时间:2023-03-23 15:22:20
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇航天工程论文范例。如需获取更多原创内容,可随时联系我们的客服老师。
英文名称:Journal of North China Institute of Aerospace Engineering
主管单位:河北省教育厅
主办单位:北华航天工业学院
出版周期:双月刊
出版地址:河北省廊坊市
语
种:中文
开
本:大16开
国际刊号:1009-2145
国内刊号:13-1276/G4
邮发代号:
发行范围:国内外统一发行
创刊时间:1989
期刊收录:
核心期刊:
期刊荣誉:
联系方式
他是一位桃李满天下的教授,也是一位硕果累累的学者,在生命的长河里,他的每一个侧面,都值得我们尊敬。他就是清华大学航天航空学院工程热物理研究所教授宋耀祖。
峥嵘岁月,风云流荡。自1970年毕业于清华大学精密仪器系以来,他始终拼搏在热科学与技术领域的科研前沿阵地,着重对工程技术的研究,已累计发表学术论文约180篇,与忠合编“热物理激光测试技术”等书籍。这些应用基础研究工作为解决工程科技方面的问题提供了宽广的理论基础。
多次承担国家自然科学基金,“国家重点基础研究发展规划项目”(973项目),863项目,国家教委博士点基金等资助的科研项目以及云南省、日本大金公司等企业的节能减排项目。特别是在工业过程的节能与余热利用领域,以他为技术负责人的学术团队在国内外首次发明了一种热法磷酸生产的新技术,发明专利技术已获8个奖项,其中重要的奖项有“国家技术发明奖二等奖”、“第十一届中国专利优秀奖”。“云南省技术发明一等奖”、“第四届发明创业奖”、“第二届全国杰出专利工程技术奖”等。该发明技术现已实现了产业化,取得了显著的经济效益与节能减排的社会效益。在航天器的热控制技术领域,他被总装备部任命为“载人航天工程(921工程)”出舱航天服专家组成员,为确保“神七”出舱航天服内生命保障系统的正常工作做出了贡献。荣获总装备部中国载人航天工程办公室表彰的“为神舟七号载人航天飞行任务的圆满成功做出了重要贡献”的荣誉证书。
岁月荏苒,当年风华正茂的栋梁之才虽已不复往日的英姿飒爽,但他沧桑的脸庞上却写满了智慧与亲切,他乐于将自己的科研经验与后辈分享,他说在他长期的工程技术研究中,最大的体会是,取得工程技术研究成功的三要素是:基础、实践、团队。其一,“基础”乃是指通过系统的理论学习掌握宽厚的基础理论,如数学,物理,化学等基础知识(这些基础知识往往通过自学去掌握是十分困难的),借助于这些基础知识能通过自学进一步理解与掌握有关领域的专业知识与专门的技能;其二,“实践”是取得工程技术研究成功的必经之路。亲临工程现场,参加实验与试验,向一切有实践经验的人请教等都是实践的重要环节。在实践的基础上进行理论分析,通过理论与实践的结合,确定研究目标,明确技术难点,寻求与探索解决问题的技术方案,技术途径;其三,“团队”乃是指,在明确解决问题的技术方案基础上,组织与带领好一支学术团队,在团队内既有分工,又有协作。既要发挥每一个团队成员的聪明才智,又要给每一位团队成员创造各自的发展空间。
从踌躇满志的懵懂学子,到崭露头角的青年才俊,从学识渊博的科研专家,到声望显赫的著名学者,一步步走来,“科研”二字是催促他前进的动力,“勤奋”二字是对他过往岁月最好的注解。近年来,由于年龄和身体原因,宋耀祖已从教学科研一线退了下来,他的角色在转变,不变的是,他仍在为社会贡献着自己的一份力量。利用退休后的时间,他还从事着“中国特色社会主义是中国发展的必由之路”的研究,先后为教师、学生讲授党课10多次,荣获清华大学“学习宣传贯彻党的十七大精神”征文一等奖,在“纪念改革开放三十年――中国专家学者科学与人文论坛”大会上获优秀论文一等奖。
专业学位教育是我国硕士生教育的一种形式,是为完善我国学位制度,加速培养经济建设和社会发展所需要的高层次应用型专业人才而设置的。从1991年开始,我国开始实行专业学位教育。1997年,我国正式开展了工程硕士专业学位硕士生的培养工作。2009年起,我国开始招收全日制专业学位硕士,这是对以往硕士生培养过于偏重学术、脱离市场、知行脱节等弊端的一种完善,也是培养高端应用型人才的必然选择。截至2010年,我国全日制专业学位硕士招生人数约为10万人。预计到2015年,我国学术型和专业型硕士生在校生人数要实现1:1。然而,随着专业学位硕士生特别是全日制专业学位硕士招生人数的迅速扩大,其教育培养方面的问题也日益突出。
1.1社会认可度不高,对全日制专业学位硕士教育存在一定误解
全日制专业学位硕士从开始招生至今只有短短4年时间,属于“新生事物”,所以无论是生源还是用人单位方面,对其认识还不够全面,存在一些偏差。很多人将全日制专业学位硕士与过去传统的在职专业学位硕士生混为一谈,甚至认为相对于学术型硕士生而言,全日制专业学位硕士招生条件低、培养目标要求不高、培养模式及课程体系设置与学术型差别不大、学位证书不被社会广泛认可,就业前景不乐观。加之,很多全日制专业学位硕士由其它专业调剂而来,认为专业型不如学术型。因此,导致很多全日制专业学位硕士生对自己的身份都不认可。同时,很多用人单位在招聘时,往往优先考虑学术型,对专业学位存在一定歧视。在快速发展的同时,全日制专业学位硕士还尴尬遭受着“不如学术硕士硬”、“山寨硕士生”、“培养无特色”、“就业前景担忧”等质疑。
1.2教育管理特色不突出,缺乏有效培养过程监控和质量保障体系
目前,很多高校尚未对全日制专业学位硕士建立专门的教育管理体制。不同学科的全日制专业学位硕士在培养目标、培养方案以及学位要求等方面均有较大的差异,但是高校在对硕士生及导师的管理、质量评价及考核评估上大都采取一样的教育管理制度,缺乏特色性和科学性,也严重影响了全日制专业学位生的培养质量。例如,在培养方面,学术型硕士生偏重理论与研究能力的培养,而全日制专业学位硕士更注重专业实践能力的培养。然而,具体到培养方案、选题报告、中期考核等培养过程各个环节,很多培养单位还没有制定完善的、特点突出的、有别于学术型的具体方案和有效的监控措施。例如,课程设置上除了少数几门学位课不同之外,并无其它差异,缺乏新意,导师也不清楚针对全日制专业学位硕士是否需要增加额外的要求,应该如何区别对待。专业实践也由于实践基地建设滞后、实践管理制度不健全等原因,少有获得真正落实。此外,全日制专业学位在论文类型、评价标准与机制等学位论文规范方面,均未能突出专业学位特色。
