欢迎来到易发表网!

关于我们 期刊咨询 科普杂志

数据加密技术论文优选九篇

时间:2023-03-23 15:20:02

引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇数据加密技术论文范例。如需获取更多原创内容,可随时联系我们的客服老师。

数据加密技术论文

第1篇

一:数据加密方法

在传统上,我们有几种方法来加密数据流。所有这些方法都可以用软件很容易的实现,但是当我们只知道密文的时候,是不容易破译这些加密算法的(当同时有原文和密文时,破译加密算法虽然也不是很容易,但已经是可能的了)。最好的加密算法对系统性能几乎没有影响,并且还可以带来其他内在的优点。例如,大家都知道的pkzip,它既压缩数据又加密数据。又如,dbms的一些软件包总是包含一些加密方法以使复制文件这一功能对一些敏感数据是无效的,或者需要用户的密码。所有这些加密算法都要有高效的加密和解密能力。

幸运的是,在所有的加密算法中最简单的一种就是“置换表”算法,这种算法也能很好达到加密的需要。每一个数据段(总是一个字节)对应着“置换表”中的一个偏移量,偏移量所对应的值就输出成为加密后的文件。加密程序和解密程序都需要一个这样的“置换表”。事实上,80x86cpu系列就有一个指令‘xlat’在硬件级来完成这样的工作。这种加密算法比较简单,加密解密速度都很快,但是一旦这个“置换表”被对方获得,那这个加密方案就完全被识破了。更进一步讲,这种加密算法对于黑客破译来讲是相当直接的,只要找到一个“置换表”就可以了。这种方法在计算机出现之前就已经被广泛的使用。

对这种“置换表”方式的一个改进就是使用2个或者更多的“置换表”,这些表都是基于数据流中字节的位置的,或者基于数据流本身。这时,破译变的更加困难,因为黑客必须正确的做几次变换。通过使用更多的“置换表”,并且按伪随机的方式使用每个表,这种改进的加密方法已经变的很难破译。比如,我们可以对所有的偶数位置的数据使用a表,对所有的奇数位置使用b表,即使黑客获得了明文和密文,他想破译这个加密方案也是非常困难的,除非黑客确切的知道用了两张表。

与使用“置换表”相类似,“变换数据位置”也在计算机加密中使用。但是,这需要更多的执行时间。从输入中读入明文放到一个buffer中,再在buffer中对他们重排序,然后按这个顺序再输出。解密程序按相反的顺序还原数据。这种方法总是和一些别的加密算法混合使用,这就使得破译变的特别的困难,几乎有些不可能了。例如,有这样一个词,变换起字母的顺序,slient可以变为listen,但所有的字母都没有变化,没有增加也没有减少,但是字母之间的顺序已经变化了。

但是,还有一种更好的加密算法,只有计算机可以做,就是字/字节循环移位和xor操作。如果我们把一个字或字节在一个数据流内做循环移位,使用多个或变化的方向(左移或右移),就可以迅速的产生一个加密的数据流。这种方法是很好的,破译它就更加困难!而且,更进一步的是,如果再使用xor操作,按位做异或操作,就就使破译密码更加困难了。如果再使用伪随机的方法,这涉及到要产生一系列的数字,我们可以使用fibbonaci数列。对数列所产生的数做模运算(例如模3),得到一个结果,然后循环移位这个结果的次数,将使破译次密码变的几乎不可能!但是,使用fibbonaci数列这种伪随机的方式所产生的密码对我们的解密程序来讲是非常容易的。

在一些情况下,我们想能够知道数据是否已经被篡改了或被破坏了,这时就需要产生一些校验码,并且把这些校验码插入到数据流中。这样做对数据的防伪与程序本身都是有好处的。但是感染计算机程序的病毒才不会在意这些数据或程序是否加过密,是否有数字签名。所以,加密程序在每次load到内存要开始执行时,都要检查一下本身是否被病毒感染,对与需要加、解密的文件都要做这种检查!很自然,这样一种方法体制应该保密的,因为病毒程序的编写者将会利用这些来破坏别人的程序或数据。因此,在一些反病毒或杀病毒软件中一定要使用加密技术

循环冗余校验是一种典型的校验数据的方法。对于每一个数据块,它使用位循环移位和xor操作来产生一个16位或32位的校验和,这使得丢失一位或两个位的错误一定会导致校验和出错。这种方式很久以来就应用于文件的传输,例如xmodem-crc。这是方法已经成为标准,而且有详细的文档。但是,基于标准crc算法的一种修改算法对于发现加密数据块中的错误和文件是否被病毒感染是很有效的。

二.基于公钥的加密算法

一个好的加密算法的重要特点之一是具有这种能力:可以指定一个密码或密钥,并用它来加密明文,不同的密码或密钥产生不同的密文。这又分为两种方式:对称密钥算法和非对称密钥算法。所谓对称密钥算法就是加密解密都使用相同的密钥,非对称密钥算法就是加密解密使用不同的密钥。非常著名的pgp公钥加密以及rsa加密方法都是非对称加密算法。加密密钥,即公钥,与解密密钥,即私钥,是非常的不同的。从数学理论上讲,几乎没有真正不可逆的算法存在。例如,对于一个输入‘a’执行一个操作得到结果‘b’,那么我们可以基于‘b’,做一个相对应的操作,导出输入‘a’。在一些情况下,对于每一种操作,我们可以得到一个确定的值,或者该操作没有定义(比如,除数为0)。对于一个没有定义的操作来讲,基于加密算法,可以成功地防止把一个公钥变换成为私钥。因此,要想破译非对称加密算法,找到那个唯一的密钥,唯一的方法只能是反复的试验,而这需要大量的处理时间。

rsa加密算法使用了两个非常大的素数来产生公钥和私钥。即使从一个公钥中通过因数分解可以得到私钥,但这个运算所包含的计算量是非常巨大的,以至于在现实上是不可行的。加密算法本身也是很慢的,这使得使用rsa算法加密大量的数据变的有些不可行。这就使得一些现实中加密算法都基于rsa加密算法。pgp算法(以及大多数基于rsa算法的加密方法)使用公钥来加密一个对称加密算法的密钥,然后再利用一个快速的对称加密算法来加密数据。这个对称算法的密钥是随机产生的,是保密的,因此,得到这个密钥的唯一方法就是使用私钥来解密。

我们举一个例子:假定现在要加密一些数据使用密钥‘12345’。利用rsa公钥,使用rsa算法加密这个密钥‘12345’,并把它放在要加密的数据的前面(可能后面跟着一个分割符或文件长度,以区分数据和密钥),然后,使用对称加密算法加密正文,使用的密钥就是‘12345’。当对方收到时,解密程序找到加密过的密钥,并利用rsa私钥解密出来,然后再确定出数据的开始位置,利用密钥‘12345’来解密数据。这样就使得一个可靠的经过高效加密的数据安全地传输和解密。

一些简单的基于rsa算法的加密算法可在下面的站点找到:

ftp://ftp.funet.fi/pub/crypt/cryptography/asymmetric/rsa

三.一个崭新的多步加密算法

现在又出现了一种新的加密算法,据说是几乎不可能被破译的。这个算法在1998年6月1日才正式公布的。下面详细的介绍这个算法:

使用一系列的数字(比如说128位密钥),来产生一个可重复的但高度随机化的伪随机的数字的序列。一次使用256个表项,使用随机数序列来产生密码转表,如下所示:

把256个随机数放在一个距阵中,然后对他们进行排序,使用这样一种方式(我们要记住最初的位置)使用最初的位置来产生一个表,随意排序的表,表中的数字在0到255之间。如果不是很明白如何来做,就可以不管它。但是,下面也提供了一些原码(在下面)是我们明白是如何来做的。现在,产生了一个具体的256字节的表。让这个随机数产生器接着来产生这个表中的其余的数,以至于每个表是不同的。下一步,使用"shotguntechnique"技术来产生解码表。基本上说,如果a映射到b,那么b一定可以映射到a,所以b[a[n]]=n.(n是一个在0到255之间的数)。在一个循环中赋值,使用一个256字节的解码表它对应于我们刚才在上一步产生的256字节的加密表。

使用这个方法,已经可以产生这样的一个表,表的顺序是随机,所以产生这256个字节的随机数使用的是二次伪随机,使用了两个额外的16位的密码.现在,已经有了两张转换表,基本的加密解密是如下这样工作的。前一个字节密文是这个256字节的表的索引。或者,为了提高加密效果,可以使用多余8位的值,甚至使用校验和或者crc算法来产生索引字节。假定这个表是256*256的数组,将会是下面的样子:

crypto1=a[crypto0][value]

变量''''crypto1''''是加密后的数据,''''crypto0''''是前一个加密数据(或着是前面几个加密数据的一个函数值)。很自然的,第一个数据需要一个“种子”,这个“种子”是我们必须记住的。如果使用256*256的表,这样做将会增加密文的长度。或者,可以使用你产生出随机数序列所用的密码,也可能是它的crc校验和。顺便提及的是曾作过这样一个测试:使用16个字节来产生表的索引,以128位的密钥作为这16个字节的初始的"种子"。然后,在产生出这些随机数的表之后,就可以用来加密数据,速度达到每秒钟100k个字节。一定要保证在加密与解密时都使用加密的值作为表的索引,而且这两次一定要匹配。

