欢迎来到易发表网!

关于我们 期刊咨询 科普杂志

天线技术论文优选九篇

时间:2023-04-19 16:54:48

引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇天线技术论文范例。如需获取更多原创内容,可随时联系我们的客服老师。

天线技术论文

第1篇

第四代移动通信技术中采用了智能天线技术,智能天线一般是指安装在基站的天线,主要是通过能够编程的电子相位关系来确定方向性。智能天线技术采用的是SDMA,而SDMA是卫星通信方式的一种,主要是利用天线的方向性来确定范围,也就是频域,从而减少了成本,增加了收益。SDMA是利用空间分割来划分信道,采用智能天线技术可以改善信号质量,4G移动通信技术广泛采用这一能够降低建设成本的技术。另外,为了提高移动通信系统的性能,4G移动移动技术还采用了无线链路增强技术,像分集技术和多输入多输出(MIMO)技术,为数据的高速传输提供了技术支持。

2、4G移动通信技术的安全缺陷继解决措施

病毒,一般来说,是有些计算机操作人员恶意制造的一些计算机操作指令,载入在一些人们常用的软件和网页当中传播,破坏计算机的信息安全。病毒对网络通信的破坏是猝不及防的,而且其传播速度很快,在很短的时间内能让成千上万的文件或者程序受到攻击。而且病毒自身繁殖性也很强,一旦遭到病毒侵害的程序就会自身复制,能够像生物病毒一样繁殖下去,对通信安全将造成巨大的危害。黑客,一般都拥有大量的计算机相关的技能,能够轻易侵入别人的电脑或者拿别人的电脑当跳板再入侵其他的电脑来窃取用户信息,或者破坏通信信息安全。黑客非法地对国家政府、军事情报机关的网络、军事指挥系统、公司企业的计算机系统进行窃听、篡改,以达到危害国家安全,破坏社会稳定,致使企业造成损失,这将对用户的通信安全产生巨大的威胁。网络服务器或者浏览器本身存在的安全缺陷,极易被一些恶意软件携带的病毒攻击,而这些病毒经常不容易被发现,最终对通信和信息交换造成破坏。科技不断地发展,我们有信心解决以上提出的安全问题,为了有效地解决,我们在4G移动通信技术研究和开发的过程中一定要严密把控各方面的环节,确保第四代移动通信技术对于用户数据的信息安全。采取增加网络防火墙,使用更加复杂的秘钥等措施,提高系统的抗攻击能力,在不影响数据安全和完整性的前提下,同时提高系统的恢复能力。同时,各国政府也要成立专门的机构,出台相关的法律法规,增加对网络安全管理人员的培养,普及安全知识,同时加大对安全保护措施的投资力度,对危害通信安全和网络安全的不法分子严惩不贷。

3、结语

第2篇

2.1系统硬件设计

系统硬件主要由传感器节点、协调器、控制开关器和上位机组成。传感器节点由传感器、处理芯片、及通信模块组成,主要有温湿度传感器、H2S气体传感器、NH3气体传感器等;控制开关器主要是由主芯片、继电器电路、接收通信模块组成,主要用于控制通风设备的工作状态;协调器负责网络的建立维护和数据的中转,主要任务是为各个传感器分配地址,建立和维护网络;上位机负责数据的接收、存储,并能根据设置的参数进行预警作用。传感器节点由MSP430系列处理器模块、无线通信模块、串口通信模块、传感器模块、电源模块和其它扩展模块组成。选取MSP430系列处理器主要考虑低功耗。为了提高节点间的通信距离,需要在发射器的输出端和发射天线之间增加一个功率放大器,并且采用定向传输技术。各种传感器模块、控制开关器和协调器都是独立设计的,利于节点的重复使用,提高灵活度。

2.2定向天线技术

定向天线(Directionalantenna)是指在某一个或某几个特定方向上发射及接收电磁波特别强,而在其他的方向上发射及接收电磁波则为零或极小的一种天线。定向天线具有增益高、方向性好等特点,能够有效抑制干扰信号,大大减少节点之间的信号干扰,增大了数据的传输距离和数据传送效率,降低信号传输的时延和节点的功耗、提高空间复用度,能够使多个节点同时传输,空间复用率高。并且通过定向天线传输增加额外增益能够实现WSN节点的远距离通信,协议可靠性高,时延小,有效提高了WSN网络吞吐量。

2.3节点软件系统的组成

软件的设计主要由传感器节点软件、控制开关器软件、监测软件组成,除监测软件外,所有程序采用C语言编程实现,监控软件采用eclipse软件结合an-droid-sdk完成。各个应用程序主要由各个传感器硬件模块的驱动、数据采集和通信协议。

2.4通信协议

2.4.1通信算法

针对养殖环境参数监测过程中存在有障碍物影响,会导致传输距离受限制、监测精度不高等结果,因此设计了传输通信协调。通信协议算法主要包含四个阶段:初始化阶段、路由发现阶段、数据传输阶段、路由重发现。

1)初始化阶段

当系统启动时,设置一个启动定时器tt1时间,当tt1时间到达后,节点就定期时间(tt2时间内)向周围节点发送信号HELLO信息,发送HEL-LO信息后就等待回复号RET信息,如果在tt2时间内收到周围节点的RET信息,标注节点已被发现。同时,周围节点在收到HELLO信息后,就会把此节点作为邻节点保存在临时列表中,在tt3时间内向发送节点发送RET信息。如果此节点在自己的通信范围内,就作为自己的邻节点保存在正式邻点列表中,否则抛弃此节点。

2)路由发现阶段

每个节点计算邻居节点的数量,并且根据本身的能量、与基站节点的距离、整个网络节点的均衡等因素,设置成为初始的簇头节点,各个簇头负责簇内数据的采集。除此,各个簇头之间,为了保证路由的可靠性和降低传输数据消耗的能量,采用单跳或多跳的传输方式传输数据。如果簇头节点在基站的接收范围内,就直接把数据传送给基站,如果不在基站接收范围内,就计算各个簇头离基站的位置、本身剩余的能量,保证传输消耗能量最低原则,采用多跳方式传输数据到基站。

