欢迎来到易发表网!

关于我们 期刊咨询 科普杂志

工程测量论文优选九篇

时间:2023-03-28 15:05:05

引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇工程测量论文范例。如需获取更多原创内容,可随时联系我们的客服老师。

工程测量论文

第1篇

工程测量人员必须通过熟悉设计图纸来对其放样坐标、高程等进行核审核计算,杜绝放样施工前存在任何错误,放样过程中必须要按照施工图纸设计进行操作,并要对中边桩偏位、各结构标高及宽度进行有效控制,针对公路工程渐变段、变坡点以及桥涵等街购物的工程测量,测量人员一定要将误差控制在允许范围之内。放样技术后测量人员要对其进行校核,若要发现不达标的放样则要求施工人员重新操作,如果在实地测量过程中发现设计图纸中存在漏洞或质量问题,则立即向上级管理人员或管理部门进行上报。最优测量人员一定要加强一些隐蔽性、变更工程的测量工作,因为这些工程的测量结构将会对工程造价及工程质量产生直接影响。

2工程测量技术在公路工程中的应用

2.1平面控制测量

高速公路工程施工中对工程测量工作的精确度有着更高要求,在针对地物点与点之间的测量误差要控制在0.5mm以内,因此,要求测量人员在首级平面控制点位中的误差要控制在0.2mm以内,这样才能确保工程测量工作成效可以满足高速公路要求。现阶段公路工程施工中平面控制测量一般都采用GPS导线与光电测距导线相结合的测量方式,GPS测量技术是通过在导线上设置接收机来接受其卫星信号,并通过对数据的整理来获取该地的大地坐标,光电测距导线技术的工作原理与GPS测量技术基本相同,只不过后者在工作中是利用电磁波测距仪来对两点距离进行测量,而该测量技术在实际应用中容易受到角度影响而产生一定的误差,因此,光电测距导线测量技术在实际应用中需要布设在不受距离测量系统误差影响的直伸导线上,而工程测量中将两种技术有机结合在一起便可取彼之长、补己之短。

2.2高程控制测量

公路工程施工中高程控制测量最好布设成附合水准路线,并利用相应等级水准对其进行测量,在同一条公路上最好要采用同样的高程控制测量系统,若要更换系统则要确定高程系统的转换关系。

2.3地形测量

公路工程施工中针对地形测量一般会运用大比例呈尺带状的地图,常用的地图比例分别为1:100、1:1000以及1:2000等三个规格,当前公路工程施工中一般会采用全站仪测绘法、航空摄影测量法以及GPS实时动态定位技术测绘法来进行地形测量。全站仪测绘法是在野外数据收集、微机以及数控绘图仪基础上的测量技术,起可以实现公路工程地形数据的采集、处理、编辑以及绘图等,航空摄影测量法是通过对城市地图进行大比例绘制、更新以及勘测等技术手段,能够为公路工程施工提供各种形式的地图,最后一种测量技术可以对公路工程施工现场进行动态、实时测量,对提高公路工程的整体质量有着重要意义。

2.4公路工程施工测量

由于公路工程在建设过程中的场地条件十分复杂,所以会使道路工程施工测量工作难度较大,因此,在公路工程准备阶段便要完成工程测量工作,公路工程施工阶段的测量工作主要包括平面位置测量和高程测量两项工作,通过合理的测量技术对公路工程施工现场进行测量,并绘制出满足工程建设标准的地图来促进建设目标的顺利实现,这对提高公路工程的整体施工质量有着重要意义。

3结语

第2篇

论文摘要:工程测量有着悠久的历史,它是直接为国民经济建设和国防建设服务,紧密与生产实践相结合的学科。本文分析了我国工程测量技术发展和应用现状,并对其发展前景进行了展望。

1前言

工程测量通常是指在工程建设的勘测设计、施工和管理阶段中运用的各种测量理论、方法和技术的总称。传统工程测量技术的服务领域包括建筑、水利、交通、矿山等部门,其基本内容有测图和放样两部分。现代工程测量己经远远突破了仅仅为工程建设服务的概念,它不仅涉及工程的静态、动态几何与物理量测定,而且包括对测量结果的分析,甚至对物体发展变化的趋势预报。苏黎世高等工业大学马西斯教授指出:“一切不属于地球测量,不属于国家地图集的陆地测量,和不属于法定测量的应用测量都属于工程测量”。随着传统测绘技术向数字化测绘技术转化,我国工程测量的发展可以概括为“四化”和“十六字”,所谓“四化”是:工程测量内外业作业的一体化,数据获取及其处理的自动化,测量过程控制和系统行为的智能化,测量成果和产品的数字化。“十六字”是:连续、动态、遥测、实时、精确、可靠、快速、简便。

2我国工程测量技术现状

2.1先进的地面测量仪器在工程测量中的应用。

20世纪80年代以来出现许多先进的地面测量仪器,为工程测量提供了先进的技术工具和手段,如:光电测距仪、精密测距仪、电子经纬仪、全站仪、电子水准仪、数字水准仪、激光准直仪、激光扫平仪等,为工程测量向现代化、自动化、数字化方向发展创造了有利的条件,改变了传统的工程控制网布网、地形测量、道路测量和施工测量等的作业方法。三角网已被三边网、边角网、测距导线网所替代;光电测距三角高程测量代替三、四等水准测量;具有自动跟踪和连续显示功能的测距仪用于施工放样测量;无需棱镜的测距仪解决了难以攀登和无法到达的测量点的测距工作;电子速测仪为细部测量提供了理想的仪器;精密测距仪的应用代替了传统的基线丈量。

2.2GPS定位技术在工程测量中的应用。

GPS是美国从20世纪70年代开始研制,历时20年,耗资200亿美元,于1994年全面建成,具有海、陆、空进行全方位实施三维导航与定位能力的新一代卫星导航与定位系统。随着GPS定位技术的不断改进,软、硬件的不断完善,长期使用的测角、测距、测水准为主体的常规地面定位技术,正在逐步被以一次性确定三维坐标的高速度、高精度、费用省、操作简单的GPS技术代替。

在我国GPS定位技术的应用已深入各个领域,国家大地网、城市控制网、工程控制网的建立与改造已普遍地应用GPS技术,在石油勘探、高速公路、通信线路、地下铁路、隧道贯通、建筑变形、大坝监测、山体滑坡、地震的形变监测、海岛或海域测量等也已广泛的使用GPS技术。随着DGPS差分定位技术和RTK实时差分定位系统的发展和美国AS技术的解除,单点定位精度不断提高,GPS技术在导航、运载工具实时监控、石油物探点定位、地质勘查剖面测量、碎部点的测绘与放样等领域将有广泛的应用前景。

2.3数字化测绘技术在工程测量中的应用。

数字化测绘技术在测绘工程领域得以广泛应用,使大比例尺测图技术向数字化、信息化发展。大比例尺地形图和工程图的测绘,历来就是城市与工程测量的重要内容和任务。

常规的成图方法是一项脑力劳动和体力劳动结合的艰苦的野外工作,同时还有大量的室内数据处理和绘图工作,成图周期长,产品单一,难以适应飞速发展的城市建设和现代化工程建设的需要。随着电子经纬仪、全站仪的应用和GEOMAP系统的出现,把野外数据采集的先进设备与微机及数控绘图仪三者结合起来,形成一个从野外或室内数据采集、数据处理、图形编辑和绘图的自动测图系统。系统的开发研究主要是面向城市大比例尺基本图、工程地形图、带状地形图、纵横断面图、地籍图、地下管线图等各类图件的自动绘制。系统可直接提供纸图,也可提供软盘,为专业设计自动化,建立专业数据库和基础地理信息系统打下基础。

20世纪80年代以来,我国数字化测绘技术的开发研究和应用发展很快,成效显著。由于技术标准和规范不同,国外研究成功的数字化测绘系统不适合国情,难以推广应用,只有依靠自己研究开发。1987年北京市测绘设计研究院在国内首先完成了“大比例尺数字化测图系统”(即DGJ)的软件开发,并通过技术鉴定,1990年被建设部列为第一批技术推广应用项目之一,在80多个城市及工程测量单位推广应用,同时又有十几个大专院校、仪器公司和工程测量单位,先后开发和研制出多个类似的数字测图系统软件。

