欢迎来到易发表网!

关于我们 期刊咨询 科普杂志

热处理工艺论文优选九篇

时间:2023-04-01 10:29:55

引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇热处理工艺论文范例。如需获取更多原创内容,可随时联系我们的客服老师。

热处理工艺论文

第1篇

要提高连铸辊辊体材料的性能应从以下几方面入手:1)通过调整辊体材料的成分、增加合金成分的含量,提高淬透性;2)控制锻坯冶炼和锻造质量,提高材料的均匀性和纯净度,改善夹杂物形态,降低有害元素含量;3)采用能细化组织及晶粒的热处理工艺,提高材料的断裂韧性,降低裂纹扩展速度。

1.1辊体材料成分设计小炉冶炼的材料成分如表3所示,为保证一定的强度,规定了最低含碳量,为增加辊体材料的淬透性,Mn含量选取上限,三炉Ni、Cr含量进行了相应调整。其中01#与目前宝钢使用的R73连铸辊成分基本一致。

1.2熔炼方法三炉原料均采用IF钢以降低P、S含量,在50kg感应炉中冶炼,铸成电极棒,然后采用30kg电渣炉进行重熔,最终得到120mm电渣锭。

1.3锻造将120mm电渣锭锻成30mm×400mm拉伸试样毛坯、32mm×32mm×180mm冲击试样毛坯和40mm×26mm×450mm的J积分试样毛坯。锻造毛坯经950℃正火+650℃高温回火后,机加工至一定尺寸再进行调质热处理。

1.4调质热处理在盐浴炉中进行调质加热,在井式电炉中进行回火处理,炉温均经过校正。调质工艺采用二种方案:1)900℃水冷+690℃回火空冷2)900℃空冷+690℃回火空冷最终硬度均要求在连铸辊辊体材料所规定的硬度范围内,即32-37HSD,采用900℃空冷的目的是:比较在不同热处理方式下三种成分的连铸辊辊体内部性能和金相组织的差别。

1.5金相组织及性能测试分析经调质热处理的试样测试硬度值后,分别按GB/T228-2010、GB/T229-2007和GB/T21143-2007标准,进行拉伸、室温冲击、J积分试验。三种成分的试验钢种经调质处理后,采用OLYMPUS-BX51金相显微镜进行微观组织分析,冲击断口形貌采用NOVANANOSEM430型扫描电子显微镜观察分析。

2试验结果分析

小炉冶炼的三炉试验材料实际成分如表4所示,机械性能测试结果如表5所示,03#金相组织及断口电镜图片如图1、图2所示。

3结果讨论分析

图1是03#试样调质后的金相照片,从图中可以看出组织由已经再结晶的铁素体和均匀分布的细粒状渗碳体组成,并且渗碳体充分析出,均匀弥散分布,基体呈细小的等轴状。因此03#经调质处理后,具有较高的强度和硬度,同时具有更好的塑性和韧性,综合力学性能优异。图2是03#冲击试样的断口形貌,从图中可以看出断口形貌呈韧窝状,基本由圆形或者椭圆形的凹坑-韧窝组成,由此可以推断在冲击断裂过程中发生了明显的塑性变形,进一步说明了03#的塑性和韧性较好。由表5结果可知,在第一种热处理条件下,03#成分试样的强度虽然比R73、01#和02#略低,但强度值仍大于700MPa,满足了使用要求;而韧性指标大幅度提高,其中延性断裂韧度03#比01#提高了48%,冲击吸收功03#比R73提高了78%,塑性也得到了很大的提高,其中收缩率03#比R73提高了14%,因此03#在水淬和高温回火的情况下,综合力学性能良好。分析其主要原因在于03#中Ni和Cr的含量较高,部分溶于基体的Ni和Cr的产生了固溶强化,另外部分未溶的Ni和Cr以强化相的形式析出,这样实现了既保证强度达标又不降低韧性的目的[8]。断裂韧度对连铸辊来说是极重要的指标,连铸辊在恶劣的工况条件下,堆焊层经冷热疲劳最终要产生裂纹,产生的裂纹将向连铸辊内部扩展,高的断裂韧度,裂纹就不容易向辊体内部扩展,因此提高连铸辊的关键在于获得高的断裂韧性[7],由此可见03#成分对于防止疲劳裂纹的扩展具有重要的意义。另外在900℃空冷状态下,经高温回火后,其冲击功03#成分也比01#、02#高,可预期连铸辊内部在冷却速度比表面缓慢的情况下,采用03#成分的连铸辊塑韧性也要比01#、02#连铸辊好。从材料经过两种不同的热处理工艺后得到的力学性能上看,水冷和空冷所得的硬度基本一致,但是从强度上看水冷的要稍微低于空冷的,而在塑韧性上,水冷要高于空冷,尤其是冲击吸收功上,水冷后回火的值要比空冷后回火的高24%以上。而提高连铸辊使用寿命的关键就在于提高韧性,因此采用水冷后高温回火工艺更加合适,使用寿命也会有所提高。另外,可以从理论上判断锻件淬火能否直接采用水冷。根据热处理手册,首先应当考虑锻件化学成分和基础性能的影响,一般可以采用碳当量的计算公式计算,如公式1所示。按此式计算03#成分:[C]=0.56%≤0.75%,由此可见03#钢虽然提高了Ni、Cr含量,但是整体的碳当量还是处于较低的水平,所以水淬是安全的,不会引起巨大的内应力而淬裂的产生。从生产效率上看,直接水淬需要的时间更短,效率也更高,因此03#最佳的热处理工艺是900oC水冷+690oC回火空冷。