2全日制专业学位硕士培养过程监控与质量保障的探索与实践
西安交通大学航天航空学院现有“航天工程”和“航空工程”两个专业工程硕士学位授予点。2006年起,招收“航天工程”在职专业学位硕士生。2010年开始,招收“航天工程”全日制专业学位硕士。2014年,“航空工程”领域也开始招收专业学位硕士生。目前,已累计招收全日制专业学位硕士近130人,累计毕业近70人。毕业生中近40%的学生就业于相关领域的研究机构,另有近40%就业于国内大中型企业,其余20%攻读博士学位或从事教育工作。经过近几年迅速发展,全日制专业学位硕士不论从招生规模还是在校生人数等都趋于稳定,这就对如何提高教育水平、提升培养质量提出了更高的要求。
2.1多渠道提高生源质量,严格导师资格认证量
鉴于全日制专业学位发展时间短,认可度还不够广泛,为了提高生源质量,西安交通大学航天航空学院采取多渠道招生的办法。首先,从我院“力学”本硕连读生、“工程结构分析”及“飞行器设计”专业中,选拔一定数量成绩较优异的本科生经推荐、免试为全日制专业学位硕士。其次,在统考生中,报考专业学位的考生在笔试、面试方面区别于学术型考生,内容都更侧重工程应用方面,面试考官也选具有丰富工程背景的教师担任;另外,报考学术型的考生如果愿意转报专业学位,将给予优先录取。最后,对于招生剩余名额,会从报考机械、能动、电气、电信、材料等相关专业的考生中预录,将同时愿意转为专业学位的学术型考生与报考专业学位考生一同笔试、面试,按顺选拔综合成绩高的考生进行录取。这样,一方面保证了较高的生源质量,也能达到不同学科交叉优势互补的效果,另一方面通过采取自愿报考的形式,从一开始就稳固了考生的心理认可度。
同时,对全日制专业学位硕士的指导教师的招生资格进行严格把关。由于专业学位对应的学科只有一级没有二级,全日制专业学位硕士招生目录上并没有标明特定的导师,而是在每年招生前期,会对导师就招收全日制专业学位硕士的意愿进行摸底,并对那些愿意招收的导师在总招生数量方面给予一定支持,同时对导师的招生资格进行严格把关,除了常规的要求之外,对其工程背景、主持横向课题以及到款情况提出具体要求,为之后的专业实践做好铺垫。
2.2准确定位,明确培养目标
专业学位硕士生教育在教学理念、培养目标、培养模式、课程设置、质量标准和师资队伍建设等方面,与学术型硕士生教育有所不同,要突出专业学位硕士生教育的实践应用特色。进一步而言,全日制专业学位硕士的生源特点和培养模式既不同于学术型硕士生,也不同于在职工程硕士研究生,其培养定位应有别于上述两者,有其自身特色。总体来说,全日制专业学位硕士的培养,应在课程教学的同时兼顾学科与行业的特点,注重专业实践能力和职业素质的培养。
具体到航空、航天工程领域,全日制专业学位硕士的培养目标是,培养德、智、体全面发展,具有航空航天工程领域坚实宽广的基础理论和深入的专业知识,具有较强的解决航空航天工程实际问题能力和良好职业素养的高层次应用型、工程技术和管理人才,能够在航空航天工程及其相关领域研究机构或大型企业承担专业技术及管理工作。
2.3培养过程监控措施及其实施
全日制专业学位硕士学制为2~3年。在第四学期可申请转博,通过学院考核并获得专业学位后第五学期转入博士阶段学习攻读博士学位,这样,为那些愿意并适合继续深造的硕士生提供了机会,一定程度上提升了专业学位在硕士生中的认可度。
全日制专业学位硕士的培养环节包括:课程学习、专业实践、中期考核、学位论文等环节,均实行学分制。以校内导师指导为主,并辅助以校外研究单位或企业具有高级职称的企业导师合作指导。校内导师与校外导师分工明确:校内导师负责硕士生在校学习与科研等,并负责在校外研究单位或企业聘请高级职称及以上的全职人员作合作导师,与合作导师一起落实并管理硕士生专业实践并指导学位论文。
全日制专业学位硕士在校期间,须修满内容包括课程学习、学术活动、中期考核、专业实践和学位论文的学分。除全校公共课之外,学院专门设置了以实际应用为导向、以提高分析和解决实际问题能力为核心的专业课程,作为学位课或选修课供硕士生选择。此外,为拓宽硕士生知识面,要求在答辩前听够规定的学科前沿性讲座。
大部分课程学习集中在第一学期完成,第二学期开始,硕士生陆续进入专业实践阶段,专业实践应与学位论文工作相结合,专业实践时间不少于6个月。考虑到每位硕士生专业实践的情况有所差别,所以,专业实践一般应在校外实践单位完成,可以连续完成,也可以利用寒暑假分段完成。对于以导师主持的横向课题为专业实践内容的硕士生,部分专业实践内容可在校内进行,但须保证有多次赴实践单位进行调研与研开的经历。校内导师与合作导师要定期检查专业实践情况,处理专业实践中出现的有关问题。第三学期结束前,学院对全日制专业学位硕士进行中期考核,除课程学习、成果发表之外,重点考察专业实践情况,对于考核未通过者,将作为重点跟踪对象转入下一次考核。专业实践结束后,硕士生提交由校内导师、合作导师、实践单位共同签署意见的书面实践报告,并以PPT的形式向学院汇报并接受考核,未通过者将重新进行专业实践,并取消其校内指导教师下一年度招生资格。
奖助金评定方面,全日制专业学位硕士与学术型硕士生享受同等待遇,单列指标,分开评定。依据课程学习成绩、科研成果等进行排名,末位学生将转为自筹生。对于经济困难的学生,建议导师提供相应的助研岗位津贴,并协助其申请助学贷款,或者提供勤工助学岗位等。此外,为鼓励硕士生重视专业实践,对于专业实践审查中成果突出或解决了重大工程问题的学生及其导师会给予一定额度的奖励。
2.4学位规范多样化,评价机制特色化
