火偏遇阵阵冷雨浇花端,四月枇杷未黄我梳妆懒,三月桃花又被风吹散!郎呀郎,巴不得二一世你为女来我为男。

司马相如读后深受感动,亲自回四川把卓文君接到长安。从此,他一心做学问,终于成为一代文豪。

二.数字

明代书画家徐文长,一天邀请几位朋友荡游西湖。结果一位朋友迟到,徐文长作一上联,罚他对出下联。

徐文长的上联是:

一叶孤舟,坐了二、三个游客,启用四桨五帆,经过六滩七湾,历尽八颠九簸,可叹十分来迟。

迟到友人的下联是:

十年寒窗,进了九、八家书院,抛却七情六欲,苦读五经四书,考了三番两次,今日一定要中。

据说明朝中叶,江西九江有一船夫,见一位连中“三元”的状元坐在他的船里,就道出一个上联给这位状元去对。这位状元冥思苦想,还是对不出。以后也无人对出,成了绝对。时过几百年,直到解放后的1959年,佛山一工人用轮船装运木料“九里香”(一种名贵香樟木),触发灵感,对出下联。

船夫的上联是:

一孤舟,二客商,三四五六水手,扯起七八尺风帆,下九江,还有十里。工人的下联是:

十里运,九里香,八七六五号轮,虽走四三年旧道,只二日,胜似一年。南阳诸葛武候的祠堂里有一副对联:

取二川,排八阵,六出七擒,五丈原明灯四十九盏,一心只为酬三顾。

平西蜀,定南蛮,东和北拒,中军帐变卦土木金爻,水面偏能用火攻。

此副对联不仅概述了诸葛亮的丰功伟绩,而且用上了“一二三四五六七八九十”各个数字和“东南西北中金木水火土”十个字,真是意义深远,结构奇巧。

我国小说家、诗人郁达夫,某年秋天到杭州,约了一位同学游九溪十八涧,在一茶庄要了一壶茶,四碟糕点,两碗藕粉,边吃边谈。结帐时,庄主说:“一茶、四碟、二粉、五千文”。郁达夫笑着对庄主说,你在对“三竺、六桥、九溪、十八涧”的对子吗?

有“吴中第一名胜”之称的江苏省苏州虎丘,有一个三笑亭,亭中有一副对联:

桥横虎溪,三教三源流,三人三笑语;

莲开僧舍,一花一世界,一叶一如来。

下面是民间流传的一副对联。它既是一副对联,又是两则拆字谜语,读后细想,别有一番情趣。

凉雨洒人,东两点西两点;

切瓜分客,上七刀下八刀。

解放前,有人作如下一副对联:

二三四五,六七八九。

横批是:南北。

这副对联和横批,非常含蓄,含意深刻。上联缺“一”一与衣谐音;下联缺“十”,十与食谐音。对联的意思是“缺衣少食”,横批的意思是“缺少东西”,也是内涵极其丰富的两则谜语。

三.妙题

清乾隆五十年,朝廷为了表示国泰民安,把全国65岁以上的老人请到京城,为他们举行一次盛大宴会。在宴会上,乾隆看见一位老寿星,年高141岁,非常高兴,就以这位寿星的岁数为题,说出上联,并要纪晓岚对出下联:

乾隆帝的上联是:花甲重开,又加三七岁月。

纪晓岚的下联是:古稀双庆,更多一度春秋。

上、下两联都是一道多步计算应用题,答案都是141岁。上联的“花甲”是指60岁,“重开”就是两个60岁,“三七”是21岁,就是60×2+7×3=141(岁)。下联的“古稀”是指70岁,“双庆”就是两个70岁,多“一度春秋”就是多1岁,也就是70×2+1=141(岁)。

又如下面一副对联,也是两道算题,并巧妙用上一、三、七、九、十各数,不嫌生拼硬凑。

尺蛇入穴,量量九寸零十分;

七鸭浮江,数数三双多一只。

上联是讲蛇的长度,九寸加十分是一尺(旧制长度单位进率是1尺=10寸,1寸=10分);下联是讲鸭的只数,三双加一只是七只。

四.诗歌趣题

1.百羊问题

明代大数学家程大位著的《算法统宗》一书,有一道诗歌形式的数学应用题,叫百羊问题。

甲赶羊群逐草茂,乙拽一羊随其后,

戏问甲及一百否?甲云所说无差谬,

所得这般一群凑,再添半群小半群,

得你一只来方凑,玄机奥妙谁猜透?

此题的意思是:一个牧羊人赶着一群羊去寻找青草茂盛的地方。有一个牵着一只羊的人从后面跟来,并问牧羊人:“你的这群羊有100只吗?”牧羊人说:“如果我再有这样一群羊,加上这群羊的一半又1/4群,连同你这一只羊,就刚好满100只。”谁能用巧妙的方法求出这群羊有多少只?

此题的解是:

(100-1)÷(1+1+1/2+1/4)=36只

2.李白打酒

李白街上走,提壶去打酒;

遇店加一倍,见花喝一斗;

三遇店和花,喝光壶中酒。

试问酒壶中,原有多少酒?

这是一道民间算题。题意是:李白在街上走,提着酒壶边喝边打酒,每次遇到酒店将壶中酒加一倍,每次遇到花就喝去一斗(斗是古代容量单位,1斗=10升),这样遇店见花各3次,把酒喝完。问壶中原来有酒多少?

此题用方程解。设壶中原来有酒x斗。得[(2x-1)×2-1]×2-1=0,解得x=7/8。

3.百馍百僧

明代大数学家程大位著的《算法统宗》中有这样一题:

一百馒头一百僧,大僧三个更无增;

小僧三人分一个,大小和尚各几丁?