4结论

第2篇

通过降低热处理的工艺温度能有效减少由此产生的变形。降低工艺温度,能相对减少工件的高温强度,并增强其塑性抗力以及抗应力变形、抗淬火变形、抗高温蠕变的能力。降低工艺温度,还能够减少工件加热、冷却的温度区间。温度区间减少后,由热处理引起的各部位温度的一致性也会增强,而温度的不一致性正是引起工件组织应力和热应力的根本原因,随着温度不一致性减少,由此而导致的变形也会相应减少。此外,在降低工艺温度并缩短工艺时间的情况下,将缩短工件的高温蠕变时间,从而减少变形。科学合理的热处理工艺是减小热处理变形的关键因素。由图1可以看出,在650%球化退火后的硬度梯度和740%球化+680%等温处理的硬度梯度结果相近,未经球化退火的齿轮的硬度较前两个低。这是因为球化退火可使淬火后渗层表面残留奥氏体量减少,从而提高了齿表面硬度,因此20CrNi2MoA钢齿圈渗碳后应采用球化退火工艺,同时为减小热处理变形,在650℃球化退火效果更好。

2变形的其他影响因素及减小措施

2.1预备热处理在热处理过程中,有可能引起内孔的变形增大,如存在混晶、大量索氏体或魏氏组织以及过高的正火温度。因此需要对正火温度进行控制,也可以采用等温退火的方式来对锻件进行处理。金属最终的变形量与很多因素有关,如淬火前进行的调质处理以及退火和正火。金属产生变形进而导致金属组织结构也发生变化。研究和实践表明,为使金属组织结构均匀,在进行正火处理时采用等温淬火是一种有效的减小其变形量的措施。

2.2运用合理的冷却方法金属淬火后冷却过程的控制也是必须考虑的一个因素。淬火后采用油进行冷却,因此其变形直接受到油的冷却能力的影响。通常来说,热油淬火产生的变形小于冷油淬火,一般控制在100+20%。同时,变形还受到淬火的搅拌方式和速度的影响。在进行金属热处理时,金属产生的应力及模具的变形与冷却的速度和冷却的均匀程度有关。过快的冷却速度和不均匀冷却都会导致应力及模具变形的增大。因此,应尽量采用预冷,不过需要注意的是应保证模具的硬度要求。为减少热应力和组织应力,可以选用分级冷却淬火,这种方式对形状复杂的工件十分有效,能显著减少其变形。采用等温淬火的方式,则适用于十分复杂并且有较高精度要求的工件,能使金属变形显著减少。

2.3零件结构要合理改善零件的结构是减少热处理变形的关键环节。经过热处理后的工件,其厚度不同的部分冷却的速度也是不同的。因此,在满足工件使用性能的前提下,应使工件的厚度差别不能过大,尽量使零件的截面均匀,减少由应力集中导致的过渡区的畸变和开裂现象。保持结构与材料成分和组织的对称性,避免尖锐棱角、沟槽等。此外,采用预留加工量的方式也是减少厚度不均匀零件变形的有效方式之一。

2.4采用合理的装夹方式及夹具通过采用合理的装夹方式和夹具,能够使工件获得均匀的加热和冷却,从而减少热应力以及组织应力的不均,有效减小热处理导致的工件变形。

2.5机械加工工件的加工通常需要经过很多道工序,如果热处理加工是最后的工序,则应控制其畸变的允许值,使之满足图样规定的工件尺寸。依据上道工序的加工尺寸来对畸变量加以确定,因此掌握畸变规律尤为重要,为使热处理导致的畸变处于合格的范围,在进行热处理前应对尺寸进行预修正。如果热处理是中间的工序,机加工余量和热处理畸变量之和即为热处理前的加工余量。导致热处理变形的因素多而复杂,因此相较于机械加工余量来说,热处理的加工余量不易确定,在实际加工中应留出足够的加工余量用于机械加工。

2.6采用合适的介质在热处理的过程中,介质的选择也十分重要,应选择有利于减小变形量的介质。研究和实验表明,硬度要求相同的情况下,采用油性介质是更好的选择。不同介质具有不同的冷却速度,在其他条件相同的情况下,同油性介质相比较,水性介质的冷却速度较快。此外,水温的变化也会对介质的冷却性能造成影响,其变化对油性介质冷却特性产生的影响较小。热处理条件相同的情况下,水性介质淬火后会产生相对较大的变形量。

3结束语

第3篇

图1为不同热处理工艺条件下30MnSi钢的拉强度。可以看出,当回火工艺相同时,淬火温度为910~990℃时,30MnSi钢的强度较高。在热处理后要保持材料的抗拉强度高于1420MPa,其回火温度应控制在390~430℃。表1和表2为不同热处理处理工艺条件下30MnSi钢的力学性能。可以看出,当回火温度为390℃时,性能满足要求。当回火温度为430℃时,只有淬火温度在910~990℃时,性能才满足要求。

2耐延迟断裂性能分析

图2为不同热处理工艺条件下30MnSi钢的延迟断裂性能。可以看出,回火温度为390℃时,试样的延迟断裂时间随淬火温度的升高而先上升后下降。虽然试样的力学性能都能满足要求,但耐延迟断裂性能差异较大,也就是说淬火温度对PC钢的耐延迟断裂性能影响较大[2]。当淬火温度为870℃时,由于低温下淬火材料的回火温度较低,使材料的韧性变低,耐延迟断裂性也较低,所以导致延迟断裂的时间变短为30h。当淬火温度为950℃时,试样的耐延迟断裂性能达到了FIP实验的要求。当回火温度为430℃时,淬火温度为910℃和990℃时断裂的时间都增加且与在950℃淬火时相同。当回火温度为390℃时,淬火温度为910℃和990℃时其耐延迟断裂性能远不如950℃淬火时的性能。这说明,耐延迟断裂性能随着回火温度的升高而提高,且获得较好的延迟断裂性能的淬火温度的范围变大[4]。当在较低的温度下回火时,试样的耐延迟断裂性能不能满足FIP实验的要求。而在高温下回火时,则可以满足FIP实验的要求。所以,当PC钢的强度满足要求时,适当的提高回火温度可增加材料的耐延迟性能。

