欢迎来到易发表网!

关于我们 期刊咨询 科普杂志

软土地基论文优选九篇

时间:2023-03-23 15:19:00

引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇软土地基论文范例。如需获取更多原创内容,可随时联系我们的客服老师。

软土地基论文

第1篇

在水利工程软土地基施工中,对于软土地基的施工量是必须要进行考虑的一点,只有了解清楚施工量的多少,才能合理的安排出相应的方案,最终保证好软土地基施工的效率。比如,在较大型的水利施工中,就不会使用替换法来进行软土地基的解决,因为,使用替换法来解决就需要大量的人力、财力,这样将造成水利工程的造价大幅度上升,所以,在水利工程施工中,对施工量的控制是尤为重要的。

2.在软土施工中对环境因素的把握

环境对水利工程的软土地基施工也同样有着不小的影响。同样的工程在不同的环境中,施工的标准也是肯定不一样的,根据施工环境,选取不同的软土地基处理方法,进行合理的施工,只有这样才能有效的保证水利工程软土地基的处理质量。若是不考虑环境因素对施工的影响,在不同的环境中仍然采取同一种软土地基处理方法,将造成水利工程施工的造价变得更高,施工质量难以得到保证,严重影响软土地基施工的正常进行。

3.水利工程施工中软土地基的解决方法

3.1砂垫层排水解决法

砂垫层排水解决法是解决软土地基最为重要的方法。砂垫层排水法主要是利用淤泥质粉土、淤泥质粘性土、泥炭等土质进行排除废水,让土质的压缩性减慢,强度增大。在处理中时常是在软土地基的底端先铺上一层渗透性良好的砂垫,使其在水利工程施工中产生的水分能够及时的通过砂垫渗透出去,这样将有效的增强软土地基的结固。如果下方地下水太多,就必须在砂垫上设立隔水性能较强的粘土层。而砂垫层主要是确保透水,所以,多数使用鹅卵石、粗砂等有着高缝隙的透水材料。在铺垫中,主要注意将砂垫层材料均匀搅拌,再用以铺垫,并且及时的最好引水槽,将渗透的水分快速的引流出去。

3.2替换解决法

在软土地基的解决方法中替换法是最为常用的方法,替换法就是使用达到水利施工要求的土质来替换掉软土。首先应用大型挖土设备将软土地基中的软土全部挖出,再根据相对应的要求加入达到标准的水利工程地基要求的土质,并且对填充的地基进行加固。在一般情况下,都是选择粗砂、碎石等坚硬度较大的材料来进行软土地基土质的替换,而为了确保替换土质地基的稳定性,都会选择多层填充。第一层主要是为了增加地基的透水性,多选择碎石、矿渣来填充,让地基拥有较高的透水性,也保证地基质量;第二层对垫层在平衡桩体与桩间土的荷载情况有着非常重要的作用,它保护着地基的平衡,较多采用石灰和素土来填充;第三层是使用砂和砂垫的填充,让淤泥土质中的气体与水得到充分的排放,从而增强土质强度,让软土地基的承受力更高。

3.3旋喷解决法

旋喷解决法在水利工程施工中同样是最基本的软土地基处理法。旋喷法通常都是把喷头直接放入软土地基的最底部,在使用合适的提升速度进行,在其高速旋喷过程增加浓度相当的加固物,最终形成一个旋喷桩,从而使软土地基的切向硬度得到很大程度的提高,对预防软土地基的横向扭动起到了不可忽视,也从面上对软土地基的强度进行了加强。

3.4固结解决法

在水利工程施工中一般的解决方法都无法有效进行时,并可以采用固结法来对软土地基改善。使用相应的化学材料对软土地基实现改造、填充,让软土地基的强度增加、压缩性减慢、承受能力加大,这样让软土地基达到水利工程的建筑要求。在固结法中最常用的多为灌浆、硅化加固、人工合成材料加筋加固等方法。运用电化学原理、气压来对软土基地进行灌浆、填充就是灌浆法。灌浆材料多为石灰石等化学材料,对软土地基中的淤泥质的土地有着很好的加固作用,让软土地基可以承受更大的压力。而硅化加固则是针对氯化钙和硅酸钠的化学反应,对软土地基的土地进行黏合,让软土的硬度增大,进而达到水利工程的建筑要求。人工合成材料加筋加固方法,就是把韧性好、强度高的人工合成材料添加到软土地基中。利用高压使软土与人工合成材料结合起来,增强软土质的韧性和强度,从而形成对软土地基的变形得到保障[3]。另外,人工合成材料还可以有效的减慢和阻止软土地基的沉降与断裂,让软土地基更加的稳固。

4.结语

第2篇

公路分布范围广泛,为带状结构体、承受着动静两种荷载作用,其使用性能以及安全性能与社会生产生活密切关联,对地基有较高的要求。公路由于线性等技术要求,不可避免地要经过软土地质地区,对软基处理不当,路基容易产生剪切变形,引起沉降过大,导致路堤失稳,路面开裂;桥台与路基沉降不同步,产生错台引起桥头跳车;路的中心沉降过大,引发涵管弯曲、路基路面横坡变小等问题。因此,从高标准、高质量的使用要求出发,合理、可行地处理好软土地基,已成为公路建设必不可少的一个环节。

2软土地基处治方法

软土地基的处理方法较多,从不同角度出发,可以有不同的归纳和分类,本文从加固机理、施工工艺、所用材料方面将目前公路工程中常采用的一些软土地基处理方法分类如下。

2.1置换法

该法也称做换填法,首先挖除基础下部一定范围内的软弱土层,然后分层换填强度和模量相对较高的灰土、碎石、砂等材料,并充分压实至设计要求的密度,最终形成一个较好的持力结构层,从而达到提高承载力和减少路基变形的目的。换填法处理处理深度通常控制在3m以内,但也不应小于0.5m,因为垫层太薄,则换土垫层的作用也不显著。

2.2排水固结法

排水固结法又称预压法,是对原始地基,或者在地基中设置有袋装砂井或塑料排水带等排水体,后利用建筑物本身重量或其他竖向荷载作用加压,排出土体孔隙水,逐渐固结,地基发生沉降,强度逐步提高的方法。对于排水固结法,土体的密度与预压荷载的大小以及时间紧密相关。若不考虑预压周期,土体密度只决定于预压荷载的大小。

2.2.1真空预压法

该方法是以大气压力做为预压荷载,在拟处理场地表面铺设厚度均匀的砂垫层,上覆一层不透气的密封薄膜,通过真空抽气装置,在密封膜内产生一定真空度,在内外压力差作用下,土体产生负的空隙水压力,从而达到土体固结。