2.4摄影测量技术在工程测绘中的应用。

摄影测量技术已越来越广泛的在城市和工程测绘领域中得以应用,由于高质量、高精度的摄影测量仪器的研制生产,结合计算机技术中的应用,使得摄影测量能够提供完全的、实时的三维空间信息。不仅不需要接触物体,而且减少了外业工作量,具有测量高效、高精度,成果品种繁多等特点。在城市和工程大比例尺地形测绘、地籍测绘、公路、铁路以及长距离通讯和电力选线、描述被测物体状态、建筑物变形监测、文物保护和医学上异物定位中都起到了一般测量难以起到的作用,具有广泛的应用前景。由于全数字摄影测量工作站的出现,为摄影测量技术应用提供了新的技术手段和方法,该技术已在一些大中城市和大型工程勘察单位得以引进和应用。

航空摄影测量是进行城市大面积大比例尺地形图、地籍图测绘与更新以及大型工程勘测的重要手段与方法,它可以提供数字的、影像的、线划的等多种形式的地图成果。目前,我国有100多个城市或工测单位利用航测技术测制大比例尺地形图和地籍图,最大比例尺为1/500。采用的仪器除利用高精度的模拟测图仪和解析测图仪成图方法外,还用立体坐标测图仪与微机连接进行数据采集,经微机数据处理输入绘图机自动绘图。

3工程测量技术的发展展望

展望21世纪,工程测量将在以下方面将得到显著发展:

测量机器人将作为多传感器集成系统在人工智能方面得到进一步发展,其应用范围将进一步扩大,影像、图形和数据处理方面的能力进一步增强。

在变形观测数据处理和大型工程建设中,将发展基于知识的信息系统,并进一步与大地测量、地球物理、工程与水文地质以及土木建筑等学科相结合,解决工程建设中以及运行期间的安全监测、灾害防治和环境保护的各种问题。

大型复杂结构建筑、设备的三维测量,几何重构及质量控制,以及由于现代工业生产对自动化流程,生产过程控制,产品质量检验与监控的数据与定位要求越来越高,将促使三维业测量技术的进一步发展。工程测量将从土木工程测量、三维工业测量扩展到人体科学测量。

多传感器的混合测量系统将得到迅速发展和广泛应用,如GPS接收机与电子全站仪或测量机器人集成,可在大区域乃至国家范围内进行无控制网的各种测量工作。

GPS、GIS技术将紧密结合工程项目,在勘测、设计、施工管理一体化方面发挥重大作用。

在人类活动中,工程测量是无处不在、无时不用,只要有建设就必然存在工程测量,因而其发展和应用的前景是广阔的。

参考文献:

第3篇

关键词:CASIO-fx4500PA可编程计算器工程测量

随着全站仪在建设工程中的普及,坐标计算逐渐成为一名工程测量人员所必备的基本技能。CASIO-fx4500PA可以通过编写简单的程序还简化计算工程、减轻测量员内业工作量而逐渐被工程人员所使用。工程测量人员在使用此类型计算器时只要输入关键数据即可计算出所需数值。此类计算器计算时是通过程序计算,不需要测量人员进行逐步计算,所以就消除了输入的误差。而且计算器在计算时小数位数是自身进行取舍的,所以它的精度也可以保证并比人工逐步计算的高。下面我将就应用CASIO-fx4500PA编写几个测量工程中的几个常用的程序,并就循环语句进行重点说明。

一、应用CASIO-fx45000PA编写常用的几个程序

CASIO-fx45000PA通过编写简单的程序来将计算过程简化。其算法就是将现成公式堆积,我们可以应用条件语句要将整个曲线统一成一个程序。

1)CASIO-fx4500PA计算器条件语句

格式:a<条件判断符>b=>语句1:≠>语句2:语句3

说明:当条件成立时,进行语句1计算;不成立进行语句2的计算,最后运行语句3(不用可以省略)。条件判断可以是大于、等于、小于、不等于以及大于等于和小于等于;语句1、语句2可以为计算式也可为GOTO语句。

示例1:已知两点坐标求方位角(取值范围在0°—360°之间)

源程序:

L1A”X1”:B”Y1”:C”X2”:D”Y2”

L2E=C-A:F=D-B:I=tan-1(F/E)

L3E>0=>I=I:≠>I=I+180

L4I>0=>I=I:≠>I=I+360

用户在使用时,可以根据提示输入数据便可得出方位角(本程序已调试成功)。

2)无条件转换语句

无条件转换语句即是当程序运行至GOTOn语句时,程序无条件执行LBIn后的语句。一个GOTO相对应一个LBI语句。无条件语句一般与条件语句相配合使用,实现条件转移。

示例2:在以ZH点为原点的独立坐标系中,等缓和曲线的单曲线中线放样计算(曲线中不存在短链)。

算法思路:通过曲线上点到ZH点的距离确定它在哪个区段(第一缓和曲线、圆曲线、第二缓和曲线),然后再利用现有公式进行计算。

已知:曲线半径R切线长T曲线长L、缓和曲线长l0、曲线偏角I(左偏还是右偏),以及曲线起点(ZH)里程和曲线上任意一点的里程。

源程序如下:

L1R“R”:T“T”:L“L”M“L0”:I“PJ”:Z“ZH”:K“RYD“:A

L2S=K-Z

L3S<M=>GOTO0:≠>S<(L-M)=>GOTO1:≠>GOTO2:

L4LBI0

L5N=M:GOTO3:

L6LBI1

L7N=S-M:P=M^2/(24R):Q=M/2-M^3/(240R):

J=(2*S-M)*90/(R*π)

L8X=R*SINJ+P:Y=-(R*(1-COSJ)+Q)

L9LBI2

L10N=L-S:GOTO3:

L11LBI3

L12C=RM:U=N-N^5/(40C^2)+N^9/(3456C^4):

V=N^3/(6C)-N^7/(336C^3)+N^4/(42240N^5)

L13N=S=>X=U:Y=-V:≠>X=T*(1+COSI)+U*COSI-V*SINI:Y=-TSINI+XSINI+YCOSI

L14A=1=>X=XY=Y≠>X=XY=-Y

说明:用户在使用时即可按提示输入数据即可得到数据。左偏曲线A输入1,右偏曲线输入非1。如要求用统一坐标计算可以加入下面一句程序:

L15U”X”=C“X1“+X*COSB-Y*SINB

V”Y”=D”Y1“+X*SINB+Y*COSB

(C,D为ZH点在统一坐标系中的坐标,B为ZH-JD的方位角)

3:循环语句的使用

CASIO源程序中很出现循环语句,这是因为CASIO中没有提供现成的循环语句但我们可以将条件语句与无条件注意语句相配合形成一句循环语句:

格式:1)L1Z=0:

L2LBI0

L3Z=Z+1

L4:语句1:

L5Z=N≠>GOTO0

1可以视为步长,可以为任意数,N为条件。在水准测量中求可以用他来减少计算量。

示例3。路基水准测量时一般一个20m一个断面,一个断面测三个点,水准仪两个测站间距离为100米,那么一个测站可以读15个点。下面就这个情况编写一个程序:

已知:水准点高程、以及各次读数。

源程序:

L1A”SZDGC”:B”HS”

L2Y=A+B/1000:Z=0

L3LBI0

L4Z=Z+1{D}:D”DS”

L5H=Y-D/1000

L7Z=15=>GOTO1:≠>GOTO0

L8LBI1

L9{D}:D”DS:Y=H+D/1000:Z=0:GOTO0

用户在使用时可以按照提示输入数据即可得到所要数据(读数输入时单位为毫米)。

CASIO计算器将逐渐被应用到施工生产中,它将会减少现场人员计算工作量,提高人员工作效率。随着CASIO计算器的不断升级,fx4800以上已经提供图形功能,用户可以通过编写程序将现场放样形象化,更大方便工程人员使用,更大减小工程人员计算工程量。