加密时所产生的伪随机序列是很随意的,可以设计成想要的任何序列。没有关于这个随机序列的详细的信息,解密密文是不现实的。例如:一些ascii码的序列,如“eeeeeeee"可能被转化成一些随机的没有任何意义的乱码,每一个字节都依赖于其前一个字节的密文,而不是实际的值。对于任一个单个的字符的这种变换来说,隐藏了加密数据的有效的真正的长度。

如果确实不理解如何来产生一个随机数序列,就考虑fibbonacci数列,使用2个双字(64位)的数作为产生随机数的种子,再加上第三个双字来做xor操作。这个算法产生了一系列的随机数。算法如下:

unsignedlongdw1,dw2,dw3,dwmask;

inti1;

unsignedlongarandom[256];

dw1={seed#1};

dw2={seed#2};

dwmask={seed#3};

//thisgivesyou332-bit"seeds",or96bitstotal

for(i1=0;i1<256;i1++)

{

dw3=(dw1+dw2)^dwmask;

arandom[i1]=dw3;

dw1=dw2;

dw2=dw3;

}

如果想产生一系列的随机数字,比如说,在0和列表中所有的随机数之间的一些数,就可以使用下面的方法:

int__cdeclmysortproc(void*p1,void*p2)

{

unsignedlong**pp1=(unsignedlong**)p1;

unsignedlong**pp2=(unsignedlong**)p2;

if(**pp1<**pp2)

return(-1);

elseif(**pp1>*pp2)

return(1);

return(0);

}

...

inti1;

unsignedlong*aprandom[256];

unsignedlongarandom[256];//samearrayasbefore,inthiscase

intaresult[256];//resultsgohere

for(i1=0;i1<256;i1++)

{

aprandom[i1]=arandom+i1;

}

//nowsortit

qsort(aprandom,256,sizeof(*aprandom),mysortproc);

//finalstep-offsetsforpointersareplacedintooutputarray

for(i1=0;i1<256;i1++)

{

aresult[i1]=(int)(aprandom[i1]-arandom);

}

...

变量''''aresult''''中的值应该是一个排过序的唯一的一系列的整数的数组,整数的值的范围均在0到255之间。这样一个数组是非常有用的,例如:对一个字节对字节的转换表,就可以很容易并且非常可靠的来产生一个短的密钥(经常作为一些随机数的种子)。这样一个表还有其他的用处,比如说:来产生一个随机的字符,计算机游戏中一个物体的随机的位置等等。上面的例子就其本身而言并没有构成一个加密算法,只是加密算法一个组成部分。

作为一个测试,开发了一个应用程序来测试上面所描述的加密算法。程序本身都经过了几次的优化和修改,来提高随机数的真正的随机性和防止会产生一些短的可重复的用于加密的随机数。用这个程序来加密一个文件,破解这个文件可能会需要非常巨大的时间以至于在现实上是不可能的。

四.结论:

由于在现实生活中,我们要确保一些敏感的数据只能被有相应权限的人看到,要确保信息在传输的过程中不会被篡改,截取,这就需要很多的安全系统大量的应用于政府、大公司以及个人系统。数据加密是肯定可以被破解的,但我们所想要的是一个特定时期的安全,也就是说,密文的破解应该是足够的困难,在现实上是不可能的,尤其是短时间内。

参考文献:

1.pgp!/

cyberknights(newlink)/cyberkt/

(oldlink:/~merlin/knights/)

2.cryptochamberjyu.fi/~paasivir/crypt/

3.sshcryptographa-z(includesinfoonsslandhttps)ssh.fi/tech/crypto/

4.funet''''cryptologyftp(yetanotherfinlandresource)ftp://ftp.funet.fi/pub/crypt/

agreatenigmaarticle,howthecodewasbrokenbypolishscientists

/nbrass/1enigma.htm

5.ftpsiteinukftp://sable.ox.ac.uk/pub/crypto/

6.australianftpsiteftp://ftp.psy.uq.oz.au/pub/

7.replayassociatesftparchiveftp://utopia.hacktic.nl/pub/replay/pub/crypto/

8.rsadatasecurity(whynotincludethemtoo!)/

第2篇

计算机网络安全主要包括资源共享、组网硬件、网络服务以及网络软件等方面的内容,因此计算机网络安全涉及到计算机网络的所有内容。以计算机网络特征为依据,对计算机网络软件、数据资源、硬件以及操作系统进行有效的保护,能够有效防止计算机相关数据遭到泄露、破坏及更改,保证计算机网络运行的安全性及可靠性。在实际运用过程中,计算机网络安全还存在诸多隐患,而人为因素则是计算机网络安全的最大隐患。一般情况下,计算机网络安全隐患主要包括:首先,网络漏洞。其在计算机操作系统中较为常见,由于操作系统会有许多用户同时进行系统运行及信息传输,因而在信息传输过程中出现安全隐患的几率就进一步增加。其次,病毒。计算机的病毒主要分为文件病毒以及网络病毒、引导型的病毒等。文件病毒主要是感染相关计算机中存有的各个文件。网络病毒通常是利用计算机来感染、传播计算机网络的可执行性文件。引导型的病毒主要是感染计算机系统的启动扇区及引导扇区。再次,非法入侵。非法入侵是威胁计算机网络安全的主要人为因素。由于社会竞争越来越激烈,许多人会通过计算机来非法获取他人信息来达到自己的目的,因而非法入侵也就成为计算机网络安全的重要危险因素。此外,黑客破坏、网络及系统不稳定也是威胁计算机网络安全的重要因素,因而采取有效方法来保障计算机网络安全,以提高信息数据的安全性就势在必行。

2计算机网络安全中数据加密技术的有效应用

当前,数据加密技术是一项确保计算机网络安全的应用最广泛的技术,且随着社会及科技的发展而不断发展。数据加密技术的广泛应用为计算机网络安全提供良好的环境,同时较好的保护了人们运用互联网的安全。密钥及其算法是数据加密技术的两个主要元素。密钥是一种对计算机数据进行有效编码、解码的算法。在计算机网络安全的保密过程中,可通过科学、适当的管理机制以及密钥技术来提高信息数据传输的可靠性及安全性。算法就是把普通信息和密钥进行有机结合,从而产生其他人难以理解的一种密文步骤。要提高数据加密技术的实用性及安全性,就要对这两个因素给予高度重视。

2.1链路数据加密技术在计算机网络安全中的应用

一般情况下,多区段计算机计算机采用的就是链路数据加密技术,其能够对信息、数据的相关传输路线进行有效划分,并以传输路径以及传输区域的不同对数据信息进行针对性的加密。数据在各个路段传输的过程中会受到不同方式的加密,所以数据接收者在接收数据时,接收到的信息数据都是密文形式的,在这种情况下,即便数据传输过程被病毒所获取,数据具有的模糊性也能对数据信息起到的一定程度的保护作用。此外,链路数据加密技术还能够对传送中的信息数据实行相应的数据信息填充,使得数据在不同区段传输的时候会存在较大的差异,从而扰乱窃取者数据判断的能力,最终达到保证数据安全的目的。

2.2端端数据加密技术在计算机网络安全中的应用

相比链路数据加密技术,端端数据加密技术实现的过程相对来说较为容易。端端数据加密技术主要是借助密文形式完成信息数据的传输,所以数据信息传输途中不需要进行信息数据的加密、解密,这就较好的保障了信息安全,并且该种技术无需大量的维护投入及运行投入,由于端端数据加密技术的数据包传输的路线是独立的,因而即使某个数据包出现错误,也不会干扰到其它数据包,这一定程度上保证了数据传输的有效性及完整性。此外,在应用端端数据加密技术传输数据的过程中,会撤销原有信息数据接收者位置的解密权,除了信息数据的原有接收者,其他接收者都不能解密这些数据信息,这极大的减少了第三方接收数据信息的几率,大大提高了数据的安全性。

2.3数字签名信息认证技术在计算机网络安全中的有效应用

随着计算机相关技术的快速发展,数字签名信息认证技术在提高计算机网络安全中的重要作用日渐突出。数字签名信息认证技术是保障网络安全的主要技术之一,主要是通过对用户的身份信息给予有效的确认与鉴别,从而较好的保证用户信息的安全。目前,数字签名信息认证的方式主要有数字认证以及口令认证两种。数字认证是在加密信息的基础上完成数据信息密钥计算方法的有效核实,进一步增强了数据信息的有效性、安全性。相较于数字认证而言,口令认证的认证操作更为快捷、简便,使用费用也相对较低,因而使用范围更广。

2.4节点数据加密技术在计算机网络安全中的有效应用

节点数据加密技术和链路数据加密技术具有许多相似之处,都是采取加密数据传送线路的方法来进行信息安全的保护。不同之处则是节点数据加密技术在传输数据信息前就对信息进行加密,在信息传输过程中,数据信息不以明文形式呈现,且加密后的各项数据信息在进入传送区段之后很难被其他人识别出来,以此来达到保护信息安全的目的。但是实际上,节点数据加密技术也存在一定弊端,由于其要求信息发送者和接收方都必须应用明文形式来进行信息加密,因而在此过程中,相关信息一旦遭到外界干扰,就会降低信息安全。

2.5密码密钥数据技术在计算机网络安全中的有效应用

保护数据信息的安全是应用数据加密技术的最终目的,数据加密是保护数据信息安全的主动性防治措施。密钥一般有私用密钥及公用密钥两种类型。私用密钥即信息传送双方已经事先达成了密钥共识,并应用相同密钥实现信息加密、解密,以此来提高信息的安全性。而公用密钥的安全性则比较高,其在发送文件发送前就已经对文件进行加密,能有效避免信息的泄露,同时公用密钥还能够与私用密钥互补,对私用密钥存在的缺陷进行弥补。