2.2.2堆载预压方法

堆载预压是使用砂石、素土或者其它重物为荷载,对地基加载,排出土体孔隙水,达到土体固结的目的。加固后的地基承载力取决于上部堆积荷载的大小。真空预压与堆载预压的加固原理不同,前者通常将荷载一次加到最大值,而土体却不产生增量剪应力,故不需考虑地基产生剪切破坏。后者必须考虑加载时增量剪应力对土体的影响,控制加载速率,采用分级加载。

2.2.3深层密实法

深层密实是指采用爆破、夯击、挤压和振动等方法,对松软地基土进行振密和挤密。(1)强夯法。强夯法顾名可理解为动力压实法或者动力固结法,通常以几十吨的重锤,从6—40m落距的高处自由落下,将土体夯击密实。该法适用于处理砂土、低饱和度粉土、碎石土、杂填土、湿陷性黄土等土质地基,能够改善砂土抗振动液化的能力、提高地基的强度、降低土体压缩性、消除土的湿陷性。(2)复合地基法。复合地基法是在天然地基中设置一定数量的桩体(增强结构体),桩和土体共同承担荷载,并使地基具有置换法和密实法后形成的效应。通常复合地基的面积置换率一般为3%—25%,其中碎石桩的面积置换率可以达到40%。公路工程中常采用的状体有碎石桩、石灰桩、土桩、水泥搅拌桩、其他刚性桩(PHC管桩、CFG桩、PCC管桩、素混凝土桩等)等。高速公路工程中,深度20m以内的软土处理,水泥土搅拌桩复合地基得到了大量应用;深度超过20m的深厚软土地基处理多采用刚性桩进行处理。

2.2.4加筋法

加筋法常见主要有两种:一是土工织物法,二是加筋土法。其中土工织物法已经成功应用于我国的公路工程中,并已广泛用于软基处理、边坡稳定、结构支护、道路翻浆防治、路基路面综合排水及沥青路面裂缝处理等诸多方面,成功地解决了大量的工程实际问题。

2.2.5胶结法

胶结法是将水泥、水泥砂浆、石灰或其他具有充填性、胶结性特点的材料,渗入或者注入到各种介质之间的裂缝和孔隙之中,形成加固体,提高地基的强度与抗渗性。胶结法主要包括注浆法、高压喷射注浆法、水泥土搅拌法。

2.2.6其他方法

软土地基处理还可使用抛石挤淤法、反压护道法、冻结法、烧结法等方法。

3公路软土地基处理方法选用

不同软土地基处理方法均有各自的适用范围与条件,公路工程中,应根据公路等级、技术要求、建设周期、经济分析综合考虑来选择合理的处理方案。根据工程经验,总结了如下不同软基处理方法的适用范围。

4结语

第3篇

1.1排水砂垫层

排水砂垫层主要是在地基的地表铺一层砂石,这样做可以将土层中的水分进行很好的控制,不会使水量发生重大变化,保证土层的良好排水,影响土质结构,同时铺设一层砂石可以增加软土层的承载力。在铺设砂石层时,砂石层的厚度以0.6~1.0m为宜,在进行软土地基的排水改造的同时还要进行地基两侧的排水系统的修建,保证良好的外部排水中间,在软土地基的土壤颗粒和置入材料产生摩擦力,将整个的软土层和抗拉力材料形成一个整体,增加整个软化土层的稳定性。例如:在福建省的围垦工程中间,就是采用的朔料排水板,加强土层中水分的排除,将剩下的土壤固结成可以承受高强度的土层,同时还在其中放置土工织物,将整个拉力均匀的分布在基地中,这样可以使得基地均匀承受力,同时增加软土地基的稳定性。

1.2预压砂井法

预压砂井法是利用压力系统和排水系统的相互结合,在软土地基中,将空隙中的水分排除来,同时将剩下的土壤进行加压,增加土层的承压能力。在这种两种方法相结合的系统中,常用的排水系统是水平的排水垫层或者利用排水沟将水排除,还采用竖直方向的排水砂井和排水板;在加压系统中,常用的方法是推载预压、真空预压和降低低下水位等等。当在清除加固范围内的植被和土壤后将上面铺上砂层,再插入垂直的排水板,在砂层中放置横向的排水管,最后在砂垫层封膜,将膜内的空气抽出,这种方法我们称为真空联合堆载预压法。但是这种方法的作用范围有限,适用于工期较宽泛的工程。

1.3旋喷法

旋喷法是将带有喷嘴的机械作用到预订的土层深度后,从喷嘴中喷射出水泥,通过高速的旋转将土壤和水泥混合到一起,最后整个固结硬化成桩,这样的方法可以将整个的地基变成土壤和水泥混合硬化而成的桩,最后可以达到提高地基承载力的效果。这种方法对于有机质含量较多的土层作用很小,在塘泥等土层中要慎用。

1.2换土法

换土法是软土地基处理技术中比较常用的一种方法,这种方法简单有效,在实施过程中,通过对软土本质的改变,改变土质特性,达到水利地基建设的标准。例如:在水利施工中遇到软土地基问题,可以用水泥、灰土等替换软土,使土壤的承载力达到水利施工的标准。换土法可以直接的有效的提高土壤的承载力,但是这种简单直接的方法却很容易收到地理位置的制约,影响这种方法的使用,在比较偏远的位置,交通运输不便的情况下,这种方法就会加大工程的成本,因此,在采用换土法的同时,也要充分考虑到当地的实际,在交通便利的情况下采用这种方法。

1.5排水固结法

排水固结法是采用排水板将土壤中间的水分排出,然后提高土壤的稳定性,增加土壤的承载力。

1.6振动水冲法

振动水冲法是将软土地基打孔,然后将水泥等原料填充到其中,在采用分层夯实的方法,加固地基,一般在采用这种方法之前不要利用排水系统进行排水。

1.7硅化加固法

硅化加固法是将氯化钙和氧化钠等溶液通过两侧有洞的管注入到地基中间,通过这些化学溶液融入到土壤中间,在和土壤产生化学反应,在土壤之间生成一种胶状物,将土壤凝结在一起,从而增加土壤的承载力。在使用这一技术的过程中间,采用电化的方式可以加大硅化的范围,这种方法叫电动硅化法。

1.8人工材料加筋法

人工材料加筋法是采用人工合成材料覆盖在地基表层,这一工作要在工程施工之前完成,这样做主要是为了将整个建筑物的重量均匀的分布在地基的各个地方,不会出现某些地方承载的压力大,有的地方承载的压力小的情况,另外,这种方法可以有效的增加建筑物和地基之间的摩擦力,防止建筑物出现倾斜的现象。

