欢迎来到易发表网!

关于我们 期刊咨询 科普杂志

二次函数教案优选九篇

时间:2022-07-27 21:50:04

引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇二次函数教案范例。如需获取更多原创内容,可随时联系我们的客服老师。

二次函数教案

第1篇

1.1.理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;

2.2.通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;

3.3.通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。

教学重点:二次函数的意义;会画二次函数图象。

教学难点:描点法画二次函数y=ax2的图象,数与形相互联系。

教学过程设计:

一.一.创设情景、建模引入

我们已学习了正比例函数及一次函数,现在来看看下面几个例子:

1.写出圆的半径是R(CM),它的面积S(CM2)与R的关系式

答:S=πR2.①

2.写出用总长为60M的篱笆围成矩形场地,矩形面积S(M2)与矩形一边长L(M)之间的关系

答:S=L(30-L)=30L-L2②

分析:①②两个关系式中S与R、L之间是否存在函数关系?

S是否是R、L的一次函数?

由于①②两个关系式中S不是R、L的一次函数,那么S是R、L的什么函数呢?这样的函数大家能不能猜想一下它叫什么函数呢?

答:二次函数。

这一节课我们将研究二次函数的有关知识。(板书课题)

二.二.归纳抽象、形成概念

一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0),

那么,y叫做x的二次函数.

注意:(1)必须a≠0,否则就不是二次函数了.而b,c两数可以是零.(2)由于二次函数的解析式是整式的形式,所以x的取值范围是任意实数.

练习:1.举例子:请同学举一些二次函数的例子,全班同学判断是否正确。

2.出难题:请同学给大家出示一个函数,请同学判断是否是二次函数。

(若学生考虑不全,教师给予补充。如:;;;的形式。)

(通过学生观察、归纳定义加深对概念的理解,既培养了学生的实践能力,有培养了学生的探究精神。并通过开放性的练习培养学生思维的发散性、开放性。题目用了一些人性化的词语,也增添了课堂的趣味性。)

由前面一次函数的学习,我们已经知道研究函数一般应按照定义、图象、性质、求解析式几个方面进行研究。二次函数我们也会按照定义、图象、性质、求解析式几个方面进行研究。

(在这里指出学习函数的一般方法,旨在及时进行学法指导;并将此方法形成技能,以指导今后的学习;进一步培养终身学习的能力。)

三.三.尝试模仿、巩固提高

让我们先从最简单的二次函数y=ax2入手展开研究

1.1.尝试:大家知道一次函数的图象是一条直线,那么二次函数的图象是什么呢?

请同学们画出函数y=x2的图象。

(学生分别画图,教师巡视了解情况。)

2.2.模仿巩固:教师将了解到的各种不同图象用实物投影向大家展示,到底哪一个对呢?下面师生共同画出函数y=x2的图象。

解:一、列表:

x

-3

-2

-1

1

2

3

Y=x2

9

4

1

1

4

9

二、描点、连线:按照表格,描出各点.然后用光滑的曲线,按照x(点的横坐标)由小到大的顺序把各点连结起来.

对照教师画的图象一一分析学生所画图象的正误及原因,从而得到画二次函数图象的几点注意。

练习:画出函数;的图象(请两个同学板演)

X

-3

-2

-1

1

2

3

Y=0.5X2

4.5

2

0.5

0.5

02

4.5

Y=-X2

-9

-4

-1

-1

-4

-9

画好之后教师根据情况讲评,并引导学生观察图象形状得出:二次函数y=ax2的图象是一条抛物线。

(这里,教师在学生自己探索尝试的基础上,示范画图象的方法和过程,希望学生学会画图象的方法;并及时安排练习巩固刚刚学到的新知识,通过观察,感悟抛物线名称的由来。)

三.三.运用新知、变式探究

画出函数y=5x2图象

学生在画图象的过程中遇到函数值较大的困难,不知如何是好。

x

-0.5

-0.4

-0.3

-0.2

-0.1

0.1

0.2

0.3

0.4

0.5

Y=5x2

1.25

0.8

0.45

0.2

0.05

0.05

0.2

0.45

0.8

1.25

教师出示已画好的图象让学生观察

注意:1.画图象应描7个左右的点,描的点越多图象越准确。

2.自变量X的取值应注意关于Y轴对称。

3.对于不同的二次函数自变量X的取值应更加灵活,例如可以取分数。

四.四.归纳小结、延续探究

教师引导学生观察表格及图象,归纳y=ax2的性质,学生们畅所欲言,各抒己见;互相改进,互相完善。最终得到如下性质:

一般的,二次函数y=ax2的图象是一条抛物线,对称轴是Y轴,顶点是坐标原点;当a>0时,图象的开口向上,最低点为(0,0);当a<0时,图象的开口向下,最高点为(0,0)。

五.五.回顾反思、总结收获

在这一环节中,教师请同学们回顾一节课的学习畅谈自己的收获或多、或少、或几点、或全面,总之是人人有所得,个个有提高。这也正是新课标中所倡导的新的理念——不同的人在数学上得到不同的发展。

(在整个一节课上,基本上是学生讲为主,教师讲为辅。一些较为困难的问题,我也鼓励学生大胆思考,积极尝试,不怕困难,一个人完不成,讲不透,第二个人、第三个人补充,直到完成整个例题。这样上课气氛非常活跃,学生之间常会因为某个观点的不同而争论,这就给教师提出了更高的要求,一方面要控制好整节课的节奏,另一方面又要察言观色,适时地对某些观点作出判断,或与学生一同讨论。)

二次函数的教学设计

马玉宝

教学内容:人教版九年义务教育初中第三册第108页

教学目标:

1.1.理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;

2.2.通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;

3.3.通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。

教学重点:二次函数的意义;会画二次函数图象。

教学难点:描点法画二次函数y=ax2的图象,数与形相互联系。

教学过程设计:

一.一.创设情景、建模引入

我们已学习了正比例函数及一次函数,现在来看看下面几个例子:

1.写出圆的半径是R(CM),它的面积S(CM2)与R的关系式

答:S=πR2.①

2.写出用总长为60M的篱笆围成矩形场地,矩形面积S(M2)与矩形一边长L(M)之间的关系

答:S=L(30-L)=30L-L2②

分析:①②两个关系式中S与R、L之间是否存在函数关系?

S是否是R、L的一次函数?

由于①②两个关系式中S不是R、L的一次函数,那么S是R、L的什么函数呢?这样的函数大家能不能猜想一下它叫什么函数呢?