这题可用假设法求解。现假设大和尚100个,(3×100-100)÷(3-1÷3)=75(人)…………小和尚人数100-75=25(人)大和尚人数

4.哑子买肉

这也是程大位《算法统宗》中的一道算题:哑子来买肉,难言钱数目,一斤少四十,九两多十六。试问能算者,今与多少肉?此题题意用线段图表示,就一目了然。附图{图}

由图可以看出:

每两肉价是:(40+16)÷(16-9)=8(文)哑子带的钱:8×16-40=88(文)哑子能买到的肉:88÷8=11(两)(注:旧制1斤=16两)

5.及时梨果

元代数学家朱世杰于1303年编著的《四元玉鉴》中有这样一道题目:

九百九十九文钱,及时梨果买一千,

一十一文梨九个,七枚果子四文钱。

问:梨果多少价几何?

此题的题意是:用999文钱买得梨和果共1000个,梨11文买9个,果4文买7个。问买梨、果各几个,各付多少钱?

梨每个价:11÷9=12/9(文)

果每个价:4÷7=4/7(文)

果的个数:

(12/9×1000-999)÷(12/9-4/7)=343(个)梨的个数:1000-343=657(个)梨的总价:

12/9×657=803(文)

果的总价:

4/7×343=196(文)

6.隔壁分银

只闻隔壁客分银,不知人数不知银,四两一份多四两,半斤一份少半斤。

试问各位能算者,多少客人多少银?

此题是民间算题,用方程解比较方便。

设客人为x人。则得方程:

4x+4=8x-8

x=3,4×3+4=16

答:客人3人,银16两。

(注:旧制1斤=16两,半斤=8两)

7.宝塔装灯

这是明代数学家吴敬偏著的《九章算法比类大全》中的一道题,题目是:

远望巍巍塔七层,红光点点倍加增,

共灯三百八十一,请问顶层几盏灯?

第3篇

由于学生的智力差异,每道例题教学后,总有部分学生对例题所讲的思考方法、解题思路掌握得不牢固,因此,在例题教学后回顾和总结解题思路则显得十分必要。在反思中,学生对例题进行再认识、再理解、再提高,既加深了学生对题中数量关系的理解,又训练了学生思维的深刻性。

例如:一个服装厂计划做660套衣服,已经做了5天,平均每天做75套。剩下的要3天做完,平均每天要做多少套?

教完例题后,首先引导学生回顾例1的解题思路。根据“已经做了5天”和“平均每天做75套”这两个条件可以求出已经做了的套数;已知计划做660套衣服,又求出了已经做了的套数,就能求出剩下的套数;知道剩下的套数和要求完成的天数,就能求出后3天平均每天要做的套数(即由因导果综合法)。再让学生说出解题步骤:第一步求“已经做了多少套”,第二步求“还剩下多少套”,第三步求“后三天平均每天要做多少套才能完成任务”。最后,教师再根据综合算式提问:①“75×5”表示什么?②“660-75×5”表示什么?③“(660-75×5)÷3”又表示什么?通过这样的反思,进一步帮助学生理顺和掌握该应用题的结构和解题思路,加深学生思维的深度。

二、反思解题方法,训练思维的灵活性

教完每道例题,通过引导学生反思本题是否还有其它解法,比较哪种解法较为简捷,进一步拓宽学生解题思路,培养思维的灵活性。例如,在第十一册54页的例4教学之后,教师可问学生:这道题还可以怎样解答?在教师的启发下得出如下几种解法:

解法一

以九月份生产玻璃的箱数作单位“1”,得解法:20000÷(1+1/3)。

解法二

以十月份生产玻璃的箱数作单位“1”,解法为:20000×(1-1/4)。

解法三

用归一法解:20000÷(3+1)×3解法四用方程解:设九月份生产玻璃x箱。得方程(20000-x)÷x=13。

这样引导学生从同一例题中探求不同的解法,有利于克服思维定势,促进学生思维能力的发展。

三、反思题目变式,训练思维的广阔性

某些例题在教学后,还可引导学生多角度、多方位地改变题中的条件与问题,进行变式教学。这样,不仅加深学生对某类应用题结构和特征的理解,而且有利于培养学生理解问题和解决问题的能力。

例如,第十一册49页的例2,在教学后可进行如下变式训练

1.变换条件。将题中“六月份比五月份多捕了1/4”变换为:

(1)六月份比五月份少捕了1/4;

(2)六月份捕鱼是五月份的(1+1/4)倍;

(3)相当于六月份捕鱼吨数的4/5;

(4)六月份比五月份的4/5多100吨。

2.变换问题。将题中“六月份捕鱼多少吨”变换为:

(1)五月份和六月份一共捕鱼多少吨?

(2)六月份比五月份多捕鱼多少吨?

(3)五月份捕鱼吨数是六月份的几分之几?这样,通过一题多变和一题多问,增大了题目的知识容量,训练了学生灵活应用知识解决问题的能力,收到了事半功倍的效果。

四、反思引申推广,训练思维的变通性

有些应用题的数量关系、解题方法很相似,如在教学中不失时机地将某些例题作适当的引申,不仅有助于学生进一步理解题目的数量关系,掌握解题规律,而且有利于训练学生思维的变通性。

例如,在教学第十一册58页的例5这道工程应用题之后,引导学生根据工程应用题的结构特征及解题规律进行反思,学生容易发现工程、相遇、注水等问题有着相似的数量关系及解法。

如相遇问题:“客车从甲地开往乙地需20分钟,货车从乙地开往甲地需30分钟。现两车同时分别从甲、乙两地相对开出,几分钟相遇?”算式是:1÷(1/20+1/30)=12(分)。

做衣问题:“一匹布,全部用来做上衣可以做20件,全部用来做裤子可以做30件。如要求做套装,这匹布可以做多少套衣服?”算式是:1÷(1/20+1/30)=12(套)。