1.9桩基法

基法在面对含水量大,软土地基层后等水利工程的建设中间使用的较多,将钢筋混凝土桩置入到软土地基中,代替传统的砂石桩。

2结语

第4篇

关键词:软土地基勘察基础设计

近几年,经济的发展带动了电力建设迅速发展,同时由于国家“西电东送”工程的实施,苏北沿海地区新建了若干输变电工程。由于该地区地质分布有含水量大、压缩性高、承载能力低的软土薄弱层,对工程基础设计带来极为不利的影响,稍微地质勘察不详细或基础设计形式不对,都可能引起建筑物(构筑物)的过大沉降、倾斜甚至倒塌。

1工程案例及原因分析

案例一:在苏北沿海地区新建某35kV变电所,主变容量31.5MVA,变压器总重17000kg,主变基础采用长5米,宽3.8米,厚0.6米的独立基础,内配Ф12@150双层双向钢筋,基础埋深1.5米,下设100厚C10混凝土垫层。就在主变就位后的第二天发现,主变基础产生不均匀沉降,最大沉降达50mm,明显不利于设备安全运行,基础只得从新浇筑。新主变基础在独立基础下布置了八根12米石灰桩进行地基处理,主变荷载由复合地基承担。基础浇筑养护成功后主变重新就位,安装结束观测至今发现沉降很小。

案例二:同一地区,某在建220kV变电所,配电楼共二层,框架结构,基础采用12米Ф500(壁厚80)预制管桩,承台埋深2米,单桩设计承载力400kN。在静压桩时发现,桩达到设计标高时,压力表读数换算为桩承载力仅为300kN,而且桩最终贯入速度一直很快,这说明桩端未进入持力层,仍然处于软土薄弱层中。经设计、勘察、监理、施工等单位多方协同论证,反复研究,确定接桩方案,在原来12米桩基础上加接8米同型号管桩,后来做静载试验发现,20米桩能满足设计要求。

经分析研究,案例一工程主变基础沉降过大是由于地质勘察不详细引起的,勘察报告就没能详细反映该主变基础下的软土地基分布情况,由于潮汐对地下水位的影响,软土在含水量高时极易压缩变形,从而引起主变基础过大沉降;案例二工程处地基存在9米厚的软土层,由于设计上没有高度重视软土地基对桩基础承载力的影响,导致桩设计不合格。

2软土地基分布及地质特点

软土地基给工程上带来的事故、缺陷很多,要减少软土地基的危害,工程技术人员熟悉软土的特性就显得非常重要。所谓软土是在静水或缓慢的流水环境中沉积,经生物化学作用形成的饱和软弱粘性土。中国建筑工业出版社出版的《工程地质手册》称软土为“软土是指天然含水量大、压缩性高、承载能力低的一种软塑到流塑状态的粘性土,如淤泥、淤泥质土以及其他高压缩性饱和粘性土、粉土等”。特征指标也做了如下表述:当天然空隙比e大于1.5时,称为淤泥;天然空隙比小于1.5而大于1.0时,称为淤泥质土。

几千年来,苏北地区由于黄河淤积和改道,大陆逐步东移,形成了以粉砂、粉土为主,中间夹以粉质粘土和淤泥质粉质粘土软土的地貌。根据工程地质勘察报告发现,苏北沿海地区海拔在1.5~4.5米之间,整个地面从东南向西北缓缓倾斜,软土厚度从3米至14米,地下水位受大气和潮汐影响,一般在0.5~1.5米之间。该地区地质分布土质的一些典型物理性质指标见下表。

表一:土体物理性质指标

土层

厚度(m)

天然含水量ω(%)

天然孔隙比e

压缩模量Es(MPa)

塑性指数IP(%)

液性指数IL

承载力fk(Kpa)

耕土

0.5~1

粉土

2.5

32

0.724

8.21

8.21

9.7

100

粉质粘土

1.5

33

0.928

4.34

4.34

13.8

90

淤泥质粉质粘土

3~14

40~55

0.899~1.348

2.57~4.12

9~14.5

1.22~2.49

60

粉土

4~9

27.3

0.767

6.23

11.0

0.6

140

粉土夹粉砂

未钻透

24

0.598

15.98

170

以上数据是经统计该地区几个变电所工程地质勘察报告而来,从表中不难发现,作为软土层的淤泥质粉质粘土埋深不深,但对不同的场地,该土土层厚度分布不均,这对建筑物和构筑物基础设计提出了较高的要求。

3处理措施及设计对策

3.1细心勘察,查清场地水文地质情况。

拟建场地勘察评价很重要,如若勘测点布置过少,或只借鉴相邻建筑物的地质资料,对建筑场地没有进行认真勘察评价,提出的地质勘察报告不能真实反映场地条件,勘察资料不准确,结论不正确、建议不合理,就会给结构设计人员造成误导。如淤泥质土、暗塘等没有被发现,会使新建的建筑物和构筑物发生严重下陷、倾斜或开裂。

沿海地区工程现场的地质、水文勘察调查宜包括下列内容:了解工程区的地形地貌特征、微地貌类型,地层成因类型、岩土性质、产状与分布概况,不良地质现象概况,地下水类型和分布概况,区域稳定性和历史地震背景和震情。查明海水的侵入范围、咸水(包括现代海水和古代残留海水)与淡水的分界面及其变化规律;潮汐对地下水动态的影响。只有认真研究地质资料,以数据说话,才能设计出切实可行的基础方案。

3.2认真研究、多方论证,确定最佳地基处理和基础设计方案。

苏北沿海地区地质是由于黄河淤积和黄海冲积而成,地貌属于淤泥质海岸,为我国淤泥质海岸分布最广、最典型的地区之一。淤泥质软土的存在对工程基础设计提出了更高的要求。淤泥质软土地基承载力低,压缩性大的特点,不易满足建筑物和构筑物地基设计要求,需进行地基处理。根据软土地基处理的原理和作用,根据多年一些输变电工程建设实践,可以采取以下简单易行、经济效益较高的软土处理方法。

(1).换土法

此方法适用于浅层软弱地基及不均匀地基的处理。当淤泥土层厚度在4m以内时,可采用挖除淤土层,换填砂土、灰土、粗砂、砾石、片石、卵石等办法进行地基处理,换填淤泥土层,提高软土地基强度,一般换填的厚度为30~100cm。换填土相对来说造价高,但可以节省工期。

(2).地基加固处理及桩基法

当淤土层较厚,难以大面积进行深处理时,可采用打桩的办法进行加固处理。当淤土层厚度小于5m时,宜打砂桩或石灰桩,通过吸水和排水来挤密淤土,使其孔隙比小于1,以达到一般地基要求;当淤土层厚度在5~7m时,宜打预制管桩至硬土层,设承载桩台;当淤土层厚度在7~10m时,宜打灌注桩至硬土层,设承载桩台;淤土层厚度在10m以上时,宜采用打悬浮桩的办法,挤密淤土层并靠摩擦承载。