图3为不同淬火温度下试样的微观组织。可以看出,当淬火温度为950℃时,所得组织是细小且均匀的回火屈氏体。淬火温度为990℃时,组织是较粗大的回火屈氏体。淬火温度升高到1030℃时,组织较粗化且板条之间的距离变大,但其延迟断裂性能的差别并不是晶粒尺寸所影响的。实际上,当奥氏体的温度升高时,钢中合金元素的分布位置会发生变化。因为材料中Mn的含量比较高,Mn对延迟断裂较敏感[3]。这些都导致了当奥氏体化温度大于950℃时,温度越高材料的耐延迟断裂性能越差。

图4为不同回火温度下30MnSiPC钢的TEM形貌。可以看出,回火温度为390℃时,可以清晰的看到马氏体板条界,并在界面上可观察到析出的薄片状碳化物。该碳化物为收集氢的陷阱,如果这种碳化物连续的分布在马氏体的边界,则进入到钢中的氢会富集在晶界处,导致晶界脆化,从而使延迟断裂变得敏感。当回火温度从390℃升高到430℃后,析出的渗碳体会聚集粗化,并变为清晰地条状的渗碳体。细小的碳化物会弥散的分布,从而较小应力集中,使界面能降低,断裂时间变长,从而使其耐延迟断裂性能增加[5]。当回火温度升高到470℃时,渗碳体会球化。当回火温度继续升高时,较小的碳化物颗粒会逐渐溶解,大的颗粒会长大,当温度升高到一定程度后,细粒的碳化物会逐渐聚集并粗化,会出现更加粗大的渗碳体和铁素体颗粒,其强度和硬度都较低。

3结论

第4篇

1.1试剂与仪器KBr,光谱纯;聚奥炸药,204所提供。精密烘箱,成都天宇试验设备有限责任公司,CK-30型,量程10~200℃,温度均匀度±1℃,温度波动度≤±1℃。傅里叶变换红外光谱仪,德国布鲁克公司,Vertex70型,光谱范围4000~400cm-1,采用中红外光源。

1.2试验原理有机炸药不同晶型之间虽分子结构式相同,但存在空间异构体,可以利用红外光照射物质后,不同结构的基团或官能团产生不同的吸收峰来确定物的结构,不同晶型的空间异构体,其红外吸收特征峰存在个体差异;采用烘箱模拟退火及回火过程热效应处理炸药试样及导爆索,对炸药及索内炸药进行红外光谱分析,研究红外吸收峰结构变化情况与保温试验温度、时间的关系,制定热处理工艺。

1.3试验方案设计结合HMX转晶温度(158℃),及银质导爆索常规去应力和软化温度(160~175℃),在此温度对聚奥炸药进行短时间保温,或在低于此温度附近选择不同温度、保温不同时间研究其结构变化情况。设计选择4步方案进行分析并采集红外光谱图。即:1)175℃,保温时间≤5h;2)160℃,保温时间≤8h;3)150℃,保温时间≤25h;4)130℃,保温时间≤26h。对于4个方案,首先分析原态炸药在不同的方案的红外光谱图,比较分析其与β-HMX及α-HMX晶型的相关度,以制定初步热处理条件。然后依据初步热处理条件制定的方案,模拟拉索热处理过程,选择银导爆索在进行退火处理之前和退火处理之后两步方案,进行模拟试验及红外光谱测试,对比分析其与β-HMX标准红外图谱的相关度,研究不同保温温度、保温时间与相关度的关系,确定最终的退火回火热处理参数条件。通过试验研究,选择既满足金属银导爆索拉伸性能及导爆索拉制安全性,又保持晶型不发生转变的适宜参数条件,确定热处理工艺。

2结果与讨论

2.1炸药试验结果与讨论

2.1.1聚奥炸药175℃模拟保温试验将聚奥炸药加热至175℃,保温3、4、5h,采集红外光谱图,如图1。HMX的4种晶型中,能稳定存在的为α、β、γ型,β型是作为含能材料使用要求的晶型,高于转晶温度时,其会转换成不稳定的δ型,δ型在室温下放置后会有部分转变为α型,影响产品的性能,β及α2种晶型奥克托今炸药的标准红外光谱图见图2。在红外光谱中,以β-HMX标样图谱为参比,建立快速比较方法,利用软件快速比较计算出试样图谱相对于标样图谱吸收峰的相似程度,得到相关度数据。经过对图1中3张图谱的对比分析,结果表明:在175℃保温3~5h过程中,其红外吸收峰与β-HMX及α-HMX相比差异较大,与常规β-HMX相关度由最初的98.90%降为50.77%。表明聚奥炸药在175℃保温3h以上即发生晶型变化。

2.1.2聚奥炸药160℃模拟保温试验将聚奥炸药加热至160℃,保温4~8h,得到保温4、5、6、7、8h5张红外光谱图(叠加),如图3。经过图谱快速比较方法,结果表明:在160℃保温4~8h过程中,其红外吸收峰与β-HMX及α-HMX相比差异较大,与β-HMX相关度由最初的98.90%降为22.64%,表明聚奥炸药在160℃保温4h以上即发生晶型变化。

2.1.3聚奥炸药150℃模拟保温试验将聚奥炸药加热至150℃,保温22h,每2h选取一份试样,之后继续保温3h,每1h选取一份样 品进行红外光谱分析,共采集14张红外光谱图进行比较,如图4、图5。图4中,自上而下依次为150℃保温时间2、4、6、8、10、12、14h的红外光谱比较图;图5依次为16、18、20、22、23、24、25h的红外光谱比较图,分析14个红外光谱吸收峰相近,其结构为β-HMX,比较分析150℃保温不同时间图谱与β-HMX红外图谱相关度,结果表明:在2h至23h,相关度为97.15%以上;保温至24h,相关度下降为91.82%,聚奥炸药在150℃保温23h以上晶型发生变化。

2.1.4聚奥炸药130℃模拟保温试验将聚奥炸药加热至130℃,保温18h,每3h取一份,继续保温8h,每2h取一份样品进行红外光谱分析,比较采集的10张图谱,10个红外光谱吸收峰相近,分析结构为β-HMX结构,130℃保温不同时间图谱与β-HMX红外图谱相关度数据见表1。表1中,聚奥炸药与β-HMX红外图谱相关度在3h至24h为97.21%以上;继续保温至26h,相关度略有下降,为93.75%,表明聚奥炸药在130℃保温25h以上晶型才有轻微变化。