3数据加密技术应用在计算机网络安全中的有效对策

第3篇

1.1计算机病毒在计算机网络安全问题中,计算机病毒给用户带来的威胁最为严重,并会造成巨大的损失。从其本质上看,计算机病毒是一段特定的程序,这段程序在侵入计算机系统后将会对计算机的正常使用功能造成干扰,并对数据存储造成破坏,且拥有自我复制的能力。最典型的有蠕虫病毒,它以计算机为载体,利用操作系统和应用程序的安全漏洞,主动攻击计算机系统,以网络为传播途径,造成的危害明显。蠕虫病毒具有一般病毒的共同特征,如传染性,隐蔽性,破坏性及潜伏性等,同时也具有自己独有的特点,如不需要文件来寄生(有时可直接寄生于内存当中),对网络连接进行拒绝,以及与黑客技术相结合。其他危害较大的病毒种类还有宏病毒,意大利香肠等。

1.2垃圾邮件和间谍软件当收到垃圾邮件或安装了间谍软件时,常常会使计算机的网络安全陷入不利境地,并成为破坏计算机正常使用的主要因素之一。在计算机网络的应用环境下,由于电子邮件的地址是完全开放的,同时计算机系统具有可广播性,因而有些人或团体就会利用这一特性,进行宗教、商业,或政治等活动,主要方式就是强迫目标邮箱接收特定安排的邮件,使目标邮箱中出现垃圾邮件。与计算机病毒有所区别,间谍软件的主要控制手段为盗取口令,并侵入计算机系统实行违法操作,包括盗取用户信息,实施贪污、盗窃、诈骗等违法犯罪行为,不仅对计算机安全性能造成破坏,同时也会严重威胁用户的个人隐私。

1.3计算机用户操作失误由于计算机用户操作不当而发生的损失,也是影响计算机正常使用并破坏网络安全的重要因素之一。目前计算机用户的整体规模不断扩大,但其中有许多用户并未对计算机的安全防护进行应有的重视,对计算机的合理使用认识不到位,因而在安全防范方面力度不够,这就给恶意攻击者提供了入侵系统的机会,并进而出现严重的安全问题。用户安全意识差的主要表现包括:账号密码过于简单,破解容易,甚至随意泄露;使用软件时进行了错误操作;系统备份不完全。这些行为都会引起网络安全问题的发生。

2计算机网络安全防范的措施

2.1定期进行数据备份为防止因突破情况,如自然灾害,断电等造成的数据丢失,应在平时养成定期数据备份的习惯,将硬盘上的重要文件,数据复制到其他存储设备中,如移动硬盘等。如果做好了备份工作,即使当计算机系统遭受攻击而发生数据毁坏,也无需担心数据的彻底消失,而只需将已经备份的文件和数据再重新恢复到计算机中即可。因此,数据的定期备份是维护计算机网络安全的有效途径之一。如果计算机因意外情况而无法正常启动,也需在重新安装系统前进行数据备份,以便在计算机能够正常使用后完成数据恢复,这在非法入侵系统造成的数据毁坏时也能起到重要的作用。

2.2采用物理隔离网闸物理隔离网闸是一种通过外部设备来实现计算机安全防护的技术手段,利用固态开关读写作为媒介,来实现不同主机系统间的对接,可实现多种控制功能。由于在这一技术手段下的不同主机系统之间,并不存在通信的物理连接、逻辑连接、信息传输命令、信息传输协议,以及基于协议的信息包,只存在无协议“摆渡”,同时只能对存储媒介发出“读”与“写”这两种指令。因此,物理隔离网闸可以从源头上保障计算机网络的安全,从物理上隔离,阻断了带有攻击性质的所有连接,切断黑客入侵的途径,使其无法攻击,无法破坏,真正维护了网络安全。

2.3防火墙技术防火墙是一种常用的计算机安全软件,在计算机和互联网之间构筑一道“安检”关卡。安装了防火墙,所有经过这台计算机的网络通信都必须接受防火墙的安全扫描,从而使具有攻击性的通信无法与计算机取得连接,阻断非授权访问在计算机上的执行。同时,防火墙还会将不必要的端口关闭,并针对指定端口实施通信禁止,从而对木马进行封锁堵截。最后,它可以对特殊站点的访问实施拦截,拒绝来路不明的所有通信,最大程度地维护计算机网络的安全。

2.4加密技术为进一步地维护网络信息安全,保证用户信息不被侵犯,还可使用加密技术来对计算机的系统安全钥匙进行升级,对加密技术进行充分合理的利用能有效提高信息的安全程度。首先是数据加密,基本原理在于通过使用特定算法对目标文件加以处理,使其由原来的明文转为无法识别的代码,通常称为密文,如果需要查看加密前的内容,就必须输入正确的密钥,这样就可防止重要信息内容被不法分子窃取和掌握。相对地,加密技术的逆过程为解密,即将代码转为可读的文件。其次是智能卡技术,该技术与加密技术有较强的关联性。所谓智能卡,其实质为密钥的一种媒介,与信用卡相类似,只能由经过授权的使用者所持有,授权用户可对其设置一定的口令,同时保证设置的口令与网络服务器密码相同,当同时使用口令与身份特征,能够起到极为理想的保密效果。

2.5进行入侵检测和网络监控计算机网络安全技术还包括入侵检测即网络监控。其中,入侵检测是一项综合程度高的安全维护手段,包括统计技术,网络通信技术,推理技术等,起到的作用十分显著,可对当前网络环境进行监督,以便及时发现系统被攻击的征兆。根据分析手段的不同,可将其分为签名法与统计法两种。对于针对系统已知漏洞的攻击,可用签名法来实施监控;对于系统的正常运行阶段,需要对其中的可疑动作是否出现了异常现象进行确认时,可用统计法进行监控,能够从动作模式为出发点进行判断。

2.6及时下载漏洞补丁程序对计算机网络安全的维护应当是一个长期的,动态的过程,因此及时下载漏洞补丁就显得十分必要。在使用计算机来连接网络的过程当中,为避免因存在系统漏洞而被恶意攻击者利用,必须及时下载最新的漏洞补丁,消除计算机应用环境中的种种隐患。可通过特定的漏洞扫描手段对漏洞进行扫描,例如COPS,tripwire,tiger等,都是非常实用的漏洞扫描软件,360安全卫士,瑞星卡卡等软件也有良好的效果,可使用这些软件进行扫描并下载漏洞补丁。

2.7加强用户账号的安全保护为保障计算机网络账号的安全,应加强对账号的保护措施。在计算机应用的网络环境下,许多应用领域都需要账号和密码进行登录,涉及范围较广,包括系统登录,电子账号登录,网上银行登录等等,因此加强对账号的安全防范就有着极其重要的意义。首先,对系统登录来说,密码设置应尽量复杂;其次,对于不同应用方面的账号来说,应避免使用相同或类似的密码,以免造成重大损失;再次,在设置方式上应采用组合的形式,综合使用数字、字母,以及特殊符号;最后,应保证密码长度合适,同时应定期修改密码。

3结论

第4篇

信息安全论文3900字(一):探究计算机网络信息安全中的数据加密技术论文

【摘要】随着近几年网络信息技术的发展,社会生产和生活对网络数据的依赖程度越来越越高,人们对网络信息安全重视程度也随之提升。对于網络信息而言,信息数据安全非常重要,一旦发生数据泄露或丢失,不仅会影响人们正常生活和财产安全,甚至还会影响社会稳定和安全。在此基础上,本文将分析计算机网络信息安全管理现状,探索有效的数据加密技术,为网络环境安全和质量提供保障。

【关键词】计算机;网络信息安全;数据加密技术

引言:信息技术的普及为人们生活带来了许多便利和帮助,但是由于信息安全风险问题,人们的隐私数据安全也受到了威胁。但是,目前计算机网络环境下,数据泄露、信息被窃取问题非常常见,所以计算机网络信息安全保护必须重视这些问题,利用数据加密技术解决此难题,才能维护网络用户的信息安全。因此,如何优化数据加密技术,如何提升网络信息保护质量,成为计算机网络发展的关键。

1.计算机网络安全的基本概述

所谓计算机网络安全就是网络信息储存和传递的安全性。技术问题和管理问题是影响计算机网络安全的主要因素,所以想要提升网络信息安全性能,必须优化信息加密技术和加强信息管理控制,才能为计算机网络安全提供保障。将数据加密技术应用于计算机网络安全管理中,不仅可以提升数据保护权限,限制数据信息的可读性,确保数据储存和运输过程不会被恶意篡改和盗取,还会提高网络数据的保密性,营造良好的网络运行环境。因此,在计算机网络快速发展的环境下,重视网络信息安全管理工作,不断优化数据加密技术,对维护用户信息安全、保护社会稳定非常有利。