(3).优化基础法

①扩大条基底面积,增设钢筋混凝土基础梁。可将条形基础浅埋,把基础设置在地基表层的密实土层上,从而避开淤土层,适当设置钢筋混凝土基础梁,增大基础的刚度,提高基础的稳定性和抗变形的能力。

②采用筏板基础或箱形基础。对小型建筑物可采用扩大基础底板的方法,如设计较薄的钢筋混凝土底板。对大中型工程,可采用空箱底板,即在不增加建筑物造价的情况下,用加大底板高度、减轻底板自重的办法来适应软土地基要求。

③采用合理的桩基础。钻孔灌注桩应用十分广泛,但因属隐蔽工程,成桩后质量检查比较困难,且由于软土的特殊性质,经常会出现一些缩径、断桩、桩身孔洞和“烂桩头”等质量问题。在潮汐地区,没有采取措施来稳定孔内水位,灌注砼时桩孔易坍孔,在该地区基础设计时应少使用;预制桩的承载力由桩端承力和桩侧摩擦力组成,由于软土不易固化,降低了桩的侧摩擦力,使桩在工程使用中不安全,因此该地区基础设计时也应少使用。根据施工实例统计,沉管灌注桩基础是沿海软土地区好的基础设计形式,桩设计承载力和施工成桩质量均好控制,对于沉管桩较能保证质量的桩长范围为Φ400mm在16m以内,Φ500mm在18m以内较合适,桩距最好在4d左右。

第5篇

压实度是衡量公路桥梁性能以及使用寿命的重要指标之一,它可以评判软土地基是否具有稳定的内部构造。如今,大多数施工承包商都对压实度缺乏理解,不能从专业化的角度分析软土地基的实用性,提出相应的合理的解决方案。在施工的过程中遇到问题时很多,施工单位会简单处理,更有甚者会直接绕过处理环节,导致在公路桥梁投入使用的几个月内就开始对桥梁路面进行修缮和地基加固。很多施工单位一直使用同一套软土地基施工处理技术,不能根据当地的土壤及天气情况对地基施工进行分析处理,例如,在雨水较多的地区,桥梁地基会长时间被雨水浸泡及侵蚀,填土的流失情况也比较严重,但在桥梁设计过程中,忽略了对天气情况的考虑,最终就会导致桥梁沉降事故。

2、软土地基对公路桥梁施工的影响

2.1软土地基易造成桥梁路面硬化

软土地基具有较低的稳定性,相比于其它地基,软土地基还不坚固,抗压性衣也比较弱,路面硬化是软土地基在施工过程中经常发生的状况。公路桥梁施工材料以沥青和水泥、沙子、石子等混合成的混凝凝土为主,稳定性不够高,在实地施工的过程中,路面内部开裂和硬化的现象时有发生。

2.2软土地基易造成路面沉降

路面沉降是软土地基在公路桥梁工程施工中最易发生的现象。地下水对地基的不断冲刷,使地基两端的软土流失严重,而下层软土带的变薄,导致上层地基不稳,从而导致整个公路桥梁路面发生沉降。软土地基是否沉降是公路桥梁性能和使用寿命的决定性因素。

3、软土地基施工中的技术要点

3.1表层排水法

改变软土地基的压缩性是改善软土地基结构稳定性的有效方法之一。通过加入一定量的添加剂可以提高软土地基填土的稳定性和固结性。沙垫层具有一定的排水功能,通过与上层排水层的配合可以有效地控制填土内的水位,为公路桥梁施工用的大型机械设备创造良好的使用条件。软土地基两端及下层的填土流失会造成地基中的土质呈现不均匀分布,这往往会导致软土地基的沉降,当这种状况发生时,施工者就得考虑改变软土地基的抗压力及抗剪力,改善公路桥梁工程软土地基的沉降错位现象。公路桥梁施工方还可以采用可垫材料加强软土地基的表层强度。

3.2排水固结法

在公路桥梁软土地基粘性土质之间设立垂直于土层的垂直排水柱是增强软土地基抗剪强度的有效方法之一,使用这种技术的同时以地基至花生的排水固结特点为基本,对软土地基进行加负荷压力测试,还可以大大提高地基的强度。深层排水固结法和深层复合地基加固法是提高软土地基真实抗压力和承载力的重要方法,面对不同的软土地基,施工方应该协调配合缓速填土法、排水固结法和加载法。

3.3粉喷桩加固处理法

平整的施工场地是能进行人工施工和机械行走施工的前提,当出现不可清除障碍是,可以用碎石和沙土垫层铺设方便机械设备的使用。如果施工场地具有较多坑洼地带,那么施工方应该用粘性土填埋处理。完善设计粉喷桩桩位图、原地面高程数据表、原地面高层测量资料、土工试验报告、施工场地地质报告等是在进行粉喷桩施工技术必须要完成的工作,然后通过对收集到的数据进行分析处理,合理比较调节施工参数。设计到具体参数的有:提升速度、机械钻进速度、单位时间喷粉量、粉喷搅拌速率等。

3.4加载法

在公路桥梁工程软土地基施工过程中使用加载法可以降低软土地基沉降现象发生的概率,加固了填土路面,增加了软土地基的强度。对地基固结沉降处理有三种方法:(1)通过地基增加总压法;(2)降低间隙水压效应力。(3)地下水法。当软土地基中间部位和顶层部位层含有砂层时,比较适合采用地下水法,为了使地下水位可以降到地基所需水位标准以下,施工方可以采用将钢板打入地基进行围护。在预测沉降量的过程中,应该采集多方数据,分析计算负载能力、自沉时间、沉降时间等,动态监测施工情况,维护地基的稳定性。

3.5挤密法

在我国中西部地区分布有大量的湿陷性黄土,在这些地区公路桥梁工程软土地基施工的过程中主要采用的就是挤密桩法。先在黄土地基上打上桩孔,然后将素土、砂石、石灰土等填入打好的桩孔中,之后直接进行分层密实夯填。在利用挤密桩法构建软土地基时,不需要利用较大的机械设备,直接在原地就可完成所有操作,这种方式可以直接将废弃的材料用作填充物,节省了大量原材料。石灰土桩法是通过将石灰块、粉煤灰、炉渣、火山灰等土石按照适当的比例进行调配混合,搅拌均匀后,进行回填和夯实。生石灰具有水硬性和气硬性,当它与其它添加料混合搅拌后会发生体积膨胀的现象,利用这种现象就可以达到让地基挤密的目的。砂石桩法也是挤密法的一种,将砂石、卵石、碎石、砂等材料做振动、冲击处理后直接填入软土地基打好的桩孔中,这样做加强了地基的固结性和软性粘土整体的承载力。