答:二次函数。

这一节课我们将研究二次函数的有关知识。(板书课题)

二.二.归纳抽象、形成概念

一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0),

那么,y叫做x的二次函数.

注意:(1)必须a≠0,否则就不是二次函数了.而b,c两数可以是零.(2)由于二次函数的解析式是整式的形式,所以x的取值范围是任意实数.

练习:1.举例子:请同学举一些二次函数的例子,全班同学判断是否正确。

2.出难题:请同学给大家出示一个函数,请同学判断是否是二次函数。

(若学生考虑不全,教师给予补充。如:;;;的形式。)

(通过学生观察、归纳定义加深对概念的理解,既培养了学生的实践能力,有培养了学生的探究精神。并通过开放性的练习培养学生思维的发散性、开放性。题目用了一些人性化的词语,也增添了课堂的趣味性。)

由前面一次函数的学习,我们已经知道研究函数一般应按照定义、图象、性质、求解析式几个方面进行研究。二次函数我们也会按照定义、图象、性质、求解析式几个方面进行研究。

(在这里指出学习函数的一般方法,旨在及时进行学法指导;并将此方法形成技能,以指导今后的学习;进一步培养终身学习的能力。)

三.三.尝试模仿、巩固提高

让我们先从最简单的二次函数y=ax2入手展开研究

1.1.尝试:大家知道一次函数的图象是一条直线,那么二次函数的图象是什么呢?

请同学们画出函数y=x2的图象。

(学生分别画图,教师巡视了解情况。)

2.2.模仿巩固:教师将了解到的各种不同图象用实物投影向大家展示,到底哪一个对呢?下面师生共同画出函数y=x2的图象。

解:一、列表:

x

-3

-2

-1

1

2

3

Y=x2

9

4

1

1

4

9

二、描点、连线:按照表格,描出各点.然后用光滑的曲线,按照x(点的横坐标)由小到大的顺序把各点连结起来.

对照教师画的图象一一分析学生所画图象的正误及原因,从而得到画二次函数图象的几点注意。

练习:画出函数;的图象(请两个同学板演)

X

-3

-2

-1

1

2

3

Y=0.5X2

4.5

2

0.5

0.5

02

4.5

Y=-X2

-9

-4

-1

-1

-4

-9

画好之后教师根据情况讲评,并引导学生观察图象形状得出:二次函数y=ax2的图象是一条抛物线。

(这里,教师在学生自己探索尝试的基础上,示范画图象的方法和过程,希望学生学会画图象的方法;并及时安排练习巩固刚刚学到的新知识,通过观察,感悟抛物线名称的由来。)

三.三.运用新知、变式探究

画出函数y=5x2图象

学生在画图象的过程中遇到函数值较大的困难,不知如何是好。

x

-0.5

-0.4

-0.3

-0.2

-0.1

0.1

0.2

0.3

0.4

0.5

Y=5x2

1.25

0.8

0.45

0.2

0.05

0.05

0.2

0.45

0.8

1.25

教师出示已画好的图象让学生观察

注意:1.画图象应描7个左右的点,描的点越多图象越准确。

2.自变量X的取值应注意关于Y轴对称。

3.对于不同的二次函数自变量X的取值应更加灵活,例如可以取分数。

四.四.归纳小结、延续探究

教师引导学生观察表格及图象,归纳y=ax2的性质,学生们畅所欲言,各抒己见;互相改进,互相完善。最终得到如下性质:

一般的,二次函数y=ax2的图象是一条抛物线,对称轴是Y轴,顶点是坐标原点;当a>0时,图象的开口向上,最低点为(0,0);当a<0时,图象的开口向下,最高点为(0,0)。

五.五.回顾反思、总结收获

第2篇

为方便教学管理,我校为各办公室配置了电脑并组建成了局域网,各位老师都在自己的电脑上存放了很多教案、考试题。最近,我的教学内容是二次函数(高中),为整合其它老师的教学资源,衔接初中关于二次函数的内容,想将所有教师关于二次函数的教案、试题都集中起来以备参考。经试用发现,Win 7的“库+搜索”功能可很好地完成这一任务。

下面以实例进行说明。设有两台电脑,我的电脑名为PC1,存放教学资料的文件夹是“D:\教学”。局域网里另一台电脑名为PC2,存放教学资料的文件夹是“数学教案及试题”。要完成的任务是:在PC1上创建一个“库”文件夹,用于动态地将上述两文件夹中与“二次函数”相关的所有文件收集到一块,所谓的动态是指“库”文件夹会随着源夹文件的改变而自动更新。

第1步:为PC2上已共享的文件夹添加脱机属性

操作:在PC1的桌面空白处右击,选择“个性化更改桌面图标”,从弹出的窗口中钩选“网络”、“计算机”等,这一操作的目的是让“网络”、“计算机”等快捷方式出现在PC1的桌面上。接着,单击桌面上的“网络”,打开局域网的另一台电脑PC2,找到其下的共享文件夹“数学教案及试题”,右击,选择“脱机始终可用”,完成后,该共享文件夹上将出现脱机标志,如图1所示。

效果:为下一步将共享文件夹添加到库里做准备。

第2步:将相关文件夹添加到“库”里

操作:在PC1的开始菜单下找到“计算机”,单击,从打开窗口的左侧右击“库”,选择“新建库”,创建一个名为“二次函数”的库。接着,右击新建的库,选择“属性包含文件夹”,按提示将PC1上的“D:\教学”、PC2上的“数学教案及试题”文件夹添加进来。结果如图2所示。请注意观察,添加到“库”的本机文件直接显示,而脱机文件夹后会附上电脑名,本例为PC2。

效果:在我的电脑即PC1上即可方便地管理本文涉及到的两个文件夹。

默认地,能添加到库里的文件夹包括本机上的文件夹,但在“计算机”下凡是显示在“有可移动存贮的设备”下的U盘、SD卡等不能添加到库里,移动硬盘可添加进来。而对于局域网,家庭组下的共享文件夹可直接添加,要将工作网络和公用网络下的共享文件夹添加进来必须先创建脱机关系。