2.计算机网络信息安全现状问题

2.1网络信息安全问题的缘由

根据网络信息发展现状,信息安全面临的风险多种多样,大体可分为人文因素和客观因素。首先:网络信息安全的客观因素。在计算机网络运行中,病毒危害更新换代很快,其攻击能力也在不断提升,如果计算机防御系统没有及时更新优化,很容易遭受新病毒的攻击。例如,部分计算机由于系统长时间没有升级,无法识别新木马病毒,这样便已遗留下一些安全漏洞,增加了信息安全风险。同时,部分计算机防火墙技术局限,必须安装外部防护软件,才能提升计算机网络防护能力。其次:网络信息安全的人文因素。所谓人为因素,就是工作人员在操作计算机时,缺乏安全防护意识,计算机操作行为不当,如:随意更改权限、私自读取外部设备、随意下载上传文件等等,严重影响了计算机网络数据的安全性,涉密数据安全也得不到保障。例如,在连接外部设备时,忽视设备安全检查工作,随意插入电脑外部接口,容易导致计算机感染设备病毒,导致计算机网络信息安全受到威胁。

2.2计算机网络信息安全技术有待提升

信息安全是计算机网络通信的重要内容,也是计算机网络通信发展必须攻击的难题。随着信息技术的发展,我国计算机信息安全防御技术也在不断创新升级,能够有效应对病毒冲击危害,但是相比先进国家而言,我国计算机信息技术起步较晚,网络信息安全技术也有待提升。例如,根据我国计算机网络信息安全现状,对新病毒的辨识能力和清除能力较弱,无法有效控制病毒侵害,这对信息安全保护和系统运行都非常不利。因此,技术人员可以借鉴他国安全技术经验,构建出针对性的信息安全防护技术,优化计算机系统安全性能,才能为网络信息安全传输提供保障,避免造成严重的安全事故。

3.数据加密技术分析

3.1对称加密技术

所谓对称机密技术,就是指网络信息传输中所采用的密钥功能,利用加密和解密的方式,提升传输数据的安全性,常常被应用于电子邮件传输中。同时,对称加密技术具有加密和解密密钥相同的特征,所以密钥内容可以通过其中一方进行推算,具备较强的可应用性。例如,在利用电子邮件传输信息时,传输者可以采用加密算法将邮件内容转化为不可直接阅读的密文,待邮件接收者收到数据信息文件后,再采用解密算法将密文还原可读文字,既可以实现数据传输加密的目的,又能确保交流沟通的安全性。从应用角度来讲,对称加密技术操作简捷方便,并且具备较高的安全度,可以广泛应用于信息传输中。但是,对称加密技术欠缺邮件传输者和接收者的身份验证,邮件传输双方密钥有效的获取途径,所以也存在一定的安全风险。

3.2公私钥加密技术

相对于对称加密技术而言,公私钥加密技术在进行信息加密时,加密密钥和解密密钥不具备一致性,密钥安全性更佳。在公私钥加密技术中,信息数据被设置了双层密码,即私有密码和公开密码,其中公开密码实现了信息数据加密工作,并采用某种非公开途径告知他人密钥信息,而私有密码是由专业人员保管,信息保密程度高。因此,在采用公私钥加密技术时,需要先对文件进行公开密钥加密,然后才能发送给接收者,而文件接收者需要采用私有密钥进行解密,才能获取文件信息。在这样的加密模式下,网络数据信息安全度提升,密码破解难度也进一步加大,但是这种加密方式程序较为复杂,加密速度慢,无法实现高效率传播,加密效率相对较低,不适用于日常信息交流传输。

3.3传输加密和储存加密技术

在计算机网络信息安全保护中,数据传输加密、储存加密是重点保护内容,也是信息数据保护的重要手段,其主要目的是避免在数据传输过程中被窃取和篡改风险问题。线路加密和端对端加密是两种主要的传输加密方式,实现了传输端和传输过程的信息安全保护工作。例如,传输加密是对网络信息传输过程中的安全保护,通过加密传输数据线路,实现信息传输过程保护,如果想要停止加密保护,必须输入正确的密钥,才能更改数据加密保护的状态。端对端加密技术是在信息发送阶段,对数据信息实施自动加密操作,让数据信息在传递过程中呈现出不可读的状态,直到数据信息到达接收端,加密密码会自动解除,将数据信息转变为可读性的明文。此外,存取控制和密文储存是储存加密的两种形式。在存取控制模式中,信息数据读取需要审核用户的身份和权限,这样既可以避免非法用户访问数据的问题,又能限制合法用户的访问权限,实现了数据信息安全等级分层保护。

4.计算机网络信息安全中数据加密技术的合理应用

4.1数据隐藏技术

在网络信息数据加密保护中,将数据信息属性转变为隐藏性,可以提升数据信息的可读权限,提升信息安全度。因此,将信息隐藏技术应用于网络信息加密工程中,利用隐蔽算法结构,将数据信息传输隐蔽载体中,可以将明文数据转变为密文数据,在确保信息安全到达传输目的地时,再采用密钥和隐蔽技术对数据信息进行还原,将密文数据还原成明文数据。例如,在企业内部区域网络信息传输时,便可以采用数据隐蔽技术控制读取权限,提升网络信息传递的安全性。因为在企业运行模式下,一些企业信息只限于部分员工可读取,尤其是一些涉及企业内部机密、财务经济等数据,所以需要采用隐蔽载体技术,通过密钥将隐藏的提取数据信息。在这样的加密模式下,企業数据信息安全性得到保障,不仅可以实现信息数据高效率传播,还降低了二次加密造成的安全隐患,控制了员工读取权限,对企业稳定发展非常有利。

4.2数字签名技术

相比公私钥加密技术而言,数字签名技术更加快捷便利,是公私钥加密技术的发展和衍生。将数字签名技术应用于网络信息安全中,在数据传输之前,传输者需要先将数据文件进行私有密钥加密,加密方式则是数字签名信息,而数据文件接收者在收到文件信息后,要使用公共密钥解密文件。由此可见,数字签名技术在公私钥加密技术的基础上,增加了权限身份的审核程序,即利用数字签名的方式,检查数据文件传输者的权限和身份,进一步提升了网络信息传输的安全性。同时,在计算机网络信息安全管理中,根据信息数据管理要求,灵活运用对称加密技术、公私钥加密技术和数字签名技术,充分发挥各项加密技术的优势作用,落实数据传输和存储加密工作。例如,针对保密程度较低的数据信息而言,可采用灵活便利的对称加密技术,而对于保密级别较高的数据而言,即可采用数字签名技术进行加密。通过这样的方式,不仅可以保障网络信息传输效率,优化信息传输的安全性能,还可以提升数据加密技术水平,为网络信息安全提供保障。

4.3量子加密技术

随着计算机信息技术的发展,数据加密技术也在不断创新和优化,信息安全保护质量也随之提升。相比以往的数据加密技术而言,量子加密技术的安全性更好,对数据安全控制效果更佳。将量子力学与加密技术进行有效融合,既可以实现数据传输时的加密操作,又能同时传递解密信息,节省了单独的密钥传输操作,加密方式也更加智能化。例如,在网络信息传输中,一旦发现数据传输存在被窃取和被篡改的风险,量子加密技术会及时作出反应,转变数据传输状态,而数据传输者和接收者也能及时了解数据传输状况。这种数据加密方式一旦发生状态转变是不可复原的,虽然有效避免的数据泄漏风险,但可能会造成数据自毁和破坏问题。同时,由于量子加密技术专业性强,并且仍处于开发试用状态,应用范围和领域比较局限,无法实现大范围应用。

5.结束语

总而言之,为了提升计算机网络信息的安全性,落实各项数据加密技术应用工作非常必要。根据网络信息安全现状问题,分析了对称加密、公私钥加密、数据隐蔽等技术的应用优势和弊端,指出其合理的应用领域。通过合理运用这些数据加密技术,不仅强化了数据传输、存储的安全性,营造了良好的网络信息环境,还有利于提升用户的数据加密意识,促进数据加密技术优化发展。

信息安全毕业论文范文模板(二):大数据时代计算机网络信息安全与防护研究论文

摘要:大数据技术的快速发展和广泛应用为计算机网络提供了重要的技术支持,有效提高了社会经济建设的发展水平。计算机网络的开放性和虚拟性特征决定了技术的应用必须考虑信息安全与防护的相关问题。本文介绍了大数据时代计算机网络安全的特征和问题,研究了如何保证网络信息安全,提出了3点防护策略。

关键词:大数据时代;计算机网络;信息安全与防护

进入信息时代,计算机网络技术已经逐步成为人们的日常工作、学习和生活必备的工具,如电子商务、网络办公、社交媒体等。计算机网络相关技术的发展也在不断改变人类社会的生产模式和工作效率,实现全球各地区人们的无障碍沟通。但在网络世界中,信息的传播和交流是开放和虚拟的,并没有防止信息泄露和被非法利用的有效途径,这就需要从技术层面上考虑如何提高计算机网络信息安全。特别是近年来大数据技术的高速发展,海量数据在网络中传播,如何保证这些数据的可靠性和安全性,是目前网络信息安全研究的一个重要方向。