3.6敷垫材料法

软土地基发生侧向移位的现象经常发生,不均匀沉降也是频繁发生的情况。通过具有较强抗压力和抗剪力的敷垫材料可以提高机械的通行能力,从根本上解决地基承受能力不足,易于移位的问题。例如,当地基上部的软土层厚度不足以撑起上层且含水量较大时,公路桥梁软土地基施工人员就可以在软土地基上敷垫大约0.6~1.1米厚的砂垫层,如此一来,软土层的固结性将进一步加强,排水层也可以高效完成排水的任务。利用敷垫材料法还可以为软土层以下的层结构提供排水服务,降低填土层的水位高度,增强施工位置的表层强度,为地基施工机械的运作提供便利。

4、结论

第6篇

文章以某道路桥梁工程为例,该道路桥梁工程总长度为15263.3m,双向四车道,路面宽度为24.5m,路基宽度为26.5m,由于该道路桥梁工程的长度相对较长,沿途的地质状况相对复杂,在道路桥梁工程出现了长度为253.2m的软土地质,如果不经过处理在上面进行施工,将不能够满足道路路基整体稳定安全系数大于1.20的要求,通过对道路桥梁工程施工现场进行分析,该道路桥梁工程是施工单位决定采用软土地基施工处理措施进行处理,通过实践取得了良好的效果。

2道路桥梁工程中软土地基的施工处理措施分析

2.1道路桥梁工程软土地基施工处理前的准备工作。

道路桥梁工程软土地基处理前的准备工作主要包括以下几个方面:

2.1.1现场勘查。

软土地基的现场勘查工作主要包括:首先,现场的测绘调查,分析软土地基分布区域的地貌、地形等,同时分析软土地层的成因、范围、深度以及性质等;其次,选择科学的勘查点以及勘查手段,常用的勘查手段包括原位测试法、钻探式勘查法、室内土工试验法等;再者,软土地基评价,当获得了软土地基施工现场的相干参数之后,对各种数据进行分析和计算,获得软土地基的沉降性、均匀性、灵敏度以及承载能力等。

2.1.2选择合适的施工处理方案。

根据现场勘查获得的相关数据资料,对比各种软土地基处理方法之间的优劣性,选择合适的施工处理方案,可以是某种施工处理方法,也可以是多种软土地基处理方法的组合,同时还应该评估施工技术、机械、环节、工期以及材料工程等各种印象因素,综合各种因素选择科学的施工方案。

2.2道路桥梁工程中软土地基的施工处理措施。

目前,道路桥梁工程中软土地基的施工处理措施主要包括以下方面:

2.2.1灌浆处理技术。

灌浆处理技术是通过利用电化学原理、高压旋喷法、粉喷法等将能够改善软土地基性质的浆液注入到地基裂缝中,灌浆浆液可以是水泥砂浆、水泥浆,还可以是化学材料,例如硅酸盐等,灌浆处理技术能够有效的改善软土地基的性质。粉喷桩处理技术是最常用的灌浆处理技术,该种灌浆处理技术的应用优势在于施工机械简单,操作方便,加固效果好等,在采用粉喷桩处理技术时,应该严格的控制钻机的位置,保证钻机按照既定的设计要求进行就位,桩的孔位置必须和设计图纸的位置完全吻合,垂直方向的偏差不能超过1.5%,通常不超过50mm,严格的控制水泥喷入量、停粉时间以及喷粉时间,以此保证粉喷桩的长度和质量,同时还应该做好施工日志,全面、详细的记录水量、孔深、孔位等信息。

2.2.2强夯处理技术。

强夯处理技术是目前使用最广泛的软土地基处理技术之一,也称之为动力固结法,该种软土地基处理技术的工作原理表现为:将具有一定重量的重锤提升至一定的高度,然后由重锤自由降落,通过重锤的重力作用对地面产生巨大的冲击,以此起到加固地基的作用。强夯处理技术具有施工周期短、费用低、设备简单等应用优势,该种软土地基处理技术适用于低饱和粘土、杂填土、黄土、粉土、沙土、素填土等软土地基,但是不适用于饱和度相对较高的软土地基。因此,道路桥梁施工队伍在采用强夯施工处理措施时,应该充分的考虑施工现场的地质构造。

2.2.3排水固结处理技术。

排水固结处理技术是最常见的软土地基处理技术之一,主要包括袋装沙井法、沙井法、砂垫层法等:砂垫层法指的是在软土地基的顶层铺设足够量的砂石,通过填土荷载将软土地基中多余的水分排出,该种排水固结处理技术能够实现排水固结和路基填筑的同步进行,达到在填筑过程中保证路基排水效果的目的,同时又不会承受过大的荷载被破坏;沙井加固处理技术指的是在采用钻探器械在软土地基上进行钻孔施工,然后选取足量的砂石灌入,吸收软土地基中的水分,以此实现排水固结的效果;袋装沙井加固处理技术指的是选取足量的满足施工要求的砂,将其装入到透水性良好的编织袋中,然后用专用的机械设备将沙袋打入到软土地基中,该种排水固结处理技术具有节省材料、费用低、施工效率高等优点,致使其在道路桥梁工程的软土地基施工中得到广泛的应用。

2.2.4换填加固处理技术。

换填加固处理技术指的是根据勘察所获得的数据,选用强度高、稳定性好的石灰、砂石等置换原来的软弱土质,以此改良原有地基或者形成双层地基,达到加固地基、控制地基沉降等效果。在采用换填加固处理技术时应该注意以下几个方面:其一,根据道路桥梁工程的具体状况选择符合相关设计要求的换填材料;其二,在进行置换的过程中,应该进行分层换填、加固和压实,通常采用机械碾压进行处理,保证地基的压实度满足相关的施工要求,;其三,精确的计算换填的深度以及面积,保证换填施工能够顺利的进行。