3)数据传输阶段

当网络进入稳定状态,簇内成员节点将采集的数据传送给簇头节点,为了避免数据冗余,簇头节点进行数据融合后发送给基站。数据会按照设计的数据传送格式进行传输。

4)路由重发现阶段

由于能量的限制,如果一直保持原路由进行数据传输,就会导致节点能量过多而不能工作,从而破坏整个网络的正常运行。考虑到簇头在网络运行中承担更重任务,设计簇头更换策略。簇头更换策略主要取决于三个因素:选举系数、边缘位置、阈值能量。选举系数决定簇头选举的时间和更换的轮数,设置合理可行的选举系数保证整个网络性能;处于边缘位置的节点若成为簇头,会因传输距离太远,容易耗尽能量而死亡;阈值能量设置得太大,导致很多节点不能成为簇头,势必会因数据传输距离过远,导致网络的不稳定。所以,簇头更换策略是当簇头的满足选举系统时,进入到簇头更换,此时选取出簇内具有最大剩余能量的节点,判断此节点是否处于边缘位置,如果处于边缘位置,继续寻找簇内第二大剩余能量节点,一直到不处于边缘位置为此,然后判定其剩余能量是否大于阈值能量,如果满足则设置此节点为新一轮的新簇头,并向周围所有的节点发送成为簇头的标志信息,重新进行簇内成员的构建,再形成新的路由进行数据的传输。

2.4.2MAC协议

基于定向天线的MAC协议主要使用两种方式:使用RTS/CTS握手方式和不使用RTS/CTS握手方式。前者使用RTS获得邻节点的信息,RTS需要硬件设备获取邻节点的位置信息,后者则使用了音的信号帧,但是这两种方式会带来隐藏终端和聋节点等问题,从而降低了MAC的性能。为了解决这个问题,可以结合定向虚拟载波侦听(DVCS)机制、使用多跳、SDMA(空分多址)等的优点,充分利用定向天线的优势。

2.4.3数据通信格式

考虑到数据通信过程中的可靠性和安全性,设置了数据通信格式。1)传感器节点到协调器的数据格式。数据格式定义如:Head+len+data+stx。其中:Head(2byte),固定为0xFF,0XFE;Len(1byte),data的字节数;Data:数据域———2byte本机地址+2byte父节点地址+nbyte传感器数据(n大于等于2);stx(2byte),固定为0x0D,0X0A。具体发送命令如:FFFE0800010000031200000D0A。其中:FFFE为固定数据头;08为数据长度;0001为本机地址(子节点地址);0000为父节点地址;03为传感器类型;12为传感器数据,1Lsb=0.1,如0x10表示1.8;0D0A为数据的结束标志。2)协调器发往监测软件的数据格式。数据格式定义如:FFFD000430300000hhhhhh。其中:byte1byte2:传感器端数据发送的固定头,固定为FFFD;byte3:数据类型的标识,00为H2S传感器的数据,01为温湿度感测器的数据,02为NH3感测器的数据;byte4为传感数据长度(统一为04);byte4~byte7:为传感器数据;Byte9~byte10:保留;byte11:byte1—byte10校验值(相加取低8位)。

2.5网络构建系统上电后

协调器进行搜索并寻找合理的信道,完成系统初始化和建立网络的任务。各个传感器节点通电后,扫描信道,寻找协调器,并加入到网络中。加入网络后,则开始采集环境数据,传输给协调器,协调器接收各个节点的数据,判定其格式正确后,将其传输给监测软件。

2.6监控软件设计

以eclipse软件为开以平台,结合android-sdk完成监控软件的开发。Android系统是一个源码公开、开放和完整的软件,是由操作系统、用户界面中间件和重要应用程序组成,得到手机运营商的广泛使用。在系统的设计中,应用到了Activity、Intent、Service、An-droidUI、多线程等技术。本系统主要由以下几个方面组成:Android软件与硬件传感器通信的底层驱动,包括打开串口、关闭串口、发送串口信息、接收串口信息以及异步方式读取传感器数据等;主界面内容显示,包含各种传感器数据显示、控制开关器的控制等信息。监控软件接收到数据时首先要对数据的格式进行分析,判定数据格式正确后,确定是哪个传感器的数据,然后进行数据处理,计算结果,在相应界面位置显示数值;把结果与设定的数值进行比较,如果不在设置数值范围内,就进行报警,并把报警信息通过串口发送到协调器,协调器再转发到控制开关器,驱动通风设备工作。

3系统的应用

根据设计的要求,系统设计完成并搭建,在猪舍做了相应的实验和相关的测试,系统测试结果说明,系统实现相应功能,成功读取相应的环境数据。主界面运行显示图中是各个传感器终端节点采集发送回来的数值显示和通风设备工作状态情况。可以通过“菜单键”设置逻辑状态的“关闭”和“启动”在逻辑状态都已关闭情况下,只能显示所有传感器的数据和此时通风设备工作状态,不能达到超限预警的效果。为了能实现环境参数监测的自动控制,必须要开启所有的逻辑状态。通过“菜单键”设置温度、湿度、H2S气体和NH3气体的范围,当采集数据中任一参数超出范围,都可以自动开启和关闭通风设备,达到自动控制效果。H2S和NH3参数范围设置的标准是依据《农产品安全质量无公害畜禽产地环境要求(GB/T18407.3—2001)中的标准来设置,H2S和NH3应控制在10、25mg•m-3以下。根据相关研究表明,猪舍最适宜的温度为8℃~20℃,相对湿度根据猪体质量类型的不同一般为65%~85%。

4结论

第3篇

在隧道工程中,防排水施工技术可以分为防水施工技术和排水施工技术两方面,其中防水施工技术是指利用防水材料、二次衬砌防水混凝土、初衬喷射混凝土等将隧道周围的地下水隔离开来,避免地下水对隧道内部结构进行侵蚀;排水施工技术是指对隧道工程进行详细的分析,设计出合理的排水系统,从而将隧道中存在的地下水排除,从而为隧道的安全提供保障。在进行隧道工程防排水施工时,要坚持“安全第一、规避风险、全程监控、综合管理”的原则,严格的按照相关规定进行操作,从而为整个隧道工程的施工质量提供保障。

2工程概况

元坝气田17亿立方米/年滚动建产工程地面集输工程隧道三标建设地点位于四川省苍溪县境内。第三标段共有两条隧道:牛包山隧道和天坪梁隧道。牛包山隧道穿越地段的微地貌特征为缓坡、陡坡、陡崖、山脊、冲沟等。区内为单斜地层,其岩层产状为236°∠3°,地下水主要由南向北径流,岩体的风化裂隙及构造裂隙为地下水的主要贮存和富集空间。该隧道隧址区域内无大的地表水汇集区和流通区,只在隧道的进出洞口和洞身段发育多条小冲沟,入洞口冲沟内有地表水,水量较大,常年有水。天坪梁隧道隧址区内为单斜地层,其岩层产状为240~250°∠3~6°,地下水由西南向东北径流,其含水岩层为砂岩层,风化裂隙及基岩裂隙为地下水的主要贮存和富集空间。该隧道隧址区域地表水系主要为进洞口侧有一冲沟,进洞口侧冲沟内水流较小,由于冲沟上游有堰塘拦截,冲沟内水流在暴雨季节,洪水水位较小。