1大数据时代计算机网络信息安全的特征

大数据是指信息时代产生的海量数据,对这些数据的描述和定义并加以利用和创新是目前大数据技术发展的主要方向。大数据的产生是伴随着全球信息化网络的发展而出现的,在这个背景下诞生了大量的商业企业和技术组织,也为各行各业提高生产力水平和改变生产模式提供了有效帮助。大数据时代的网络特征首先是非结构化的海量数据,传统意义上的海量数据是相关业务信息,而大数据时代由于社交网络、移动互联和传感器等新技术与工具快速发展产生了大量非结构化的数据,这些数据本身是没有关联性的,必须通过大数据的挖掘和分析才能产生社会价值;其次,大数据时代的网络信息种类和格式繁多,包括文字、图片、视频、声音、日志等等,数据格式的复杂性使得数据处理的难度加大;再次,有用信息的比例较低,由于是非结构化的海量数据,数据价值的提炼要经过挖掘、分析、统计和提炼才能产生,这个周期还不宜过长否则会失去时效性,数据的技术和密度都会加大数据挖掘的难度;最后,大数据时代的信息安全问题更加突出,被非法利用、泄露和盗取的数据信息往往会给国家和人民群众造成较大的经济社会损失。传统计算机网络的信息安全防护主要是利用网络管理制度和监控技术手段来提高信息存储、传输、解析和加密的保密性来实现的。在大数据时代背景下,网络信息的规模、密度、传播渠道都是非常多样化的和海量的,网络信息安全防护的措施也需要不断补充和发展。目前网络信息安全的主要问题可以概括为:一是网络的自由特征会对全球网络信息安全提出较大的挑战;二是海量数据的防护需要更高的软硬件设备和更有效的网络管理制度才能实现;三是网络中的各类软件工具自身的缺陷和病毒感染都会影响信息的可靠性;第四是各国各地区的法律、社会制度、宗教信仰不同,部分法律和管理漏洞会被非法之徒利用来获取非法利益。

2大数据时代背景下計算机网络安全防护措施

2.1防范非法用户获取网络信息

利用黑客技术和相关软件入侵他人计算机或网络账户谋取不法利益的行为称为黑客攻击,黑客攻击是目前网络信息安全防护体系中比较常见的一类防护对象。目前针对这部分网络信息安全隐患问题一般是从如下几个方面进行设计的:首先是完善当地的法律法规,从法律层面对非法用户进行约束,让他们明白必须在各国法律的范畴内进行网络活动,否则会受到法律的制裁;其次是构建功能完善的网络信息安全防护管理系统,从技术层面提高数据的可靠性;再次是利用物理隔离和防火墙,将关键数据进行隔离使用,如银行、证券机构、政府部门都要与外部网络隔离;最后是对数据进行不可逆的加密处理,使得非法用户即使获取了信息也无法解析进而谋利。

2.2提高信息安全防护技术研究的效率

大数据技术的发展是非常迅速的,这对信息安全防护技术的研究和发展提出了更高的要求。要针对网络中的病毒、木马和其他非法软件进行有效识别和防护,这都需要国家和相关企业投入更多的人力物力成本才能实现。目前信息安全防护技术可以概括为物理安全和逻辑安全两个方面,其中物理安全是保证网路系统中的通信、计算、存储、防护和传输设备不受到外部干扰;逻辑安全则是要保障数据完整性、保密性和可靠性。目前主要的研究方向是信息的逻辑安全技术,包括安全监测、数据评估、拨号控制、身份识别等。这些技术研究的效率直接影响着网络信息安全,必须组织科研人员深入研究,各级监管部门也要积极参与到网络管理制度的建立和完善工作中来,从技术和制度两个方面来提高信息防护技术的研究效率。

2.3提高社会大众的信息安全防护意识

目前各国都对利用网络进行诈骗、信息盗取等行为进行法律约束,也利用报纸、电视、广播和网络等途径进行信息安全防护的宣传教育。社会大众要认识到信息安全的重要性,在使用网络时才能有效杜绝信息的泄露和盗用,如提高个人电脑防护措施、提高密码强度等。各级教育部门也要在日常的教学活动中对网络信息安全的相关事宜进行宣传和教育,提高未成年人的安全意识,这都是有效提高信息安全防护能力的有效途径。

第5篇

论文摘要:走进新世纪,科学技术发展日新月异,人们迎来一个知识爆炸的信息时代,信息数据的传输速度更快更便捷,信息数据传输量也随之增加,传输过程更易出现安全隐患。因此,信息数据安全与加密愈加重要,也越来越多的得到人们的重视。首先介绍信息数据安全与加密的必要外部条件,即计算机安全和通信安全,在此基础上,系统阐述信息数据的安全与加密技术,主要包括:存储加密技术和传输加密技术;密钥管理加密技术和确认加密技术;消息摘要和完整性鉴别技术。

当前形势下,人们进行信息数据的传递与交流主要面临着两个方面的信息安全影响:人为因素和非人为因素。其中人为因素是指:黑客、病毒、木马、电子欺骗等;非人为因素是指:不可抗力的自然灾害如火灾、电磁波干扰、或者是计算机硬件故障、部件损坏等。在诸多因素的制约下,如果不对信息数据进行必要的加密处理,我们传递的信息数据就可能泄露,被不法分子获得,损害我们自身以及他人的根本利益,甚至造成国家安全危害。因此,信息数据的安全和加密在当前形势下对人们的生活来说是必不可少的,通过信息数据加密,信息数据有了安全保障,人们不必再顾忌信息数据的泄露,能够放心地在网络上完成便捷的信息数据传递与交流。

1信息数据安全与加密的必要外部条件

1.1计算机安全。每一个计算机网络用户都首先把自己的信息数据存储在计算机之中,然后,才进行相互之间的信息数据传递与交流,有效地保障其信息数据的安全必须以保证计算机的安全为前提,计算机安全主要有两个方面包括:计算机的硬件安全与计算机软件安全。1)计算机硬件安全技术。保持计算机正常的运转,定期检查是否出现硬件故障,并及时维修处理,在易损器件出现安全问题之前提前更换,保证计算机通电线路安全,提供备用供电系统,实时保持线路畅通。2)计算机软件安全技术。首先,必须有安全可靠的操作系统。作为计算机工作的平台,操作系统必须具有访问控制、安全内核等安全功能,能够随时为计算机新加入软件进行检测,如提供windows安全警报等等。其次,计算机杀毒软件,每一台计算机要正常的上网与其他用户交流信息,都必须实时防护计算机病毒的危害,一款好的杀毒软件可以有效地保护计算机不受病毒的侵害。

1.2通信安全。通信安全是信息数据的传输的基本条件,当传输信息数据的通信线路存在安全隐患时,信息数据就不可能安全的传递到指定地点。尽管随着科学技术的逐步改进,计算机通信网络得到了进一步完善和改进,但是,信息数据仍旧要求有一个安全的通信环境。主要通过以下技术实现。1)信息加密技术。这是保障信息安全的最基本、最重要、最核心的技术措施。我们一般通过各种各样的加密算法来进行具体的信息数据加密,保护信息数据的安全通信。2)信息确认技术。为有效防止信息被非法伪造、篡改和假冒,我们限定信息的共享范围,就是信息确认技术。通过该技术,发信者无法抵赖自己发出的消息;合法的接收者可以验证他收到的消息是否真实;除合法发信者外,别人无法伪造消息。3)访问控制技术。该技术只允许用户对基本信息库的访问,禁止用户随意的或者是带有目的性的删除、修改或拷贝信息文件。与此同时,系统管理员能够利用这一技术实时观察用户在网络中的活动,有效的防止黑客的入侵。

2信息数据的安全与加密技术

随着计算机网络化程度逐步提高,人们对信息数据传递与交流提出了更高的安全要求,信息数据的安全与加密技术应运而生。然而,传统的安全理念认为网络内部是完全可信任,只有网外不可信任,导致了在信息数据安全主要以防火墙、入侵检测为主,忽视了信息数据加密在网络内部的重要性。以下介绍信息数据的安全与加密技术。

2.1存储加密技术和传输加密技术。存储加密技术分为密文存储和存取控制两种,其主要目的是防止在信息数据存储过程中信息数据泄露。密文存储主要通过加密算法转换、加密模块、附加密码加密等方法实现;存取控制则通过审查和限制用户资格、权限,辨别用户的合法性,预防合法用户越权存取信息数据以及非法用户存取信息数据。

传输加密技术分为线路加密和端-端加密两种,其主要目的是对传输中的信息数据流进行加密。线路加密主要通过对各线路采用不同的加密密钥进行线路加密,不考虑信源与信宿的信息安全保护。端-端加密是信息由发送者端自动加密,并进入TCP/IP信息数据包,然后作为不可阅读和不可识别的信息数据穿过互联网,这些信息一旦到达目的地,将被自动重组、解密,成为可读信息数据。

2.2密钥管理加密技术和确认加密技术。密钥管理加密技术是为了信息数据使用的方便,信息数据加密在许多场合集中表现为密钥的应用,因此密钥往往是保密与窃密的主要对象。密钥的媒体有:磁卡、磁带、磁盘、半导体存储器等。密钥的管理技术包括密钥的产生、分配、保存、更换与销毁等各环节上的保密措施。网络信息确认加密技术通过严格限定信息的共享范围来防止信息被非法伪造、篡改和假冒。一个安全的信息确认方案应该能使:合法的接收者能够验证他收到的消息是否真实;发信者无法抵赖自己发出的消息;除合法发信者外,别人无法伪造消息;发生争执时可由第三人仲裁。按照其具体目的,信息确认系统可分为消息确认、身份确认和数字签名。数字签名是由于公开密钥和私有密钥之间存在的数学关系,使用其中一个密钥加密的信息数据只能用另一个密钥解开。发送者用自己的私有密钥加密信息数据传给接收者,接收者用发送者的公钥解开信息数据后,就可确定消息来自谁。这就保证了发送者对所发信息不能抵赖。