学位论文工作是研究生培养的主要组成部分,是对研究生进行科学研究或承担专业技术工作的技能训练,是培养研究生创新能力,综合运用所学知识发现、分析和解决问题能力的主要环节,是可否被授予学位的关键。由于全日制专业学位硕士培养的特殊性,对其学位论文的要求及评价机制都不能完全照搬学术型硕士生的办法。
我们的做法是:学位论文可由校内导师与经推荐的业务水平高、责任心强的具有高级技术职称的企业技术人员联合指导。学位论文选题应直接来源于生产实践或具有明确的工程应用背景,研究成果要有实际应用价值,论文拟解决的问题要有一定的技术难度和工作量,论文要具有一定的先进性和实用性。要把完成学位论文和专业实践有机结合起来。学位论文可以是调研报告、软件研制、规划设计、产品开发等形式,论文字数要求3万左右。全日制专业学位硕士在通过中期考核后,才可申请学位。在完成学位论文并通过预答辩后,方可进入论文评阅及正式答辩。送审时,论文评阅人共2名,其中1名必须是校外研究机构或企业具有高级职称人员。答辩委员会由3至5名具有副高以上专业技术职称的专家组成,其中一位应是相关专业领域的校外研究机构或企业的专家,也可以是硕士生的校外教师。全日制专业学位硕士研究生按要求在规定的学习期限内完成培养计划各环节要求且成绩合格,通过正式学位论文答辩后,由学院学位分委员会审核通过后,报校学位评定委员会批准授予专业学位。
通过以上措施的实施和不断完善,几年以来,我院全日制专业学位硕士教育管理逐步进入正轨,规范化和特色化愈来愈明显。全日制专业学位硕士生对专业学位的认可度有了较大提升,不再认为自己是“二等公民”。毕业生就业形势良好,就业率达100%,去向包括研究院所、政府部门、事业单位和大中型企业等。然而,在实际管理中也发现了一些问题,如全日制专业学位硕士生中期考核、奖助金评定等指标体系中除专业实践外与学术型硕士生的差异不大,部分学生专业实践内容与学位论文结合不够紧密等,这些都需要在今后的研究与工作中不断改进。
3提升全日制专业学位硕士教育质量的思考与对策
3.1转变管理理念,调整管理模式
在“世界竞争力报告”的排名中,中国“合格工程师”的数量和质量排名靠后,中国高等工程教育亟需进一步改革。改革表现之一,就是教育模式的多样化,全日制专业学位硕士由此应运而生。如何转变管理理念、调整管理模式,是值得深入思考的问题,也是将全日制专业学位硕士培养树立为真正教育品牌的关键所在。
首先,全日制专业学位硕士的培养特点决定了学生不能只坐在书斋中,要真正走到社会实践中去。基于这个特点,学校应积极调整过去“关门搞学术”的管理思路和管理模式,在教学设备、实验仪器、社会实践资源等方面下功夫,实现教学、科研、实践的良性互动。其次,完善综合质量评价体系。全面的人才培养质量评价体系应该是内部评价和使用者外部评价相结合的综合评价体系。对于全日制专业学位硕士教育质量的评价,除了在招生、培养、专业实践、学位答辩等环节中建立综合评价机制外,还要引入外部评价机制,根据综合评价结果逐步调整管理理念与模式,这也是全日制专业学位硕士教育能否真正得到社会各界认可的关键所在。最后,加强对全日制专业学位管理人员的培养,建立一支爱岗敬业、责任心强、素质高的管理队伍。
3.2充分调动各方面积极性,促进实践与就业
“专业实践是重要的教学环节,充分的、高质量的专业实践是专业学位教育质量的重要保证”。全日制专业学位硕士的教育目标,是培养面向社会特定职业需求的高端专业人才,因此,要特别注重专业实践对其职业素养与技能的提高。具体说来,一方面应充分发挥学院和导师的作用,加大实践基地建设的力度。专业型硕士研究生的授课教师和导师,应本着“实践第一”的原则合理匹配,更多吸纳一些具有企业一线科研、管理、经营经验的副高职称以上人员加入授课、指导教师队伍。应以横向课题为主,要求指导教师将所指导的专业型研究生纳入课题组,参与完成一些任务。另一方面,加大全日制专业学位硕士教育投入,用于包括开展教学改革与研究、导师培训、课程建设、硬件设施配置、与实践单位交流合作、校外导师聘任、就业指导等方面。充分调动社会、行业和有关用人单位的积极性,积极争取各方面资源,拓宽专业学位硕士就业渠道。
3.3借鉴国外专业学位硕士教育的有益经验
西方很多国家在专业学位教育上起步较早,发展迅速。以美国为例,它是当今世界上专业学位研究生教育最发达的国家。美国专业学位早期主要向德国学习,到1970年后,“本土化”趋势开始加强。经过近90年的发展,美国专业学位研究生教育为社会培养了大批高素质实用型人才,有力推动了美国经济快速增长,逐步形成结构日益合理的专业学位研究生教育体系。美国专业学位教育发展的有益经验,为我国发展全日制专业学位硕士教育提供了一定的借鉴意义。
一般一个版面2500字以内。论文字数不同,需要的版面数量不同。不同期刊收费都是不一样的。没有一个统一的标准。有很多因素决定每个人花的钱都不一样。比如正刊和增刊的价格天壤之别。
《弹箭技术》兵工弹箭情报刊物。以刊登国外弹箭专业技术论文为主,报道国外弹箭技术发展动态,沟通国内外专业发展信息,为弹箭专业的科研、生产、教学、使用等部门提供情报,并开展学术交流。《弹箭技术》获中文核心期刊(1992)。院士论坛、装备管理与装备指挥、军事航天理论与应用、航天工程与装备试验、电子信息装备与信息工程、基础理论与方法、成果与专著
都是按照所占的版面和字数收费的。一般一级核心刊物正常价格都便宜,但对论文质量要求较高,越是正规的刊物价格反而越低,二级核心刊物3500字左右有的就将近1000元,而增刊只需300元,版面费这个没有常规,各地有各地的政策、价格,但总之,要投正刊,一般都需要1000元左右,还得根据您论文的字数和质量,质量勉强的,价格就高。省级刊物价格也不低,都在800-900元左右,算起来还是核心期刊划算。
关键词:CDIO模式;航天专业;课程体系;大学生创新实践项目
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)21-0051-02
一、引言