3隧道工程防排水施工技术的施工准备

在进行隧道工程防排水施工前,施工单位首先要做好施工准备工作,只有这样才能为施工的顺利进行提供保障,才能确保隧道工程的施工质量。在施工前,施工单位要安排测量人员深入施工现场,对各个桩位进行测量,确保各个桩位能满足施工需求,同时测量人员要根据施工现场的实际情况,设置好水准点和导线网,并对隧道进行测量、复测,确认无误后,进行二次衬砌放样。采购人员需要根据隧道防排水施工设计要求,购买合理的施工材料,采购人员在选购施工材料时,要对市场进行充分的调查,选择质量优越、价格便宜的施工材料。施工材料在进入施工现场前,施工单位要安排专门的质检人员对施工材料的质量进行检查,如果发现施工材料质量不合格,要及时将施工材料退回,重新选购,严禁质量不合格的施工材料进入施工现场。在正式施工前,施工单位还要对施工人员进行技术培训和安全培训,从而有效地提高施工人员的技术水平和安全意识,确保施工人员能严格的按照相关规范进行操作,只有这样才能为隧道工程的施工质量提供保障。在施工前,施工人员还要组织施工人员对施工使用的各种机械设备进行检查,确保施工机械设备能安全稳定的运行,从而为隧道工程施工的顺利进行提供保障。

4防排水施工技术的应用

4.1测量放样

在进行测量放样时,测量放样人员要利用全站仪将隧道的中心线准确的测量出来,然后沿着隧道中心线向两侧散开放样,在本工程中,每隔5m为一个放样点,水平方向放样结束后,测量放样人员要将纵向排水管道的中心线测量出来,然后每隔10m设置一个放样点,最后利用全站仪将排水管道底部的设计标高测量出来。测量人员还要将矮边墙的边线测量出来,每隔5m设置一个放样点,并将矮边墙的顶标高测量出来。

4.2进入隧道前的防排水处理

在进入隧道施工前,施工单位要对隧道内部的情况进行充分调查,了解隧道隧址区地表水、地下水的情况,并对地表水的补给方式进行分析,根据实际情况,制定相应的地表防排水工作,从而为隧道施工提供方便。在本次隧道工程施工中,施工单位采用浆砌片石截水沟、排水沟将隧址区地表水排入隧道地表外侧,并将其引入隧址区原排水系统中,从而有效地防止地表水渗漏对隧道工程施工造成影响。

4.3安装排水管

在本工程中,施工单位在安装排水管时,对于环向排水管的安装,施工单位首先沿着隧道内部,每隔1m设置一个混凝土悬挂锚钉,然后利用铁丝将排水管道固定在混凝土悬挂锚钉上,在施工过程中,施工人员要特别注意,锚钉需要牢固的地锚在混凝土表面,从而避免弹簧管坠落对隧道中的行人带来危害。弹簧管的端头需要预留出10cm,从而为弹簧管和纵向排水管的交接提供保障。在安装纵向排水管时,其安装工序与环向排水管的安装工序大致相同,施工人员首先要沿着隧道坡度,每隔1m设置一个混凝土悬挂锚钉,利用铁丝将排水管道固定在混凝土悬挂锚钉上,最后施工人员要纵向排水管道和环向排水管道交接处割破,将环向排水管道、纵向排水管道、横向排水管道连接好,最后对管道的接头进行密封处理,避免管道接头处发生漏水现象。

4.4防水板的安装

在进行防水板安装前,施工人员要对隧道初期施工的支护情况进行认真的检查,并对岩面的欠挖进行处理,避免衬砌台车进入施工现场后,因没有处理岩面欠挖,从而对隧道工程防排水施工进度造成影响。施工人员还要凿除凸出的岩石喷射混凝土,割掉凸出的钢筋头和锚杆,同时在铺设防水板前,施工人员要先将防水板拼好,然后利用装载机将防水板放在架子上。在安装塑料防水板时,施工单位可以采用无钉法,按照顺序逐环安装;在安装复合放水板时,施工人员首先要将锚钉钉入混凝土中,然后沿着纵向拉铁丝,从而对防水板进行保护。施工人员在安装复合防水板时,要从侧面开始,从上到下依次铺设,同时施工人员要在铺设过程,将吊带系在铁丝上。

5结语

第4篇

1.1传输通道抗衰落油田数据传输系统中的移动台与通信基站之间的传输主要依靠无线电磁波,在传输过程中,周围电力线发射的电磁波会干扰信号强度。移动台发射无线电磁波的衰减率为N=V/(λ/2),其中V为数据信息在传输信道内的速率,λ为外界电磁波的波长。如果增大电磁波波长便能有效地控制抗衰减系数,一般采取增大信源设备发射功率的方法来提高传输速率[4]。在传输系统一级电路信号功率放大过程中,数据信号容易在通信线路中发生全反射现象,使数据信号的码片呈现离散状态。在距终端处理器3/4位置处,继续进行二级数据信号功率的放大,使传输线路中产生电磁波的强度高于外界干扰电磁波的强度,让传输信道内的电磁波与电磁波相互抵消,可降低其电磁波的强度。并且电磁波在相互抵消过程中,也进行了一部分的叠加,从而增强了通信信号强度。

1.2编码调制油田数据传输系统编码调制分为二进制编码调制、十进制编码调制以及十六进制编码调制。十进制编码调制的输入端有10个数据连接点,每个数据点代表不同的数据值。输出部分的连接点共有4个,形成为8421十进制编码。该数据连接点的排布从左向右为I0~I9,当编码的数字首位为0,其他数字为1时,输出端编出的码型序列为0;当编码的数字第二位为0,其他数字为1时,输出端编出的码型序列为1;当编码的数字第三位为0,其他数字为1时,输出端编出的码型序列为2,以此类推,即为十进制编码转换原则。十进制编码比二进制编码过程复杂,但保密性能比二进制好。十六进制编码与十进制编码过程相类似,但是对9以后的数字编码要用ABCDEFG进行编制,当编制的数据信息为103131156时,那么接收到的编码序列即为A3D1F6。数据传输系统中二进制编码技术通常应用于传输话音信号,其优势为编码技术简化,占用的信道宽;十进制编码和十六进制编码技术应用于传输视频信息与数据信息,这两种编码技术保密性能佳,并且在传输数据信息中添加了冗余码与纠错码,可保证传输信息的有效性。