2.3消息摘要和完整性鉴别技术。消息摘要是一个惟一对应一个消息或文本的值,由一个单向Hash加密函数对消息作用而产生。信息发送者使用自己的私有密钥加密摘要,也叫做消息的数字签名。消息摘要的接受者能够通过密钥解密确定消息发送者,当消息在途中被改变时,接收者通过对比分析消息新产生的摘要与原摘要的不同,就能够发现消息是否中途被改变。所以说,消息摘要保证了消息的完整性。

完整性鉴别技术一般包括口令、密钥、身份(介入信息传输、存取、处理的人员的身份)、信息数据等项的鉴别。通常情况下,为达到保密的要求,系统通过对比验证对象输入的特征值是否符合预先设定的参数,实现对信息数据的安全保护。

第6篇

关键词:同态加密技术 应用 数据

中图分类号:TP311 文献标识码:A 文章编号:1003-9082(2013)12-0002-01

同态加密是一种加密形式,它允许人们对密文进行特定的代数运算得到仍然是加密的结果,与对明文进行同样的运算,再将结果加密一样。通俗的讲,这项技术令人们可以在加密的数据中进行诸如检索、比较等操作,得出正确的结果,而在整个处理过程中无需对数据进行解密。

以往加密手段的弊端在于它通常是将数据保存在盒子内而不让外界使用或者分析数据,只有使用解密密钥将盒子打开,才能对数据进行分析和计算。在同态加密环境下,敏感数据一直处于加密状态,而应用系统无需解密可以用加密的数据按照正常的业务逻辑处理业务,这样公司将敏感的信息储存在远程服务器里,既避免从当地的主机端发生泄密,又保证了信息的使用和搜索,解决了云计算发展面临的客户对数据云端存储安全担忧的难题。

一、同态加密原理

同态加密技术,就是将数据加密成难以破译的数字字符串,能对这些加密后的字符串进行数学处理,然后解密结果。如果用数学方法表述,假设加密操作为 E,明文为 m,加密得 e,即 e = E(m),m = E'(e)。已知针对明文有操作 f,针对 E 可构造 F,使得 F(e) = E(f(m)),这样 E 就是一个针对 f 的同态加密算法。

我们举一个简单的例子,看看同态加密是如何处理2+3这样的问题:假设数据已经在本地被加密了,2加密后变为22,3加密后变为33。加密后的数据被发送到服务器,在进行相加运算。然后服务器将加密后的结果55发送回来。然后本地解密为5。

同态加密是基于数学难题的计算复杂性理论的密码学技术,被冠以“密码学的圣杯”称号,为找到同态加密算法的解决方案,密码专家苦苦探寻了30多年,一直无果而终。颇具戏剧性的是同态加密技术解决方案思路竟然是出自在纽约一家咖啡店的聊天中,2008年,IBM研究员Craig Gentry在与朋友一起喝咖啡交流时获得灵感,提出一种基于理想格(Ideal lattice)的全同态加密算法,成为同态加密领域的重大突破和创新。

Craig Gentry在他的同态加密经典论文《Computing Arbitrary Functions of Encrypted Data》中通过一个虚构场景诠释了同态加密技术,这个场景是一个叫丽丝的珠宝店主如何为自己的珠宝店防盗:

“Alice是一家珠宝店的店主,她打算让员工将一些贵重的珠宝组合成首饰,但是她由担心被小偷盯上。于是她造了一个手套箱存放制作好的首饰,而钥匙她随身保管。”

通过手套箱,员工可以将手伸入箱子来装配首饰,仅限于此。爱丽丝 则可以通过钥匙,向手套箱中添加原材料,并取出制作好的首饰。

下图是个大型的手套箱示例图

这个故事形象的体现了同态加密技术原理,其中:

店主爱丽丝>最终用户

首饰原材料>原始数据

钥匙>网络

锁住手套箱>加密

员工>数据计算过程

完整的首饰>数据计算结果

二、同态加密技术发展历程

同态加密的技术经过半同态加密到全同态加密算法理论发展经历了很长时间的发展。我们熟知的RSA公钥加密算法是1977年由Ron Rivest、AdiShamirh和LenAdleman在(美国麻省理工学院)开发的,是只具备乘法同态的算法。1999年Pascal Paillier在《Public-Key Cryptosystems Based on Composite Degree Residuosity Classes》论文中实现了加法同态。此后加密专家长期以来一直在寻找实现全同态加密技术,也就是数据加密成难以破译的数字字符串,能对这些加密后的字符串进行数学处理,然后解密结果。2009年IBM 研究员 Craig Gentry在论文《Fully homomorphic encryption using ideal lattices》给出一种全同态加密算法,即实现了乘法及加法的全同态加密算法。

不过目前的全同态加密方案在实用性上还存有问题,因为该方案耗费的计算时间太长,一般情况下,采用同态加密的应用处理时间是非机密的应用的处理要增加万倍的数量级甚至更高,密码专家们一直在坚持不懈的完善同态加密算法或寻找更好、更快的算法。

在2011年美国麻省理工(MIT)的一个研究小组的开源项目CryptDB首次解决了全同态加密技术的实用性问题,它将数据嵌套进多个加密层,每个都使用不同的密钥,允许对加密数据进行简单操作,使得此前全同态加密方案加密数据操作所增加的数以万亿倍计算时间,减少到只增加了15-26%左右。麻省理工计算机科学和人工智能实验室(CSAIL)的CryptDB研究项目的数据库软件允许用户查询加密的SQL数据库,而且能够在不解密储存信息的情况下返回结果,这一点对于云存储来说意义重大。

三、同态加密计算安全应用前景展望

同态加密技术的可对加密状态数据直接进行各种操作而不会影响其保密性的特性,使得它成为数据敏感性要求高的应用系统首选的安全保障技术,其在匿名投票、多方安全计算以及云计算领域有着广泛的应用

1.匿名投票系统

匿名投票又称电子投票,在2004美国大选首次采用电子投票方式,以防止2000 年美国总统大选出现的打孔卡计票争义。

在一个投票系统中,有投票方、计票方、宣布方三权分立。投票人保有个人投票秘密,其他各方都不能知道投票人投票的选择;计票方能够在数据加密的情况下,对数据汇总统计,得出候选人的得票率。

采用同态加密计算就可以实现投票系统的安全要求。其实现原理如下:

投票方采用公钥加密,只有宣布方拥有私钥,投票方将加密的票送到计票方,计票方利用同态特性进行操作,得到汇总的结果,宣布方拿到该结果后解密之,即得总票数。计票方解不出票面信息,于是可以防止计票方从中作弊,宣布方也不知道单独每张票的情况,从而实现了匿名。

2.多方安全计算

安全多方计算(Secure Multiparty Computation, SMC)是指一组互不信任的参与者,在不泄露各自私有信息的前提下进行的多方合作计算。自图灵奖得主A. C. Yao于上世纪80年代提出安全多方计算的概念以来,其在密码学上的地位也日渐重要,它是电子选举、电子拍卖等密码学协议的基础。

例如:Alice认为她的了某种遗传疾病,想验证自己的想法,正好她知道Bob有一个关于疾病的DNA模型的数据库,如果她把自己的DNA样品寄给Bob,那么Bob就可以给出她的DNA诊断结果,同时Bob也就知道了她的DNA及相关私人信息,可是Alice不想别人知道她的隐私,所以她这样请求Bob帮忙诊断自己DNA的方式是不可行的。

同态机密的技术就可以解决Alice的问题,她可以对自己的数据加密交给Bob,Bob通过同态加密计算,把得到加密状态的结果在交付Alice,然后Alice解密得到自己想要的结果。

3.云计算

近年来,“云计算”成为全球信息技术领域的最大热点,云计算的迅猛发展,安全问题已经成为了云计算应用的首要关注点。

由于云计算涉及个人和企业运算模式的改变,涉及个人和企业的敏感信息,因此云计算面临的第一个重要问题就是云计算的安全。虽然云中心平台的建设已充分考虑了各种安全因素,如身份认证、网络安全、防病毒、灾备等等,但数据存储安全一直没有得到很好的解决,如何保证云中用户程序的安全标准不被分析、数据不被复制盗窃、商业秘密不被侵害。

云的安全可信是云得到广泛应用的重要前提。人们对云计算的安全的关注程度,就像关注网上银行安全一样,正是这个原因,诸如银行、保险行业的企业一直不敢把业务应用放到云中心。同态加密算法的出现,给云数据存储及云计算应用带来的革命性的改变和提升,由于采用同态加密的技术,数据采用加密的方式存储,不会泄露真实的数据,云计算应用能够按照加密的数据,运算处出用户所需的正确的结果,这样用户可以在没有安全顾虑的情况下享受云计算带来的便利。

采用同态加密的云计算应用逻辑图如下:

同态加密技术为解决云计算网络安全和隐私保护提供了新的思路,利用同态加密技术可以解决云计算中海量数据信息的安全存储、高效检索以及智能处理,大大拓宽了云计算的业务模式,在云计算网络认证与访问控制、电子商务、多方保密计算 、匿名投票领域应用前景广阔,同态加密技术对云计算未来的发展普及意义重大。

第7篇

关键词:计算机网络;数据加密技术;数据恢复技术

中图分类号:TP393.0

1 计算机网络数据加密技术

1.1 数据加密的基本概念。计算机网络中的数据加密技术是对数据信息进行加密处理的过程,通过数据加密可以将原文信息变为一串不可直接读取的密文,接收方在接收到密文信息后,利用自己拥有的密钥对密文信息进行解密,接收方才能显示并读取原文信息。数据加密技术中需要按照一定的算法作为支撑才能进行。数据加密过程是指将原数据信息变为密文信息,而数据解密过程是指将密文信息转化为原数据信息,两者是密切结合在一起存在的,缺一不可。