目前诸多高校针对空间工程、飞行器系统与工程、导弹工程等多种航天专业设置的本科生课程,可划分为力学、航空宇航、电子、信息与控制等多个系列课程。同时,航空航天等技术领域内很多问题,其研究对象可能既是航天问题又是力学问题,具有与多学科多专业广泛交叉、相互渗透,与实际工程结合紧密的特点。基于上述原因,为了提高航天专业本科人才的培养质量,如何在有限的课时计划内、在有限的课程数目内有效设计航天专业固体力学系列课程,是一个值得探讨的问题。
随着高校内部增大学生的实践比重、面向工程能力培养的呼声日渐高涨,笔者所在的教学组借鉴了起源于美国麻省理工MIT的国际工程教育模式――CDIO模式,在航天专业的固体力学系列课程的设计与应用中进行了相应的教学探索与教学实践,期望通过该模式在教学实践中的正确引入与有效发展,更新教师教学理念与实践手段,增加课程实践比重,充分调动学生学习效率与积极性,为航天或力学专业工程师的培养提供参考。
二、CDIO模式与航天专业力学系列课程的结合途径
国际工程教育模式CDIO,是以产品、过程和系统全生命周期的开发与运用为背景,包含了构思、设计、实施和运行(Conception,Design,Implementation,Operation,简称CDIO)4个教育和实践训练环节。它与航天专业力学系列课程的有机结合,可以考虑如下几个途径:
(一)CDIO模式的起源
CDIO是一种基于传授航天领域技术知识与培养预备工程师能力而起源产生的工程教育模式,其创始人是美国麻省理工MIT航空航天系Edward Crawley教授,其发展初期在2004年左右。可见,将CDIO模式与航天专业力学系列课程的结合,则具有一定的合理性和先天优势,是一种积极有益的尝试。
(二)基于CDIO教育理念形成课程观
CDIO模式是基于“做中学”的教育理念,是一种将实践过程与理论教育相结合的教育理念,结合该模式在航天专业力学系列课程的设计中可形成两种课程观:首先,是一种凸显了“社会需求”的课程观,即根据工程师的社会角色与责任,培养工科毕业生具备较好的工程能力与深厚的技术基础知识,在课程体系与课程内容上,并不是按照严密的学科知识体系来组织课程,而是强调基于社会现实需求来选择和编排;其次,亦是一种强调了“学生为主体”的课程观,即学生的学习效果侧重于从学生的实践感知和实践经验出发来构件知识和能力,基于“做中学”强化学生探究兴趣和实践能力,从而体现了学与做的结合、知与行的统一。
(三)明确实践对象与执行方案
CDIO工程教育模式主要特点是深化技术知识基础和实际职业能力的二元学习经验模式,且该模式的基本原则是反复强化实践,因此CDIO模式的实践必须包括两个或者更多的设计与实施环节。具体来说,航天专业固体力学系列课程体系的实践对象包括如下三类环节:第一个是突出导论性基础课程,即引导学生入门工程实践,领略工程技术的魅力;第二个是初级的实践环节,即针对核心基础课程《工程力学》开展课堂一线教学改革研究;第三个是高级的实践环节,即针对来源于科研任务的设计综合项目进行教学改革实践。
三、CDIO模式下航天专业固体力学系列课程的具体设计与教学实践
教学理念的转变最终体现为课程设置、教学内容与实践对象的改革。在我校2012本科人才培养方案中,我院结合CDIO模式对航天专业固体力学系列导论课程进行了具体设计与教学实践的工作,主要包括如下三个方面:
(一)导论性课程的设置
导论性课程是一个早期的基础工科课程,我院针对航天专业的大一新生设置了导论课程《空天工程导论》,要求选课学生具有一定的数理基础即可。该课程内容主要介绍飞行简史、工程学简介、航空器飞行原理、结构与动力系统等基本概念、基本知识,通过它为入学新生搭建了航空航天器设计、构造、应用所需的知识框架。同时,课程还提供了一个初级的设计―实现的实践,让学员参与水火箭或LTA飞行器的设计与制作。
设置导论课程的主要目的快速引导学生了解航天器的基本构造及工作原理,让学生参与入门的工程实践,从而激发学生兴趣和后期加强学习的主动性。
目前,我院30学时的《空天工程导论》课程已经成功申请为我校的精品视频课程,主讲教师的授课教案和讲义脚本已经完成,且授课视频录制已完成一半以上。
(二)《工程力学》课程的教学改革
首先,调研了近年来国内高校在《工程力学》课程中的改革研究:例如,天津科技大学的李秋h在建构主义教学基础上建立“刨设问题情境”教学法[1],山东英才学院的来小丽实施项目驱动教学法[2],哈尔滨学院的张田梅探索了研究性教学法在工程力学课程教学中的实践。上述内容从不同方法与形式来提高学生处理分析和解决工程实际问题的能力,均可作为低年级核心力学课程改革的组成部分。
其次,调整了我院的《工程力学》教学内容:在静力学部分中重点介绍构件的受力分析、简化与平衡规律;在材料力学部分中以杆件的轴向拉压、扭转和弯曲三个基本变形为研究目标,以“内力分析―内力计算―应力应变计算”为逻辑分析主线,结合强度理论、稳定性分析或能量法来优化组织教学内容,并删除了图乘法和摩尔圆等内容。
然后,改革了我院的《工程力学》教学方法与成绩评定:理论讲授采用了习题讲解、启发式、研讨式、案例式等多元化教学方法;实验操作侧重学生动手能力培养,要求学生按照2~3人合作或单人独立完成课程内13项实验内容,同时实验室采取了鼓励课外开放式实验的机制;成绩评定是将考核点分布于教学全过程中,即由平时成绩、课堂讨论、实验操作、实验报告、科技小论文、期末成绩等考核点综合评定最终成绩。
最后,给出《工程力学》课程近年内取得的成绩:2015年《工程力学》评为校优课程;2015年委托科学出版社再版了《工程力学》教材;2015年成功申报了36学时的MOOC课程《工程力学》,目前主讲人和授课内容已确定,2015年完成了省精品课程《工程力学》复核工作,并向湖南省高校数字教学资源中心提交了课程教学视频、课件、教学大纲、电子教案、教学案例、试题习题、文献资料、教学成果、软件工具等电子材料整理;2015年该课程主讲老师分别获得了学校教学质量新星奖和学校本科教学优秀个人一等奖;2015年实验室新增加了XL3418K互动式普及型材料力学实验装置,完成了12个虚拟实验的材料整理。
(三)大学生创新实践项目与本科毕业设计综合项目的优化