1.3移动天线射频移动天线射频技术中的设备根据俯仰角度不同,分为全向天线与定向天线两种类型。全向天线由于覆盖范围大,发射功率低,所以容易受到大气层中电磁波的干扰,使传输的数据信号失真,这种设备多用于油田空旷地区。定向天线覆盖范围小,传输距离远,但是发射的功率信号只能朝一个传播方向,如果在大型油田建筑群体设立单独的定向天线,发射的信号就会被障碍物吸收,因此每个建筑通常设立3个天线,每个定向天线覆盖的范围为120°,组成一个全向覆盖范围区域。每个定向天线的俯仰角度控制在15°范围内,定向发射的频率为8000Hz。在发射射频功率过程中,发挥主要功能的设备为耦合器,其结构组成为直流耦合端、输入端、隔离端及耦合输出端。

2TD—LTE技术的应用

2.1数据传输信道TD—LTE无线通信系统的传输信道分成等间隔的32个信道,其中上行信道16个,下行信道16个。上行信道负责数据的编码,下行信道负责数据的传输。上行信道具有数据信息编码和译码功能,可以在数据编码过程中添加冗余码和纠错码。在数据字符串间添加冗余码的过程中,上行信道会根据冗余码的排列顺序进行翻译,若对等的字符串没有得到有效的翻译,编码器便会重新接收冗余码,再一次进行翻译表达,直到油田数据终端设备接收到的数据信息与信源设备输出的信息一致,才会完成对数据信息的译码。

2.2油田数据传输系统无线局域网无线局域网的组建要根据不同的IP地址进行划分,以达到共享石油专网内的数据资源的目的。IP地址段分为4个区域段,A类IP地址段为0~127,B类IP地址段为128~191,C类IP地址段为192~223,D类IP地址段为224~239,每个区域段之间的主机设备都能够实现远端控制功能。

3结语

第5篇

【关键词】无线电测向 测向设备 测向体制 军用和民用

1 无线电系统探测辐射源的基本原理

随着科学技术的快速发展,现在无线电测向已经越来越广泛的被运用在民用和军用设施之中。无线电事业近年来突飞猛进,给人们带来了极大的便利。无线电测向系统主要由测向天线、输入匹配单元、接收机和方位信息处理显示四个部分组成。其中测向天线是电磁场能量的探测器、传感器,它也是能量转化器,主要利用感应空气中传播的电磁波能量以及幅度、相位、到达时间等等信息来变成交流的电信号,馈送给接收机;输入匹配单元从而实现天线甚至是接收机的匹配传输与转变。接收机的作用包括选频、下变频、无失真放大和信号解调;而方位信息处理显示部分的任务就是检测、比较、计算、处理和显示方位信息。

测向机示向度就是指在测向过程里显示的测向读数。测向站是由测向设备、通信系统和附属设备三个方面构成。其中测向站是担任专门执行测向任务的专职单位,它可以分成固定站和移动站两种形式。

无线电测向主要是利用无线电波在几个位置不同的测向站组网来测向,用测向站的示向度进行交汇。短波的单台定位,主要是在测向的同时测定来波仰角,再利用仰角、电离层来计算距离,从而用示向度和距离粗步可以判断台位。

不过在实际操作上要确定辐射源的具置,还需要完成从远到近的分布交测,从而再实现具体确定辐射源的具置。

2 无线电测向系统的主要分类

目前,根据天线系统从来波信号取得信息和对信息处理系统的技术不同主要可以分成两类:一是标量测向,不过它仅仅可以获得和使用到来波信号相关的标量信息;另一种测向方法即是矢量测向,它可以依据它得到的矢量信息数据从而同时获得和使用电磁波的幅度与相位信息。

两种测向方法相比较而言,标量测向的系统历史悠久,应用也更加广泛。最简单的幅度比较式标准测量系统就是旋转环形测向机,这种系统主要对垂直的极化波方向图成8字形。在军用方面,大多数采用比较式的标量测向系统,其测向天线和方向图都是采用了某种对称的形式,如:阿尔考克测向机和沃特森-瓦特测向机以及各种使用旋转角度的圆形天线阵测向机;其中有干涉仪测向机和多普勒测向机是属于相位比较的标量测向系统。而对于矢量测向系统,例如:空间谱估计测向机。它就是矢量系统的数据采集,它的前端就用多端口天线阵列和至少同时利用了两部以上幅度、相位一样的接收机,然后它再根据相应的数学模型和算法,用计算机来解答。矢量系统主要依据天线和接收机数量和后续的处理能力,它主要可以分辨两元甚至多元波长和来波方向。

3 无线电测向体制分类

利用不同的测向原理,现在主流的测向机制可以分为以下几种:

3.1 幅度比较式测向体制

幅度比较式测向体制的工作原理是:依据电波在行进中,利用测向阵或者测向天线的特性,对不同方向来波接收信号幅度的不同来测定来波方向。

幅度比较式的测向体制原理应用十分广泛,主要可以体现在:环形天线测向机、间隔双环天线测向机、旋转对数天线测向机等等,这些是属于直接旋转测向天线和方向图的;交叉换天线测向机、U型天线测向机、H型天线测向机等,都属于间接旋转测向天线方向图。间接旋转测向方向图,是通过手动或电气旋转角度来实现的。手持或者佩戴式测向机也是属于幅度比较式测向体制。

3.2 沃特森-瓦特测向体制

沃特森-瓦特测向机实际上也是幅度比较式测向体制,不过它是利用计算求解或者显示正反切值而不是采用直接或者间接旋转天线方向图。正交的测向天线信号,主要是分别经过两部幅度、相位特性相同的接受机来进行变频和放大的,最后求解或者是显示反正切值,从而解出或者显示来波方向。

单信道的沃特森-瓦特测向机就是将正交的测向天线信号,分别由两个低频率信号来调解,再由单信道 接收机来变频、放大,从而解调出方向信息信号,最后求解或显示正反切值,最后来确定出来波方向。