3结束语

第7篇

通过以上对道路桥梁工程中软土地基的特性的分析,我们可以看出:在道路桥梁施工建设过程中一定要采取科学、合理的施工技术来避免软土地基对于道路桥梁的危害。从而避免的地基的沉降,提高地基的稳定性。第一,道路桥梁工程中的表层排水法。在道路桥梁施工过程中,由于软土地基中软土的含水量较高,可以通过排水法来降低软土地基的含水量,提高地基的破坏极限,提高软土地基的渗透能力,充分发挥地基材料的作用,提高整个道路桥梁地基的稳固性。使得地基具有可机械作业的能力。一般来说,这种施工技术比较适于含水较高、土质较好的软土层。具体的施工方法为:在道路桥梁施工准备过程中,在施工前在土层表面挖好长度、深度、尺度适度的排水沟,并将地基内的表水导出。第二,道路桥梁工程中的添加混合剂法。在道路桥施工过程中,若软土层的软土为粘性土质时,可以在粘度达到一定程度时,使用具有增大粘度的混合剂,从而增大软土表层的密度,从而增强整个软土结构的抗压缩力,增加软土地基的强度。具体的施工方法:在道路桥梁施工前,对软土地基的土质进行检测,当土质达到运用添加混合剂法时,加入一定量的混合剂,增加土层的粘度,提高软土结构的整体强度。在添加混合剂的同时可加入石灰及适量的水泥。第三,道路桥梁工程中的排水固结法。在道路桥梁建设过程中,可以再施工前对施工部分的地基进行预加载荷的碾压。在进行碾压时,可以排除部分软土层中的水分,还可以进一步增加软土地基的密度及强度。排水固结法则是在这时通过软土地基自身的固结属性而进行排水的方法。在经过碾压之后,软土地基中的软土会固结在一起,这样就增加了软土地基的强度。为了进一步提高软土地基的固结率,可以在软土地基中设立排水柱,增加整个桥梁施工地基的抗剪度。对于较深层次的排水固结施工来说,可以高效地完成作业,大大提高整个道路桥梁施工软土地基的承载能力。具体的施工方法:排水固结法往往与填土法、加载法一起使用。第四,道路桥梁工程中的加载法。为了有效地避免道路桥梁施工后发生沉降,可以对软土地基进行加载法施工。实现在道路桥梁施工的软土地基上增加载荷,提前使得地基沉降。这样的加载会与道路桥梁建成后的载荷不同,但是可以预先完成部分软土地基的沉降。所以,在道路桥梁施工的过程中,可以采用一定的方法避免地基的沉降。第五,道路桥梁工程中挤密法。在道路桥梁工程中,可以采用挤密法对软土地基进行施工,增加软土的密度和强度。一般来说,挤密法主要适用于厚度较大的软土地基以及湿度较大的黄土。在运用挤密法时可以就地取材,原地处理。施工方法:在施工过程中在形成的桩孔过程中进行侧向挤压,增大整个土层的密度。并在桩孔中,利用素土与灰土分层进行填装。第六,道路桥梁工程中的加固技术。在道路桥梁工程建设过程中,通过加固技术可以提高道路桥梁整体的稳定性。我们可以在地基表面进行排水、挤压、垫层,退需要加固的软土地基进行加固,采用先进的加固技术提高软土地基的稳固性。

2软土地基施工技术运用的注意事项

第一,在道路桥梁工程施工过程中,对于软土地基施工要注意桥梁的等级要求。不同等级的桥梁对于工程的施工有不同的要求。这也决定了软土地基加固与处理的不同要求。对于等级要求高的道路桥梁应该采取力度较大的工艺技术来处理软土地基,避免沉降以及地面裂缝的产生。而对于等级要求比较低的桥梁,可以预先铺设路面,等软土土层沉降之后再进行桥梁铺设。第二,道路桥梁工程的施工环境对于软土地基的施工也有一定的影响。不同的施工环境,具有不同土质的软土层,所以应该具体分析软土的土质,然后采取一定的施工技术进行处理。例如,对于一般粘性的软土土层可以采取实压的办法进行处理。对于砂性土壤的软土则可以采用挤密法来处理。对于土层较深的软土地基可以再表层对软土进行处理之后,再配合其他方案进一步加固软土层。对于土层较浅的软土地基的可以先进行表层处理之后,再进行表层挖掘与回填。若软土地基的图纸渗透性较差则需要长时间的排水之后,才能进行其他方式的处理,提高地基的稳定性。

3结语

第8篇

关键词:道路改造;软土路基;处理方法

一、软土路基成因

路基强度及稳定性与路基干湿状态密切相关。路基干湿状态是由土中含水量的高低决定的,而含水量的高低取决于各种湿源的作用和延续时间。由于路面宽、路基低、排水设施不全或失效,使得雨水和生活污水向路基内渗透、地下水位升高,路基长期处于潮湿状态,加上土的水稳定性差等原因,导致路基软化。

二、软土路基判别

(一)测定方法

所谓软土,比规范[1]中的定义广泛,包括强度达不到设计要求的湿粘土。对软土路基的测定可以采用弯沉测定:

将相对完好的砼板块逐一编号。采用两台5.4m贝克曼梁及一台BZZ-100标准车,按每车道双向往返检测。选取位于横缝、断缝附近的板角等荷载最不利位置作为检测点,测点分主点(受荷板)、副点(未受荷板),主点位于板横缝前10cm,副点在横缝后10cm,分别测定主点弯沉和副点弯沉。[2]

在非不利季节检测时,弯沉值根据经验进行季节影响修正。实际取其系数=1.1~1.2。

(二)判别方法

平均弯沉值反映了原结构的承载能力,而弯沉差则反映了加铺后沥青路面反射裂缝出现的机率和严重程度。造成原结构承载力不足的原因有板底脱空、基层强度低和软土路基。采用排除法通过值来判别软土路基。当45≥≥20时,进行压浆处理;>45时,先将砼板打裂压实,使其与基层紧密结合;再次检测,仍然有>45,表明基层强度严重不足或有软土路基;挖除路面结构后,通过路基顶面弯沉的检测,或者通过路基土的干密度、天然含水量综合判定。

三、软土路基处理方法的比选和优化

(一)做一个模拟软土路基方案其具体条件和基本要求

1.公路自然区划为Ⅳ3,路基干湿类型为潮湿,但不加高路基,不增设地下排水设施,只对地面排水设施进行修复;

2.软土路基处理最小面积=4.2×5.0m,即一块砼板的面积,属于局部软土路基;

3.大部分软土路基为稠度=0.5~0.9的湿粘土,不易破碎晾干;

4.软土路基深度<2m,其中上部为路基工作区,对强度和稳定性的要求高;

5.软土路基处理不能对原路基的强度和稳定性带来不利影响,处理后应达到强度与原路基基本一致、工后沉降为零、水稳定性好的要求;

6.雨季施工,行车干扰大,工期三个月。

(二)比选

软土路基处理方法按处理深度分为浅层处理和深层处理。浅层处理的深度≤3m,因此拟处理的软土路基属于浅层处理的范围。

浅层处理施工工艺简单,投资少,是施工中经常采用的方法。浅层处理一般有换填法、晾晒法、垫层法、动力固结法、加筋法、灌浆法、排石挤淤法和爆炸排淤法。

分析后认为,晾晒法等七种方法不符合上述条件或要求。换填法通常用于软土路基分布范围较小,深度≤2m的情况,换填料可视具体情况用砂、砂砾、改良土或其他适宜材料,因此初步决定采用开挖换填法处理。