通过对数据信息进行加密处理,可以将数据信息隐藏起来,避免非法用户截取、阅读、篡改原始数据信息,从而达到保护数据安全、维护计算机网络安全的目的。

1.2 数据加密技术。数据加密技术包括对称加密技术、非对称加密技术、混合密钥加密技术,对称加密技术和非对称加密技术的区别在于加密和解密过程中使用的密钥是否一致,而混合密钥是将对称加密技术和非对称加密技术的优点结合到一起进行利用的。下文将对三种数据加密技术进行介绍。

(1)对称加密技术。由于对称加密技术简单、容易实现的特点,使得对称加密技术得到了较为广泛的应用。对称加密技术中的对称是指加密和解密是使用相同的密钥,密钥是对称存在的,以此称之为对称加密技术。通信双方在通信时,发送方首先将密钥发送给接收方,发送方对通信数据信息进行加密后,将密文信息传送给接收方,接收方利用自己持有的密钥进行数据解密,从而读取数据信息。对称加密技术能提高网络安全性的前提是密钥没有被恶意窃取,同时也没有被泄露。

对称加密技术中涉及到的算法包括DES算法、IDEA算法、AES算法。DES算法利用置换技术、代替等多种密码技术,将数据信息划分为64位大小的块,其中8位作为奇偶校验,56位作为密钥。IDEA算法按标准为64位的组进行划分,并对密钥的程度进行规定,即为128位。AES算法是区块加密标准,是一个迭代的算法,该算法中规定的区块长度为固定的128位,而密钥长度可以有所不同。

对称加密技术的主要优点是加密速度快、保密性高,也有一定的缺点,在加解密的过程中,必须确保密钥的安全,如果密钥发生了泄露,获得密钥的人就可以对截获的数据信息进行阅读、修改等操作,因此,为了提高密钥的安全性,保证密钥安全的发送,就需要付出高代价进行完善。

(2)非对称加密技术。我们平时常说的公开密钥加密技术就是非对称解密技术,在使用非对称加密技术时,加密密钥和解密密钥是不同的两个密钥,加密密钥即公钥,解密密钥即私钥,这两个密钥需要配对使用。公钥是对外公布的密钥,用于加密;私钥则由私人拥有,用于解密。通信双方在发送数据信息时,发送方用接收方已经公布的公钥对数据信息进行加密,然后进行数据传输,接收方接收到数据后,用私钥解密,将密文信息进行还原。对于对称加密技术来说,在网络传输过程中将密钥进行传递,很可能被恶意窃取,使数据信息的安全受到威胁。而对于非对称加密技术来说,公钥是公开的,私钥不需要进行传输,这就避免了密钥传输过程中存在的安全问题。

非对称加密算法中RSA加密算法应用范围广,该算法的优点是操作简单、实现方便,同时能够用于数据加密和数字签名等维护计算机网络的安全性能中。RSA加密算法属于支持可变长密钥的算法,主要以大数难以被质因数分解假设为基础。RSA算法的优点为密钥少便于管理;公钥分配过程简单,易于实现;私钥不需要传递,提高了私钥的安全性。而RSA算法的缺点为产生密钥过程复杂;加解密速度慢,运算代价高。

(3)混合密钥加密技术。由于对称加密技术和非对称加密技术都有其各自的优缺点和适应范围,所以将两者的特点进行结合,即混合密钥加密技术,以此来对计算机网络中的数据进行加密,提高数据传输中的安全性。在混合密钥加密技术中,首先通信双方中的发送方利用对称加密技术对通信数据信息进行加密,然后将对称密钥通过非对称加密技术进行加密并传输,接收方接收到密文后,用私钥对对称密钥进行解密,从而获得解码密文的密钥,并利用该密钥对密文进行解码,以此来读取原数据信息。这种混合密钥加密的方法,结合了对称和非对称加密技术的优点,提高了加解密的速度,同时也提高了数据信息的安全性。

2 数据备份与恢复技术

利用数据加密技术可以提高数据在传输过程中的安全性,然而由于计算机本身的硬件故障、病毒破坏、非正常操作等都可以造成计算机内数据信息的丢失,为数据的安全带来问题。为了减少计算机的数据损失,提高计算机内数据的安全性和完整性,要定期或不定期的对数据信息进行备份,当计算机中的数据出现问题时,可以利用数据备份信息对计算机内的数据进行恢复。

2.1 利用专业软件进行数据备份和恢复。利用专业软件来恢复数据是一种非常重要的方法。常用的软件有Easy Recovery、Final Data、Norton Ghost等。Easy Recovery的功能很强大,通过对硬盘的扫描,可以恢复由误操作(误删除、误格式化)、重新分区造成的数据损失,如果分区表受损,可以使用该软件进行恢复,然而该软件不能完全恢复包含多个簇的文件。Final Data的优点是有较快的数据恢复速度,并且可以扫描计算机的逻辑硬盘和物理硬盘,根据扫描的结果来队服计算机的数据。Norton Ghost可以对一个或者多个分区盘进行备份,并将备份文件保存在安全的存储介质中,如保存到光盘中。当计算机受到损坏时,专业数据恢复软件可以快速的找回丢失的信息,并进行系统重建工作。

2.2 在BIOS中建数据防护。在BIOS中建数据防护主要是以BIOS中内嵌的硬盘工具为基础进行数据恢复,此技术通过主要是对硬盘的数据进行完整的备份,并存储在一定的介质中,而这个存储介质仅要求是硬盘。该技术是对数据进行完整备份,因此利用该技术进行数据备份与恢复会耗费很长的时间。镜像文件以隐藏的形式存储杂硬盘中,因此不存在误删除的现象,加强了数据信息的安全性。

2.3 网络备份存储管理系统。网络备份存储管理系统主要是以存储设备和硬件设施为基础,加上存储管理软件的应用,来统一管理数据备份信息,由于相关软件的应用,系统可以根据备份文件进行数据恢复。网络备份存储管理系统是需要备份管理软件作为支撑,以此来完成系统的功能,并能够根据备份数据来处理数据恢复的过程,从而很好的实现计算机网络数据备份与恢复的智能化管理和高效。

3 结束语

由于计算机网络的广泛应用,计算机网络的安全影响着社会生活的方法面面,维护计算机网络的安全是我们必须要义不容辞的责任。计算机网络安全技术很多,如数据加密技术、数据恢复技术,然而单纯的一种技术对于计算机网络的安全性来说是远远不够的,必须要结合多种技术,从不同的角度进行努力,来提高网络的安全性能。

参考文献:

[1]徐雁萍.数据加密技术的研究[C].中国气象学会2008年年会第二届研究生年会分会场论文集,2008(11):151-158.

[2]黄志清.网络安全中的数据加密技术研究[J].微型电脑应用,2000(05):20-21.

[3]王栋松.计算机网络数据加密技术探讨[J].文教资料:信息技术,2006(01):139-140.

[4]王.浅谈计算机数据备份和数据恢复技术[J].科技资讯:信息技术,2009(01):26.

第8篇

一、数据加密的历史起源与基本概念

1、数据加密的历史起源

香农在创立单钥密码模型的同时,还从理论上论证了几乎所有由传统的加密方法加密后所得到的密文,都是可以破译的,这一度使得密码学的研究陷人了严重的困境。

到了20世纪60年代,由于计算机技术的发展和应用,以及结构代数、可计算性理论学科研究成果的出现,使得密码学的研究走出了困境,进人了一个新的发展阶段。特别是当美国的数据加密标准DES和非对称密钥加密体制的出现,为密码学的应用打下了坚实的基础,在此之后,用于信息保护的加密的各种算法和软件、标准和协议、设备和系统、法律和条例、论文和专著等层出不穷,标志着现代密码学的诞生。电脑因破译密码而诞生,而电脑的发展速度远远超过人类的想象。

2、数据加密的基本概念

所谓计算机数据加密技术(Data Encryption Technology),也就是说,通过密码学中的加密知识对于一段明文信息通过加密密钥以及加密函数的方式来实现替换或者是移位,从而加密成为不容易被其他人访问和识别的、不具备可读性的密文,而对于信息的接收方,就能够通过解密密钥和解密函数来将密文进行解密从而得到原始的明文,达到信息的隐蔽传输的目的,这是一种保障计算机网络数据安全的非常重要的技术。

二、数据存储加密的主要技术方法

1、文件级加密

文件级加密可以在主机上实现,也可以在网络附加存储(NAS)这一层以嵌入式实现。对于某些应用来讲,这种加密方法也会引起性能问题;在执行数据备份操作时,会带来某些局限性,对数据库进行备份时更是如此。特别是,文件级加密会导致密钥管理相当困难,从而添加了另外一层管理:需要根据文件级目录位置来识别相关密钥,并进行关联。

在文件层进行加密也有其不足的一面,因为企业所加密的数据仍然比企业可能需要使用的数据要多得多。如果企业关心的是无结构数据,如法律文档、工程文档、报告文件或其他不属于组织严密的应用数据库中的文件,那么文件层加密是一种理想的方法。如果数据在文件层被加密,当其写回存储介质时,写入的数据都是经过加密的。任何获得存储介质访问权的人都不可能找到有用的信息。对这些数据进行解密的唯一方法就是使用文件层的加密/解密机制。