第4篇

一、优化教学过程,培养学习兴趣。

当前,在数学学科的教学中,“离教现象”较为严重。所谓“离教现象”,是指学生在教学过程中,偏离和违背教师正确的教学活动和要求,形成教与学两方面的不协调,这种现象直接影响着大面积提高教学质量。“离教现象”主要表现在课内不专心听讲,课外不做作业,不复习巩固。这种现象的直接后果是不少学生因为“不听、不做”到“听不懂,不会做”从而形成积重难返的局面。

在整个教学过程中,怎样消除学生的“离教现象”呢?我的体会是,必须根据教材的不同内容采用多种教法,激发培养学生的学习兴趣。例如,在讲解“有理数”一章的小结时,同学们总以为是复习课,心理上产生一种轻视的意识。鉴于此,我把这一章的内容分成“三类”,即“概念关”、“法则关”、“运算关”,在限定时间内通过讨论的方式,找出每个“关口”的知识点汲每个“关口”应注意的地方。如“概念关”里的正、负数、相反数、数轴、绝对值意义,“法则关”里的结合律、分配律以及异号两数相加的法则,在“运算关”强调一步算错,全题皆错等等。讨论完毕选出学生代表,在全班进行讲解,最后教师总结。通过这一活动,不仅使旧知识得以巩固,而且能使学生处于“听得懂,做得来”的状态。又如在上完“二次根式”一章时我安排了这样一个游戏,事前我布置学生收集各种有关本章学习中可能出现的错误,并且书写在一张较大的纸上,在上课时由组长在开始前5分钟内召集全组同学把各自找到的错误题拿到一起讨论,安排“参战”顺序。游戏开始,各队轮流派“挑战者”把错误题贴在黑板上,由其它各队抢答,如果出示问题后一分钟之内无人能正确指出错误所在,则“挑战者”自答,并获加分,如果某队的同学正确应战,指出了错误所在,则应战队加分,最后以总分高的队获胜。这一游戏使课堂气氛活跃了,挑战者积极准备,应战队努力思考,把有关“二次根式”一章中的错误显露无遗,其效果比单纯的教师归纳讲述要好得多。

二、引导学生培养自学能力。

自学能力的培养是提高教学质量的关键。可自学能力的培养,首先应从阅读开始,初一学生阅读能力较差,没有良好的阅读习惯,教师必须从示范做起,对课文内容逐句、逐段领读、解释,对重要的教学名词、术语,关键的语句、重要的字眼要重复读,并指出记忆的方法,同时还要标上自己约定的符号标记。对于例题,让学生读题,引导学生审题意,确定最佳解题方法。在初步形成看书习惯之后,教师可以根据学生的接受程度,在重点、难点和易错处列出阅读题纲,设置思考题,让学生带着问题纵向深入和横向拓展地阅读数学课外材料,还可利用课外活动小组,组织交流,相互启发,促使学生再次阅读,寻找答案,弥补自己先前阅读时的疏漏,从而进一步顺应和同化知识,提高阅读水平和层次,形成阅读——讨论——再阅读的良性循环。

三、引导学生培养思维能力。

素质教育的核心问题是能力的培养,其中思维能力的培养是教学的主要方面。

思维能力的内在实质是分析、综合、推理、应用能力,外在表现是思维的速度和质量。

1.思维速度的训练

就初中生而言,思维速度的训练主要依靠课堂,合理安排课堂教学内容,利用生动活泼的教学形式训练学生的思维速度是提高教学质量的根本途径。如讲解完新课后,安排课本中的练习作为速算题;也可精编构思巧妙、概念性强、覆盖面广、有一定灵活性的判断题、选择题、简答题进行专项训练,以提高快速答题的能力。

2.思维质量的训练

思维质量的训练,除利用课堂教学外,还可以组织学生利用课余时间展开解题思路的讨论,剖析各种题解方法的特点,选择简捷而有创造性的解题思路,以便提高分析、解决问题的能力。在拓展学生思路时要尽可能考虑一题多解,或多题一解。

3.逆向思维的训练

第5篇

1、掌握数学语言是学习数学知识的基矗一方面,数学语言既是数学知识的重要组成部分,又是数学知识的载体。各种定义、定理、公式、法则和性质等无不是通过数学语言来表述的。离开了数学语言,数学知识就成了“水中月,镜中花”。另一方面,数学知识是数学语言的内涵,学生对数学知识的理解、掌握,实质是对数学语言的理解、掌握。一个对数学语言不能理解的人是绝对谈不上对数学知识有什么理解的。因此,从一定意义上讲。掌握数学语言是学习数学知识的基础,数学语言教学是数学教学的关键。

2、掌握数学语言,有助于发展逻辑思维能力。

逻辑思维是思维的高级形式。在各种能力中,逻辑思维能力处于核心地位。

因此,培养学生的逻辑思维能力是数学教学的中心任务。语言是思维的物质外壳,什么样的思维依赖于什么样的语言。具体形象语言有助于具体形象思维的形成;严谨缜密、具有高度逻辑性的数学语言则是发展逻辑思维的“培养液”。

3、掌握数学语言是解决数学问题的前提。

培养学生运用所学知识解决数学问题的能力,是数学教学的最终目的。“对一个问题能清楚地说一遍,等于解决了问题的一半。”解决问题的过程是一个严密的推理和论证的过程,正确地理解题意,画出符合要求的图形。寻找已知条件,分析条件与结论之间的关系,有关知识的映象,解题判断的形成,直至解答过程的表述等,处处离不开数学语言。

4、掌握数学语言,有利于思维品质的形成。

数学语言的特点决定了数学语言对思维品质的形成有重要作用。严谨、准确是培养思维的逻辑性、周密性与批判性的“良方”;清晰、精练对培养思维的独立性与深刻性有特效。

5、掌握数学语言,能激起学习数学的兴趣。

第6篇

一、要确立素质教育的观念

数学教学要提高学生的数学素质。要使学生有清晰的数学观念,有全面的、牢固的,结成网络的数学知识,有运用数学知识解决实际问题的能力。教学必须面对全体学生,必须严格按规定授完全部教材内容(不管是否考这些内容)。而且教学时概念必须交待准确,数理必须交待清楚,做到每个判断都有依据,每个推理都有道理。要在此基础上谈算法。