2.2银导爆索试验结果与讨论炸药装索后,在热处理过程中存在热积累、炸药装填密实且隔离空气等情况;以上因素可能会影响导爆索内炸药局部温度高于散装炸药,因此结合装填炸药模拟试验结果,避免拉索过程热积累,保证生产有一定裕度,初步确定退火温度控制在130℃。进行银导爆索模拟试验。

2.2.1未退火银导爆索模拟保温试验生产中需将银导爆索从10.0mm拉至1.6mm,依据试验确定的初步退火温度,将炸药装入银导爆管,在不退火的条件(即室温)下,拉至规定值。为研究索内保温的热积累效应对炸药的影响,对拉好的导爆索进行130℃保温试验,并解剖不同保温时间下导爆索内炸药,进行红外光谱分析,与β-HMX、α-HMX比较,相关度分析结果见表2。由表2知,银导爆索在130℃条件下,保温时间在11h内可保证产品中炸药晶型基本不发生转变。不退火拉索试验中,不仅费力、易拉断,而且拉制的银导爆索壁厚不均匀。因此,需对银导爆索进行高温软化处理(即退火与回火),恒定温度130℃,进行不同时间的工艺摸底试验。

2.2.2已退火银导爆索模拟保温试验对导爆索在130℃进行退火1.5h后,模拟回火保温不同时间(3~7h),采集红外谱图,比较退火银导爆索保温3、5、6、7h的红外光谱图。分析图6,已退火导爆索保温3~7h,红外光谱吸收峰显示为β-HMX结构,比较其图谱与β-HMX红外图谱相关度,结果显示与β-HMX相关度均在96%以上,未发生晶型转变。结果表明,某装填聚奥炸药的银导爆索在130℃下,累计保温7h以内,其内装聚奥炸药未发生晶型转变,拉索安全且不易断裂。以此制定了热处理工艺。银导爆索由10.0mm拉至6.0mm室温即可进行;从6.0mm拉至1.6mm需软化处理。由于退火软化后银导爆索持续拉制过程耗时较长,产生散热而使温度下降,使后期拉制较为费力。因此为保证生产中易于拉索,采用130℃间断性的退火软化,然后于此温度回火保温,重复多次,拉至规定值,总体累计时间小于7h。依此进行生产工艺试验,综合两结果,最终确定了热处理工艺条件为:某银导爆索由10.0mm拉至6.0mm,室温放置1h,拉至5.0mm,按130℃、1h退火,拉至4.4mm、3.5mm、2.5mm,各按130℃、0.5h退火,拉至1.6mm,按130℃、1.5h退火。

3结论

第5篇

1.1样品制备

本实验采用熔融热处理工艺制备玻璃陶瓷。在钡硼硅酸盐玻璃体系中加CaO、TiO2和ZrO2(摩尔比为2∶3∶1)作为晶核剂,含量保持45wt%不变。所用原料为分析纯的SiO2、H3BO3、BaCO3、Na2CO3、Na2SO4、CaCO3、TiO2,考虑到ZrO2在硼硅酸盐玻璃中很难溶解,因此用质量分数为95.2%的ZrSiO4来引入ZrO2,由于ZrSiO4同时引入了Si,所以,Si的含量由调节SiO2的含量来保持平衡。按照配料比称取所需原料(≈90g),用玛瑙研钵充分研磨混匀后放入刚玉坩埚中。将坩埚放于马弗炉中加热到850℃焙烧2h,以5℃/min的升温速率升温到1250℃下熔融3h。将熔体水淬后得到玻璃样品,做DTA分析玻璃样品的核化温度和晶化温度。之后采用熔融热处理工艺分别在核化温度Tn和晶化温度Tc(由DTA分析得到)各保温2h后自然冷却得到玻璃陶瓷样品。

1.2测试与表征

将所制得的玻璃样品研磨过筛(100~200目,75~150um)后,利用SDTQ600型同步热分析仪,以20℃/min的升温速率升温到1200℃对样品进行差热分析(DTA),确定玻璃的热处理温度;用X’PertPRO型X射线衍射分析仪X衍射(X-raydiffraction,XRD)分析,铜靶(35kV,60mA),扫描速度5°/min,步长0.02°,扫描范围为10~80°;用质量分数为20wt%的HF水溶液腐蚀样品30s,超声20min,烘干后,利用德国蔡司公司EVO18型扫描电镜对样品微观形貌分析(SEM)。

2结果与分析

2.1样品的热分析

为水淬后所得玻璃样品的DTA曲线。基础玻璃的Tg在738℃左右,一般而言,成核温度Tn比Tg高50℃左右。因此,本实验研究的核化温度选取750℃、780℃和810℃。除Tg处的吸热峰外,在815℃和970℃附近还出现了宽化的放热峰,表明晶化温度Tc在该温度附近,两个放热峰可能对应不同种类的晶体长大温度或者同一种类的晶相不同长大速率的温度。本研究选取的晶化温度分别为850℃、875℃、900℃、925℃、950℃、1000℃和1050℃。

2.2核化温度的确定

对于固化HLLW来说,玻璃陶瓷固化体应具有晶粒多而小、均匀分布的特点,而晶粒的多少和分布情况主要由核化温度决定。为了确定最佳的核化温度,先在970℃附近选一个温度不变作为晶化温度,本研究选取此温度为1000℃。将玻璃陶瓷样品分别在750℃、780℃和810℃核化处理2h后,再在1000℃处理2h。玻璃样品经过750℃、780℃和810℃核化处理后,所得晶相都是钙钛锆石。而且在Tn=780℃时,XRD图谱上钙钛锆石相的峰最强,显然其钙钛锆石的含量也是最多。为了研究钙钛锆石晶粒的分布情况和形貌,对其做SEM检测。随着晶化温度从750℃向810℃变化,晶粒的尺寸从约400μm减小到约100μm再增大到约340μm。另一方面,经过750℃处理的样品,晶粒分布不均匀,出现聚集情况,780℃处理后的样品晶粒分布则比较均匀,810℃处理后,所得晶粒成片状且分布不均。核化温度为780℃时,玻璃陶瓷体内,钙钛锆石晶粒多且分布均匀,尺寸较小。由此可以确定,该玻璃陶瓷的较佳核化温度Tn为780℃。