CDIO模式将顶峰级实践体验作为本科教育的顶点。该实践环节往往侧重于学生对以前所学知识的综合运用以及创新能力的培养,要求学生在大三或大四年级中申请了综合项目实践,以团队或个人形式承担来源于科研项目的、更为复杂的实际任务。
我院高年级本科生顶峰级实践环节大多数包括大学生创新实践项目与本科毕业设计综合项目两类。例如,为了优化本科毕业设计模式,笔者所在课题团队采取“双团队设计项目”的集成教学方法进行了如下实践工作:首先,成立了以航天方面的学科带头人为核心,包括结构动力学与设计、振动控制、姿态控制、电子电路共5人组成的教师团队;将总体设计、主控分系统、姿控分系统、动力学建模与分析、帆板振动分系统、星体结构设计等六个子项目形成课题任务书,让学生自主选择,并形成了自然分工、相互合作的学生团队;之后,学生会在教师的指导下,按照任务书计划在规定的时间段内(两个或多个学期)逐步完成开题审查、中期检查、方案设计、理论推导与计算、设计制造、实验验证、撰写报告、项目验收或毕业答辩等步骤。
在课题团队的努力下,近年来取得了如下可喜的成绩:2015年课题团队成员指导的省级大学生创新实践项目《座椅弹性缓冲器等效刚度分析与实验研究》顺利验收,并且验收结论为优秀;课题团队指导了2015年国家级大学生创新实践项目《非对称复合材料拉伸-扭转耦合结构设计》,目前为在研阶段;继续完善了学校级的基础力学虚拟仿真实验教学分中心、应用力学虚拟仿真实验教学分中心、力学与航天工程虚拟仿真实验教学中心的工作,并且在省实践教学示范中心的基础上,实验室2016年成功申请为国家级力学与航天工程虚拟仿真实验教学中心。
四、结束语
对航天专业固体力学系列课程进行设计与应用的教学实践表明,由于航天航空领域内很多问题是多学科交叉融合、与实际工程联系紧密的问题,应用CDIO教育理念中深化技术知识基础和实际职业能力的二元学习经验模式,对于学生掌握扎实的专业知识和技能,感受鲜活的科学研究过程,激发创新意识起到了良好的促进作用。
参考文献:
【关键词】应用型 汽车服务工程 人才培养 课程体系
近年来,在高等教育大众化、多样化的背景下,部分新建本科院校将学校定位于应用型本科教育,以服务地方为己任,培养适应社会需求的高层次应用型人才为目标,走以“应用化、特色化、地方化”为特点的发展道路。作为新升格的本科院校,桂林航天工业学院以培养应用型本科人才为核心任务,努力加强师资队伍建设、教学质量建设和实验实训基地建设。
随着我国汽车产业的高速发展,汽车服务业已发展成为一个极具发展空间和潜力且要求越来越高的技术服务性行业,但高素质、高层次汽车服务人才的严重缺乏已成为制约国内汽车服务业持续快速发展的瓶颈。出于培养广西地方经济发展急需的高层次应用型汽车服务人才的目的,桂林航天工业学院在首批申报的6个本科专业中申请设置汽车服务工程专业,经教育部批准,从2012年开始招生,由此成为广西第二所举办该专业的高等院校。为了达到人才培养目标,我们进行了许多有益的探索。
一、明确汽车服务工程专业应用型人才培养目标和基本要求
(一)汽车服务工程专业应用型人才培养目标和规格
确定汽车服务工程专业的人才培养目标应该以举办该专业的宗旨及专业特点为出发点,同时也要根据汽车服务工程专业的发展趋势、区域经济对人才需求及地方性高校生源构成情况等诸多因素来决定。
桂林航天工业学院作为地方应用型本科高校,主要承担培养应用型人才的任务。按照学院“产学融合、异科融合、工学融合”的教学方针,汽车服务工程专业遵循以现代汽车服务技术为主线,坚持实施融汽车技术应用、电子技术和计算机科学于一体的宽口径、厚基础教育, 以培养德智体美全面发展、理论基础扎实、工程素质高、动手能力强、具有创新精神的面向汽车服务业生产、建设、管理、服务第一线的高素质的应用型人才培养为主要目标。其规格为:培养具有扎实的汽车产品知识及技术基础, 掌握必要的工商管理方面的理论、汽车市场营销、汽车维修服务、国际汽车贸易和一定的现代信息技术和网络技术等方面的知识,具备“懂技术、擅经营、会服务”的综合素质, 能够从事汽车产品设计服务、汽车生产服务、汽车销售服务、汽车技术服务、汽车运输服务等领域工作的高级应用型复合人才。
(二)汽车服务工程专业应用型人才的基本要求
1.知识结构要求
掌握人文社会科学、基础知识和自然科学基础知识;掌握本专业领域所必需的机械工程基础理论知识和汽车专业理论知识;能熟练阅读外文专业资料,有一定的外语交流能力;了解本专业学科的发展现状和发展趋势,并具有本专业前沿技术、新能源、节能环保等方面先进的科学知识。
2.素质要求
本专业毕业生应具备良好的公民道德和汽车服务职业道德;具备积极进取的工作态度、求真务实的工作作风;具有良好的心理素质,良好的工作适应能力和团队合作精神;身体素质达到国家规定的体育锻炼标准。
3.能力要求
作为应用型人才,学生的能力体现在基本能力、专业能力和综合能力三个方面。基本能力是指学生应具备良好的语言文字沟通能力以及文献检索、资料查询以及计算机综合应用能力。专业能力是学生应具备汽车市场调查和营销管理能力;具有汽车电气、电子控制技术分析能力;具有汽车技术状况测试与评估,汽车故障检测、诊断及排除等工程技术能力;具有汽车运用管理、汽车服务企业管理能力。综合能力是指学生应具备良好的学习能力与创新能力,发现、分析和解决综合性复杂技术问题的能力;具备获取新知识、不断开发自身潜能和适应知识经济、技术进步及岗位要求变更的能力。
4.职业资格证书要求
用人单位普遍注重应聘者的职业能力和相应的职业资格证书。因此,作为应用型本科院校汽车服务工程专业的学生在学习基础通用知识和专业知识的同时, 还应接受专业技能的培训,毕业时具备汽车维修工(高级)、二手车鉴定评估师、汽车营销师、汽车碰撞估损师、汽车保险公估师等职业技能素质,我们鼓励学生考取一个或多个与本专业相近的职业资格证书, 以提高学生的技术应用能力和就业竞争力。
二、建立“本科教育+职业技能素养,3.5+0.5”的人才培养模式