例如,不能说“一块厚纸板是一个长方形”,应该说这块厚纸板的正面是一个长方形。学到长方体之后还应该说这块厚纸板是一个长方体,它的正面,反面都是长方形,还有4个长方形的面仔细看才看得到。教学“3.5米等于多少厘米”要使学生知道:1米是100厘米,3.5米是3.5个100厘米,即100×3.5厘米。按乘法的意义,列式时进率100要写在乘号的前面。教应用题就要教学生分析数量关系,制定解答方案,然后计算结果。要让学生独立思考,独立解答。

教学要紧紧依据教材,注意不要增加名词述语及提出不科学的提法如说“最小的数是0”、“被减数一定大于减数”等。要依据运算意义确定算法,不要提死办法,如“飞走是减”、“一共是加”、“照这样计算就是要求单一量”……。

二、要指导学生进行初步的逻辑思维

小学生的思维方式正处在从具体形象思维向抽象逻辑思维的过渡阶段。他们的思维一般要借助实物、图形或者头脑中的表象来进行。应当肯定,形象思维是一种很好的思维方法,可以终生受用。但是,仅有具体形象思维是不够的,还必须掌握抽象逻辑思维的方法,以提高思维能力。教学中可以渗透一些抽象逻辑思维的因素。

如教一位数加法,就不必每题都摆弄教具,可指导学生进行算理的推敲(其实很多教师都做了)。例如教8+7,可以指导学生这样算,8只需补上2就得10,从7里面拿出2与8相加之后余下5,所以8+7

(附图{图})

象地演示教具:①摆8和7;②将8放入铁筒;③问还要放几个就够10个;④把7分成2和5,把2放入铁筒;⑤问筒里有几个,筒外有几;⑥确定8+7=15。

又如解答两次归一问题“4匹马5天饲料100千克。照这样计算,6匹马7天饲料多少千克?”如果画图表示题意寻求解题方法就很难,而且画出的图太繁反而失直观作用。可以引导学生冷静而深入地思考:要求“6匹马7天吃多少千克”需要知道“1匹马1天吃多少千克”。从“4匹马5天吃100千克”可以求出“1匹马1天吃多少千克”。题目说明“照这样计算”表明这个标准不改变,可以用来求“6匹马7天吃多少千克”。思考到这里可以肯定分两大步解答:①求4匹马1天吃多少,再求1匹马1天吃多少;②求1匹马7天吃多少,再求6匹马7天吃多少。本题的解法是:100÷5÷4×7×6=210(千克)或者100÷4÷5×6×7=210……

再如解盈亏问题(作为提高题来研究)“一组小朋友分一篮李果。每人3个余下4个,每人5个不足8个。这组小朋友有多少人?这篮李果有多少个?”可以这样想:从每人多分一些李果造成总需求量增加,由此可以算出人数,进而求出李果数。具体来说,由于每人多分5-3=2(个),结果由余4个变成不足8个,需要李果的总数就多了4+8=12(个),这12个是每人多分2个造成的,可知人数是12÷2=6(人);李果数是3×6+4=22(个),验算:5×6-8=22(个)。

三、适当作一些论证

小学数学教学只要求教师通过实验得出结果就可以作出结论,至于结论成立与否并不作论证。久而久之,学生就会认为实验就是证明,这种观念对学习数学非常不利。教师可以在适宜的问题抓住时机作一些论证,使学生确信所得结论的必然性,更重要的是使学生知道数学的严密性。

例如,教学时可以使用不完全归纳法。如15×20=300,20×15=300,所以15×20=20×15;18×125=2250,125×18=2250,所以18×125=125×18,……经过多次实验都得到交换因数位置积不变的结果,从而归纳出乘法交换律,切忌一例立论。

有些地方可以作相当正式的证明。如找图中相

(附图{图})

∠2=∠4,还可以测量证实。但是,只经过实验就作结论不够严谨,可以作如下证明:∠1+∠2=180°,∠3+∠2=180°,∠1=180°-∠2,∠3=180°-∠2,所以∠1=∠3。简单的证明可使学生领略数学的严密性。

四、适时培养初步的空间想象力

数学教学要培养学生初步的空间观念,使学生对物体的形状、大小、位置、方向、距离等有明确的认识,对学过的形体以及接触过的物体、场地、河山等能够在头脑中形成表象。教师要引导学生借助表象进行思考,并以此为起点培养学生初步的空间想象力。

如解答篮球场铺混凝土多少立方米的应用问题,应引导学生想象出这些混凝土铺在球场上将形成一个长方体,混凝土的厚度就是这个长方体的高。又如解答长方体形状的粪池四壁和池底涂抹水泥问题,应引导学生想象出这个池无盖,涂抹面只有5个。

解答复合应用题也应帮助学生想象出应用题的情境以至数量关系。如解答相遇问题应帮助学生想象出:一条路的两头各有一辆车,它们同时相向行驶,越来越靠近,单位时间靠近一段路程,全路程包括多少个这段路程就在多少个单位时间后相遇。

五、教好简易方程和几何初步知识

教好小学教材中的简易方程,不要人为拔高,不要引进中学的定理、方法。例如,列方程解应用题不急于计算结果,首先把各数的位置摆好,然后找出数量之间的相等关系,根据数量关系建立方程,用等式表达未知数和已知数之间的关系,然后解方程求答数。列方程解应用题能解答复杂疑难的问题,是中学的主要解题方法,小学应该认真做好孕伏。