2.3晶化温度的确定

玻璃样品在780℃处理2h后,分别在850℃、875℃、900℃、925℃、950℃、1000℃和1050℃保温2h。晶化温度在850~1000℃范围内,对应钙钛锆石晶相的XRD峰强逐渐增加,当温度升高至1050℃时,峰强又降低,说明玻璃陶瓷样品在780℃经过均匀成核后,其长大速率在1000℃达到最大值。值得注意的是,当温度低于1000℃时,XRD图谱上存在少量的氧化锆晶相的峰。这可以解释在970℃附近出现的不算明显的放热峰:一方面,钙钛锆石晶体长大是放热过程,另一方面,氧化锆慢慢溶解到玻璃中是吸热过程,两种不同的热效应共同作用就导致了热分析曲线在970℃附近出现的宽化的放热峰。示。晶化温度为850℃和875℃时,钙钛锆石晶相呈柱状,且温度升高,晶粒变大。晶化温度继续升高到900℃后,晶粒形状渐渐变的没有规则,925℃处理后晶粒长成块状。当晶化温度为950℃时,晶粒开始变为柱状,但尺寸较Tc分别为850℃和875℃时要小的多,同时出现晶粒聚集的现象,分布不均匀。晶化温度升高到1000℃后,所得钙钛锆石晶粒尺寸变小,分布均匀,该晶化温度下生成的钙钛锆石晶相也是最多的。晶化温度继续升高到1050℃后,晶粒变的粗大而且呈聚集状态。结合XRD和SEM分析可知,SiO2-B2O3-BaO-Na2O-CaO-ZrO2-TiO2体系基础玻璃经过Tn=780℃处理后,较佳的晶化温度是1000℃。

3结论

第6篇

在航空工业中广泛应用合金结构钢制造飞机、发动机的主要零件[3]。12CrNi4A、18Cr2Ni4WA等都是航空器普遍使用的合金钢,主要做传动轴、销子。40CrMoA调制合金钢,综合机械性能好,在具有相当高的强度的同时又具有良好的韧性。广泛用于制造高负荷、大尺度的轴零件,也可以用来做大截面、高负荷、高抗磨及良好韧性要求的重要零件,如发动机曲轴等。

2曲轴热处理工艺

2.1曲轴工作条件活塞式发动机一般由气缸、活塞、曲轴、连杆、气门机构和机匣组成,曲轴的组成,如图3所示。曲轴除了和连杆一起将活塞的直线运动转变为旋转运动,还将功率传递给螺旋桨,曲轴由轴头、轴尾和曲柄等组成,曲柄又由曲颈和曲臂组成,轴头前段与螺旋桨轴相连。

2.2材料选择IO-360-L2A发动机曲轴采用高级优质合金钢40CrNiMoA锻件制成,它是在优质碳素结构钢的基础上,适当地加入一种或数种合金元素(总质量分数不超过5%)而制成的钢种,主要成分应符合GB/T3077的规定[4],高级优质钢的含硫、磷质量分数应小于0.025%,由于曲轴为热加工用钢,其铜质量分数规定应不大于0.20%,如表1所示。它属于低合金中碳超高强度钢。该材质经处理后具有良好的综合机械性能,Cr、Ni等合金元素的加入使其淬透性较好并使铁素体的强度和韧性得到提高;Mo、Cr等碳化物形成元素的加入,可阻止奥氏体晶粒长大,提高钢的回火稳定性,在使用中能有一定的冲击抗力和断裂韧性,高的疲劳强度满足曲轴对材质性能的要求。

2.3曲轴热处理IO-360-L2A发动机使用多曲柄曲轴,由铬镍钼钢锻件制成,曲轴是发动机受力最大的部件之一,曲轴的曲颈和曲柄表面都经过渗氮处理,增加了表面的抗磨性,曲轴上螺旋桨安装凸缘表面未进行渗氮处理,表面仅镀一层防腐金属层,维护时应避免划伤,预防曲轴腐蚀和产生裂纹。曲柄是空心的,这不仅可以减轻曲轴的质量,还可为滑油提供通道,同时也是一个收集淤泥、积碳和其它杂质的空腔,滑油流动越多,清洁效果越好。材料40CrMoA曲轴热处理工艺是锻造正火粗车调质精车去应力退火精加工到成品氮化抛光装机[5],其技术参数如表2所示。

2.3.1曲轴热处理技术要求主轴颈和连杆轴径处要求淬硬层硬度为56~63HRC;淬硬层深度为3.5~5.5mm,淬硬层边缘到曲轴对于V形轴不大于4~5mm,对直列轴不大于6~8mm。为了确保质量,对曲轴的热处理实际采用中频感应加热淬火法[6],如图4所示,采用曲轴轴径轮流淬火,分别进行表面淬火,其加热频率1000Hz;始锻温度1150℃,终锻温度850℃。