第3步:搜索与二次函数相关的文件

操作:打开刚才创建的子库,即“二次函数”,在搜索栏里输入“二次函数”并回车即可。

效果:无论源文件在“D:\教学”里,还是在PC2上的“数学教案及试题”脱机文件夹里,只要文件名或文件内容里包含了“二次函数”,都可被搜索出来。如图3所示。

第4步:保存搜索结果

操作:在图3中单击“保存搜索”,默认地,搜索结果会自动保存到当前用户的“搜索”文件夹之下。本例中,具置是“C:\Users\用户名\Searches”,文件名就是刚才输入的搜索关键词,搜索结果的扩展名为“search-ms”。如图4所示。

效果:今后,只要打开保存过的搜索结果,与二次函数相关的所有文件即可自动显示出来。

第5步:利用分类工具栏对搜索结果进行筛选

操作:打开搜索结果,单击“更改你的视图”按钮,选择显示方式为“详细信息”,可观察到默认的分类标准有名称、修改日期、类型、大小等。请右击分类工具栏,从弹出的快捷菜单中选择“文件夹路径”,该分类标准即可添加进来,如图5所示。

效果:比如,钩选“D:\教学”,那么,必须同时满足两个条件的文件才会显示出来:文件名或内容中包含了搜索关键词即“二次函数”;位于“D:\教学”文件夹之下。

第6步:按自定义属性筛选文件

操作:按住Ctrl键的同时分别单击多个文件以选中多个与初中教学有关的文件,右击,选择“属性详细信息”,在“标记”后输入“初中”。同理,选中多个与高中教学有关的文件,在它们的“标记”后输入“高中”。接着,用前一步的方法,将“标记”添加到分类工具栏里。

第3篇

关键词:中职数学 教学方法 学案引导法

中图分类号:G712 文献标识码:A 文章编号:1673-9795(2014)02(b)-0111-01

由于中职学生数学基础差,大部分学生对数学兴趣不浓,主动性不强。面对这种情况,职业高中的数学教师就要因生而变、因材施教,采取灵活多样的教学方法,在注重知识讲授深度和广度的基础上,更要注重教学方法的艺术性、教学内容的灵活性、教学氛围的活跃性,寓教于乐,寓学于导。新一轮高中数学新课改明确提出:让学生成为学习的主人,倡导学生自主探索,主动学习。为此,我在教学中极力借鉴同行们的先进经验,大胆尝试“学案引导式”教学法,取得了良好的教学效果。

1 “学案引导式”教学法的意义和结构

“学案引导式”教学法是一种促进学生自主学习的课堂教学方法,其目标是以教材为载体,以学案为手段,引导学生自主学习,养成良好的学习习惯,逐渐地学会学习。这种教学法改变了教师的教学观和学生的学习观,相信并充分挖掘学生的潜能,让学生真正体会到学习的成功与快乐。

“学案引导法”的基本结构包括教师课前的指导,课中的引导和课后的反复释疑。具体包含四部分:学习引导+问题引导+总结引导+拓展引导。

下面是我在“一元二次不等式的图解法”一节教学中的学案设计,提出来与大家共同商讨改进。

学习内容:中等职业教育国家规划教材数学基础模块上册“第二章不等式”。

§2.3.2一元二次不等式的图解法。

学时:一学时。

学习模式:

【学习引导】

(1)自主学习。

1)读教材P42~P44到练习止。

2)回答问题:

①本节内容所讲的一元二次不等式的解集与哪些因素有关系?

②当a>0时,二次函数y=ax2+bx+c的图像在坐标系中的位置有哪几种情况?

③这些不同的位置由什么决定?如何计算?

3)完成练习。

4)小结。

(2)方法指导。

1)阅读本节内容时,必须对照初中学习的二次函数图像―― 抛物线在坐标系中的三种位置情况:即与X轴有两个交点,有一个交点和无交点(先考虑开口朝上的情况)。观察图像上纵坐标大于零的点和小于零的点在哪里?

2)本节内容属“数形结合”的问题,应将位于x轴上方的图像和位于x轴下方的图像上点的坐标的范围与一元二次不等式ac2+bx+c>0(或者0)的解联系起来,即就是图像上纵坐标y>0,y=0,y

3)阅读本节内容时能否想到什么内容,并与之作比较。

【思考引导】

(1)提问题。

1)二次函数,一元二次方程,一元二次不等式三者有何联系?

2)当a>0时,解一元二次不等式ac2+bx+c>0(或者

3)一元二次不等式ac2+bx+c>0(或者0)的求解有哪几种情况?

4)当a

(2)变题目。

若一元二次不等式的解集为R或者?时,与该不等式对应的二次函数的图像是什么情况?

【总结引导】

本节内容:一元二次不等式y=ax2+ bx+c(a>0)的图解法。

第一步:达标(满足哪两个条件?)。

第二步:计算(哪个量?有什么用途?)。

第三步:分类(可分成哪几种情况?)。

第四步:写解集(依据是什么?)。

记忆方法:达标―― 看=b2-4ac正负―― 分类―― 写解集。

【拓展引导】

(1)课外作业:P45习题2~4。

(2)m为何值时,方程x2+2(m-1)x+3m2-11=0有两个不相等的实数根?

(3)m为何值时,二次函数y=mx2-(1-m)x+m与x轴无交点?

2 “学案引导法”的有关说明

(1)学案与教材,教案的关系。

教材是专家依据课标的理念设计编写的,其中的语言表达标准、规范、精简、书面化.教案是教师为上好一节课,根据教师本人的特点,依据教材内容,学生的情况设计的教学过程材料,仅供教师使用;学案是教师依据教材为了让学生阅读教材而编写的,并通过课前的学习,课中的讨论,课后的研究,使学生对概念理解后,用自己的语言对概念重新描述,并书写在学案上,较口语化,适合学生本人的复习和阅读.供学生使用。

(2)学案特点。

①设计上应站在学生角度考虑问题。

②方法上要引导学生读懂教材。

③内容上包含所有的知识,技能和方法。

④使用上它是阶段性学习资料。

⑤手段上通过分层设计,满足各个层次学生的需要。

参考文献

第4篇

当一节课的下课铃声响起的时候,也许你会这样问自己:这节课我上得成功吗?在我的这节数学课中,学生学到了什么?掌握得怎么样?还有什么没有掌握?下节课要给学生强调哪些知识?这节数学课上,我的学生们学得快乐吗?他们在我的课中享受到了什么?我自己也得到享受了吗?许多教师在课前只备教材、备方法,但却忽略了一个重要的环节――教后反思.教后反思是教学过程中不可缺少的一个环节.上完一节课,总有一些成败得失,抑或有一些自己的感触.如果能及时地反思一下疏漏失败之处,不仅有利于今后的教学实践,常教常新,也有利于经验的积累,不断提高自身的教学水平.教后反思些什么呢?在此,结合自己的教学实践浅谈一些体会,与大家共勉.