人才培养模式一般是指为实现人才培养目标而采取的培养过程的构造样式和运行方式。一所地方应用型高校能否形成特色,关键在于其人才培养模式是否具有特色,能否培养出适应地方社会需要的高素质应用型高级人才。笔者所在的桂林航天工业学院针对汽车服务工程专业提出了“本科教育+职业技能素养,3.5+0.5”的培养模式,该培养模式将4年的专业理论课和专业实践课压缩为三年半完成,最后一学期学生到企事业单位实习同时完成毕业设计(论文)。
在人才培养过程中,围绕培养汽车服务市场需求的高素质应用型人才这一目标,坚持专业改革与企业需求相适应,培养目标与用人标准相一致,教学计划与职业生涯相结合,技能训练与岗位要求相协调的原则。以培养和提高汽车服务工程专业学生的实际工作技术应用能力和就业竞争力为主线,以全方位能力培养为根本,以校企合作为依托,以工学结合为平台,课程改革为根本,职业考证为入口,将职业素质教育贯穿人才培养全过程。以“用人要求课程设置专业理论教育实践环节教育师资建设”为工学结合人才培养逻辑建设主线,重实践建设强师资队伍,促进资源保障条件建设。将职业素质教育贯穿人才培养全过程。根据职业岗位需要的“基本技能”“专业能力”和“综合能力”,按照技术领域和职业岗位的实际要求,在加强专业理论知识教育的基础上,以培养专业技术应用能力和综合技能为本位,理论联系实际,使学生通过校内环境下的实习和校外实训基地的具体实践,获得最为直接、有效的职业岗位经验,完成从学校到社会、从理论到实践、从模拟岗位到实际工作岗位的对接。
三 构建模块化汽车服务工程专业课程体系
模块化课程体系的最大特点是具有较强的动态特征和极大的柔性特征, 能在保证汽车服务工程专业大学生基本素质培养和专业理论教育的基础上充分发掘大学生的个性特点并加以引导, 提高汽车服务工程专业大学生的创新能力和实践能力。
桂林航天工业学院根据汽车服务工程专业的人才培养目标以及学生应具备的知识、能力和素质要求,将课程体系划分为通识教育、理论教育和实践教育三大模块,本专业毕业要求达到的最低总学分为200学分。其中通识教育模块的学分数为32学分(必修27学分,选修5学分),占总学分数的16%,包括《基本原理》《职业发展与就业指导》《大学体育》《航天概论》《文学欣赏》等主要课程;理论教育模块的学分数为85学分(必修66学分,选修1分)占总学分数的42.5%,包括《大学英语》《高等数学》《机械制图与CAD》《机械设计》《汽车构造》《汽车理论》《汽车营销与策划》《汽车服务工程》等主要课程;实践教育模块的学分数为83学分(课内实践36学分,集中实践47学分),占总学分数的41.5%,主要包括《金工实习》《机械设计课程设计》《汽车拆装实习》《汽车故障检测诊断实训》《汽车营销实训》《驾驶实习》《汽车维修工培训及考证》《汽车营销师培训及考证》《毕业实习》《毕业设计》等主要实践教学内容。该课程体系完全突破了高校传统的以学科为本位的学术化课程结构,充分的体现了培养高级应用型人才所需的“厚基础,多方向,重实践,强能力”的课程结构特点。
四、结语
具有创新精神和实践能力的高素质汽车服务工程专业高级应用型人才培养是一项复杂的系统工程,需要不断探索, 开拓创新。只有不断推进教学改革,积极探寻和完善人才培养模式、构建合理的课程体系、加大师资队伍建设和实验实训基地建设力度,才能保证专业人才的培养质量满足社会市场需求。
【参考文献】
Technology, Department of Electrical and
Computer Engineering, USA
Missile Guidance and
Control Systems
2004, 675 pp.
Hardcover EUR 259.00
ISBN 0-387-00726-1
G. M.塞奥里斯 著
虽然导弹制导和控制系统的出现源自军事目的,但是这项技术已经应用于很多领域,比如机器人、工业过程控制和全球定位系统(GPS, Global Positioning System)。本书详细的阐述了这项技术的最新幕后,战略和战术导弹及其对给定目标的制导、控制和采取的策略。
本书论述了关于制导飞行的数学,涵盖了如下几个论题:导弹的空气动力学、导弹的数学模型、武器发射、全球卫星定位系统(GPS)、地形轮廓匹配(TERCOM, Terrain Contour Matching)、巡航导弹的力学化方程、以及弹道导弹制导。
全书共分7章:第1章回顾了过去和现在的制导导弹系统,以及现代武器的演化;第2章讨论了导弹通用运动方程,其中包括通用坐标系、刚体运动方程、D'Alembert定理、以及拉格朗日旋转坐标系;第3章阐述了空气动力学和系数,空气动力学的力和动量的处理,以及导弹寻找目标和制导自动化等问题;第4章处理了各种战略制导的各个重要技术问题,包括自动制导、命令制导、比例导航和扩充比例导航;第5章讨论武器发射系统和技术;第6章主要阐述战术导弹,包括经典双体问题和Lambert理论、隐式和显式制导、大气重入、以及弹道导弹的拦截;第7章关注巡航导弹理论和设计,主要讨论了巡航导弹导航的概念、地形匹配制导的概念、以及全球定位系统。每一章末尾都标明进一步阅读和学习的论文和书籍。除此之外,本书的几个附录也为读者提供了很必要的信息:附录A.几个基本参数;附录B.技术词汇表;附录C.同义词索引表;附录D.标准大气;附录E.导弹的分类及定义;附录F.过去和现在的导弹系统。
本书的读者必须熟悉微积分、常微分方程和一些现代控制论的知识,书中提供了很多实际的例子,使得概念更加易于理解。本书适合航空航天工程学生,以及从事航天制导技术和控制技术研究的工程师阅读。
丁丹,硕士生
(中国科学院计算技术研究所)
关键词:航天类专业 人工智能 教学探索
中图分类号:G64 文献标识码:A 文章编号:1674-098X(2014)10(b)-0155-02
面对航天科技迅猛发展,现代军备技术快速提升,培养具有专业性的高素质航天类人才,是我国航天科技发展的战略选择,也是航天重点高校面向并有效服务航天事业的历史责任。航天类本科生的教育形式也需要突破传统的方式,着重多样性、前沿性、工程性,因此,该专业的各门课程教育都应该结合专业特点,探索新的教学模式。