3.3 干涉仪的测向体制

干涉仪测向体制的测向原理是:利用电波在行进中,从不同方向来的电波到达测向天线阵时在空间上各测向天线单元接受的相位不同,从而相互间的相位差也不同,最后由测定来确定来波相位和相差,即可确定来波方向。

我们至少需要在空间架设三副分开的测向天线的准确的单值确定出电磁波的来波方向。干涉仪测向主要是在正负180度范围里单值的测量相位,当天线间距比较小时候,相位差的分辨能力就会收到限制,天线间距大于0.5个波长的时候就会引起相位模糊。利用沿着每个主基线来插入一个或者多个附加真元来提供附加的相位测量数据,用这些附加项为数据就可以解决主基线相位测量的模糊问题从而来解决上述的矛盾。这种变基线的方法已经被当代干涉仪测向机所广泛使用。而相关干涉仪测向,它是在测向天线阵列工作频率范围内和360度的方向里,利用一定的规律设点,并且同时在频率间隔和防卫间隔上建立样本群。这样,在测向的时候,就可以把测得的数据和样本群来相关运算和插值处理,最后得到来波信号方向。

3.4 多普勒测向体制

多普勒测向体制主要是利用电波在传播的时候,遇到的与它相对运动的测向天线时,被接受的电波信号产生多普勒效应,来测定多普勒效应产生的频移最后来确定来波的方向。

我们必须采用测向天线和被测电波间的相对运动来得到多普勒效应产生的频移。一般来说我们在测向天线接收场里,用足够高的速度运动来实现,当测向天线作圆周运动的时候,我们利用来波信号的相位受到正弦调制。通过多普勒频移f与0点参考频率相比较,即可得来波方向角。

3.5 乌兰韦伯尔测向体制

乌兰韦伯尔测向体制的测向原理是采用大基础测向天线阵,在圆周上面架设多副测向天线,来波信号可以经过可旋转的角度计、移相电路、合差电路形成合差方向图,最后再利用测向找到方向。以民用的40副测向天线阵元为例,角度计瞬间可与12副天线元耦合,进而分别利用移相补偿电路把信号相位对齐,这样就可以形成旋转的等效直线天线阵,12副天线分为两组,每组6副,进而两组间可以经过合差电路的相加减形成合差方向图。测向以合差方向图来找来波方向,在来波方向里,用两组天线信号均处在来波等相位位面上,两组天线信号大小相等,差方向图输出相减为零,合方向图时,为一组天线信号输出的二倍。

3.6 空间谱估计测向体制

空间谱估计测向体制的测向原理:在已知坐标的多元天线阵里,测量单元或多元电波场的来波参数,经过多信道接收机变频、放大来得到矢量信号,把采样量化为数字信号阵列,送给空间谱估计器,再运用确定的算法求出各个电波的来波方向、仰角、极化等参数。

空间谱估计测向体制的特点是空间谱估计测向技术可以实现对几个相干波同时测向,这是其它测向体制所不具有的。它可以实现在同信道中对同时存在的多个信号进行超分辨测向。空间谱估计测向仅仅利用很少的信号采样,就可以精确测向,它的测向准确度比传统的测向体制高了很多。并且测向场地要求不高,可以实现天线阵元特性选择以及阵元位置的灵活性。

4 无线电测向在军用和民用领域的应用

随着无线电事业的飞速发展,无线电测向技术在民用和军用得到了极大的应用,但依靠传统仪器设备组成的无线电监测测向系统已不能满足当前各种新型、密集的无线电信号的监测和测向的要求,尤其是在电子作战中,无线电测向技术更是大显身手,要将干扰功率最大化加载在敌方的通信设备上,首先要求我们的是,测出敌方的通信所在地。从军用微波通信的特点看,其天线波束窄,电波方向性强,与军用战术电台广播发射的电波截然不同。所以高度数字化、集成化和数字处理技术应用,自动化、智能化、网络化和小型化,多信道的信号监测和测向就成为发展的潮流。因此,国内外的许多公司都研发或集成了较为先进的固定、车载、移动及手持式测向设备。有的公司可根据用户对设备性能及经济能力的要求进行相应设计,可组成单信道、双信道及多信道的相关干涉仪或其他体制的监测测向系统,并具备宽带扫描、本振共享、同步采样、信号识别、信号分析功能,系统测向功能极其强大,且测向速度快、灵敏度高、动态范围大、可靠性强,计算机自动控制,界面友好、直观,操作使用极为方便,大大提高了无线电技术人员测定无线电辐射源或无线电干扰的能力。

参考文献:

[1]刘利军.浅论无线电测向技术及其应用[期刊论文].中国高新技术企业,2009(7).

[2] 刘彩东,冯静忠.梁成松对无线电测向误差的分析与探讨[期刊论文].中国无线电,2009(5).

[3] 刘万洪,宋正来,候小江,韩健.LIU Wanhong.SONG Zhenglai.HOU Xiaojiang.HAN Jian 无线电通信测向中的极化误差分析[期刊论文].现代电子技术,2007,30(13).

[4] 徐子久,韩俊英.无线电测向体制概述[期刊论文].中国无线电管理,2002(3).

[5] 赛景波.杨元多普勒无线电测向系统[期刊论文].电子产品世界,2008(10).

[6] 岳新东.无线电测向和无线电干扰查处[学位论文].2008.

[7] 鄢恒聪.浅析主流无线电测向技术体制[期刊论文].中国无线电,2006(4).

第6篇

关键词:RFID;标签天线;远程宠物管理系统

中图分类号:TP391.44 文献标识码:A 文章编号:1674-7712 (2013) 24-0000-01

一、RFID标签天线

RFID是无线射频识别技术,也叫做电子标签。RFID标签天线是一种通信的感应天线,能够利用射频识别技术自动识别特定的对象[1]。电子标签目前已经被广泛应用在现代人们生活的方方面面。本论文通过对远程宠物管理系统这一项目的介绍,来简要分析对适用于多种环境的RFID标签天线的研究。

二、环境对RFID标签天线的影响

在应用的过程中,都要将RFID标签放到需要识别的物体上。在设计和使用的过程中,一定要考虑实际情况,因为读写器与标签之间还可能隔着包装等。

同时我们还应该意识到,天线的性能也会受到环境等因素的影响。天线周围有水和金属时,这种影响会十分明显。本论文设计的RFID标签天线是一个远程宠物管理系统,经实际验证,这个RFID标签天线能够适用于多种环境。