小学要教好几何初步知识,为中学作准备。教学中应认真进行操作性练习。如①过直线外的一点作直线的垂线和斜线,量该点到直线之间的各条线段,找出其中最短的。②过角内的一点作两边的垂线和平行线,看哪种画法得到平行四边形。③过线段两端各作一条垂线;过线段的一端作一个直角,另一端同侧作一个45°的角;过线段的一端作30°的角,另一端同侧作60°的角;过线段两端同侧各作一个75°的角;过线段两端同侧分别作30°和45°的角,看哪种作法得到三角形,得到怎样的三角形。

六、认真渗透现代数学思想

教材里隐含有函数、对应、集合等内容,教学时应挖掘出来进行渗透,但不给概念,不出名词。

函数的例子随处可见。如“桃树棵数比李树的2倍多5棵”,用关系式表示是:

桃树棵数=李树棵数×2+5其中“李树棵数”是自变量,“桃树棵数”是自变量的函数。“李树棵数”变化,“桃树棵数”也随之变化。

对应思想在小学数学教材里随处可见,把求相差转化为求剩余就是其中一例。如:有红花6朵,黄花

(附图{图})

通过一一对应发现红花里有4朵和黄花一样多,另外还剩下2朵,即红花比黄花多2朵。

集合在数的整除里有过广泛的运用,有些思考题也应用集合来解答。

现代数学思想融汇在教材之中,要注意挖掘,进行渗透,使学生及早接触并初步领略它。

七、加强思维品质的培养

在数学教学中,应有意识地培养学生良好的思维品质。

思维要有方向,有根据,不能胡思乱想。如用分析法分析数量关系,寻找解题方案,是从问题出发进行分析推理,形成解题思路,方向很明确。研究其他问题也可以这样进行。

思维应有灵活性。要提倡学生从多角度去考虑同一问题,用多种方法去解决,不应强求统一,但要注意鼓励学生采用最佳的方法。

有思维的灵活性才会有思维的创造性。思维灵活的学生能找出老师未讲过的、一般人想不到、有时似乎异想的解决问题的方法。如表达“盐的重量占海水的3%”,可能想出多种方法:

①盐的重量=海水重量×3%

②盐的重量=海水重量÷100×3

盐的重量

③────=3%

海水重量

(附图{图})

思维的创造性还有赖于思维的深刻性。能运用所学知识深入钻研才能解决较难的问题。如要发现图中阴影的两个部分面积相等,就要深入钻研。通过钻研就能发现图中有两个同底等高的三角形,它们各自减去同一个三角形,得出的两个差相等。

思维的敏捷性反映思维的效率,提高思维的敏捷性需要讲究思维方法,还要加强训练。

总之,良好的思维品质不能给予,但可以培养,要给学生锻炼的机会,并坚持不懈。

八、加强学习品质的培养

学生良好的学习品质要教师去培养,教师要让学生对学习有兴趣和爱好,有责任心和主动性,有钻研精神和毅力,有合理的学习方法和良好的学习习惯。这里有几点认识:

1.仅靠兴趣支持学习还不行。要教育学生产生理想和期望,让他们用理想来支持学习,这样,责任心和钻研精神才能保持长久。

第7篇

一、运用谜语、故事组织教学

小学生,特别是低年级儿童,乐于猜谜语,听故事,教学中如能紧密结合教材,运用谜语故事的形式组织教学,对于激发学生学习兴趣,能起到良好的作用。例如,教师在讲第四册“小时、分、秒、的认识”时,首先让学生猜这样一个谜语:“会走没有腿,会说没有嘴,却能告诉我们,什么时候起床,什么时候睡。”然后又根据书本四幅插图,编出一个小朋友是如何爱惜时间、养成良好的生活学习习惯的故事。这样很自然地使学生认识了钟表,小时、分、秒,同时又及时地向学生进行了珍惜时间的思想教育,学生学习情绪也自然高涨。

二、发挥图示、教具作用,重视直观教学

小学生的思维特点是以形象思维为主要形式,对于具体形象的实物比较感兴趣。因为具体形象的东西直观、生动、给人印象深刻。所以,现行通用教材结合教学内容,设计有大量的直观图,通过具体形象的实物来说明概念、性质、法则、公式等数学知识。这样做不仅使学生比较容易理解和接受,逐步培养他们的抽象概括能力,而且能激起他们学习的兴趣。例如,教师在讲“同样多”的概念时,先将两队小朋友进行拔河比赛的情景图展现在学生面前,然后引导学生观察图画,从画面的观察分析中建立起“同样多”的概念。由于学生喜欢拔河比赛之类的游戏竞赛活动,所以学习就感兴趣。在讲比多(少)应用题时,事先用白、黑纸版各剪兔子纸型12个和7个。教学中运用教学绒板,进行贴示,从贴示中说明“白兔比黑兔多、“黑兔比白兔少”、“白兔比黑兔多多少”、“黑兔比白兔少多少”等概念,之后又要学生依据“同样多”“多多少”“少多少”来说明图示或自己动手摆图形,这样,学生学习积极性很高,不仅较好地理解和掌握了这一类应用题的有关概念和解法,而且提高了学习应用题的兴趣和爱好。

三、通过实践操作,调动学习积极性

教学单凭老师讲,学生只通过一种感官来进行学习,就容易感到疲劳、厌倦,听不进、记不住,效果就差。而通过多种感官,发挥学生好动的特点和长处,让他们亲自动手做一做、画一画、比一比、量一量、拼一拼、剪一剪、学生积极性就高,教学效果就好,特别是几何初步知识的教学,这样作更能收到良好的效果。

例如,在讲长方形和正方形的面积时,教师为了让学生区分面积和周长,可以要学生先剪一个长方形和正方形,然后让学生说一说它们的面积和周长各指的是什么。为得出长方形、正方形的面积计算公式,先让学生用纸剪一个边长是1厘米的正方形,用它量一量长方形、正方形图形的面积有多大,量一量数学书的书面有多大。由于学生亲自动手操作,参加实践,所以,学习兴趣很浓,对长方形、正方形的面积计算公式就理解深刻,记忆牢固。