2.3.2曲轴热处理工艺[7]1)正火+高温回火。正火处理的目的是为了改善曲轴的基体组织,消除锻造过程造成的粗大组织及魏氏组织,细化晶粒,并消除锻造应力。回火后为防止回火脆性,应油淬,回火温度在600~640℃左右。最好是淬火出来先打一个淬火硬度,根据实际情况调整回火温度。a.正火:加热温度880℃,保温270min,出炉空冷;b.回火:加热温度640℃,保温600min,出炉空冷。2)热处理调质处理。曲轴锻造、正火后要进行热处理调质处理,以获得整体的最佳综合机械性能,并为表面氮化处理做好组织准备。曲轴调质后的金相组织应为均匀的回火索氏体+少量贝氏体组织,不允许出现大量的铁素体组织,否则将导致氮化层的脆性加大,降低曲轴的疲劳性能。a.淬火:加热880℃(氮气保护)保温时间5h;冷却曲轴出炉后预冷1.5min(曲轴表面颜色在800℃以上一点),随后淬入水玻璃水溶液中,冷却6~7min出水空冷。淬火介质使用玻美度3~3.5的水玻璃水溶液。b.回火:40CrMoA轴加热温度560~570℃,保温时间为5.5h,出炉空冷。3)气体氮化处理。曲轴表面进行氮化处理,一方面是为了获得高的疲劳强度,另一方面是为了获得高的表面硬度,提高曲轴的耐磨性能。曲轴表面经氮化处理后,生成极细颗粒具有高硬度的ε相,同时还生成Fe3N和FeN,使轴颈和圆角均得到强化处理,改善表面耐磨性,增加表面强度,特别是增加抗疲劳强度,并提高材料的抗腐蚀性能。

3曲轴热处理缺陷分析及其防止措施

曲轴在生产过程中要经过冶炼、铸造、轧制(或锻造)等工序,最后成材,由这些工艺过程控制的质量,一般称为热处理质量。热处理质量直接影响产品的性能和使用安全。热处理缺陷中最危险的是裂纹,称为第一类热处理缺陷。工程构件在交变应力作用下,经一定循环周次后发生的断裂称作疲劳断裂,曲轴失效可以由多种原因引起,然而,冲击疲劳失效可能是曲轴失效中最普遍的原因。当裂纹尖端的应力强度因子KI达到材料断裂韧度KIc(或是裂纹尖端的应力集中达到材料的断裂强度)时,裂纹就会失稳快速扩展疲劳最终断裂是瞬时的,因此它的危害性较大,甚至会造成机毁人亡的惨剧。钢质工件经热处理后常见的质量缺陷有淬火显微组织过热、欠热、淬火裂纹、硬度不够、热处理变形、表面脱碳、软点等。

3.1淬火裂纹及防止措施淬火裂纹是钢材的淬火或淬火后形成,由于冷却时的高应力所造成;也有可能是在淬火油中的水所导致。具体如下:钢质工件由于结构设计不合理,钢材选择不当、淬火温度控制不正确、淬火冷却速度不合适等;增大淬火内应力,会使已形成的淬火显微裂纹扩展,形成淬火裂纹;由于增大了显微裂纹的敏感度,增加了显微裂纹的数量,从而增大淬火裂纹的形成。淬火裂纹一旦发生,绝大部分将造成零件的报废,必须预防淬火裂纹的产生。首先曲轴原材料的横截面酸浸低倍组织试片上,不得有目视可见的缩孔、气泡、裂纹、夹杂、翻皮、白点、晶间裂纹等缺陷。材料选择上做到经济性和技术性的合理搭配,既要保证价格便宜又要保证材料有较好的加工性,热处理性要好,易于淬火,变形小,淬裂倾向小。随着含碳量的提高,Ms点降低,淬裂倾向增大,在满足基本性能如硬度、强度的条件下,尽量选用含碳量低的钢。为了防止零件在淬火急冷中开裂,应使其均匀加热、均匀冷却、均匀涨缩。在零件结构设计上,尽量避免截面形状尺寸突变,同时注意圆角过渡。合理安排工艺路线,如正确安排好预备热处理、冷加工和热加工等工序可以有效减少热处理淬火开裂倾向。恰当地选择加热介质、加热速度、加热温度和保温时间也可以有利于减少淬火开裂。

3.2氧化与脱碳及防止措施氧化是因为钢在有氧化性气体中加热时,会发生氧化而在表面形成一层氧化皮,在高温下,甚至晶界也回会发生氧化。脱碳是钢在某些介质中加热时,这些介质会使钢表面的含碳量下降,脱碳的实质是钢中碳在高温下与氧和氢发生作用生产一氧化碳。脱碳会明显降低钢的淬火硬度、耐磨性及抗疲劳性能。防止氧化、脱碳的有效措施是采用盐熔炉加热、护气氛炉、真空炉加热和预留足够的加工余量,见表3所示。

4结论

第7篇

淬火钢在回火时,随着回火温度升高,其冲击韧性呈增大趋势。但是某些钢在一定温度范围回火后,冲击韧性反而会呈下降趋势。这种在回火过程中发生的脆性现象,称为回火脆性。钢中常见的回火脆性可以分为低温回火脆性和高温回火脆性两类。

1.1低温回火脆性

通常将在200~400℃回火后发生的脆性称为低温回火脆性,即第一类回火脆性。在低于250℃回火时,由于不发生碳化物析出,故不会引起冲击韧性急剧下降。当回火温度高于400℃时,碳化物开始聚集和球化,对基体的割裂作用减少,因而钢的冲击韧性又重新升高。而在250~400℃回火后,由于析出了碳化物薄片,故产生回火脆性。低温回火脆性对于钢件强度与韧性的最佳配合不利。但目前尚未找到有效的方法完全消除这种回火脆性,只能尽量避免在这个温度范围回火,或采用等温淬火代替。在钢中加入1~3%Si,可以使碳化物的析出移向较高温度进行,从而使脆性产生的温度范围升高,这有利于改善钢回火后的冲击韧性。

1.2高温回火脆性

在450~650℃回火后出现的脆性,通常称为高温回火脆性,或称第二类回火脆性。这种回火脆性的主要特点是:

(1)回火脆性主要在含有Cr、Ni、Mn、Si等元素的合金结构钢中出现。

(2)回火脆性的出现与回火后的冷却速度有关,通常回火后快冷不出现回火脆性。

(3)具有可逆性。如果把已经出现这种回火脆性的钢重新加热到脆性区温度回火,再快冷到室温,其回火脆性即可消除。已经消除了回火脆性的钢,如果重新加热到脆性区温度回火,随后缓慢冷却到室温,则脆性又会出现。因此这种回火脆性具有可逆性。