下面我以初中数学九年级下册的《26.2用函数的观点看一元二次方程》的教学为例.

一、思得

在教学实践中,每位教师在课堂结构、教材处理、教学方法、学法指导上都有自己的独特设计.有些教学设想,在师生双边活动中会显现出它的“精彩”之处,因此要善于总结.每上完一节课后,都坚持做到认真反思,并把这节课成功的关键记于教案后,作为今后讲解同类型课的借鉴.如,整节课突出了学生的主体地位,调动了学生的积极性,激发了学生学习的兴趣,气氛活跃,教学效果显著.

《26.2用函数的观点看一元二次方程》是初中数学中的重要内容.这一节课与学过的一次函数、二次函数基本概念和函数图像有着紧密的联系,通过对这一节课的学习,既可以让学生接受、理解函数的概念并理解函数与方程的紧密联系,又可使学生加深对函数基本概念的理解,还为日后高中函数的教学做好准备,起到承上启下的重要作用.

根据这一节课的内容及学生的实际水平,我采取引导发现式教学方法并充分发挥多媒体的辅助教学作用.

引导发现法作为一种启发式教学方法,体现了认知心理学的基本理论.探究抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系及其应用的过程中,引导学生观察图形,从图像与x轴交点的个数与方程的根之间进行分析、猜想、归纳、总结,这是重要的数学中数形结合的思想方法,在整个教学过程中始终贯穿的是类比思想方法.这些方法的使用对学生良好思维品质的形成有重要的作用,对学生的终身发展也有一定的作用.课堂使用多媒体以声音、动画、影像等多种形式强化对学生感观的刺激,这一点是粉笔和黑板所不能及的.采取这种形式,可以极大地提高学生的学习兴趣,加大一堂课的信息容量,使教学目标更完美地体现.让学生体验函数y=x2和y=bx+c的交点的横坐标是方程x2=bx+c的解的探索过程,掌握用函数y=x2和y=bx+c图像交点的方法求方程ax2=bx+c的解.通过渗透数形结合的思想,提高学生综合解题能力.

二、思失

在教学中,我们的教学对象是一群生理上、心理上都不相同的青少年,是一群知识水平和理解能力各异的学生.即使我们理解了教学大纲的精神,熟悉了教材内容,精心准备了教案,我们的构思和设计与实际教学过程总会有不相适应的地方,如教材内容处理不妥、教学方法选用不佳、师生活动不协调、教学效果不良等.课后我们都会感到有不尽如人意之处,应认真进行思考、仔细分析,确保以后不再出现类似的问题.

认真思考和分析后,我找到了自己教学工作的不足.本节课的难点是二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.当时我虽然进一步强调,但是联系的内容太少,部分学生不能正确理解,因而影响了本节课的效果.

教学结束学生能够求出指定函数与x轴的交点个数和一元二次方程根的情况,但并未深层次地挖掘原函数和函数的图像、性质与方程等之间的内在联系.

三、思效

在课堂教学过程中,学生是学习的主体,学生总会有“创新的火花”在闪烁,教师应当充分肯定学生在课堂上提出的一些独特的见解.这样不仅使学生的好方法、好思路得以推广,而且对学生也是一种赞赏和激励.课堂中总觉得自己讲得很清楚,看上去学生似乎对知识的掌握也不错,但在测验时却出现了不少错误.我们通过课后作业、个别辅导或检测考试来了解某一阶段的教学工作是否达到了预期效果,分析在这一阶段里学生对哪些基础知识和基本技能掌握得好,哪些掌握得差;对于同一类知识,哪些学生学会了,哪些学生还弄不明白.对于从学生方面反馈回来的信息,我们都要进行全面的分析,认真思考自己教学的实际效果,即哪些工作做好了,哪些工作还有待改进.针对这些错误,我认真思考,找出了自己教学上存在的问题.这节课应当舍得花时间讲清函数和方程的关系并且学会使用.这也是对课堂教学的补充与完善,可以拓宽学生学习的思路,提高学习能力.

四、思改

“思”的目的是“改”,“思改”是针对前面“三思”而进行的思考,教师通过对教学各个环节的得失和效果进行客观的分析,认真思考而受到启发,并找出问题的症结,探索出改进教学的方法.例如,学生在基础知识和基本技能欠缺时,教师应及时进行补救,重在双基上下工夫;当学生运用知识解决问题的能力不足时,可强化训练,逐步提高.属于少数学生的问题,可个别辅导,属于大多数学生的问题,需要在课堂上统一解决,必要时调整教案或教学进度.再次教学,我会重新这样设计教学过程:

(一)新课导入

从课本引例的四个问题可以看出,二次函数与一元二次方程关系密切.由学生小组讨论,总结出二次函数与一元二次方程的解的关系.

例如,已知二次函数y=-x2+4x的值为3,求自变量x的值.可以解一元二次方程-x2+4x=3(即x2-4x+3=0).反过来,解方程x2-4x+3=0又可以看做已知二次函数y=x2-4x+3的值为0,求自变量x的值.

这样的引入方式,抓住了本节课的实质,确保学生明确本节课的重难点.此外,可以使学生明白新知识来源于旧知识,促使学生主动运用函数的研究方法去学习,为顺利完成教学任务做好思维上的准备.

(二)新课讲授

首先通过尝试练习、互助纠错来探究新知识.

1.二次函数①y=x2+x-2;②y=x2-6x+9;③y=x2-x+1的图像如图1所示.

图1(1)二次函数的图像与x轴有公共点吗?如果有,公共点的横坐标是多少?

(2)当x取公共点的横坐标时,函数的值是多少?由此,你能得出相应的一元二次方程的根吗?

先画出以上二次函数的图像,由图像学生展开讨论,在教师的引导下回答以上的问题.

从上面可以看出,二次函数与一元二次方程关系密切.由学生小组讨论,总结出二次函数与一元二次方程的解的关系.

可以看出:

(1)抛物线y=x2+x-2与x轴有两个公共点,它们的横坐标是-2,1.当x取公共点的横坐标时,函数的值是0.由此得出方程x2+x-2=0的根是-2,1.