人工智能自1956年诞生50多年以来,引起众多科研机构、政府和企业的空前关注,已成为一门具有日臻完善的理论基础、日益广泛的应用领域和广泛交叉的前沿学科。由于航天领域的特殊要求,人工智能在其发展中发挥着不可替代的重要作用,各发达国家都相继开展了人工智能与航天技术相结合的研究,致力于实现可重构的、具有容错能力的、智能的飞行系统和管理系统。因此,“人工智能”作为航天类专业的一门特色选修课,应结合专业特点展开更具有实用性和创新性的教学。
1 人工智能课程特点
一方面,“人工智能”是一门多学科交叉的综合学科,它涉及计算机科学、数学、心理学、认知科学等众多领域,具有知识点多、涉及面广、内容抽象、不易理解、理论性强等特点,使得该课程的教学具有较大的灵活度和较高的难度。另一方面,“人工智能”是一门正在发展中的学科,具有较强的前沿性,计算机科学、信息科学、生物科学等相关学科的发展不断的提出了许多新的研究目标和研究课题,使得人工智能的技术和算法也需要不断更新,这在很大程度上增加了“人工智能”课程的教学难度。
2 航天类专业特点
首先,航天类专业具有较强的工程性。在专业的教学改革中有统一的特点,即强调要体现航天工程技术的综合性、系统性, 注重培养复合型人才。其次,航天类专业具有一定的前沿性。因为航天飞行器作为现代高科技和多种学科技术综合应用的结晶,应及时把现代先进科技融入到了专业基础和专业类的课程教学中, 专业知识更新快成为又一特点;另外,航天类专业应注重实践性教育。尊重个性和兴趣,强调动手能力,实验室对学生开放,要求学生自主地设计完成实验,强调对学生设计理念和创造能力的培养。最后,航天类专业应重视产学合作。产学合作的目的在于推动学校与航天产业的持续全面合作,造就一支科学技术研究和工程实践兼备的教师队伍。
3 教学模式的探索
3.1 教材的选择
人工智能作为一门新兴的学科,其理论与方法都还在不断的发展与完善中。就目前来看,关于人工智能的定义和范围都没有一个统一的标准,不同的教材所介绍的内容也不尽相同。在教材选用方面,需要综合考虑专业特点和学生的知识背景。本课程主要针对航天类专业高年级本科生,该类学生具有一定的数学、计算机、信息论、通信理论等基础知识,对航天应用的基本需求有初步的了解,因此,“人工智能”课程难度应该控制在中级,可以较深入的介绍人工智能的基础算法和应用案例。
中南大学蔡自兴教授积累了多年的教学与科研经验,借鉴了国内外其他专家和作者的最新研究成果,吸取了国内和国外人工智能领域学术书籍的长处,于1987年编写了“人工智能及其应用”一书,该书根据人工智能学科的新发展不断修订,推出四个版本。本课程采用“人工智能及其应用(第4版)”,其中大部分内容适合本科生学习。另外,本课程还给学生提供其他一些参考书目,如N.J.Nilsson 的“Artificial Intelligence:A New Synthesis.Morgan Kanfmann”等经典教材。
3.2 课堂教学形式的探索
“人工智能”课程内容较抽象,概念较为繁多,若采用单一的课堂讲授的方式,学生容易概念混淆、理解不透,逐渐产生厌倦情绪,导致教学效果差。本文探索不同的课堂教学手段,根据不同内容采用不同的教学手段,有利于学生对课程内容的理解与吸收。另外,考虑到航天类的专业特点,突出课程内容的工程应用,增加研究性质的教学内容与形式,有利于培养学生的创新能力和实践能力。
(1)课件采用图文并茂的PPT。综合利用文字、图像、声音、视频等多种媒体表示方法,在介绍原理和概念时采用精辟的文字,介绍算法流程时采用图像,介绍算法应用时采用视频。在PPT中适当利用不同的字体、颜色或动画来突出重点,细化流程,引导学生的思路,便于集中注意力接受重点内容。
(2)适当增加课堂讨论与练习。对于人工智能的一些基本问题,可以引导学生进行调研和讨论,来深化课程内容的了解,并提高学生的学习兴趣;对于重要的算法和理论,可以增加课堂练习,让学生实际动手进行公式的推导或演算,并在练习中分析学生对问题的理解程度,有针对性的增加讲解或指导。
(3)适当采用类比的讲解方式。对人工智能的不同学派,不同方方法,以及方法的不同应用,广泛的采用类比的形式进行讲解,不仅可以复习已学习的内容,也利于对新内容的理解。并且,通过对不同内容的比较总结相似点、区分不同点,可以避免概念的混淆,清晰的掌握课程内容。
(4)增加研究性教学。研究性教学强调通过问题来进行学习,有必要将实际应用案例或者授课教师的科研项目融入日常的教学工作中去,用“启发式”、“案例式”教学激发学生“自主学习”能力。
3.3 课程内容的探索
一方面,鉴于本科生知识结构还不够完善,“人工智能”课程的内容要控制在适应本科生学科基础的中等难度;另一方面,鉴于航天类专业的特点,课程内容应更注重与航天应用相结合的内容,并且在课程中增加具体应用的介绍。具体的课程内容如表1所示。
3.4 考核形式的改革
“人工智能”课程注重学生创新能力和实践能力的培养,传统的试卷形式不能全面的反应学生的学习效果,因此,应采用课堂表现和课程报告相结合的方式进行综合考核。
一方面,重视学生提出问题、分析问题和解决问题的能力,对学生课堂讨论与练习的表现进行考核评分,作为总成绩的参考;另一方面,注重学生课题调研和实践的能力,采取提交课程论文的形式进行考核。正确引导学生根据个人兴趣、课程内容、可行性、实践难度进行合理选题,并根据所选题目进行文献查阅和总结,完成调研报告或算法实现报告。结合者两个方面进行最终成绩的评定,综合衡量学生问题分析能力、论文写作能力和创新实践能力。
4 结语
航天类专业的本科生教学需针对专业特点有的放矢,该专业的课程教育都应该趋向于前沿性、专业性和实用性。本文的“人工智能”课程教学改革方案不仅考虑到该课程属于前沿叉学科的特点,也综合考虑了航天类专业的特点。为了使课程教学更好地服务于学生,本文提出的改革方案打破传统的教学模式,将课堂理论讲解、课堂讨论、课后调研、项目实践等相结合,充分调动学生的学习兴趣和积极性,提高学生的创新能力,有利于培养真正符合航天领域所需要的综合型高级人才。
参考文献
[1] 王甲海,印鉴,凌应标.创新型人工智能教学改革与实践[J].计算机教育,2010(15):136-138,148.