(4)断口呈晶间断裂。多数人认为高温回火脆性产生的主要原因,是在450~650℃回火时微量杂质元素(P、Sb、Sn、As等)或合金元素向原来的奥氏体晶界偏聚或析出,削弱了晶粒之间的结合强度,从而使钢出现脆性。例如:这种脆性的出现是由于晶界变脆引起的,所以回火脆性试样的断口为晶间断裂。又如,杂质元素在晶界的偏聚是在一定的温度和条件下产生的,也可以在另外的温度、时问条件下消除,因此这种回火脆性是可逆的。

2影响回火脆性的因素

第8篇

关键词:回火炉,plc,gp触摸屏

 

0.引言

热处理生产线上有加热炉、清洗机、回火炉、运输车、升降台等等。回火是生产工艺中重要的一个环节。它是在工件淬硬后,再加热到特定点以下的某个温度,保温一定时间,然后冷却到室温的一种热处理工艺。工件经过回火可以消除淬火时产生的应力,提高材料的塑性和韧性,获得良好的综合力学性能,稳定零件尺寸,使工件的结构组织在使用的过程中不发生变化。免费论文参考网。

本文是在分析目前国内热处理车间设备与工艺现状的基础上,提出了对回火炉的控制系统实现自动控制的硬件系统和软件系统。通过这些控制实现设备的自动控制;实现对炉温、氮势的自动监控与数据自动采集和记录;实现故障自诊断并及时报警,及时处理;实现热处理工艺过程的自动跟踪和监控,实现热处理工艺优化.

1.箱式回火炉构造和控制要求

1.1箱式回火炉构造

该设备由回火炉主体、炉内搅拌装置等构成。加热室用钢板焊接成密封结构与前室连接在一起,顶部装有风机装置,使炉气上下循环,以保证炉温和气氛均匀。炉顶装有热电偶,用于控制炉膛温度。炉膛两侧采用电加热辐射管或气体燃料加热辐射管。免费论文参考网。

1.2箱式回火控制要求

a)炉内温度达到设定温度后,按下操作台上回火炉“搬入指令”按钮开关,炉门自动打开,推拉车上待处理工件,由推拉车送到加热室。

b)处理工件送入加热室,操作柜自动发出信号并开始升温,温度达到设定温度,定时器开始计时。

c)定时器设定时间结束,蜂鸣器鸣叫,告知回火处理结束。

d)确认处理结束后,按下操纵盘上的回火炉“搬出指令”按钮开关,炉门就打开,处理品由推拉链自动搬送到推拉车上,回火工序结束。

2. 回火炉控制系统结构

回火炉的控制系统主要由温度控制、氮势控制、循序动作控制等几个方面组成,如图1所示

图1 控制系统图

炉温控制由热电偶及仪表组成主控系统,对炉温测控的同时进行温度纪录。当炉温超过设定值时切断电流并发出故障信号,排除故障后人工复位使电炉重新运行。

回火炉的氮势控制是通过控制气氛中氨或氢气的分压,实现对氮势的控制。从而达到对工件氮化层组织的精确自动控制,消除表层疏松、内层脉状等缺陷,使工件得到较高的表面硬度、耐磨性,并提高工件疲劳强度和耐蚀能力。

氮势测量是通过测量炉内含量换算后间接求得。氮势是通过改变氨流量来达到控制的。给定值与测量值(经线性化处理后)进行比较,以其差值为调节量,经过D/A转换后,直接控制电动阀的开度,以改变氨的流量,实现氮势的闭环自控。

3. PLC控制系统硬件设计

3.1 PLC的选型

PLC采用欧姆龙系列产品C200HEPLC。免费论文参考网。因为C200HE PLC采用模块化结构,组成系统方便灵活,适用于中小型控制系统。选择的输入单元型号为C200H-ID212。输出单元型号为C200H-OC222。

3.2 部分输入模块电路

输入模块CH006电路如图2所示,槽CH006的位11推拉车PPC在回火炉前停止时是限位开关SQ11,位12的作用是通知PPC在回火炉前减速。位13是前门开到位,位14是前门关到位。

图2CH006输入模块

4. PLC程序设计

油烟强排风机程序如图3所示,回火炉进行回火状态下,回火炉强排油烟机处于自动时,排风机工作99.99s后断开停止。

 

图3 排风机启动程序

5.触摸屏监控画面设计

触摸屏选用日本Digital公司Pro-face GP系列触摸屏工业图形显示器产品。GP通过串口与下位机PLC相连,触摸屏出现故障时,不影响PLC的正常工作,通过控制台上所保留的有限几个按钮和数字显示器,仍可以进行正常的生产操作控制。

回火炉热处理生产线监控系统的基本画面主要有:主菜单、回火炉搬送监视画面、回火炉定时画面(如图6所示)、回火炉KR操作画面、回火炉温度控制画面(如图7所示)、回火炉马达操作画面、回火炉控制监视画面(如图8所示)、自动搬送操作画面、手动触摸操作等9个画面。而在故障出现后,在基本报警画面中还会弹出包含故障原因和排除方法的提示窗口。

图6回火炉控制监视画面

6. 结 束 语

基于OMRON PLC和触摸屏的控制己在许多热处理车间中得到应用,运行状况良好。

第9篇

[论文摘 要] 本文从三个方面论述了热处理工艺在提高金属零件的制造水平中的作用。 

 

引言 

在现代工业生产中,金属零件的制造是一个重要的环节,具有举足轻重的作用,因此提高金属零件的制造水平成为一项不可缺少的工作。而在金属零件的制造过程中,热处理工作又是提高其制造水平的重要措施。在设计工作中,正确制定热处理工艺可以改变某些金属材料的机械性能。而不合理的热处理条件,不仅不会提高材料的机械性能,反而会破坏材料原有的性能。因此,设计人员应根据金属材料成分,准确分析金属材料与热处理工艺的关系,制订合理的热处理的工艺,合理安排工艺流程,才能得到理想的效果,提高金属零件的制造水平。 