2、数据库级加密

当数据存储在数据库里面时,数据库级加密就能实现对数据字段进行加密。这种部署机制又叫列级加密,因为它是在数据库表中的列这一级来进行加密的。对于敏感数据全部放在数据库中一列或者可能两列的公司而言,数据库级加密比较经济。不过,因为加密和解密一般由软件而不是硬件来执行,所以这个过程会导致整个系统的性能出现让人无法承受的下降。

3、介质级加密

介质级加密是一种新出现的方法,它涉及对存储设备(包括硬盘和磁带)上的静态数据进行加密。虽然介质级加密为用户和应用提供了很高的透明度,但提供的保护作用非常有限:数据在传输过程中没有经过加密。只有到达了存储设备,数据才进行加密,所以介质级加密只能防范有人窃取物理存储介质。另外,要是在异构环境使用这项技术,可能需要使用多个密钥管理应用软件,这就增加了密钥管理过程的复杂性,从而加大了数据恢复面临的风险。

4、嵌入式加密设备

嵌入式加密设备放在存储区域网(SAN)中,介于存储设备和请求加密数据的服务器之间。这种专用设备可以对通过上述这些设备、一路传送到存储设备的数据进行加密,可以保护静态数据,然后对返回到应用的数据进行解密。

嵌入式加密设备很容易安装成点对点解决方案,但扩展起来难度大,或者成本高。如果部署在端口数量多的企业环境,或者多个站点需要加以保护,就会出现问题。这种情况下,跨分布式存储环境安装成批硬件设备所需的成本会高得惊人。此外,每个设备必须单独或者分成小批进行配置及管理,这给管理添加了沉重负担。

5、应用加密

应用加密可能也是最安全的方法。将加密技术集成在商业应用中是加密级别的最高境界,也是最接近“端对端”加密解决方案的方法。在这一层,企业能够明确地知道谁是用户,以及这些用户的典型访问范围。企业可以将密钥的访问控制与应用本身紧密地集成在一起。这样就可以确保只有特定的用户能够通过特定的应用访问数据,从而获得关键数据的访问权。任何试图在该点下游访问数据的人都无法达到自己的目的。

三、数据加密技术展望

数据加密技术今后的研究重点将集中在三个方向:第一,继续完善非对称密钥加密算法;第二,综合使用对称密钥加密算法和非对称密钥加密算法。利用他们自身的优点来弥补对方的缺点。第三,随着笔记本电脑、移动硬盘、数码相机等数码产品的流行,如何利用机密技术保护数码产品中信息的安全性和私密性、降低因丢失这些数码产品带来的经济损失也将成为数据加密技术的研究热点。

四、结论

信息安全问题涉及到国家安全、社会公共安全,世界各国已经认识到信息安全涉及重大国家利益,是互联网经济的制高点,也是推动互联网发展、电子政务和电子商务的关键,发展信息安全技术是目前面临的迫切要求,除了上述内容以外,网络与信息安全还涉及到其他很多方面的技术与知识,例如:客技术、防火墙技术、入侵检测技术、病毒防护技术、信息隐藏技术等。一个完善的信息安全保障系统,应该根据具体需求对上述安全技术进行取舍。

参考文献

[1] Christof Paar,Jan Pelzl,马小婷,常用加密技术原理与应用,清华大学出版社,2012.09.

[2] Dafydd Stuttard,石华耀,傅志红,黑客攻防技术宝典:Web实战篇,人民邮电出版社,2013.05.

[3] 徐立冰,云计算和大数据时代网络技术揭秘,人民邮电出版社,2013.04.

[4] 九州书源,电脑黑客攻防,清华大学出版社,2011.08.

[5] 科尔伯格(Collberg C.),纳美雷(Nagra J.),崔孝晨,软件加密与解密,人民邮电出版社,2012.05.

[6] 段钢,加密与解密,电子工业出版社,2009.07.

[7] 武新华,加密解密全攻略,中国铁道出版社,2010.09.

第9篇

论文摘要:本文在阐述计算机网络的基础上分析了当前计算机系统安全及网络安全等问题,提出了一些相应的防范措施,提出了计算机网络信息安全应注重研究的几个问题。

随着国际互联网的迅猛发展,世界各国遭受计算机病毒感染和黑客攻击的事件屡屡发生,严重地干扰了正常的人类社会生活。因此,加强网络的安全显得越来越重要,防范计算机病毒将越来越受到世界各国的高度重视。

一、计算机病毒

计算机病毒就是指编制或在计算机程序中插入的破坏计算机功能或者破坏数据,影响计算机使用,并能自我复制的一组计算机指令或程序代码。计算机病毒的特性表现为传染性、隐蔽性、潜伏性和破坏性。计算机病毒的检测方法主要有人工方法、自动检测(用反病毒软件)和防病毒卡。

二、计算机系统安全

计算机信息系统的安全保护包括计算机的物理组成部分、信息和功能的安全保护。

1、实体安全

计算机主机及外设的电磁干扰辐射必须符合国家标准或军队标准的要求。系统软件应具备以下安全措施:操作系统应有较完善的存取控制功能,以防止用户越权存取信息;应有良好的存贮保护功能,以防止用户作业在指定范围以外的存贮区域进行读写;还应有较完善的管理能力,以记录系统的运行情况,监测对数据文件的存取。

2、输入输出控制

数据处理部门的输出控制应有专人负责,数据输出文件在发到用户之前,应由数据处理部门进行审核,输出文件的发放应有完备手续,计算机识别用户的最常用的方法是口令,所以须对口令的产生、登记、更换期限实行严格管理。系统应能跟踪各种非法请求并记录某些文件的使用情况,识别非法用户的终端。计算机系统必须有完整的日志记录,每次成功地使用,都要记录节点名、用户名、口令、终端名、上下机时间、操作的数据或程序名、操作的类型、修改前后的数据值。

三、网络安全

计算机网络安全的目标是在安全性和通信方便性之间建立平衡。计算机的安全程度应当有一个从低、中到高的多层次的安全系统,分别对不同重要性的信息资料给与不同级别的保护。

1、计算机网络安全现状

计算机网络安全具有三个特性:

⑴保密性:网络资源只能由授权实体存取。⑵完整性:信息在存储或传输时不被修改、信息包完整;不能被未授权的第二方修改。⑶可用性:包括对静态信息的可操作性及对动态信息内容的可见性。

2、计算机网络安全缺陷

⑴操作系统的漏洞:操作系统是一个复杂的软件包,操作系统最大的漏洞是I/O处理——I/O命令通常驻留在用户内存空间,任何用户在I/O操作开始之后都可以改变命令的源地址或目的地址。⑵TCP/IP 协议的漏洞:TCP/IP协议由于采用明文传输,在传输过程中,攻击者可以截取电子邮件进行攻击,通过在网页中输入口令或填写个人资料也很容易攻击。⑶应用系统安全漏洞:WEB服务器和浏览器难以保障安全,很多人在编CGI 程序时不是新编程序,而是对程序加以适当的修改。这样一来,很多CGI 程序就难免具有相同安全漏洞。⑷安全管理的漏洞:缺少网络管理员,信息系统管理不规范,不能定期进行安全测试、检查,缺少网络安全监控等,对网络安全都会产生威胁。

3、计算机网络安全机制应具有的功能

网络安全机制应具有身份识别、存取权限控制、数字签名、审计追踪、密钥管理等功能。

4、计算机网络安全常用的防治技术

⑴加密技术:加密在网络上的作用就是防止重要信息在网络上被拦截和窃取。加密技术是实现保密性的主要手段,采用这种技术可以把重要信息或数据从一种可理解的明文形式变换成一种杂乱的、不可理解的密文形式,并以密文形式将信息在线路上传输,到达目的端口后将密文还原成明文。常见的加密技术分单密钥密码技术和公开密钥技术两种。这两种加密技术在不同方面各具优势,通常将这两种加密技术结合在一起使用。⑵防火墙技术:所谓“防火墙”,是指一种将内部网和公众访问网(如Internet)分开的方法,它实际上是一种隔离技术。防火墙是在两个网络通讯时执行的一种访问控制尺度,它能允许你“同意”的人和数据进入你的网络,同时将你“不同意”的人和数据拒之门外,阻止网络中的黑客来访问你的网络,防止他们更改、拷贝、毁坏你的重要信息。实现防火墙的技术包括四大类——网络级防火墙(也叫包过滤型防火墙)、应用级网关、电路级网关和规则检查防火墙。防火墙的作用是防止外部用户非法使用内部网络资源,并且保护内部网络的设备不受破坏,防止内部网络的主要数据被窃取。一个防火墙系统通常由屏蔽路由器和服务器组成。屏蔽路由器是一个多端口的IP路由器,它通过对每一个到来的IP包依据一组规则进行检查,来判断是否对之进行转发。屏蔽路由器从包头取得信息,例如协议号、收发报文的IP地址和端口号、连接标志以至另外一些IP选项,对IP包进行过滤。

四、结论

计算机病毒在形式上越来越难以辨别,造成的危害也日益严重,这就要求网络防毒产品在技术上更先进、功能上更全面。而计算机网络安全是计算机技术快速发展过程中日益突出的问题,目前中国的科研机构正广泛开展这一方面研究,主要是反病毒研究、反黑客问题研究、计算机网络防火墙技术、加密技术、安全机制。到时,计算网络就会得到更安全的保障。

参考文献

1、陈立新:《计算机:病毒防治百事通》[M],北京:清华大学出版社,2001

相关文章
相关期刊