二、电子表格在测量工程的应用

测量人员也可以电子表格(EXEL)提供计算功能计算测量内业资料。有效的利用电子表格的拖拉功能可以减少大量工程量,并且电子表格可以将各个程序分段编写,各个关键点很明显的表现出来,更有效的更直观将你的意图表现出来。

1、运用电子表格技巧

电子表格为用户提供各种类型函数,在施工中熟练使用各种类型的函数可以将各种计算过程简化,减少单元格数目。比如在测量中我们一般采用度、分、秒计算而电子表格计算按照弧度计算,所以在使用电子表格计算时我们可以运用PI()这个函数将π代替而不需要输入3.14……。电子表格中单元格数字类型提供的自定义选项,它更丰富了数值内涵,使它能在工程中更有效运用。如防样里程为K26+899.321就可以将单元格数字类型定义为K26+00#.000,其参加运算时只有899.321参加运算。

2、示例计算单曲线的法向角

下面是关于电子表格中的一些说明:

1、F、G、H、I列为中间计算数据,打印时可以隐藏。

2、开始计算前,将B列数据类型定义为“K194+000.000”(红色的表示当里程为整数时省略)。

3、电子表格计算数据要比CASIO形象,其计算过程可以用公式可以更直接的表现出来。

4、其计算公式也是将现有公式一个一个的堆积,在引用数据时可分为相对引用和绝对引用两种。如D6单元格的公式为“=F6-F6^5/(40*$D$3^2*F$3*2)”,公式中$D$3、F$3就是绝对引用而F6则为相对引用。绝对引用数据不会因为单元格拖拉而发生变化。D7单元格公式为“=F7-F7^5/(40*D$3^2*F$3*2)”。

第4篇

在工程测量中,内业资料计算占有很重要的比重,内业资料计算的准确无误与速度直接决定了测量工作是否能够快速、顺利地完成。而内业资料的计算方法及其所需达到的精度,则又直接取决于外业所用仪器及具体的放样目标和内业计算所用到的办公软件和计算方法。计算机辅助设计(ComputerAidDesign简写CAD,常称AutoCAD)是20世纪80年代初发展起来的一门新兴技术型应用软件。如今在各个领域均得到了普遍的应用。它大大提高了工程技术人员的工作效率。AutoCAD配合AutoLisp语言,还可以编制一些常用的计算程序,得到计算结果。AutoCAD的特性提供了测量内业资料计算的另外一种全新直观明了的图形计算方法。

结合我们现正使用的徕卡全站仪的情况,其可以很方便地进行三维坐标的测量,通过AutoCAD的内业计算,①、在放样的过程中,可以用编程计算器结合全站仪,非常方便地、快速地进行作业;②、运用AutoCAD进行计算结果的验证;③、随着全站仪的推广和普及,极坐标的放样越来越成为众多放样方法中备受测量人员青睐的一种,而坐标计算又是极坐标放样中的重点和难点,由于一般的红线放样,工程放样中的元素多为点、直线(段)、圆(弧)等,故可以充分利用AutoCAD的设定坐标系、绘图和取点的功能,以及结合我们外业所用计算器的功能,从而大大减轻我们外业的工作强度及内业的工作量。以下以冶勒电站厂区枢纽工程的一些实例来说明三者在工程测量中的应用。

二、测区概况

冶勒电站厂址位于石棉县李子坪乡南桠村,距坝址11KM,距石棉县城40KM。厂区枢纽工程主要包括通风洞、交通洞、出线洞、尾水洞及尾水明渠、主厂房、副厂房、安装间及压力管道、母线道、变电站等分部工程,地下洞长近1600米,涉及到两台(单机为12万kw)机组的安装定位。测量区域高程在海拔1990~2200米之间,高差起伏大,夜晚及洞内外作业温差较大,给测量作业带来了一定的困难。

三、AutoCAD的典型内业资料计算及管理

在测区内加密控制点,经常使用测角交会或测距交会或两者相结合的方法,如果我们运用数学公式来计算,则非常繁琐,而且不易检查错误,例如在后方交会中的危险圆上。相反,如果我们利用AutoCAD来绘图计算,就简单多了。现针对测角和测距两种方法分别作如下说明:

1、前方测角交会:

如图一所示,A、B为坐标已知的控制点,P为待求点,在A、B两点已观测了角度a和b。

我们就可以利用AutoCAD系统软件,根据A、B两点坐标在桌面绘制出A、B两个点,连接AB点得到AB线段,然后分别以A点和B点为基点旋转AB线段a,b角(从图上可直观地分辩方向)。使用ID命令选择交点P,就可以得出P点坐标了。如果图形有检校条件,仍然可以进行坐标差的计算。如果在近似平差的情况下能满足需要,则可以在图形上进行平均计算并作出标记。

2、前方距离交会:

如图二所示,A、B为坐标已知的控制点,P为待求点,在A、B两点已分别利用全站仪测了距离Sa和Sb。

我们就同样可以利用AutoCAD系统软件,根据A、B两点坐标绘制出A、B两个点,连接AB点得到AB线段,然后分别以A点和B点为圆心,以Sa和Sb为半径作圆,则得到P点和P’点(对照现场的方位情况,从图上可直观地分辩出其中一点P为所求,而另一点P’则是虚点,是我们不需要的)。使用ID命令选择交点P,就可以得出P点坐标了。在实际工作过程中,我们通常会将前方测角交会与前方距离交会进行组合应用,当然那就不一定要将所有条件都完成测量了。另外对于以上几项对坐标的应用,应该注意的就是AutoCAD中的坐标顺序与我们测量中的大地坐标系是有区别的,也就是要注意X坐标和Y坐标的对应关系。

3、对作业资料的管理:

AutoCAD在工程中除对测量内业资料计算有其优势一面,在外业资料的管理方面,同样有着非常广泛的应用。AutoCAD作为有名的工程系列应用软件平台,已经为广大工程技术人员所熟悉并掌握。在测量外业资料中,主要是控制点网略图及其计算资料的管理,另一方面是各种开挖横断面、纵断面图的绘制,以及横断面面积的计算,以及其它一些需要的图纸的绘制。由于AutoCAD已经有很强的数学计算功能和很高的数学精度,其有效位数已完全能够满足我们在工程测量中的需要了。在冶勒电站工作期间,我们就将所有图纸、所有工程量表格及文档进行分类,其重点是对图纸文件利用AutoCAD进行总图的绘制,在以后的工作中,就可以在总图上进行查找了。

4、应用实例:

现结合我们工作实际,作一些实际应用上的说明:我们承担了冶勒水电站厂区枢纽工程的施工测量工作,进场之际我们就建立了一级导线闭合环,观测资料经平差后,将坐标点的大地坐标输入AutoCAD平台,得到图三所示,以后随着工程的进行,我们陆续加密了一些支导线点,同样将坐标成果录入,这样从真正意义上,实现了坐标资料的数字化管理,这也方便了以后的坐标管理,同时也方便了以后在一些特殊情况下的图形应用。具体地讲就是,依据设计提供的结构关系,在图中设立足够的施工坐标系(以我们在外业放样中设站所需为准)并保存之。在以后的工程应用中,我们只需打开对应坐标系,利用ID命令点取我们需要的点,其对应坐标也就出来了。

下面举例给予说明:在尾水洞、尾闸室交叉段工程中,存在一个三直段夹两弧段的情形,如图四所示:

当时设计代表提供了如图示的图形尺寸关系,以及C点大地坐标和其以外段的大地方位角,尾闸室以内段的一些结构关系。如果单凭以往的经验和仪器条件,需要建立圆的方程,求解二元二次方程,才能求出圆弧对应圆心的大地坐标,之后才可进行下面的计算并结合仪器考虑放样方法。但是,我们将这个问题放到AutoCAD软件平台上来看,就变得非常简单了。具体操作如下:

先在AutoCAD软件平台上,依据C点大地坐标将C点录入,并依据过C点的直段洞轴线方位角及其长度绘出过C点的洞轴线,依据设代提供的尺寸关系,得到P1、P2点,然后利用AutoCAD绘制圆弧,使其分别过P1、C点和P2、C点,使之满足R=28.00米,并符合图形方向。再利用AutoCAD的标注功能,分别进行两段圆弧的圆心的标注O1、O2点,利用AutoCAD的ID命令就可以得到O1、O2点的大地坐标了。将之分别与P1、P2用直线段连接。考虑洞室的方向,再分别过P1、P2点作P1O1、P2O2的垂线P1X1、P2X2,利用AutoCAD方便的坐标系设置功能,分别建立以P1点、P2点为坐标系原点,P1X1、P2X2为X轴的测量施工坐标系然后再将其坐标系移到(0,-N)处并分别命名保存。到此,则我们的两个辅助施工坐标系建立完成,这两个坐标系保证了X轴与过P1(或P2)的圆弧相切(这一点将非常有利于我们下一步的全站仪与编程计算器的应用)。将我们测得的控制点的大地坐标输入图形中,直接就可以得到该控制点的相应的施工坐标和施工坐标方位角了。

四、全站仪和编程计算器在外业中的应用

我们目前使用的全站仪为瑞士产徕卡605L型全站仪,其本身已具备利用坐标进行工作的能力。对我们实际工作中的一些三维坐标的放样,就可以利用AutoCAD建立数字化模型,先用编程计算器在计算机AutoCAD平台上进行模拟检验,经检验程序正确后,再将之用于外业放样。对于露天点线,我们就可以尽量直接利用全站仪的坐标放样功能,将所需放样点的施工坐标输入全站仪,正确操作就可以得到正确的所需点位了。现在讨论的重点是针对地下工程中一些特殊情况下的点位放样。例如:地下厂房的开挖红线放样和有关结构点的放样,地下洞室的开挖红线放样,又特别是地下转弯段的开挖红线及其相关的一些结构点的放样。对地下厂房而言,其顶拱跨度大,主厂房达24.36m,其顶拱半径也有17m。在施工过程中,业主、监理、设代及施工四方均提出明确要求,要严格控制超挖,禁止欠挖,这就从放样方法上对我们测量人员提出了更高的要求。经过我们的反复比较,最后决定利用全站仪结合编程计算器,在现场进行三维的施工坐标的测量,再进行相关的计算,从而放出所需的红线点,事实证明,我们的方法是得当的、合理的,取得的效果也是较为理想的。下面分分两个方面来说明。

1、无平面转弯情况下的计算:

如图五所示,其具体的编程思路如下:

首先,我们建立以B1B2机组中心线为E方向,垂直B1B2方向向下游的方向为N方向,以B1点坐标原点建立施工坐标系。

现假定我们要放顶拱的开挖红线,实测点P坐标为(E,N,H),则利用几何关系,可以计算其对应N坐标下的设计H坐标或对应H坐标下的设计N坐标,这就与我们实测坐标产生了H坐标差ΔH或N坐标差ΔN。则

ΔH1=2036.368-17.00+√(17.002-(N+1.55)2)-H

ΔL2=17.00-√((N+1.55)2+(H-2019.368)2)

ΔH3=2035.368-(15.36-√(15.362+(N+1.55)2))-H

ΔL4=15.36-√((N+1.55)2+(H-2020.008)2)

ΔN=T×(N+1.55-T×√(17.002-(17.0-(2036.68-H))2))

上述诸式中,ΔH1、ΔL2分别为开挖红线的高程差值和径向方向上的差值,ΔH3、ΔL4分别为顶拱混凝土结构表面的高程差值和径向方向上的差值。

在ΔN式中:T=1,代表N≥-1.55,即厂房的下游侧;T=-1,代表N<-1.55,即厂房的上游侧(如图示,厂房中心线与机组中心线的平行距为1.55m。

ΔH为正,测点应上移ΔH距离即为红线,反之ΔH为负,测点应下移ΔH距离即为红线;

ΔN为正,测点应向靠近厂房中心线的方向移ΔN距离即为红线,反之ΔN为负,测点应向远离厂房中心线的方向移ΔN距离即为红线。同样,在厂房顶拱的混凝土衬砌的过程中,我们需要对顶拱的立模线进行放样和模板检查,其混凝土结构下边沿线半径为R=15.36米,有跨度大和难度大的重要特点。在模板的放样过程中,其情况与开挖红线放样又有一些不同点,我们没有将其作出相对厂房轴线的上下游之分,根据施工现场的实际情况看来,其只有铅垂方向的调整。在做模板检查时,相对来说,我们的作业环境将更加不利(有时可能无法通视),针对实际情况,我们一般采用将反光三棱镜高度保持某一定值或者者使用微棱镜,将其沿顶拱模板圆弧径向方向上放置,然后在计算时针对模板只有径向上的上下移动调整。在模板的放样及检查中,我们同样要利用编程计算器进行现场的计算,其计算原理类似于开挖红线放样的计算,只不过进行模板检查的计算时,其计算程序中的高程基准应以其混凝土结构面圆弧对应的圆心高程为基点,再结合其半径求其差值作调整。在AutoCAD软件平台上,可以非常方便地进行放样点坐标和模板点坐标的有效验证。即通过在AutoCAD应用平台上建立地下厂房的三维模型,在这个三维坐标系中,我们直接任意输入一个在厂房平面范围内的三维点坐标,从应用平台上可以直观地看到该点是否为红线或与红线或是否为模板点线的关系,同时我们用编程计算器对该输入三维点坐标进行计算,得出一个结论,就可以作为互相验证的依据了。

针对冶勒电站的情况及其在地下洞室设计上的要求,一般都有一定的坡度以利排水等,传统的洞室开挖放样是在洞外或已开挖段布设基本导线,然后运用经纬仪和水准仪、钢尺的配合,在掌子面上寻出开挖断面圆心、中心线、腰线等。这种传统的作业方法在实际操作过程中很不易操作,而且误差较大,也易出错。一般情况下,掌子面不会是一个标准的铅垂面,而通常隧洞都具有一定的坡度,有时甚至坡度很大,这时应该先考虑将非铅垂面的设计开挖(结构)线进行相关的转换,具体操作可在AutoCAD软件平台上进行,也可直接在编程计算器上进行。如通风联系洞,坡度达0.3039。其设计开挖顶拱为圆弧,而在铅垂面则为椭圆弧了,则我们可以利用AutoCAD软件平台建立其纵横断面的空间模型,求出该椭圆弧的长、短半轴,从而得到其对应的椭圆方程,再利用编程计算器编写相应的程序,之后在AutoCAD软件平台进行验证,结果符合良好。这样就可以充分避免一些特殊情况下易造成的欠挖(如,掌子面不平整等)。

2、有平面转弯情况下的计算:

而对稍复杂一点的情况,如通风洞转弯段、尾水洞三叉口段,在开挖过程中,掌子面根本没法保证是同桩号,及砼衬砌过程中为保证各仓号端面均为同桩号,则必须利用编程计算器在现场施工坐标系间坐标转换的计算。对于地下洞室的转弯段,则主要应考虑其施工坐标的平面转换,假如要采用一些传统的放曲线的方法,众所周知,由于地下通视不好,则很可能是没办法放样的,而利用全站仪结合编程计算器,进行一些优化后的施工坐标的测量,则变得容易多了。从冶勒水电站厂区枢纽工程的施工情况来看,运用上述组合方法,能够较好地控制超挖和保证开挖效果。

参见图四,以尾水洞转弯段为例:通过前述的坐标设站,待测得坐标点,应用编程计算器将之转化成洞轴线(曲线)上的坐标,再以之进行相关对应断面的高程和平面坐标的计算。其具体的编程思路如下(以P1C段为例):

利用解析几何的关系,求出O1P点的平面距离SO1P,则E’=28.00-SO1P。计算出O1P1,O1P的夹角,则可以得到N’,再以E’、N’代入洞挖空间模型计算程序中,计算出高程位移ΔH和平面位移ΔE就可以了。其程序关键式如下:

Q=tan-1((L-37.35)÷(28-D))