(三)优化

原路基为粘土填筑,若采用砂、砂砾等材料换填,虽然保证了自身的强度和稳定性,但此类材料具有透水性,其内部的干湿变化,会引起四周路基土的软化或二次固结,导致路面的不均匀沉降等病害。若采用风化石换填,存在着风化石粒径、强度、土石比例的问题,粒径大、强度低、石含量多,施工时不易压碎压实,除存在与透水性材料相同的问题以外,其自身的强度和稳定性也难以保证。若采用粘土换填,由于施工面小、地下管线多,填土难以压实,浸水后自身的强度和稳定性同样无法保证。

土经改良后不但强度提高,还能呈现出板体性和一定的水稳定性,弥补了上述材料的不足。为使换填部分的物理力学性质与原路基基本一致,选用了与原路基土质相近,<40%,<18,含水量适宜的低液限粘土(CL)进行改良。

改良土常用的改良剂有石灰和水泥,由于水泥改良土工序少、早期强度高,适用于春融期、多雨季节、地下水位高、工期紧迫地段。最后确定采用水泥改良土换填的处理方法。

四、软土路基施工工艺

(一)换填深度

开挖过程中可以观测到,随着深度的增加,坑壁四周路基土的密实度逐渐降低,含水量逐渐增大,上部1.0~1.2m范围内的密实度高含水量小,并且有明显的分界线。表明路基工作区深度为1.0~1.2m。

当软土路基较薄,有硬底时,清除后直接换填。当软土路基较厚,应挖到坑底土与四周路基相同土层的密实度一致时的深度,一般为1.0~1.2m;当坑底土过湿时,下挖到保证上部回填压实时不出现“弹簧”的深度,一般为0.4~0.5m,总的换填深度=1.4~1.7m。

(二)水泥掺量

换填土的强度过高或过低,都会使其内部及四周结构产生附加应力和变形,造成路面病害,因此应与原路基保持基本一致。

由于难以准确检测原路基土的无侧限抗压强度,水泥掺量无法按常规试验确定。路基的回弹模量不但是路面设计的基本参数,更是衡量路基质量的基本指标,并且设计值已知,因此水泥掺量通过回弹模量室内试验确定。由路基设计弯沉值=200,计算出路基回弹模量设计值=47MPa,再根据公式[3]反算得到室内试验回弹模量标准值=135MPa。水泥掺量不宜小于3%,实际控制在3~4%,否则难以拌和均匀。为提高下部改良土的早期强度,使上部工作区能尽早换填,上下部采用相同的水泥掺量。

(三)压实

压实功愈大、分层愈多愈容易出现弹簧。由于对工作区以下密实度的要求相对较低,故采用挖掘机铲斗击打配合双向振动平板夯(工作重量123kg)压实。待具有一定强度后再进行工作区范围内的换填,尽可能采用胶轮压路机碾压,边角用双向振动平板夯压实,压实度≥95%。

五、结语

1.与沥青路面的承载能力检测不同,水泥砼路面的检测有主、副点之分,必须配备两台贝克曼梁。用一台贝克曼梁只能检测出、,混淆与、与两者的概念会造成误判。采用双向往返法检测,贝克曼梁的支点和主测点不在同一块砼板上,消除了支点变形对测点弯沉值的影响;测完后检测车驶离受荷板,消除了后轴落点对主点弯沉值的影响。贝克曼梁法检测的是回弹弯沉,自动弯沉仪法检测的是总弯沉,落锤式弯沉仪检测的是动态总弯沉。贝克曼梁法是规范规定的标准方法,采用其它方法必须进行标定换算。同样,现场承载板法是路基回弹模量的标准检测方法,采用其它方法也必须进行标定换算。测定弯沉和模量时,都应将季节因素考虑在内。

2.与公路不同,道路由于两侧人行道和建筑物地基高于行车道,加上排水设施不完善等因素的影响,路基长期处于潮湿状态,容易产生病害。

3.与新建道路不同,改建工程是对道路功能的恢复和提高,应遵循一切服从于老路,一切有利于老路的原则,达到新旧一体,路基稳定、密实、均质,为路面提供均匀的支承。经过几十年地运营,绝大部分路基已经稳定,已适应了所处的水文地质环境,应充分利用。

4.与地基中的大面积软土路基不同,路基中的软土路基一般都属于局部浅层软土路基,处理后要求工后沉降为零,并具有较高地强度和良好地稳定性。尤其是路基工作区,对保证路面强度与稳定性、满足行车要求极为重要。

每一种软土路基处理方法均有其针对性、适用范围以及局限性,必须根据具体条件选择符合设计要求的软土路基处理方法,才能取得理想的处治效果。对能达到处理效果的方法进行使用阶段技术可靠性、施工难易程度、工程造价、工期、对周围环境影响等方面的综合评比,确定最合理的软土路基处理方案,并不在于技术的先进与否。

【参考文献】

[1]中华人民共和国行业标准.JTGD30-2004公路路基设计规范[S].北京:人民交通出版社,2004.

第9篇

【关键词】高速公路;路基;软土地基分析

前言

路基设计是公路最基本的组成部分之一。保证公路沿线都具有坚实而稳定的路基,是路基设计的中心任务。路基又是支撑路面的一种土工建筑物,在挖方地段,路基通常是路面下的天然地层;在填方地段,则是填筑起来的压实土层。路基和路面构成了公路建筑的主体。

概况

该高速公路全长56.6km,设计标准为双向四车道,设计速度为80km/h, 路幅宽度为26.0m.

1、一般路基设计

1.1 路基设计组成

路基设计组成如下:

① 整体式路基整体式路基宽度为26.0m, 其中, 行车道2×2×3.75m、硬路肩2×3.0m(含右侧路缘带2×0.5m)、中间带3.50m(中央分隔带2.0m、左侧路缘带2×0.75m)、土路肩2×0.75m;

② 分离式路基适用于隧道出入口的路基,单幅路基宽度为13.0m,其中:行车道2×3.75m、硬路肩3.0m(含右侧路缘带0.5m)、左侧路缘带1.0m、土路肩2×0.75m。

1.2 超高方式、设计标高及路拱横坡

超高方式、设计标高及路拱横坡的具体设置如下:

① 路线平曲线半径小于5500m时, 在曲线上设超高, 对于整体式路基, 超高采用绕中央分隔带外边缘旋转的方式, 超高过渡在缓和曲线内完成; 对于分离式路基, 超高采用绕各自的行车道中心线旋转的方式, 超高过渡在缓和曲线内完成;

② 对于整体式路基, 路基设计标高为距路线中心线1m处的路面标高(中央分隔带边缘路面标高),对于分离式路基, 路基设计标高为各自行车道中心线处的路面标高;