三、远程宠物管理系统总体描述

(一)主要组成部分

本论文所设计的远程宠物管理系统,采用了最新的双频识别技术,实现了对宠物的远程管理,系统主要由远程宠物电子身份证、远程宠物电子身份识别器、手持PDA读写器和中心服务器四个部分组成。四个部分的具体介绍如下:(1)远程宠物电子身份证:采用2.4~2.5GHz与13.56MHz波段,可存储大量信息,低功耗、低辐射,对宠物健康无负面影响。(2)远程宠物电子身份识别器:识别距离可在50米范围内调节,可穿透障碍物识别宠物电子身份证;(3)手持PDA读写器:基于PDA直接对宠物电子身份证进行识别,手持PDA读写器与PDA之间可通过蓝牙、串口、CF口相连;(4)中心服务器:手持PDA读写器与中心服务器通过蓝牙、无线局域网或GPRS相连。

远程宠物管理系统的产品式样主要分为两种:手持PDA识别器和远程电子身份证。

(二)主要功能

本论文的远程宠物管理系统的主要功能有:(1)宠物电子身份证的远距离识别和读写;(2)宠物定位和搜索;(3)信息公告和;(4)丢失宠物查找。

(三)主要性能指标

(1)宠物识别距离不低于50米;(2)宠物移动速度不大于80公里/小时时,对宠物识别没有影响;(3)同时识别的最大宠物数量,不小于300只;(4)电子身份证发射功率小于-3db;(5)识别器的识别速度,不低于300个/秒;(6)宠物电子身份证的功耗小于0.3mW,普通纽扣电池的使用寿命大于2年。

四、远程宠物管理系统技术原理

宠物电子身份证使用了128个频道、2.4G到2.5GHzISM的微波段,频道带宽13.56MHz以及8MHz的双频识别技术,每张宠物电子身份证的ID号全球唯一,并可存储主人、地址、电话、出生日期、防疫信息、图片等大量信息。同时宠物电子身份证可远程加密读写。

远程宠物身份识别器可远距离穿透障碍物搜寻、定位宠物,当宠物防疫过期或为失踪宠物,远程身份识别器可发出报警音和振动提醒,并锁定宠物。

手持PDA读写器可和PDA通过蓝牙、串口、CF口相联,实时读取宠物信息,并发送到PDA上显示,手持PDA读写器可通过蓝牙、无线局域网、GPRS和中心数据库联接,获取最新的宠物信息。中心服务器为数据库服务系统,可以对宠物的相应信息进行查询。

五、项目创新内容

(一)应用创新

目前,对宠物的身份识别主要通过传统犬牌、二维条码、植入式芯片这三种方式。

传统犬牌容易伪造,通过人眼近距离识别,已基本上被淘汰;二维条码较难伪造,但识别距离只有几个厘米,识别时必须抓住宠物,识别效率低;植入式芯片是目前最新出现的宠物识别技术,植入式芯片无法伪造,识别距离可达到几十厘米。但植入式芯片也存在以下两个缺陷:(1)识别距离短,无法在户外识别屋内的宠物;(2)植入方式对宠物存在一定健康影响,许多宠物主人无法接受。

采用双频识别技术的远程宠物管理系统,有很多优势:(1)无法伪造;(2)可远距离穿透障碍物识别,识别距离可在50米范围内调节,可户外对屋内宠物进行身份识别;(3)可授权读写,可根据宠物的状况对识别体进行读写,存储最新的宠物信息;(4)对宠物健康无负面影响;(5)识别速度快,每秒可识别300只宠物,无需抓住、靠近宠物;(6)产品已通过浙江省计量科学研究院检测,相关技术指标满足全部要求。

(二)结构创新

电子犬牌结构小,可悬挂于宠物上,质量轻,对宠物无负面影响,具有卡通、精灵、宠物等多种造型。

六、项目技术开发可行性

(一)项目技术发展现状

本项目涉及的核心技术包括:2.4G~2.5GHz射频识别技术,13.56MHz射频识别技术。下面对目前这些相关技术的研究、开况做如下的简要介绍。(1)2.4G~2.5GHz射频识别技术。2.4G~2.5GHzISM频段是使用最多的短距离无线通信频段,基于该频段的短距离无线通信技术已经比较成熟[2],具有公认的标准和产品,如ZigBee、Wi-Fi、蓝牙、无线USB、无线局域网等。(2)13.56MHz射频识别技术。基于13.56MHz射频识别技术的无线标准有NFC,ISO15693等。主要产品有Philips公司的RC500芯片,Melexis公司的MLX12115等。

七、结束语

本论文简要介绍了远程宠物管理系统,从中我们可以看出RFID标签天线能够适用于多种环境。RFID标签天线技术有着非常广阔的发展前景。

参考文献:

第7篇

【关键词】 TD-LTE 多天线技术 2/8天线 性能对比

引言

多天线技术(MIMO)是LTE系统的关键技术之一,通过与OFDM及技术结合应用,能够对空、时、频多维信号进行很好的联合处理和调度,使系统的灵活性和传输效率大幅度提升。TD-LTE系统集成了TDD的固有特点和优势,能够很好的满足非对称移动互联网业务应用的需求。随着LTE上涌进程的不断推进,全球各大电信运营商已经大面积部署LTE网络,大部分FDD运营商采取了将LTE和3G系统共同部署的策略,基站主要采用2天线,而TDD运营商为了将TDD技术的优势充分发挥出来,其基站主要采用4天线和8天线技术,因此,需要充分了解不同天线技术各自的特点,从而为TD-LTE的实际部署和后续发展提供依据。

一、多天线技术

多天线技术是一种统称,根据实现方式的不同可以分为天线分集、波束赋形以及空分复用三种[1]。从LTE的发展过程来看,最基本的LTE MIMO形式采用了两端口的2×2形式。因此,多天线技术在TD-LTE系统中的发展及应用对于TDLTE的发展发挥着非常重要的作用。最优的MIMO算法对于不同的天线属配置来说存在一定的差异。

在TD-LTE系统中,常用传输方式主要包括TM2、TM3、TM4、TM7以及TM8,其中2天线主要采用的传输模式包括TM2、TM3和TM4;8天线除了支持2天线支持的传输模式之外,还支持TM7和TM8,其中TM8模式为R9支持技术[2]。表1给出了2天线和8天线的上下行对天线模式的支持能力。从表1来看,在上行上都是采用MIMO的分集模式,下行由于采用了模式间的自适应技术,当信道条件较好时会采用双流技术,而当信道条件较差时,则采用了单流技术。