在现代工业生产中,广泛使用的金属有铁、铝、铜、铅、锌、镍、铬、锰等。但用得更多的是它们的合金。金属和合金的内部结构包含两个方面:其一是金属原子之间的结合方式;其二是原子在空间的排列方式。金属的性能和原子在空间的排列配置情况有密切的关系,原子排列方式不同,金属的性能就出现差异。 

为了得到更好的金属性能,满足制造和使用要求,我们将金属工件放在一定的介质中加热到适宜的温度,并在此温度中保持一定时间后,又以不同速度在不同的介质中冷却,通过改变金属材料表面或内部的显微组织结构来改变其性能,这就是金属材料热处理过程。 

不同的热处理条件会产生不同的材料性能改变效果,下面从3个方面来说明热处理工艺在提高金属零件的制造水平中的作用。 

一、提高金属材料的切削性能和加工精度 

在各类铸、锻、焊工件的毛坯或半成品金属材料的切削过程中,由于被加工材料、切削刀具和切削条件的不同,金属的变形程度也不同,从而产生不同程度的光洁度。各种材料的最佳切削性能都对应有一定的硬度范围和金相组织。为了得到最佳切削性能,就要求被加工材料具有合适的组织状态,这就要用到预先热处理。 

通过预先热处理,可以消除或减少冶金及热加工过程产生的材料缺陷,并为以后切削加工及热处理准备良好的组织状态,从而保证材料的切削性能、加工精度和减少变形。 

举例1:齿坯材料在切削加工中,当齿坯硬度偏低时会产生粘刀现象,在前倾面上形成积屑瘤,使被加工零件的表面光洁度降低。而对齿坯材料进行正火+不完全淬火处理,切屑容易碎裂,形成粘刀的倾向性减少。并随着齿坯硬度的提高,切屑从带状向挤裂状过渡,从而减少了粘刀现象,提高了切削性能。 

举例2:铝合金在加工过程中,通常都是先经强化处理(固溶处理+时效;时效),这样可以得到晶粒细小、均匀的组织,比铸态或压力加工状态的切削性能好,不仅改善了切削性能,而且同时提高了机械加工精度。 

二、提高金属材料的断裂韧性 

金属材料的断裂韧性指含有裂纹的材料在外力作用下抵抗裂纹扩展的性能。提高金属断裂韧性的关键是要减少金属晶体中位错,使金属材料中的位错密度下降,从而提高金属强度,而减少金属晶体中位错的一种重要方法,就是细晶强化,其原理是通过细化晶粒使晶界所占比例增高而阻碍位错滑移从而提高材料强韧性。而金属组织的细晶强化的过程实际上就是金属热处理。 

在金属热处理过程中,当冷变形金属加热到足够高的温度以后,在一定的应力和变形温度的条件下,材料在变形过程中积累到足够高的局部位错密度级别,会在变形最剧烈的区域产生新的等轴晶粒来代替原来的变形晶粒,这个过程称为再结晶。再结晶晶核的形成与长大都需要原子的扩散,因此必须将变形金属加热到一定温度之上,足以激活原子,使其能进行迁移时,再结晶过程才能进行。 

那么,对于不同的金属材料,我们就可以通过控制不同的热处理的温度,来提高金属材料的断裂韧性。 

举例:在sy钢坯料上线切割适当的小圆柱,机加工后,选择在700℃,800℃,900℃、1000℃和1100℃在cleeble-1500型热模拟试验机上以5×10-1的变形速率保温30s压缩变形50%,然后在空气中冷至室温,再进行680℃×6hac(空冷)的退火处理,再将压缩后的试样沿轴向线切割剖开,研磨抛光后用化学物质显示晶粒形貌。实验现象为:在700℃时,扁平的晶粒开始逐渐向等轴晶粒的形状变化。800℃变形的晶粒中等轴晶粒已经有少量出现,但仍然以变形拉长的晶粒为主。在900℃变形开始,晶粒突然变得细小,几乎全部为等轴晶粒,晶粒度达到ybl2级。在900℃以上.晶粒开始长大。因此,对此种钢来说,900℃左右温度进行热处理,可以提高其断裂韧性。 

三、减少金属材料的应力腐蚀开裂 

金属材料在拉伸应力和特定腐蚀环境共同作用下发生的脆性断裂破坏称为应力腐蚀开裂。大部分引起应力腐蚀开裂的应力是由残余拉应力引起的。残余应力是金属在焊接过程中产生的。金属在加热时,以及加热后冷却处理时,改变了材料内部的组织和性能,同时伴随产生了金属热应力和相变应力。金属材料在加热和冷却过程中,表层和心部的加热及冷却速度(或时间)不一致,由于温差导致材料体积膨胀和收缩不均而产生应力,即热应力。在热应力的作用下,由于冷却时金属表层温度低于心部,收缩表面大于心部而使心部受拉应力:另一方面材料在热处理过程中由于组织的变化即奥氏体向马氏体转变时,因比容的增大会伴随材料体积的膨胀,材料各部位先后相变,造成体积长大不一致而产生组织应力。组织应力变化的最终结果是表层受拉应力,心部受压应力,恰好与拉应力相反。金属热处理的热应力和相变应力叠加的结果就是材料中的残余应力,正是其存在造成了应力腐蚀开裂。 

举例:金属热处理中,通过控制淬火冷却速度,可以显著地控制淬火裂纹,为了达到淬火的目的,通常必须加速材料在高温段内的冷却速度,并使之超过材料的临界淬火冷却速度才能得到马氏体组织。就残余应力而论,这样做由于能增加抵消组织应力作用的热应力值,故能减少工件表面上的拉应力而达到抑制纵裂的目的。 

3、结论 

金属材料的热处理在机械零件制造中占有十分重要的地位,在金属材料加工的整个工艺流程中,如果将切削加工工艺与热处理工艺进行密切配合,将有效地提高金属零件的制造水平。 

参 考 文 献 

[1] 雷声,齿轮热处理变形的控制.机械工程师.2008年5期. 

相关文章
相关期刊