N=37.35+Q×π÷180×28

E=28-√((28-D)2+(L-37.35)2)

I=2002.86+(343.947-N)×.003-(3.2-√(3.22-E2))-H

J=1999.66+(343.947-N)×.003+√(2.82-E2)-H

上述诸式中,直接的数据为设计提供的图形尺寸,L、D为我们对纵、横坐标的观测值,N、E为我们根据曲线关系计算而得的纵、横坐标值,I、J为我们以所测点高程对应根据设计断面图形计算的顶拱开挖和顶拱结构混凝土表面高程的差值,即ΔH。而ΔE就应以所计算的E与设计值进行比较而得,这里就不再赘述了。

第5篇

【关键词】数字化测图技术;原理;发展;精度分析

随着现代科技的发展以及计算机辅助设施AutoCAD技术的广泛应用,数字化测图技术也在不断地发展,有关图的概念也发生了深刻的变化,数字测图的成果已不仅仅仅是一张白纸图,数字技术赋予地形图更丰富内涵,它是有关地形的空间信息组合,以计算机硬盘、软盘等为存贮介质,以图形文件的形式提交给设计人员。

一、数字化测图的基本原理及优点

1.数字化测图是以传统的白纸测图原理为基础,以全站仪、计算机及设备为工具,采用数字库技术和图形处理方法,实现一套野外数据采集到内业制图的全过程的自动化测量制图系统,称为数字化测图系统。它的实质是解析测图,它实现了将图形的模拟量(地面模型)转化为数字量,经计算机对数字量进行处理,得到内容丰富的电子地图。

2.在传统的白纸测图方法中,地面点平面位置的误差主要受图根点的展绘误差、测定地物点的视距误差、测定地物点的方向误差、地形图上的地物点的刺点误差以及清绘误差等综合因素的影响,而在数字测图中,全站仪强制照准棱镜,测量数据自动记录到手簿或全站仪内部存储器中,展点又是计算机自动展点,所以图根点的展绘误差与地物点的展绘误差可忽略不计,其余各项误差也比普通经纬仪测图时大大减小,所以点位精度非常高,经过实践表明,数字化测图很容易达到《水利水电工程测量规范》规定的点位误差小于图上0.2mm的精度指标。同时数字地图容易存贮,是地理信息系统(GIS)的重要信息来源。另外数字化测图还大大提高了工作效率,缩短了成图的周期。经实践表明:一个作业组在正常情况下用白纸测图的方法一个工作日能测量200个地形点,而采用数字化测图的方法则可以测量400个地物点以上,工作效率提高1倍。

二、数字地图在水利工程测量工作中的发展进程

(一)利用Mapscan微机地图扫描矢量化系统软件扫描矢量化原地形图

利用Mapscan软件首先将地形原图用扫描仪扫成栅格图像,然后再对栅格图像进行旋转校准,矢量化、编辑、整饰,最终得到数字化地形图。换句话说,这就是计算机上进行的一次描图工作。由于地形图原图在被扫描生成*.CAL影像文件的过程中会有一定的偏移和旋转,在数字化的第一步就要对影像文件进行旋转和校准,在这一过程中关于旋转基准点及校准基准点的拾取过程中,操作人员会产生一定的误差,同时在矢量化地形、地物的过程中同样有人为因素的影响。所以说,以这种方式形成的数字化地图的精度比后来内外业一体化所测绘的数字化地图精度偏低。但它的优点就是利用了原有的图纸,它是原有测绘成果向数字化成果转换的必经之路。

(二)利用南方CASS4.0地形成图软件实现内外业一体化测绘数字化地形图

南方公司CASS4.0测量成图软件,采用的作业模式为全站仪+电子手簿野外采用数据,利用软件完成对电子地图的编辑与输出,是真正意义上的数字上化测图。

在数字测图系统中,计算机要处理几何数据(测站坐标)、属性数据以及点与点之间的拓朴关系。而属性数据的拓朴关系是很难像几何数据那样直接用数字来描述的,所以必须按一定的规则构成一些符号(串)来表示它们,这种用来表示地物属性和连接关系的符号(串)就是CASS4.0软件中所称的编码。

野外采集数据分为有码作业和无码作业。两种作业方式比较而言,有码作业方式自动化程度高,内业工作量小,但外业工作中,观测量在测站每点都要输入编码,同时还要考虑点与点之间的连接关系,所以外业速度慢。无码作业方式直观、可靠,提高了外业速度,但是内业工作量稍有增加,自动化程度略有降低。由于两种数据采集的方式各有利弊,所以在实际工作中会根据实际情况选取不同的作业方式。在地形、地貌简单,开阔的地区,利用有码作业方式,连接各地性线之间的关系,简化内业的编辑修改量;在地物繁多、地貌特殊的测区,必须勾绘草图,采用无码作业方式,记录清楚每个点的属性及连接关系,内业对测点进行编辑成图。

(三)利用捷创力600全站仪自定义用户程序实现野外数据采集

捷创力600全站仪具有一个内部存储器,用来存储原始数据、点信息,存储空间完全是自我管理而不需要连接外部控制设备,存储文件分区域(Area)文件和工作(Job)文件。根据野外测图时所要记录的信息,在全站仪上自定义用户程序P2为测图时使用的程序,它的结构与说明如表1。

利用这个程序便可以在野外采集数据,并利用全站仪上P54程序完成工作文件从全站仪内存传输到计算机的工作。

全站仪采集数据与南方电子手簿采集数据相比,优点在于它是利用内存记录数据,有着多层保护,具有较高的安全性,不会像手簿有时由于低电而造成数据丢失。缺点是输入地物编码时,在全站仪键盘上切换至ASCII码状态,比电子手簿输入编码繁琐。

(四)RTK实时动态定位测量技术在数字化测图中的应用

RTK(Real-TimeKinematics)实时动态定位测量技术是GPS定位技术的又一重大突破,它使GPS定位技术向更深、更新、更广的方面发展,它可以在几秒钟内获得厘米级的三维坐标。它是由1台基准站、1台或多台流动站、数据传输电台以及软件系统组成。PTK技术的出现突破了常规的GPS控制测量工作领域,利用它能够非常方便地进行放样和定线;通过流动站控制器可以进行野外数据采集,打破了传统的“先控制,后测图”测量方式,工作效率大大提高。在怀柔应急备用水源工程1:2000地形图测量、斋堂水库库区1:2000地形图测量、马草河1:500地形图测量中,利用RTK技术进行数字化测图工作,充分感受到先进技术所带来的巨大生产力。

三、数字化测图精度分析

数字化测图将图纸精度转变为数字精度,采集的数据在后处理上不会有什么问题,其精度主要受仪器本身的精度以及一些外界因素的影响。点位的观测精度的误差来源主要有:

1.控制点的误差影响ma。

2.仪器本身的误差影响mb。此项误差主要受测角中误差mo与测距误差ms的影响。假设测站点为A1,定向点为A2,待测点为A3,坐标分别为(x1,y1)、(x2,y2)、(x3,y3),天顶距为L,距离为S,观测角为α,根据坐标计算公式有:

x3=x1+S×sinL×cosα(1)

y3=y1+S×sinL×sinα(2)

根据误差传播定律,待测点由于仪器本身引起的点位误差为:

取天顶距L=900的极限值时

3.仪器对中误差的影响mc。在实际测量中,由于全站仪精确对中,其对点误差能达到1mm,其影响可减少到忽略不计。

4.棱镜偏移误差的影响md。棱镜偏移误差是影响观测点位精度的主要因素,当棱镜置于待测点时,仪器并没有真正瞄准待测点,会产生左右偏移和前后偏移对观测精度的影响,如果待测点距全站仪很近时,产生的误差就越大。

由以上误差分析可知,点位的观测精度主要受控制点的精度、仪器本身的误差和棱镜偏移误差的影响,即:

所以在外业测绘时,为了提高野外数字化测绘图精度,减少棱镜偏移误差的影响,应尽量使棱镜立到点位与跟踪杆立直,避免由于倾斜而带来的误差影响。

四、结语

数字化测图技术在北京市水利规划设计研究院已经走过了从无到有以至多种方式并存的过程,在科技飞速发展的今天,传统意义的工程测量已发生了巨大的变革。新仪器、新技术的应用,使测量行业具有了更高的科技含量,同时对测绘人员综合素质的要

求也越来越高。

【参考文献】

[1]李青岳主编.工程测量学.北京:测绘出版社,1995.