四、进行尝试练习,满足好奇心

小学生的好奇心、好胜心是很强的。教师就要根据儿童的这一特点,采取尝试性练习的方法,激发学生学习兴趣,激起学生的求知欲望。例如,在讲第九册“分数化成小数”时,先让学生用除法把4/3、7/25、1/3、7/22化成小数,然后教师指出问题,什么样的最简分数能够化成有限小数,什么样的最简分数不能化成有限小数?我们能不能进行除法计算,从中找出规律来呢?由于学生通过练习,急于寻找规律,学习积极性就高涨,兴趣就大增,教师可就势引导学生观察分数化成小数的几道算式,进行分析比较,从而得出分数化成有限小数的规律。

五、巧妙设问,激发学习兴趣

教学是艺术性的劳动,教师形象生动的语言、恰当的姿势和手势、巧妙地设计各种启发式的问题,对于激发学生学习兴趣都起着重要的作用。因此,在教学中教师应十分注意自己的数学语言,无论在复习旧知导入新知时,还是进行新课时,或是巩固新知时,都应注意巧妙地设计一些思考性较强的问题,激发学生学习兴趣使学生产生强烈的学习欲望。例如,在讲乘法的初步认识时,教师可先让学生进行求相同加数的和的加法计算,或师生进行计算比赛,从而提出教师为什么一下子能算出结果?或提出这样连加多麻烦,还有没有比较简便的计算方法?求几个相同加数的和,用什么方法计算要简便?当学生认识到用乘法计算简便后,老师又提出2×3读作什么?它表示什么?3×4读作什么?表示什么,乘号前面的数是什么数?乘号后面的数是什么数?结果叫什么?通过层层设问,就能有助于学生学习兴趣的持续发展。

第8篇

一、引“趣”激“情”乐中求知

兴趣是学习的动力,引起学生的学习兴趣是愉快教学的重要手段。在教学中,教师要善于运用多种形式的教学方法引发学生的兴趣,诱发学生的积极思维活动。

1.抓住学生的好奇心选择教法,通过认真钻研教材,深入挖掘知识的内在规律和相互联系,把数学特有的严谨、抽象、简洁、概括等属性以巧妙的形式展现在学生面前,以引发学生的求知欲望。例如,教授“时、分的认识”时,教师可让学生猜谜:“小小圆形运动场,三个选手比赛忙,跑的路程有长短,最后时间一个样。”生动形象且富有感染力的语言,形象地揭示了钟面的特点和时、分、秒间的关系,从而激发了儿童学习新知识的兴趣。

2.利用学生好动、好胜的心理特点,组织一些数学游戏、竞赛抢答活动等,让学生在轻松愉快的气氛中学习。在讲“时、分的认识”,让学生在限定的一分钟内比赛做练习、写字、背诗词,在活跃的氛围中,学生们既体验了一分钟时间的长短,又感受到了时间的珍贵。

3.利用教具和常见的实物进行直观教学,引导学生眼、口、手、脑并用,低年级中已经开始推广使用小学数学磁性教具和学具进行教学,这种教学形式图文并茂,优化了小学数学课堂教学,激发了学生学习的乐趣,培养了学生的观察能力和思维能力,因而能够收到良好的教学效果。

二、启发诱导知中有乐

真正的快乐莫过于希望的实现和努力的成功。在课堂教学过程中,教师应充分发挥主导作用,点重点、拨难点、启疑点,不仅要教给学生知识,而且要让学生参与获取知识的全过程,充分发挥学生的主体作用;不仅要让学生体验学习过程中艰辛劳苦的一面,而且要让学生感受到学习成功的喜悦和欢乐,把握好思维训练这一主线。因此,教师要运用自己的智慧、能力和经验,创造条件,创设情境,调动学生的情感,启发学生的思维,引导和鼓励学生用自己的手和脑,通过自己的努力,运用已有的知识去不断地探索、寻求新的知识。

三、善“思”勤“想”乐在其中

第9篇

小学生的创造才能是广义的“自我实践的创造力”,即是在展示学生自我潜在能力时的创造力,对学生自己来说就好似初次全新活动实践,具有创造性,它包括创造意向、创造思维品质和创造技能。对于小学生来讲,培养其“自我实践的创造力”,必须是基础牢固,同时学习创造。基础是创造的前提,离开了基础,创造就成为无源之水、无本之木。

学校教育以课堂教学为主。从现代教学论的观点看,教学过程既是学生在教师指导下的认知过程,也是学生的发展过程。同样,课堂教学过程也是培养学生创造力的过程。随着创造教育的开展,最终要集中探索教师如何通过课堂教学,着力培养学生的创造意识、创造意志、创造思维能力和素质;激发学生的创造动机和创造激情;挖掘教材本身所蕴含的创造性因素;指导学生创造性学习,渗透创造教育思想;教给学生创造的方法;研究教学过程,构建创造教育的课堂教学模式,等等。数学是一门具有高智力价值的学科,是培养思维能力的基础课,数学教学活动中蕴含着无穷的创造因素。对正处于智力开发最佳期的小学生来说,如何利用数学教学优势实施创造教育和开发学生的创造力呢?