[2] 刘兴林.大学本科人工智能教学改革与实践[J].福建电脑,2010(8):198-199.
[3] 怀丽波.32课时《人工智能基础》课程教学的几点思考[J].华章,2013(34):193-194.
[4] 纪霞,李龙澍.本科人工智能教学研究[J].科教文汇(上旬刊),2013(6):91-92.
[5] 肖春景,李建伏,杨慧.《人工智能》课程教学方法改革的探索与实践[J].现代计算机(专业版),2013(26):32-34.
[6] 熊德兰,李梅莲,鄢靖丰.人工智能中实践教学的探讨[J].宿州学院学报,2008(1):146-148.
[7] 张伟峰.本科高年级人工智能教学的几点思考[J].计算机教育,2009(11):139-141.
关键词:Android Linux;移植;S3C6410
中图分类号:TP316 文献标识码:A文章编号:1007-9599 (2011) 12-0000-01
Android System Transplant Based on S3C6410 Platform
Lu Wang,Chen Shaohang,Li Jinghua
(Guilin College of Aerospace Technology,Guilin541004,China)
Abstract:This paper begins with a brief analysis of the structure of Android,the Android kernel changes are given the idea and method of making Android file system,and ultimately the Android system on the ARM11 platform porting and running.
Keywords:Android Linux;Transplantation;S3C6410
Android是一款开源的移动终端平台,它是由操作系统、中间件、用户界面和应用程序组成。该平台开发上的应用程序是使用Java语言编写的、运行在Dalvik虚拟机上。Android的底层是以开放性的Linux kernel为其架构,因此,Android也可以理解为移动操作系统和相关软件的总称。
一、Android的结构
Android是基于Linux内核的操作系统。从下往上依次为:内核、库文件、应用程序框架以及应用程序五个层。其中内核是硬件和软件之间的抽象层,负责系统资源的管理和分配。如:内存管理、进程管理、安全等。库文件包括C/C++库和Android运行库两个库,C/C++库供Android系统的各个组件使用。Android运行库是Android一个核心库的集合,提供大部分在Java编程语言核心类库中可用的功能。应用程序框架旨在简化组件的重用,任何应用程序都能他的功能且任何其他应用程序可以使用这些功能(需要服从框架执行的安全限制)。这一机制允许用户替换组件。应用程序一个核心应用程序集合,包括电子邮件客户端、SMS程序、日历、地图、浏览器、联系人和其他设置。所有应用程序都是用Java编程语言写的
二、Linux内核的裁剪与修改
Android的Linux内核是基于Linux2.6内核的增强型版本,它为Android平台的运行提供了必要的设备驱动。由于2.6.29以前的内核没有增加S3C64XX平台文件,如果使用的话,除了进行相应的裁剪与修改外,还需要增加S3C64XX平台文件。需要增加mach-s3c6400、mach-s3c6410、s3c6400_defconfig、s3c6400.c。同时参考s3c2410的配置,修改Kconfig和Makefile文件,使最终能编译到加载的smdk6410文件。
Android采用YAFFS2作为MTD NAND Flash文件系统,YAFFS2是一个快速稳定的应用于NAND和NOR Flash的跨平台的嵌入式设备文件系统,要能让Linux能支持YAFFS2文件系统,需要给内核打上相应的补丁,补丁可以从网上下载。
在完成这些准备后,我们还需要针对我们使用的开发板进行相应的修改,这些修改内容可以参考开发板生产商提供的内核进行修改,在这就不再赘述。
修改common目录下的Makefile文件,指定处理器结构为arm,交叉编译工具链为arm-none-linux-guneabi-。
最后,通过执行make命令,会在相应的目录下生产内核镜像zImage。这样就完成了内核镜像的制作。
三、Android文件系统的制作
要能在开发板上运行Android系统,还需要制作一个Android文件系统。这个文件系统包括系统自带的常用应用程序、系统底层库、用户数据、系统配置文件、系统设备等。
通过编译下载来的Android源代码,会在/out/target/product/generic目录下生成system.img,userdata.img,ramdisk.img三个镜像文件,这三个镜像包括了主要的包、库等文件用户数据。启动模拟器会将前两个里的数据加载到ramdisk文件系统中的system和data目录下。
我们制作文件系统的思路是:我们先把模拟器根目录里的所有文件复制到rootfs目录下,再将system.img和userdata.img里的数据取出来放到rootfs下的system和data文件夹下,最后打包得到我们的文件系统。
通过如下命名,创建rootfs目录并复制ramdisk.img镜像中的文件。
mv ramdisk.img ramdisk.cpio.gz
gzip-d ramdisk.cpio.gz
mkdir rootfs
cd tmp
cpio-i-F../ramdisk.cpio
下载busybox,并给模拟器安装busybox,启动模拟器,执行命令:
emulator&
adb shell
adb push busybox/data/busybox
./data/busyboxCinstall
chmod 555/system/bin/busybox
接下来,分别对system、data目录进行打包,并从模拟器中提取出来。
/data/busybox tar cvf/data/data.tar/data
/data/busybox tar cvf/data/system.tar/system
adb pull/data/system.tar system.tar
adb pull/data/data.tar data.tar
最后,把取出的压缩包system.tar,data.tar解压到rootfs目录下,覆盖相应的文件夹。至此,一个基本的文件系统就基本成型了,要能挂载到开发板上,还需要将其打包成YAFFS2文件系统的镜像。我们可以下载yaffs2image工具对其进行打包。
在完成上述的Android源代码的编译,内核的裁剪、修改和编译已经rootfs文件系统的制作,我们通过Bootloader将它们烧写到开发板上的NAND FLASH上,就基本完成了我们的移植工作。启动开发板就能进入Android系统了。
参考文献:
[1]杨丰盛.Android应用开发揭秘[M].北京:机械工业出版社,2010,1
[2]韩超,梁泉.Android系统级深入开发――移植与调试[M].北京:电子工业出版社,2011,2
[3]牛光庭,李亚杰.Android系统原理及开发要点详解[M].北京:机械工业出版社,2010,1
[4]Reto Meier.professional android application development[M].Wrox Press,2009,11