第6篇

首先考虑由建设单位代表提供精确的可满足测量要求的渠道现状(树形)导线图;若设有,再考虑由建设单位代表提供渠道导线图的草图,根据草图出本次测量人员会同三方(建设单位、测量、设计)一起完善渠道现状导线图;如若连草图都设有,则由本次测量人员会同三方一起用手持GPS测定渠道现状导线图。渠道现状导线图应明确标出渠道各个拐角、拐点及起点、终点的位置,分水闸、节制闸、桥涵等渠道配套建筑物的位置,上下级渠道和各个建筑物的名称。各个建筑物的使用要求也要标明,如不同渠段的设计流量(加大流量),节制闸、分水闸的流量,交通桥的过荷要求等。渠道现状导线图的绘制目的是便于这次渠道测量和绘制渠道设计导线图。使用渠道现状导线图可以使渠道测量工作真正做到有的放矢,因地制宜,从而从根本上保证渠道测量的准确性。

渠道上的闸、桥、涵等交叉建筑物称为其配套建筑物。渠道测量的技术要求应按《水利水电工程测量规范(规划设计阶段)(SLJ3-81DLJ201-81CH2-601-81)》执行。渠道测量的内容主要包括:渠道及配套建筑物平面位置的测定、渠道纵断面高程测量、渠道横断面测量等三部分。

二、渠道纵断面高程测量

为了绘制渠道设计导线图,应当精确的把其位置都在渠道设计导线图中标出来。这项工作主要是使用GPS来完成的,主要测出渠道拐角和渠道始点、终点及其配套建筑物中心位置点的坐标,并在图纸上用适当的比例和图例明确表示出来。渠道纵断面高程测量是利用间视法测量路线中心线上里程桩和曲线控制桩的地面高程,以便进行渠道纵向坡度、闸、桥、涵等的纵向位置的设计。为便于计算渠道长度、绘制纵断面图,沿渠道中心线从渠首或分水建筑物的中心,或筑堤的起点,不论直线或曲线,均应用小木桩标定里程,这些木桩称为里程桩。木桩的间距一股为100m或50m,自上游向下游累积编号。这种按相等间隔设置的木桩称为整桩。在实际工作,遇到特殊情况应设加桩。整桩和加桩均属于里程桩。

1.下列情况应设置加桩:中心线上地形有显著起伏的地点;转弯圆曲线的起点、终点和必要的曲线桩;拟建或已建建筑物的位置;与其它河道、沟渠、闸、坝、桥、涵的交点;穿过铁路、公路、和乡村干道的交点;中心线上及其两侧的居民地、工矿企业建筑物处;由平地进入山地或峡谷处;设计断面变化的过渡段两端。为了注记地表性质和中心线经过的主要建筑物,必要时要绘制路线草图。

2.纵断面测量时需要连带测定的数据和注意事项

(1)渠首交上级渠道的桩号,及交点处的坐标和渠底高程、水位高程;(2)已建节制闸、分水闸应测出闸底、闸顶、闸前闸后水位高程,闸孔宽度和孔数;(3)已建桥(或渡槽)应测出桥顶、桥底高程;桥面(路面)宽度和其跨度;(4)已建涵洞或倒虹吸应测出其跨度和顶部高程;(5)已建跌水或陡坡应测出其宽度、长度、落差和级数:(6)渠道拐角、拐点及翼再睽邕施物的中点坐标;(7)与河沟、排渠、道路和匕下级苴的交角;(8)渠道穿过铁路时应测出轨面高程;穿过公路时应测出路面高程;同时应测出道路宽度;(9)渠道沿线所留的BM点的高程和位置坐标;(10)渠道末端坐标,及其所灌溉的农田地面控制高程;(11)如果大段的渠、堤中心线在水内,为便于测量工作,可以平行移开,选择辅助中心线。

三、渠道横断面高程测量

对垂直于路线中线方向的地面高低所进行的测量工作称为横断面测量。横断面图是确定渠道横向施工范围、计算土石方数量的必须资料。横断面测量的精度要求:横断面地形点的精度,包括地形点对中心线桩的平面位置中误差。平地、丘陵地应±1.5m,山地、高地应≤±2.0m,地形点对邻近基本高程控制点的高程中误差应≤±0.3m。横断面测量的测设要求:

1.中心线与河道、沟渠、道路等交叉时,应测出中心线与其交角。当交角大于85°、小于95°时,可只沿中心线施测一条所交渠、路的横断面;当交角小于85°或大于95°时,应垂直于所交渠、路和沿中心线方问各测一条断面。

2.横断面通过居民地时,一侧测至居民地边缘,并注记村名,另一侧应适当延长。横断面遇到山坡时,一侧可测至山坡上l-2点,另一侧适当延长。

3.横断面上地形点密度,在平坦地区最大点距不得大于30m。地形变化处应增加测点,提高横断面的精度。

4.渠道沿线察看。渠道放线测量的f司时应注意观察沿线的地形地貌、植被情况,并以桩号为准做好记录。新建渠道应察看是否穿越农出或林带、居民点等;老渠道应查看已建建筑物的使用状况,并应做好记录。注意查看渠道沿线是否有可供渠道施工用的道路、水源和料场。较重要的交叉建筑物还要测大比例尺地形图。

四、提交测量成果

测量外业工作结束后,经过资料整理、数据计算、计算机绘图等内业工作后,最终应向设计人员提供测量成果。设计所需要的测量成果包括渠道导线图、渠道纵、横断面图及其软档文件,其技术要求均应以满足设计需要为准。

1.对渠道导线图的要求:应包括上下级渠道中心线(及辅助中心线)、渠道拐角、拐点及渠道配套建筑物的中心点位置和坐标,渠道与河沟、排渠、道路和上下级渠道的交角等实测数据;渠道及其配套建筑物名称;制图比例和指北针等。

2.对渠道纵断面图的要求:渠道纵断面图要比例适当;标明拐点桩号及拐角;标明已建或拟建渠道配套建筑物的主要特征高程、其中心点的桩号;标明渠道沿线的BM点的位置坐标和高程;其它关键数据也部要标出。

3.对渠道横断面图的要求:渠道横断面图要比例适当;横断面图上应标出渠道中心线桩的桩号、高程和在横断面上的位置。

4.对软档文件的要求:资料要全,包括渠道导线图、纵、横断面图;要有适当的使用说明,便于设计人员直接在软档文件上进行渠道和其配套建筑物的设计工作。

在具体工作中,每次测量会受到建设单位对灌溉、投资成本控制的影响,同时也会受到地形、地质条件及自然环境等影响。测绘人员应根据具体情况灵活掌握测量的方法,以满足建设单位和工程特性要求。

第7篇

1.1测绘工程中的进度控制难

测绘工程的作业进度对后续的建筑工程等施工具有重要的影响,但是从目前测绘工程的实际来看,测绘作业进度控制难度较大,大部分的测绘工程都是在最后的测绘结果上进行分析研究,对于发现的问题只能重新施工,这就会造成资源的浪费和时间的耽搁。进度控制上的难题也会对测绘结果有重要影响,由于结果的准确性受到影响,继而还会导致建筑工程等的施工发生损失,严重的还有可能要返工。

1.2测绘工程中检查力度弱

在目前的测绘工程中对于测绘过程的检查大都还是安排相关人员进行检查,检查中使用的机械设备较少,因此在检查结果上难以确保合格,人员的检查存在着较大的任意性,有时还会受到相关单位和人员的指示,存在包庇问题的现象,也难以确保检查结果的可信性。测绘工程中的检查工作不但关乎测绘质量和施工质量,还关系到物资的消耗和成本的控制,因此有必要在测绘工程中加强检查的力度。