一、唤起创造意识,激发创造激情,培养创造意志

创造性思维过程大体可分为4个阶段,即:准备阶段、酝酿阶段、顿悟阶段、检验阶段。关键在顿悟阶段。产生顿悟要有必要的心理环境,如对数学知识有主动获取的追求,对数学学科有浓厚的兴趣,对数学问题有锲而不舍的钻研精神等。

1.运用学科特点,唤起创造意识

学生的创造意识是在对数学特点、内容发生兴趣时而引发的。因此,教师备课时要挖掘教材的创造思维因素,唤起学生的创造意识。如:一位教师在讲能被3整除的数的特征时,让学生随意报一个两位数(例如12),一个3位数(例如123),要求都能被3整除。这一时难住了学生,而老师随口说出了一连串能被3整除的3位数。学生感到神奇和惊讶,由此产生了强烈的求知欲望和主动探索的兴趣。又如在学习平行四边形面积时,一般都是采用将平行四边形割补转化为长方形而得出“底×高等于平行四边形面积”的教法,这位老师抓住学生“平行四边形面积在什么情况下和长方形面积不等”的疑问,提出问题:“用4根木条钉成一个平行四边形,把它拉成一个长方形,这时长方形与原平行四边形相比,面积相等吗?”这一问题的提出,引发出学生的不同答案:相等、增大了、减小了。争论十分激烈,进而引发学生主动探求,最终得出结论:当平行四边形与长方形底边即长相等时,拉动平行四边形成为长方形,其高变化了,面积相应增大了。这样一个具有学科特点的问题,引发和培养了学生用动态的观点研究平行四边形与长方形面积之间关系的主动探索欲望和求知精神。

2.利用学生的好奇心、好胜心,激发学生的创造激情

好奇心是对新、特、奇事物进行探究的一种心理倾向。学生对感知到的新信息会提出各种各样的问题,进而产生深入观察、思考的急切心理。教师要利用这种心理,激发学生的创造激情。如在学习三角形分类时,教师出示一个遮住了两个角的三角形,让学生猜一猜它是不是锐角三角形。学生直观得到的信息是一个锐角,但是区分锐角三角形是不能仅凭这一直观信息所能解决的。这个问题促使学生积极思考,几种不同的答案使问题越辨越明,终于明白了只暴露一个锐角的三角形,不能肯定它就是锐角三角形,它可能是锐角三角形,也可能是直角三角形或钝角三角形。

数学知识中的概念既平淡又枯燥,在教学中如何培养学生的创造意识和创造意志呢?课堂教学兴趣有赖于教师创设情境激发诱导。有一位教师在教分数的意义建立整体“1”的概念时,由于这是个重要的基本概念,但又很枯燥,学生不易理解,便一改过去用线段图的教法,而是创设学生喜闻乐见的拟人手法,把3个梨、一堆小黄瓜、一个红苹果、几支铅笔给予命名,在讨论中,将枯燥的分数意义中的重要概念整体“1”可表示一个计量单位、一个东西,也可表示一个整体的容易混淆之处讲得明明白白。又如在低年级进行10以内数的认识、加减法及百以内数加减法教学中,创设了手脑并用的手势表示法:用手势表示0——99所有的数,也可以表示计算的结果。由于一年级的计算不借助计算工具,不表述计算方法,而是直接通过计算得数,因而更需要集中注意力积极思维。教师在讲清算理的基础上,通过对学生的手势训练,协调眼、手、脑、口并用,做到眼观题目,心想方法,手演程序,口说思路,准中求快,使计算速度达到一定要求,从而促进其思维发展。此外,教师还创设了用手势表示选择题序号、判断题正误及数之间大小关系的3种符号,再辅以猜谜游戏、脑筋急转弯等,激发学生的学习兴趣,使他们在有趣的活动中获得新知。

二、挖掘教材本身蕴含的创造性因素,培养创造性思维品质

1.深入领会大纲的教学目的,挖掘教材蕴含的创造性因素

根据大纲要求,在确保学生掌握基础知识和基本技能的前提下,必须着力挖掘教材中的创造性因素。如计算数学中的简算、速算方法:对于几个数相加,其间有互为补数的,可以先加;连续数的加法,可以归纳为首项加末项乘以项数的一半;乘以5或25的可以用“五一倍作二”计算等等。创造力的开发可以培养学生思维的敏捷性。教材中应用题教学,可利用一题多解、一题多编来培养学生的独创性;通过几何初步知识教学培养学生的空间观念和空间想象力等。

2.注重课堂教学对学生创造思维品质的培养

数学课要紧紧抓住创造思维品质的3个特点——思维的流畅性、变通性和独创性,着力培养以下思维品质:

(1)发散和聚合思维

创造性思维是发散思维与聚合思维的统一,发散思维是聚合思维的基础,聚合思维是发散思维的起点,二者相互联系,相辅相成。发散思维即求异思维或扩张思维,是从所给的信息中产生信息,重点是在同一的来源中产生各式各样为数众多的输出。发散思维包括思维的流畅性、变通性、独特性、创造性,核心是创造性。在教学过程中,创设情境让学生多角度思考问题,培养思维发散性,既有利于掌握知识,又有利于培养创造能力。

如:“1=?”经过发散思维,可获得不同答案:

1+0=1(用加法运算)

100-99=1(用减法运算)

1×1=1(用乘法运算)

21÷21=1(用除法运算)

3/4+1/4=1(想到了整体1)

1[2]=1(想到平方)

运算中的发散思维需要以大量丰富的知识作基础。唯有如此,才能从不同角度和不同联系上去考虑问题,发散越广,思维越灵活。例如,在教“乘法分配律”时,教师通过“在一组算式中为等式找朋友”来设计发散思维训练:

①(5+3)×4⑤9×(2+3)

②9×2+9×3⑥3×6+6×7

③5×4+3×4⑦(3+7)×6

④3×7+6×4

学生可以找到3组等式作为手拉手的朋友。此时教师提出问题,哪位同学能给这个没有朋友的第四个算式找个朋友?此时,学生的思维异常活跃,运用“定势打破法”、“逆向思维法”改题,创造条件使3×7+6×4这个算式符合乘法分配律。学生们争先恐后地说出了好几种改法,最大限度地调动了学生的学习积极性,收到了异乎寻常的效果。