二、2/8天线性能对比

2.1 2/8天线下行信道性能对比

表2给出了2/8天线SU-MIMO的系统性能对比数据,基于3GPP Casel-3D场景进行仿真,2天线采用TM4模式,8天线采用TM8模式,均支持单双流自适应。

从表2中的数据来看,8天线相对于2天线来说,平均频谱效率的增益达到了19%,边缘频谱效率的增益达到了22%。8天线的性能增益主要是由于其本身的空间自由度更高,能够形成更窄、指向性更强的波束,使有用信号提高,干扰也大幅降低。同时2天线通过终端反馈码本的方式存在码本量化损失,而8天线通过信道互易性得到的信道进行矩阵分解,可以得到更加准确的预编码向量。

由于8天线相对于2天线来说具有更大的空间自由度,因此8天线能够对MU-MIMO进行更好的支持。表3给出了8天线的SU-MIMO和MU-MIMO的性能对比,其中SUMIMO采用了单双流自适应技术,MU-MIMO则采用了2用户配对的单流技术。从表中的数据能够看出,MU-MIMO相对于SU-MIMO的平均频谱效率和边缘频谱效率均有15%左右的提升。8天线MU-MIMO模式下,用户配对准则以及用户之间的干扰消除的预编码算法会在较大程度上影响传输性能。

2.2 2/8天线上行信道性能对比

从上行链路的性能来看,8天线相对于2天线具有更大的接收分集增益。同时,8天线的空间自由度优势方便基站通过更具优势的接收算法来提升处理增益。表5给出了2/8天线系统上行仿真性能对比,仿真基于理想的信道估计。

接收端通过采用8天线和基于MMSE的干扰消除接收算法,8天线在平均频谱效率以及边缘频谱效率均有50%以上的增益效果,尤其是边缘频谱效率的增益接近80%左右。因为8天线具有很好的干扰消除性能,因此8天线的基站上行引入MU-MIMO技术能够进一步提升系统性能增益。

三、8天线在产品实现中的挑战

从前文的分析来看,基于8天线和2天线在物理实现、器件性能方面基本保持一致[3]。但是在实际产品实现方面,两者之间存在一定的差异,比如天线增益,这些对会对网络的实际上下行性能产生不同程度的影响。TD-LTE基于信道互易的8天线技术方案存在一定的问题。基于用户反馈码本的多天线方案,需要对上行容量进行充分的考虑,因此,一般会选择较粗的时频颗粒度进行反馈。但是在TDD系统中,基站能够通过上下行信道互易性获取上下行信道信息。因此,在预编码计算的过程中不会受到码本量化带来的影响。当硬件处理能力较高时,甚至能够实现所有物理资源块的波束赋型矩阵的计算,这能够使得波束赋型与信道条件之间的匹配程度进一步提高,从而促进波束赋型技术性能的进一步提升。

四、结语

TD-LTE继承了TDD的优势和特点,具有较高的灵活性和性能。通过论文的分析可以看出,8天线相对于2天线在平均频谱效率和边缘频谱效率具有更好的性能,同时8天线的MU-MIMO比SU-MIMO在平均频谱效率和边缘频谱效率具有更好的性能。因此,8天线能够更好的发挥空间和复用和干扰抑制方面的优势,能够进一步提升TD-LTE系统的性能。

参 考 文 献

[1]毕奇.LTE多天线技术发展趋势[J].电信科学,2014(10):1-7.

第8篇

关键词:MIMO 超宽带 射线跟踪 信道

中图分类号:TN2文献标识码:A 文章编号:1007-3973 (2010) 01-099-01

1序论

超宽带技术(UWB)是由一系列周期非常短、频率非常高的脉冲波实现的一种通信方式,通常也被称为脉冲通信技术。当信号频率与中心频率的比值大于等于25%,或者带宽大于等于500Mbps,则为超宽带。

将MIMO技术用于UWB系统具有很高的链路可靠性和速率适配能力, MIMO-UWB系统能够在时域上很好地解决有害的码间干扰和信道间干扰问题,原因在于接收信号具有良好的自相关及互相关特性。同时又有很多关键技术可以运用,见文献[1]。

2UWB信号选取

在本文中,我们选取高斯二阶信号作为发送信号,根据文献[2]可知,从相干带宽的数据来分析,高斯信号族相干带宽较大。当传输信号带宽大于信道带宽时,信号经过信道将会产生频率选择性衰落,这种衰落将会造成传输信号的码间干扰。而高斯信号所产生的码间干扰较小。高斯二阶信号又优于其它阶的高斯信号。由此,可以得出高斯二阶信号建立的室内信道模型较其它信号建立的模型更准确。波形表达式为:

(2.1)

其中:――脉冲幅度,取值为1;――为脉冲成型因子,取值为;――为脉冲持续时间,1/中心频率;进行归一化处理后可得到时域的高斯二阶波形见图1:

图1时域的高斯二阶脉冲波形

3用高斯信号仿真分析室内MIMO信道

3.1计算过程

根据射线追踪法的详细计算过程,我们可以求得信道的H矩阵中任意hij,可将其转化为时域形式公式(3.1),接收波形的时域表达形式为式(3.2)

(3.1)

(3.2)

其中:为每一射线到达接收点的功率值,为相位变化,为发送信号的载波频率,为每一射的时延,为有效射线数。为高斯二阶信号,由求得。

我们将式(2.1)及式(3.1)带入式(3.2)可化简得到一对发送接收天线的接收波形表达式为式(3.3),总的接收波形为公式(3.4),N,M分别为发送接收天线数。

(3.3)

(3.4)

3.2仿真图形

仿真环境: 2天线,发送天线(半波偶极子)坐标[1,1,1],[1.2,1,1];接收天线[6,7.5,0.8],[6.2,7.6,0.8],发射频率2.35GHz~2.85GHz。以1MHz为间隔,取500个点,房间尺寸8, LOS环境。

我们把大的带宽分为N个小的带宽,在每个带宽内取中心频点进行计算,则分割之后的子信道,可视为平坦的,慢衰落信道,则可以由前文提到的频域的射线追踪算法进行计算,计算完每个子信道之后再进行叠加处理。得到的仿真图为:

图2天线的接收波形

3.3结果分析

图2为两个接收天线接收到的波形图,从图中可以看出接收端的第一条到达路径幅度最大,原因是第一条到达路径是直达路径,没有传播损耗和反射损耗。由于是MIMO信道,则两个发送天线到达同一根接收天线的时延不一样,则两个直达路径的时延不一样,峰值则是由接收功率决定的。把图中的部分波形进行放大可以发现在有的位置出现了波形的混迭,原因为反射次数多,到达接收天线的几条路径时延很接近,时域波形进行了叠加,而由于多径效应造成了时延展宽,引入码间干扰。

4结论

本文以确定性的射线追踪算法为基础,通过理论分析选取高斯二阶脉冲信号作为实验波形,在室内MIMO情况下,进行频带分割,推导接收波形的公式,通过公式仿真MIMO-UWB信道的接收波形,并分析波形出现混迭是由于多径效应造成了时延展宽,引入码间干扰。

参考文献:

[1]杜洪峰,周正.基于自适应调制技术的MIMO-UWB无线通信系统的研究[J].电子与信息学报,vol.28, No.6, 2006.