1.3专业测绘单位和机构的不足

当前各类施工对于测绘的需求越来越多,对测绘工程的质量要求也越来越高,但是这一巨大的市场需求下并没有引起测绘专业单位和机构的饱和,当前还十分缺乏专业的测绘单位和机构。有些施工单位还只能依靠自身成立的测绘队伍开展测绘工程,这种临时成立的队伍不但专业性不强,也存在着管理上缺失,无法保证测绘质量。

1.4测绘技术人员的整体素质水平偏低

测绘技术在我国的发展较快,但是专业人员的技能提高却相对滞后,技术水平和业务素质偏低,使得测绘工程中出现的一些问题无法得到及时有效的解决,给测绘工程和后续施工留下隐患。

1.5测绘结果缺乏统一性

在一些大型的测绘项目上往往通过多家测绘单位联合作业的方式完成,但是由于没有统一的标准,各测绘单位在作业过程中采用的测绘技术可能不同,导致相互之间业务差异大,最终形成的测绘结果也存在较大的差异,缺乏统一的标准,杂乱的测绘结果也给应用带来了许多障碍。

2提高测绘工程质量的对策分析

针对以上在测绘工程中存在的若干问题,影响测绘工程质量和后续的施工质量,笔者认为应当采用全面的综合措施加以控制,确保测绘工程质量的高标准,为建筑工程等施工提供更为准确的依据和保障。

2.1建立健全测绘工程的质量控制体系

测绘所得结果的质量对各类工程施工具有重要的影响,在质量控制体系中首先要制定科学合理的测绘管理办法和规范的测绘程序,确保每一环节的质量能够得到有效的控制,并将所得到的测绘信息进行科学的加工分析、存储和传送,将准确规范化的测绘结果反馈给有关部门或单位。其次,还要在测绘质量控制体系中建立统一规范的技术标准和测绘作业标准,对当前各个独立运行的测绘机构进行统一规范化的管理,从而有效控制测绘质量。最后,一个科学的质量控制体系还应当包含有效的执行和监督机制,在测绘质量控制体系中要严格按照国家的质量标准和要求,对测绘工程过程进行监督和对测绘结果进行检查。

2.2加强对测绘工程数据的检查

测绘工程数据检查主要包括三项基本内容的检查,具体如下:第一,加强对图像数据的检查,测绘工程中的图像数据是最重要的一项内容也是对后续工程施工具有最关键影响的数据,因此一定要确保图像数据的准确性。图像数据检查的重点在于对图像数据整理和转换的过程中,是否存在缺边、悬点等问题,作为检查部门或者检查人员一定要做到严格仔细,才能通过检查达到质量控制的目的。第二,加强对风格的检查,风格检查的主要内容实际上是数据的完整性的检查,对于大型测绘工程而言,由于不同的测绘单位在测绘工程中所使用的软件不同,在一些符号、表达方式等方面可能造成无法匹配,还有的测绘施工单位与检查单位的符号库之间无法对接,都有可能形成测绘平台的下线型、线宽以及颜色等测绘图像数据之间无法联合使用,因此在检查环节就要整合编码要素,解决由于软件原因造成的数据风格无法兼容的问题,力求能够进行顺利的风格转换。第三,加强对拓扑的检查,同样是由于测绘所使用的软件不同,拓扑关系也会存在较大的差异,在作业阶段就要求测绘作业人员进行必要的拓扑检查,确认拓扑关系的准确性,对于发现存在问题的拓扑关系要及时的进行调整或者有必要时要进行重建。在检查阶段也要对拓扑关系进行检查,对于发现问题的要反馈测绘作业环节进行调整或者重建。

2.3加强对测绘工程过程的质量控制

测绘工程的实施环节对质量的影响是最重要的,因此加强对测绘过程的质量控制十分重要,笔者结合多年的测绘经验认为,在测绘过程控制上最关键的是要由测绘施工单位加强对施工过程中的质量检查和控制。需要注意的是测绘工程过程中要进行定期的数据记录输入和输出,在测绘图像绘制过程中对各项数据进行检验和必要的修正,同时也要做好相应的记录,以便下一阶段的检查和验收环节进行依据的查询。

2.4加强测绘工程验收阶段的质量控制

测绘工程的重要性决定着测绘工程的质量要通过多环节进行控制,验收阶段的质量控制也是十分重要的一个部分,验收阶段也是对测绘工程施工过程中的问题进行最后控制的一个环节。验收阶段的质量控制首先需要选择一个准确的检查方法和一套全面的技术标准,还要对具体的技术参数进行确认、对测绘使用的技术设备的精准性进行参考,有必要时还要对其进行检验机构的检验,确保测绘工程施工中所得出的数据是准确的;验收阶段的质量控制还包括对测绘过程中的数据记录进行审核,确保各个环节的数据形成和传递没有差错。

3结论

第8篇

1.1测量精度较高

在工程测绘中,运用GPS定位测量技术,就能够通过全球定位系统进行定位,如此便能够保证运动载体实现最佳的路线运行。对于工程测绘工作来说,定位非常重要,按照实际的测绘需求,假如基线没有超过50km,就应当采用载波相位观测量,以此保证静态相对定位。在工程测绘工作中运用GPS定位系统中的测技术,就能够实现1×10-6以及2×10-6的精度,假如基线达到了100km-500km,相对定位的精确标准就能够达到10-6以及10-7的范围内。随着GPS定位测量技术的不断革新,测量的精度也会不断的提升。

1.2操作简便且节省时间

在工程测绘工作中运用GPS定位测量技术,操作简便,且能够节省时间。例如在工程测量中运用经典的静态相对定位模式实现测量时,假如测量的基线在20km内,单频接受的观测时间大约为1小时,而双频接受的观测时间则为15-20分钟,假如采用实时动态定位,初始的观测时间则为1-5分钟,其他不同位置的观测时间为几秒,因此在工程测绘中运用GPS定位测量技术,就能够有效的缩短观测的时间,有效的提升工作效率。目前,GPS定位系统已经分为高度自动化与智能化的系统技术,在工程测绘中运用GPS定位测量技术,就能够通过智能型接收机进行观测,工作人员只需安装一些开关仪器,就能够通过仪器进行实时监控。由于GPS定位测量技术的自动化程度较高,工程的测量与卫星捕捉都能够通过GPS定位测量仪器来实现,操作较为简便。此外,GPS用户接收机体积较小,方便携带,在日常工作中能够节约人力和物力,能够有效的节约工作成本。

1.3应用范围广

GPS定位系统的应用范围一般可从两方面来看,首先是运用于与各个行业中,人们最为熟悉的是车载导航,目前GPS导航系统目前已经成了汽车的基本配置。此外,GPS技术还广泛的应用于地质与矿产等行业中。其次,GPS定位系统还能够运用于环境条件中,GPS定位是借用卫星系统实现定位,一般不会受到天气与温度的影响,在对于工程测绘来说属于一大优势,因为工程测绘通常都是在野外工作,运用GPS定位系统能够克服恶劣的环境条件造成的影响,保证定位的精度。

2GPS定位测量技术在工程测绘中的运用

2.1测量工程变形情况

通常工程建设涉及的范围较广,经常会遇到一些人为因素或是地质运动造成的建筑物变形以及位移,假如出现此种情况,会直接影响工程测绘工作,使经济效益与社会效益受到影响。经过研究发现,造成工程变形的主要类别有大坝变形与建筑物沉降等,假如能够及时的对工程变形进行测量,就能够有效的减少工程变形对于工程测绘工作的影响。目前GPS定位测量技术已经开始广泛的应用与工程变形的监测工作中,例如运用高精度的三维定位技术,就能够对工程建筑出现的微小变化进行分析,提早做好防范准备,减少损失。

2.2大地测量控制网点

在大地测量网点工作中,通常需要花费大量的资源,且精度较低,无法适应当代社会的需求。为了解决这一问题,我国在1991年开始建设大地控制网,目前这一工程已经结束,并且已经开始运用。大地控制网能够测量数千里或者数万里,而城市控制网测量的距离较近,一般在十公里左右,但城市控制网的使用频率更高,对于城市建设来说具有非常重要的作用,因此需要借助GPS定位测量技术进行大范围的测量,为城市的发展做贡献。