③ 正常路段的行车道和硬路肩采用2%的路拱横坡, 土路肩横坡为4%。

1.3 路基边坡坡率

路基边坡坡率具体设置如下:

一般填方路段的边坡坡率见表1, 护坡道宽2m, 护坡道和边坡平台分别设置外倾3%和2%的横坡;

② 一般挖方路段边坡, 按岩石风化情况、土质条件采用不同的坡率, 全风化、土质边坡的坡率为1∶1~1∶1.5, 强风化边坡坡率为1∶0.75~1∶1.25, 弱风化边坡坡率为1∶0.5~1∶0.75, 微风化边坡坡率为1∶0.3~1∶0.5, 边坡高度均按10m控制, 平台宽2.0m,平台内侧修筑40cm×40cm的拦水沟, 第一级边坡坡脚设置2m宽的碎落台;

③ 深挖路堑(高边坡)是指土质边坡高度≥20m或岩质边坡高度≥30m的边坡, 路堑高边坡坡率采用特殊设计。

1.4 纵横向填挖交界处处治设计

本工程斜坡路基主要分布在沿山腰布设的地段, 在路线纵向填挖交界处及一般斜坡路基横向填挖交界处, 很容易出现路基开裂甚至滑移。为减少因不均匀沉降而引起的开裂和滑移, 本项目采取了如下措施:

① 对所有自然边坡坡度大于1∶5的路段, 均按要求挖台阶填筑, 挖台阶后回填应严格按给定的压实度标准实施;

② 在路线纵向填挖交界处及横向半填半挖处设置了三层TGDG50土工格栅和一层玻璃纤维土工格栅(设在沥青面层内), 单向土工格栅应先进行预拉, 并用U型锚钉锚固;

③ 为防止水对斜坡路基的影响, 斜坡路基内设置纵横向排水设施。

1.5 路基边坡防护设计

1.5.1 填方路段

填方路段防护设计如下:

① 填土高度小于4m时, 边坡采用植草或铺草皮防护; 填土高度为4m~6m时, 边坡采用三维网植草防护; 填土高度为6m~8m时, 边坡采用拱形骨架植草防护; 填土高度为8m~12m时, 分两级边坡,两级边坡分别采用拱形骨架植草和植草防护; 填土高度大于12m时, 分三级边坡, 上两级边坡采用拱形骨架植草防护, 最下一级边坡视该级边坡高度采用植草或拱形骨架植草防护;

② 护坡道、土路肩、排水沟外侧至界桩范围均采用植草防护;

③ 过鱼塘、水田、菜地路段采用M7.5浆砌片石铺砌护坡或护脚。

1.5.2 路堑挖方边坡

路堑挖方边坡防护设计如下:

① 一般土质边坡和全风化、强风化边坡采用植草或铺草皮(边坡坡度缓于1∶1)、挂网植草、拱架植草防护;

② 弱风化、微风化岩质边坡除高边坡采用护面墙外, 其余地段均采用喷混植生防护;

③ 当采用护面墙时, 边坡平台或碎落台种植爬山虎等攀爬植物;

④ 碎落台处填筑30cm粘性土, 其上植草或铺草皮进行绿化;

⑤ 碎落台和边坡平台设置30cm厚的M7.5浆砌片石或喷射10cm厚的C20混凝土防护(岩石地段),并在边坡平台设置平台截水沟。

1.5.3 挡土墙防护设计

挡土墙防护设计如下:

① 在边防公路、中天大道地段, 由于直接放坡将侵占边防公路、中天大道, 因此在路基右侧设置衡重式、重力式路肩或路堤挡土墙, 墙身采用M7.5浆砌片石砌筑, 墙底垫层采用C15片石混凝土, 片石抗压强度不小于30MPa, 墙面用M7.5砂浆勾凸缝;

② 挡土墙与排水沟之间的护坡道铺砌40cm厚的M7.5浆砌片石, 片石上填筑30cm的耕植土, 并间隔0.5m种植爬山虎。

2、软土路基处治设计

2.1 地基极限高度分析

一般软土地区路堤的极限高度为3m~5m。本工程软基主要分布在互通立交及山间洼地等地段。互通立交范围内软土一般为淤泥、淤泥质亚粘土, 厚度一般在15m左右, 物理力学性质极差; 山间洼地地段软基主要分布在K22+650 ~K23+250、K38+210~K40+012、K43+360~K43+450段落, 软基埋深从4.2m~12.9m不等, 软基厚度为1.0m~9.5m; 其余段落, 如K45+550~K45+670、K46+440~K46+500、K47+280、K47+360、K47+550~K47+800, 均存在

埋深小于5m的软基, 软土一般为淤泥质粗砂、淤泥质砾砂、淤泥质亚粘土。

极限高度计算方法如下。

均质薄层软土地基路堤极限高度为:

式中符号意义同前。

对于非均质软土地基的路基极限高度, 由于非均质软土地基土层比较复杂, 各层性质不同, 其路堤极限高度需要用圆弧法计算确定。条件允许时可由筑堤试验确定。

对于有硬壳层的软土地基的路堤极限高度, 当覆盖在软土层上强度稍高的表层上厚度>1.5m时,应考虑其应力扩散, 减少地基沉降的效应, 此时极

限高度He为:

式中: H-硬壳层厚度(m)。

2.2 地基处理对策

根据分析结果和工期要求, 软基处理方案如下:

① 软基深度超过12m或填土高度超过6.5m的桥头软基路段采用管桩托板+钢塑土工格栅处理, 并进行超载预压, 预应力混凝土管桩采用PHC桩, 直径为30cm, 壁厚8cm, 管桩离心混凝土强度为C70,桩顶托板采用C25钢筋混凝土; 管桩参数分别为:管桩单桩设计承载力要求达到400kN, 复合地基承载力设计值为150kPa, 钢塑土工格栅为CATT60-60钢塑土工格栅, 钢塑土工格栅每延米抗拉强度不小于60kN, 屈服伸长率不超过3%, 宽度为4m~5m;

② 软基深度不超过12m或填土高度不超过6.5m的桥头、涵洞软基路段采用水泥搅拌桩+土工格室复合地基处理, 并进行超载预压, 水泥搅拌桩采用42.5#水泥, 单桩设计承载力为120kN, 复合地基承载力设计值为130kPa, 土工格室采用100-400型, 格室高10cm、宽40cm, 要求格室片厚不小于1mm, 格室焊接处结合力不小于1 000N;

③ 最终沉降量小于1.2m 或填土高度不超过6.5m、沉降量较小时, 采用塑料排水板超载预压处理, 并设置1~3层土工格栅, 当填土高度小于4m时, 不设置土工格栅;

④ 软基埋深不超过5m时, 采用换填处理。

相关文章