(2)抛物线y=x2-6x+9与x轴有一个公共点,这点的横坐标是3.当x=3时,函数的值是0.由此得出方程x2-6x+9=0有两个相等的实数根3.

(3)抛物线y=x2-x+1与x轴没有公共点,由此可知,方程x2-x+1=0没有实数根.

一般的,我们可以利用二次函数y=ax2+bx+c深入讨论一元二次方程ax2+bx+c=0.

对于这一问题还可以引导学生从图像观察,出示电脑幻灯,根据数形结合得出.进行简单的归纳,突出重点,突破难点.

(三)终结阶段

1.课堂练习:(出示电脑幻灯片,让学生完成以下练习)

(1)方程x2+4x-5=0的根为 ,则函数y=x2+4x-5的图像与x轴的交点有 个;若有交点,其坐标是 .

(2)方程-x2+10x-25=0的根是 ;则函数y=-x2+10x-25的图像与x轴的交点有 个;若有交点,其坐标是 .

(3)判断二次函数y=-x2-4x-6的图像与x轴是否有公共点.

(4)已知二次函数y=2x2-(m+1)x+m-1.

①求证:无论x为何值,函数图像与x轴有公共点,并指出当m为何值时,只有一个公共点;

②当m为何值时,函数图像过原点,并求出此时函数图像与x轴的另一个交点坐标.

第(1)(2)(3)道题是对归纳的结论进行相应练习,使学生对于本节课的重点(方程与函数之间的联系;会利用二次函数的图像求一元二次方程的近似解)有更清晰、更深刻的认识.第(4)题是以论证的格式再次对重点的展示.

2.小结归纳

第5篇

关键词:幂函数;案例设计;创新

一、中职幂函数教学单元的定位

1.课程定位

2.教案设计理念

在中职数学教学过程中,绝大多数执教教师发现,若没有数学认知和自我总结的实践过程,而是仅仅以结论提供方式的记忆式学习,往往容易造成学生解题时的困惑,这与其尚未真正掌握幂函数规律密切相关,故而本教案设计的核心原则在于避免以往的“告诉”式,而是以建构的理念,还学生以知识认知与理解掌握的主动权,鼓励学生在自我探究的过程中发现幂函数基本规律及其性质、属性,并同时结合教师的引导对知识进行确认与巩固,通过反复的、源自于幂函数性质规律各角度的练习,进行幂函数深入学习。“授人以渔”的指导思想让学生学会知识摸索与探求的基本学习规律和技巧。

3.教学基本情况分析

本节课程的授课对象为中职学生,基于其对函数一定量的基本概念与性质认知,函数研究思路与方法也有所熟悉,幂函数课程是结合并运用已知指数和对数函数概念、性质和图象及结题运用,开展教学的知识模块。但由于刚步入中职,对初中学习阶段的各种学习特点及习惯仍有所保留,而且能力和思维模式的发展仍属于转折成型期,所以教师须把握幂函数教学创新的体验、契机,对中职学生进行数学理性思维和类比等思维的培育,并获得幂函数教学的良好效果。

4.教材要求与目标设定

幂函数作为改革教材的重点内容,在现行中职类专业教学的数学教材中处于指数函数与对数函数之后,主要目的在于比对上述函数的复杂性之后,鼓励学生结合指数函数、对数函数进行归纳分析总结。

本教案所涉课程的主要内容为幂函数,主要以结合实例引用概括幂函数概念,在学生了解识记幂函数结构特征的基础上,了解其与指数函数和对数函数的区别,并通过特殊简单函数的图象比对进行观察、分析与总结。教学目标为结合一次、二次和指对函数的特性对比,培养学生数学的对比结合和相应的分析归纳能力,并提升其数形结合、特殊上升到一般、归纳类比的逻辑思维。

二、教学案例实施过程

1.以学生业已熟悉的各类简单函数的引出,进行学生函数思维的重新建立,如运用(1)p=k,(2)S=x2;(3)V=ax3;(4)r=■;(5)v=s・t-1提问学生上述函数在其“形状”变化上的一些共同特点,进而引出y=x,y=x2,y=x3,y=■,y=■,y=■,再结合一定时间的学生讨论,引导学生归纳幂函数的变化特征为以x为自变量,a为特定常数作为其指数所构成的y=xa,这一函数称为幂函数。经过上述幂函数的引入教学,学生被自然地带入对于类似函数的思考研究中,从而获得一定程度的概念性认知。而且该方法突出了本教案设计的“用教材而不是教教材,要创造性地使用教材”的教学创新原则,尊重教材的同时适当创新教材展示与教学设计。

2.基于幂函数引入的课堂导入,使学生获得幂函数理解认知,并提示指出幂函数结构中的x自变量位置,并以其与指数函数的位置进行直观对比,从而将复杂的幂函数与指数函数结构易混淆问题变为简单且不易遗忘的形状识记。同时,可以配合一定量的各种幂函数举例辨别,分辨并总结各类幂函数,在此基础上又对幂函数的形式进一步探析。接着,对幂函数的一般形式进行进一步探析。当然基于课程的教案创新改革必须秉持一贯的教学目标及其实施,也不能一味地进行脱离教学规律的教法创新。

总之,作为逐步发展的教学教法创新过程中的教学革新,都需要广大教学工作者充分结合学生现实、教材现实、教学现实、教育发展现实,中职数学中的幂函数不能以简单的给定义、告性质、做练习的模式进行,更应充分结合学生特点及其自有知识结构体系与认知能力特性,进行综合性创新。

参考文献:

[1]黄邦杰.例谈幂函数的教学设计与教学[J].课程教材教学研究:中教研究,2010.