(2)培养学生的形象思维

形象思维具有直观性、整体性、灵活性和富有情绪色彩等特点,可以起到线索诱导和启发灵感的作用。小学生学习过程中的思维特点正处于由形象思维向抽象思维过渡的阶段,在开发右脑功能中,尤其要重视形象思维的培养。

要教好数学课,引导学生学好数学知识,需要从数学本身具有抽象性、具体形象性和逻辑性出发,使学生的形象思维和抽象思维得到协调发展:以形思数,帮助记忆;数形对照,加深理解;数形联系,以利解题;数形结合,展现数学美。具体做到:

①增加信息量,注重培养空间想象力。空间想象力是培养创造能力的基础。教师在指导学生学习几何课之前,把小学阶段曾经遇到过的图形汇集起来,引导学生再认图形,分别认识各类图形的特征和外部关系,提高对图形特征的感受,使学生的图形信息深深储存在右脑的潜意识里。然后扩大图形感受面,通过收集小学课本以外生活中常见的各种图形,还可引进立体图像,让学生亲自体验,充分发挥其右脑空间认识的潜能。

②因材施教,注意激发学习兴趣。有的学生因对概念不清楚或对特殊图形不认识而缺乏学习兴趣,教师可以借助趣味图形数学题,结合相关内容,选择适合的题目,指导学生严格对照概念观察、识别、学习,从而激发学习数学、识别图形的兴趣。

③开发右脑功能,着力培养形象思维。以“动”态方式设置教学情境,或者数形结合,或者自制活动教具,这种教学的中心就是以具体形象为支柱,调动学生右脑潜意识的能动性。

概念教学的关键是学生对事物非本质属性与本质属性的辨别,它决定着能否迅速而准确地掌握概念。教师采取直观教学方法,能够活化右脑功能,但也要注意图形的显示必须采取“变式教学”。一位教师讲等腰三角形时,出示各种各样的等腰三角形把图形中包含的本质属性(两条边相等……)和非本质特征(位置、大小、方位)同时摆出来,突出本质特征,便于学生从图形的集合中分辨和加深对本质属性的认识。而有一位教师讲梯形概念时,只出示标准图形(下底边线长),没有应用变式教学,结果学生的右脑在感知图形时出现错觉,当其做作业遇到倒向的梯形(下底边线短)时,误认为不是梯形,把“方位”这个非本质特征理解为本质特征,导致概念的错误。在开发右脑的教学中,教师注重数形结合,应用图形教学时切记要“变式”。

④动手操作,促其形象思维向抽象思维过渡,培养学生的创造力。教学中自制和指导学生制作教具或学具,按教学要求进行切、拉、摆、画、叠等操作训练,是经常使用的教学手段。在三年级第五册教学分数初步知识“几分之一”时,教师在讲1/2、1/3之后,让学生用纸折出1/4,并用阴影表示。学生用同样大小的正方形纸折出了很多不同形状的1/4,并且能说出为什么形状不同。如图所示:

(附图{图})

无疑,是形象思维支持了学生对抽象概念的思考、理解,加深了对1/4的意义的理解。又如:在讲新教材时,提前教学生在家动手制作模型,选用的原材料大多是废旧药盒、木棒、牙签、橡皮泥和饮料吸管等。如在讲长方体前,布置学生用家里的土豆制作成一个长方体,这体现了创造教学的3个要素。一般地说,学生制作出长方体的模型要经历三步:一是要知觉长方体的整体形象;二是要观察长方体边和角的特征;三是要将圆土豆切割后,模拟成同长方体边和角相类似的形象。这一活动主要是依靠右脑功能实现的,因此教师教学生超前动手操作的过程也是充分活化右脑的过程。需要指出,完成创造教学过程,还离不开学生良好个性品质的参与。要求学生付出艰辛的劳动,必须伴随其有对解决问题的浓厚兴趣和顽强的意志力。

(3)直觉思维是创造力的起点,是创造思维的源泉

直觉思维具有快速、直接、跳跃(不是按逻辑思维一步步推理而来)的特点,这是右脑功能的体现。在教学中,小学生经常有意无意地运用直觉思维解决问题,这要给予鼓励,对于结果要予以验证。

在引导学生研究综合性较强的题目时,可以鼓励中国学习联盟胆猜想、估计、假设,因为新颖、独创的思路往往产生于猜想、估计、假设之中。

(4)鼓励学生发表独立见解,改变传统教学方法,发扬教学民主

在教学中要发扬民主的教学作风,鼓励学生积极思考问题,大胆发表意见,充分体现教学的主体性原则,有利于发展学生的个性。在讨论问题时,要创设情境而不要设置框框,不能以教师的表情、语气去干扰、压制学生的思维;对学生中的一些错误意见不要指责、嘲笑;对有争论的问题,要留给学生思考的余地;对于认真思考又有独立见解的学生要给予鼓励,这正是培养学生创造能力的好时机。如一位教师在活动课上提出这样一道题:

1×2×3×4+1=25=5[2]

2×3×4×5+1=121=11[2]

3×4×5×6+1=361=19[2]

4×5×6×7+1=841=29[2]

并提出这个结果的一般特性:4个连续自然数的乘积加1,所得的和是一个完全平方数。

这时,一个学生想到“4个连续自然数乘积加1的和的完全平方数有没有规律呢?”他仔细观察发现:11-5=6,19-11=8,29-19=10,它们之差正好是6、8、10,都相差2,那么5×6×7×8+1是否等于(29+12)[2]呢?计算结果证实了这一猜想,他高兴极了。接着他又想,从这个规律还可以找到其它规律吗?经过反复思考、计算,发现两个连续自然数的积减1也可得5、11、19……,如1×2-1=1,2×3-1=5,3×4-1=11,4×5-1=19……,进而又发现这样的规律:1×3+2=5,2×4+3=11,3×5+4=19……

相关文章
相关期刊