2.3测量水下工程

在水下作业一般难度较大,需要考虑到水下压强以及流体力学等方面的问题,但随着资源的开发,这些资源对于国民经济的影响逐渐增加,进行水下工程测绘目前已经是测绘领域中必不可少的环节。GPS定位测量技术包括了三维测量技术,能够从纵向或者横向两个角度进行水下测量,同时还能够将测量的结果通过计算机分析软件与制图软件等直接呈现出来。例如在进行水下作业时,进行横线测量时应当选择差分GPS技术,如此便可有效的减少对于环境的影响,简化操作流程。而进行纵向测量时则应当选用探测仪,运用超声测量的方式得出具体的深度。

2.4测量矿井工程

目前我国已经将GPS定位测量技术运用于矿井工程的测量中,并通过GPS技术进行了测量演练,及时的对测量中存在的问题进行了分析。常规形式的测绘工作通常是由工作人员自行操作,人为操作较容易出现误差影响测绘工作的精准度,此外,在地质条件复杂的地段进行测绘工作,较容易出现安全事故,因此需要在矿井工程中运用GPS定位测量技术。采用GPS定位测量技术就能够高效的实现工程测绘中交互定位,且能够显示出最精确的测绘结果,同时还能够了解工程测绘工作的流程。为了保证测量技术在工程测绘中达到最佳效果,可在测量前运用计算机技术对于需要测定的位置进行分析,及时发现测量中可能会出现的问题,并做好防治措施,以此保证测量人员的安全,提高测量的精确度。

3结束语

第9篇

关键词:水利工程;工程质量;检测

“质量兴国”是我国社会主义建设的长期战略方针,提高产品质量和工程质量是我国经济工作的长期战略目标。建设工程是大型的综合性产品,价格昂贵且使用期长,涉及人民生活环境和工作条件的改善,其质量的优劣在整个社会主义经济建设中占有十分重要的地位。工程质量检测工作是工程质量监督管理的重要内容,也是做好工程质量工作的技术保证。

1必须明确水利工程质量检测的内涵及主要内容

水利工程质量检测是指对工程实体的一个或多个特性进行的诸如测量、检查、试验或度量,并将结果与规定要求进行比较,以确定每项特性的合格情况而进行的活动。工程质量检测就是经过“测、比、判”活动,从而对不符合质量要求的情况作出处理,对符合质量要求的情况作出安排。水利工程质量检测主要包括以下内容:

(1)施工图纸和施工组织设计,施工计划的会审,是否保证了工程的质量。

(2)原材料、外购材料、半成品及工程实体的质量检验,提供正确的检测数据,做出评价结论,并参与工程质量事件的分析处理。

(3)工程所用新结构、新材料、新工艺、新设备进行检测。技术审定和推广工作。

(4)通过科学检测判断工程质量是否符合技术规范和设计要求,并提出改进意见。

2必须明确水利工程质量检测的必要性和重要性

水利工程质量检测是质量管理工作科学化的基本要素,是提高监督水平必不可少的条件,尤其在市场经济迅猛发展的今天,必须首要完善检测手段,保证其科学性、公正性、准确性。科学性是检测工作的基础,离开它就谈不上对工程质量评价和负责,也难以保证所建设的水利工程的正常运用与运行安全。若以检测工作赖以生存的地位来估价,公正性是检测工作的准绳和法规,否则就会失去法律效力。准确性则是科学性与公正性的先决条件,是检测工作客观评价与社会信誉的前提。促进水利工程质量不断提高,多创优质工程,采用科学而可靠的检测数据来说话,防止单纯凭主观经验来判断的做法,检测工作也就成为质量管理必不可少的基础工作。只有搞好检测工作才可能及时掌握质量的动态和规律,以便控制质量的波动范围来保证质量的稳定。

在水利建设中强调事物发展的客观规律,在市场经济发展的今天更应强化质量管理,其中质量检测工作又占有重要位置,担负着重要职责,它借助于测试手段对材料,构件及单元工程,按规范标准与要求进行检测,并做出合格与否的判断。因此,检测是保证工程质量的重要手段,在质量形成中具有重要的地位。它通过对原材料、半成品、单元工程检验和竣工检验活动严把质量关,具有预防把关和签别双重性质的职能。

3必须着力提高水利工程质量检测的水平

水利工程施工质量极为重视关系国计民生。提高水利工程质量检测的水平对保证水利工程施工质量显得尤关重要。提高水利工程质量检测水平,应着眼于当前经济社会发展的形势,重点考虑三个因素。

3.1检测机构合法是水利工程质量检测的前提

水利工程施工质量检测机构必须受控于国家的法律法规,在国家法定机构授权下行使职能,这类检测机构才具备合法性。目前,中国统一开放的检测市场已开始形成。有必要对检测机构的认可活动加以规范,使其在为社会提供质量检测时必须具有公正性、科学性、权威性。于1994年10月正式成立的中国实验室国家认可委员会——CNACL,是唯一的权威和法定的实验室认可机构,也是国际实验室认可合作组织——ILAC的正式成员。它制定的《实验室认可准则》即CNACL201-99,等同于国际公认的ISO/IEC导则25——《校准和检测实验室资格的通用要求》,今天已成为检证实验室技术能力,指导实验室规范运行的准则。

3.2检测方法科学有效是水利工程质量检测的关键

质量检测使用的技术规程规范必须是现行有效的,按过期的规程规范进行检测的结果是无效的,这一点也应引起足够的注意。例如,从2000年起,各实验室进行土工检测时应依据新的标准,即《土工试验规程》SL237-1999,或《土工试验方法标准》GB/T50123-1999,相应的旧规程已失效。

3.3仪器设备符合标准是水利工程质量检测的基础

质量检测使用的仪器设备必须经国家法定计量机构校准和检定,并在其划定的有效期内使用,保证检测结果的有效性。依据《计量法》而建立的中国量值传递体系,体现了量值的统一和量值的溯源,它是实验室规范的基础,也是导则25的实质所在。其突出特点是,从计量溯源性的角度,保证测试领域的测量结果基本上与计量溯源体系得以衔接。以导则25为准则构成的我国量值传递体系,基本保证了全国量值的统一,满足了质量检测和科学研究的基本要求。

4必须科学实施水利工程质量检测工作

水利工程质量检测是一项科学、严密、重要的工作,必须要有规范的程序和严谨的态度。在质量检测的实践中,应重点注重以下几个方面:

(1)建立健全工作制度。严密的规章制度、科学认真的态度是搞好工程质量检测工作的保证。工程质量检测项目,需要专业试验室组织优秀检测人员并设专门的质量负责人,才能使质量检测工作的权威性得到有力的保证。

(2)严格执行国家规范。国家标准和部颁规程规范、技术质量标准、批准的设计文件是检测工作的依据。有了这些规范、规程、标准和文件,才能使检测工作的实施、数据分析和结论有据可依。另外,在检测前或检测过程中,收集被检工程的相关资料对检测的数据分析和结论是有用的和必要的。

(3)提高检测人员的专业水平。高素质的检测人员和先进的检测设备是保证检测成果质量的重要因素。检测人员应具有丰富的水利水电工程建设经验,最好还直接参加过工程的设计、施工、监理、检测等方面的工作,才能保证检测过程中的质量。在检测设备上,所有仪器设备都必须经过有关部门的计量认证,这些先进的仪器才能够保证检测数据的准确性和可靠性。

(4)确保检测费用。检测费用的专项列支是检测结果真实性和公正性的有力支持。在实际工作中,批复概算并没有该项费用开列,有的不得不挤占其他费用,使这项工作很难开展,即使开展了,检测结果的真实性和公正性也很难保证。

(5)认真做好抽检工作。工程竣工验收前的抽检工作十分必要。目前只有堤防工程有明确的要求,而混凝土、土方、石方、金属结构制造、启闭机及机电产品安装等工程并没有抽检的方法、数量、种类的具体要求。

参考文献

相关文章
相关期刊