第6篇

关键词:初中数学 教学案 编写

数学教学案,是在教师启发引导下学生进行自主学习的数学课堂学习方案。它突出学生自主学习能力的培养,同时又重视教师的主导作用,与传统意义上的教案或学案比较,突出了导与学的有机结合。在教学实践中,我们探索、尝试编写了《初中数学教学案》,并运用教学案进行教学实践,取得了良好的效果,对编写初中数学教学案也有了一些新的认识。现将我们编写初中数学教学案的理念、框架与过程与大家交流,以求抛砖引玉。

一、教学案的基本框架

在明确编写理念的基础上,我们将每一节课的数学学习,在明确学习目标后,一般分为三个环节:学习准备——探究形成——反思检测。下面结合二次函数的图象与性质的学习,作一些说明。

1.1学习准备

“学习准备”就是学生在学习新知识前建构好一定的心理基础,组建好相应的基础图式,为学习新知作好铺垫。学习准备包括知识准备、情绪准备和工具准备。知识准备主要是学习本节内容应具有的知识储备。情绪准备就是创设学习情境,激发学生的学习兴趣,使学生产生学习的欲望和心向,为学习新知做好情绪状态上的准备。为此,我们设置了课前导学与情境创设两个栏目。

在“课前导学”栏,引导学生作好知识准备与经验准备.通过设置问题、活动(如观察、剪纸、拼图)、练习、建议等,将学生头脑中已有的相关知识、经验调动到大脑的最前沿,为学习新知作好知识经验上的准备。如在探究二次函数的图象与性质前,可设置问题:①一次函数的图象是什么?是怎样得出来的?画函数图象的一般步骤是怎样的?②一次函数有何性质?我们是怎样研究得到的?③何谓二次函数?它有哪些特殊形式?以此把学生头脑中已有的函数知识、研究函数的一般方法调动到大脑的最前沿,引导学生类比一次函数的研究方法探究二次函数的图象与性质。在“情境创设”栏,设置引发学生问题意识、探究欲望的问题情境,激发学生学习的内驱力,使他们产生好奇心和学习欲望,为探索讨论作准备。也

就是说,通过创设问题情境,激发学习兴趣,使学生产生学习的欲望和心向。

如探究二次函数图象与性质,可在课前导学的基础上,设置问题情境(从比较笼统、抽象的问题逐步引向具体、细致的问题):①二次函数的图象会是什么呢(形成认知冲突)?②与一次函数相比,二次函数y=ax2+bx+C(a≠0)比较复杂。

研究比较复杂的问题时,我们一般从哪里入手呢(重视一般科学思维方法训练)?③(承接课前导学)在二次函数的特殊情形中,哪个最简单又不失本质(二次函数)?④观察函数y=x2,你获得了哪些信息(“数”、“形”上的结论、猜测)?由此,我

们应该怎样来列表、描点、画图?

1.2探究形成

“探究形成”就是在问题引领下,学生尽可能地自主探索,教师适当引导、启发、指点,并通过问题的尝试解决,在运用中达到对知识的理解掌握。在此设置探索讨论与尝试解决两个栏目。在“探索讨论”栏,一般采用填空格、问题串、提示语等形式去引领学生解读教材(读懂教材)、探索新知。教师可以根据具体的数学知识特征和学生的自主学习能力情况,采用不同层次的探究方式,如引导式探究、开放式探究、自主式探究,逐步引导学生走向自主探究.在探究过程中,要重视学习策略的渗透。

采用填空格的形式,让学生通过复述新知要点,解读教材;设置问题串,在一系列相关问题引领下,导疑、导思、导学,引导学生逐步深入探究。问题串中,应注意认知的层次性、形式的多样性,除了知识性问题、推理性问题外,还应有质疑性问题、引导学生提出问题的问题等,由此培养学生创新意识、批判性思维。通过提示语,作一些重点的提示、难点的释义、思想方法的暗示及学法指导等。

1.3反思检测

“反思检测”则包含小结反思、自我反馈、拓展提高三个栏目,分别从文本(陈述性知识)、基础操练(程序性知识)、拓展提高(延伸性知识)对所学的知识、方法进行反思检测.由此培养学生的反思习惯、自我检测与评价能力,提升学生的元认知水平、

在“小结反思”栏,重点设置培养学生元认知水平的问题。在问题引领下,让学生从知识整理、探究方法、知识之间联系、问题解决的过程与方法等方面,通过文字语言(用自己的话记录),反思自己学习中的得与失,调节自己的学习策略与方法。如“通过本课学习有哪些收获?还有哪些疑惑?”是学生应该养成的最基本的反思习惯,即每学一点,就应该问一问:“我有哪些收获?哪些困惑?”根据不同年龄(年级)学生的特点及学生自主学习能力情况,反思的问题可作适当的细化,作一些要点提示。

如通过二次函数y=ax2(a≠0)图象与性质的探索及学生的尝试解决,应引导学生及时反思(整理):①本课学习了哪些知识,请你整理小结一下。(结合学生实际,也可提出更具体的问题如:二次函数y=ax2 (a≠0)的图象是什么?有何性质?你记住了吗?)②想一想:我们是怎样研究二次函数y=ax 2(a≠0)的图象与性质的?从函数图象中,你获得了哪些信息?在“自我反馈”栏,关键在于通过精选的练习题,让学生自我测评和发现问题,同时,教师及时了解学生的学习效果,获得教与学的反馈.所选练习题,应突出基础性,重视思想方法,同时,有利于学生对所学知识进行精细加工、深化理解。

二、初中数学教学案编写

教学案的编写要始终牢记编写理念:数学学习不仅是获得结果,应深入探究知识发生、发展过程中的思想方法,数学理解应是“关系性理解”,学生学习数学应当逐步走向自主学习,归纳类比有利于问题意识、创新能力的培养,而演绎推理有利于培养理性思维。在编写理念的指引下,教学案的编写一般应有如下过程(如图1):

参考文献

[1]叶红,汤炳兴.初中数学教学案(七~九年级,共6册)[M].北京:化学工业出版社,2010

第7篇

导学案教学就是教师结合学生的实际能力水平和相关知识结构设计出恰当的教学方案,促进而进学生的自主学习,提高学生的学习效率,其主要目的就是凸显学生的主体地位和老师的主导地位。

随着我国新课程改革的不断发展,其理念深入人心,如何才能把先进的理念引入教学实践活动中是现在大家共同探讨的教学模式。导学案教学以其独有的新颖、实用的特点倍受广大师生的关注,下面就对导学教案教学在高中数学中的实践与思考进行分析。

如何在高中数学教学中应用导学案教学呢?

一、设计合理的导学案

导学案就是一种老师专门给学生看的教案,促进学生的主动学习,这就需要老师要花费很多心思充分熟悉课本内容以及学生的学习状态,为学生设计一种方便交流应用的导学案,导学案的流程包括了学习目标、预习、应用训练以及小结反思四个部分。

在导学案的设计中,教师首先应该根据教学目标设计好上课情景,使得学生的求知欲被完全激发出来,比如在讲到等比数列的求和公式时,教师应该充分应用课本上的那个放小麦的故事,最后总结出全印度国的小麦丢不够。这就引入等比数列的求和问题,激发学生强烈的求知欲。其次,教师应该充分参考经验或资料将典型例子在课堂上展示出来,引导学生如何应对这一类型问题,做到举一反三。最后课堂小结不仅总结了这节课的主要内容还可以让学生自我反思、梳理知识结构,促进了学生的自主学习。

二、高中数学导学案课前环节的设计

本论点就以三角函数的基本关系式为例,展示一个完整的可先设计环节。【学习目标】1、学生能够自行掌握三角函数的基本公式2、学会用所学的三角函数公式解决实际问题;【预习目标】1、写出各个三角函数的定义2、总结同角的正弦、余弦以、正切以及它们的平方关系;【课前自测】1、判断正误2、各三角函数在不同象限的正负

通过以上例子可以看出导学案的课前设计环节不仅能够让学生了解本节课的学习目标及重点而且能够激发学生自主探讨三角函数的关系式,通过课前自测题让学生获得满足感,促进学生的自主学习。

三、高中数学导学案课堂环节的设计

课堂环节是学生学习一节课的核心环节,是指导学生学习的重要依据,所以教师在设计这一环节时就应该根据导学案的学习目标,同时结合教学内容充分设计出能够传授知识、总结出规律、开拓学生思维的导学案,遵循数学教学课程中收获、证明以及应用的顺序,让学生清楚了解这节课的问题是什么、为什么以及怎么做等,最终能够应用本节课的知识点解决实际问题。高中数学导学案设计中主要的引入方法有以下几种:

1、温故而知新法。温故而知新法就是利用学生对旧知识的掌握来认知新知识,这种方法是现在教师普遍运用的一种情景教学法。比如在利用三角函数来求三角形面积这一实际问题,首先让学生回忆一下以前他们计算三角形面积的公式有哪些,而现在我们要是只知道三角形的一条边和它对应的角怎么才能求出它的面积。这样就会使学生觉得旧知识和新知识之间是有区别的,新的知识能够解决他们以前解决不了的问题,激发学生的学习兴趣。

2、把观察想象和归纳结合起来。在高中数学中学习一元二次不等式的解集求法时,让学生通过绘画二次函数的图像,再据图观察、猜想和归纳来总结出求一元二次不等式解集的方法。首先老师可以举一些具体的一元二次方程的实例,学生通过之前所学的知识解得方程的根,然后老师可以引导学生转化为不等式,观察抛物线图像研究这些方程的根与不等式解集之间有什么关系,进而使得学生归纳总结出求一元二次不等式的口诀。这种方法就能真正意义上让学生主动学习,这样学到的知识才会根深蒂固。

3、利用数学史来引入。在学习高中数学时,很多老师喜欢把相关的数学历史引入课堂进而激起学生的学习兴趣。就等差数列求和这一节课而言,教师可以引入伟大数学家高斯的例子,给学生生动形象地讲解高斯小时候计算1+2+3+...+100的故事,进而激发学生学习的兴趣,推导出等差数列求和的思路即倒序相加。

4、实验设计法。高中数学中运用的试验设计法就是老师要设计一些与本节课相关的富有趣味的实验,比如在学习概率的计算时,课前老师应该让学生做一些掷硬币或骰子的趣味实验,重复多次总结出规律。上课时要求学生把他们的实验数据写出来,根据实验数据归纳总结出概率计算的一般规律。

除了上述几种重要的创设数学情境的方法外,教师还可以结合图形、应用已知的公式定理来帮助学生导出新的知识。比如在学习排列组合时,老师可以先用树形结合的方法引入学习。总之教师要结合学生的具体情况以及课堂内容需求,应用合适恰当的导学案设计的方法,最大程度上提高课堂效率,促进学生的主动学习。

四、高中数学导学案课后环节的设计

第8篇

关键词:掌握;思维;创新;探究;应用;大纲

中图分类号:G632 文献标识码:A文章编号:1003-2851(2010)07-0163-01

随着新课程的深入实施,中考数学命题的理念和原则也在发生变化。如何建立符合新课程标准理念的复习方法呢?笔者根据多年的教学实践与体会,这里着重谈谈对中考数学首轮复习的几点看法,以期能对今后的复习教学有所启示。

一、重视三基的复习和掌握

《数学课程标准》和《中考说明》是中考数学命题的依据,是复习工作的纲领性文件,对两者研究的深度和广度直接影响着复习的效果。在复习备考过程中,有的教师认为中考重视对综合能力的考查,而学生也往往在综合题上失分较多,就盲目地做大规模的综合题,而对三基(基础知识、基本技能和基本思想方法)复习一带而过。这种舍本逐末,靠做综合题取胜,试图通过多做、反复做压轴题来复习三基的做法不可取,出现的结果是学生畏难情绪严重,并且事倍功半。俗话说:“万丈高楼平地起”,只有根基扎实,高楼才能坚固。学习数学也是一样,只有把三基学得扎实,运用娴熟,才能为知识的深化、能力的提高创造条件。而且根据《说明》的要求容易题占70,这部分题目大多是考察三基,因此在首轮复习时,要特别重视三基的复习和牢固掌握。例如:在复习圆的基本性质时,我以如此简单的练习引出并复习了圆周角定理,同时也复习了同圆或等圆中,弧、弦、圆心角、圆周角之间的关系。学生感到亲切、自然,也轻松!

二、复习的面一定要广,特别重视新增加的内容

新增加的内容无疑是中考命题的一个亮点。其考查方式基本走向情景新,贴近时代,与生活实际密切相关。如:视图与投影、概率与统计,图形的变换;用函数的观点看一元二次方程,用函数的观点看方程(组)与不等式等都是相对旧教材的新增内容。

对新增知识的考查近年力度不断加大,形式越来越灵活,因此首轮复习的面一定要广,特别重视新增加的内容。

三、根植现行教材,突出思维提升

在首轮复习过程中,必须重视教材,要立足于教材。尽管近年来中考数学有许多新题型,所占分值中比例较大的仍然是传统的基本问题。多数题目可在现行教材中找到原型,或者是课本例题或习题的变式题,或是源于课本并适度延拓的引申题。因此复习备考的第一阶段应以教材为蓝本。特别是对容易题的考查,应让学生掌握典型的例、习题,掌握学习方法,对例、习题能举一反三,触类旁通,加强或减弱条件、变换图形、结论等。

四、延拓传统题型,开发创新和探究题型

将传统的、典型的试题进行创新和整合,改编成阅读理解题、探索性试题,采用“动”与“静”结合、“特殊”与“一般”结合等手法,变换设问的方式,让学生去探索事物的存在性或规律性,考查学生思维的创造性。成为中考数学命题改革的一个热点。但有些复习课却是单向的、静态的、模式化的、缺乏生机和乐趣。其最明显的特征是不管学生是否真的懂了,不管有无兴趣,硬将学生往事先预设的“轨道”上驱赶,不敢越教案半步,只要把教案设定的内容完成了,预定的教学目标就算达成了。从表面上看,课堂教学似乎比较顺利,但恰恰相反,这将严重地束缚师生的灵感、扼杀师生的创新精神和探究欲望,同时,也将严重浪费了学生这一宝贵的课程资源。

五、突出核心内容、数学思想方法的应用

核心知识和数学思想方法的考查是考试的目的。数学的基本概念、性质、定理、思想方法是数学知识的核心,也是各种能力的基础。但是对于核心知识的考查,不是一味体现在难题上,而是体现出数学的精髓即数学思想方法,即转化的思想、分类思想、方程的思想、函数思想、数形结合思想等。

例:已知二次函数y=-x2+2x+m的部分图象如图所示,则关于x的一元二次方程-x2+2x+m=0的解为______ 。

【评析】本题揭示了二次函数与一元二次方程的内在联系,重点考查了数形结合思想,所涉及的内容又是初中阶段的核心知识,解法上也能很好地展示学生的学习成果,既可通过求出m值得出方程的解,也可根据二次函数图象的性质直接写出方程的两个解。

六、相对大纲而淡化的知识,不超出课本和课标的要求

近年中考强调:对于原来老教材有而现在新教材已经删减的内容坚决不考,如果只是在新教材的习题中出现,那么也不能够深挖。比如几何《圆》的内容,原来一直是几何部分的重要考点,也是热点,但是现在新教材中对这部分知识作了较大的调整。再如代数中取消了一元二次方程知识的专项考查(根与系数的关系),因此在考试命题中也不会出现这部分知识的考查。

第9篇

关键词:教科书;教学案;教材体系;教师专业成长

中图分类号:G427文献标识码:A 文章编号:1992-7711(2014)24-083-1

教学案是一种融教师的教案、学生的学案、分层次的评价练习为一体的师生共用的探究活动的载体,其核心就是从学生的基础出发,在教师占有大量资料的前提下,把学生所要掌握的知识精心设计成问题的形式来进行导学、导练、导结。教师可以利用教学案引导学生独立看书、自学、思考和探究,使学生通过课前自学对教材首先有一个初步的了解,发现自己对教材的理解存在的问题,完成第一次教学;然后在课堂上讨论交流、合作探究、分析问题,完成第二次教学;最后是当堂进行达标测试,及时得到反馈,解决问题,完成第三次教学。这种设计,为学生自主学习、合作学习、探究学习提供了条件和明确的学习目标。通过教学案的使用,既能转变教师的教学理念,提高教师的整体素质和业务水平,又能转变学生的学习方式,让学生学会并自觉地在已有的经验基础上建构自己的知识框架和理论体系,使每个学生的思考深度得到拓展。

但随着教学案的普遍推广,课本的使用越来越少了,很多学生哪怕用课本也只是把课本上的概念往教学案上誊写一下就结束了,绝大部分学生的课本到高三毕业时都是崭新的,笔者在与教师、学生的交流以及教学实践中渐渐产生了担忧:在广泛使用以课本为蓝本编制的教学案的课堂中,是不是就可以不要课本了呢?如何正确使用教学案呢?

一、必须熟悉教材体系

只用教学案最严重的后果是学生对课本不熟悉,对课本的体系不了解。很多学生没有系统地看过课本,对教材的内容没有一个整体上的把握。而高中数学的很多内容是密切联系的,如:“函数”是个重要的核心概念,学生学习函数的知识经历四个阶段,第一个阶段是在初中,学生接受了初步的函数知识,掌握了一些简单函数的表示、性质、图象。必修1第二章和第三章的学习是第二个阶段,这是系统学习函数知识的阶段,也是培养学生应用函数知识解决问题意识的开始。必修1在学习函数概念后学习函数的性质(单调性和奇偶性),进而学习具体的函数:指数函数、对数函数和幂函数,而研究这几个具体函数的性质主要是通过它们的图象来研究的,其中性质主要是指函数的定义域、值域、单调性和奇偶性。通过对这三个具体函数的研究,学生对抽象的函数概念的理解会进一步加深。第三个阶段是必修4、必修5的学习。必修4三角函数将角的概念推广到任意角后,我们就可以把三角函数看成是以实数为自变量的函数,这样就可以把三角函数纳入到一般函数的范畴,这部分内容的学习主要还是研究三角函数的图象与性质,这可以看成是必修1函数知识的一个应用。必修5中的数列虽自成体系,但它也可以看成是定义在正整数集上的函数。这样函数的概念的外延在不断地拓展,学生对函数概念的理解也更有深度。第四个阶段是选修课程中的导数及其应用、概率、参数方程等。导数可以看成是为了研究更为复杂的函数的性质而采用的更为先进的研究工具,其本质依然是函数,参数方程则给出了函数的另一种表示方式。可见,整套高中教材以函数作为主线贯穿其中。如果学生没有系统地看书,没有悟出这些概念之间的联系,他掌握的知识可能是支离破碎的,这样也就很难编织清晰的知识网络,很难形成高效的正确的认知结构,对这些知识的理解就会缺乏深度。

二、深入挖掘课本概念

很多教学案的预习部分都把课本的重要概念设计为填空题的形式,让学生在预习课本后填写,大部分教师在课堂上做的工作就是把学生填写的内容对一下答案,让学生对基本的概念有个大概的了解,然后讲解例题,再让学生进行当堂巩固练习,从反馈结果看,学生教学内容好像基本掌握了,但他们对这部分知识只是停留在识记的层面,没有正在参与到如何得到新知识的过程中去。从更高的要求看,这样的教学不能培养学生触类旁通的能力,遇到一个与之相关的问题可能就会束手无策。所以我们的课堂要让每个学生体验通过自己的探究得到知识的过程。例如,在学习指数函数时,应引导学生了解为何底数的范围是大于零且不等于1?更应该指导学生通过描点作图,了解指数函数的性质,为后面学习对数函数、幂函数以及研究更一般的函数性质提供了范例。

相关文章
相关期刊