第9篇

关键词:高校校园网,无线局域网,无线基站AP

 

0引言

随着现代多媒体技术的发展,以及笔记本电脑、掌上型、膝上型电脑等便携式终端设备的广泛使用,学校师生对无线上网需求越来越高,希望利用移动式、便携式的上网设备实现数据通信、信息资源检索、远程教学、移动办公、移动会议、移动学习等活动,校园无线局域网为之提供了可能。因此,组建校园无线局域网能更有效的促进高校现代化教学。

1高校有线局域网现状及问题分析

近年来,信息技术的发展日新月异,正以不可抗拒的力量改变着人们的生产方式、生活方式,同时也正在影响并改变着学校的管理模式、教学模式乃至师生的学习方式,校园网(有线局域网)在教学、科研和管理上发挥了巨大的作用。但是,有线网络也存在一定的局限性:

(1)网络组建受布线的限制。在校园有线网络建设、运行和维护的实践过程中,由于众多高校的校园网大多是通过光纤、网线连接起来的“有线网”,有线网络在某些场合要受到布线的限制,例如:已装修好的住宅、图书馆、校园中具有历史意义怕受破坏的古迹及年久失修的历史建筑不适合钻孔布线,不便施工的报告厅、操场、展览会馆等。

(2)不方便移动办公。诸如很多学校只在部分区域接入有线网络,而无法顾及所有区域,有线网络的接入点比较固定,网中的各节点不可移动,而且接口数量也有限,布线、改线工程量大,线路容易损坏等等。因此,移动设备接入网络很不方便,移动办公受到很大限制。免费论文,高校校园网。

(3)难以满足日益变化发展的校园格局。现阶段高校有一个显著的特点就是建立分校区,校本部与分校区之间的网络传输媒介主要依赖铜缆或光缆构成有线局域网。当要把相离较远的节点连接起来时,架设专用通信线路的布线施工难度大、费用高、耗时长,因此,对正在迅速扩大的联网需求形成了严重的瓶颈阻塞。

2无线局域网概述

无线局域网是无线通信技术与网络技术相结合的产物。从专业角度讲,无线局域网就是通过无线信道来实现网络设备之间的通信,并实现通信的移动化、个性化和宽带化。通俗地讲,无线局域网就是在不采用网线的情况下, 提供以太网互联功能。无线网络设备特点:

(1)无线网卡:无线局域网中无线网卡是操作系统与无线产品之间的接口,用来创建透明的网络连接,其作用与有线网卡类似。无线网卡按照其接口类型的不同,主要有三种:PCMCIA无线网卡(适用于笔记本电脑,支持热插拔)、PCI无线网卡(适用于台式机)和USB无线网卡(适用于笔记本电脑和台式机,支持热插拔),它们都用于短距离无线网络设备之间的通信。

(2)无线基站AP(Access Point):无线接入AP 是一个无线子网的基站,它在无线局域网和有线网络之间接收、缓冲、存储和传输数据,是支持一组无线用户入网的设备。免费论文,高校校园网。AP作为无线子网中的核心设备是必不可少的,同时也是WLAN 和LAN 之间的桥接设备,WLAN工作站也可漫游(Roaming)在不同的AP之间,无线访问接入AP通常通过以太网线连接到有线网络上,并通过天线与无线设备进行通信,其作用半径取决于天线的方向和增益(若不加外接天线, AP的覆盖范围理论上在视野所及之处约230m,但若在半开放性空间,或有间隔的区域,则约20~30m左右,由于微波是直线传播,所以微波都是小角度穿透几面墙体, 墙体将减弱信号, 如果墙体为钢筋混凝土,信号则会更弱。所以在实际情况下,尤其在室外还需要加上外接增益天线,使传输距离到达更远、信号更强)。

(3)无线路由器(Wireless Router):无线路由器是典型的网络层设备,是两个局域网之间传输数据包的中介系统,负责完成网络层中继或第三层中继任务。近年来,为了提高无线通信的能力和效率,不少无线路由设备整合了交换机和防火墙的功能。

(4)校园无线局域网可提供常规的Web服务、ftp服务、E-mail服务、拨号服务、服务、图书馆电子借阅等多种服务,还可以根据各高校特点,开通国际著名电子期刊浏览、移动办公系统、移动BBS讨论系统、移动答疑系统、移动新闻系统、移动教室管理系统、MIS等多种服务。学校应该进一步完善无线局域网软硬件的建设,以此来进一步推进数字化校园建设。

3校园无线网络终端配置

3.1无线接入器的配置

网络的物理连接就是一根网线接入AP作为信息的入口,在无线上网的计算机上安装好无线网卡,通过AP 和无线网卡之间的无线电信号接受信息,网络物理连接后就是具体参数的设置,也就是无线网络终端配置的关键。这主要涉及两个方面:

(1)首先要设置一台能配置AP参数的计算机,将一根网线一头接入AP ,而将另一头接入用于配置AP参数的计算机,同时还要保证这台计算机的IP地址和需要设置的AP在同一网段,以保证直接通信;

(2)进入Web 配置界面后会看到AP的运行状态、无线设置、TCP/IP设置、流量统计、软件升级、保存加载设置和修改密码等选项,因此只需要对TCP/IP的IP 地址、子网掩码、默认网关和DHCP客户端等参数进行设置,这些参数基本和有线网络的设置一样。若考虑到网络安全性,就要在无线设置中选择安全设置,使用WEP加密模式可以阻止无线网络所有非经授权的访问,AP经过这一序列设置后,就可把信号源的网线接入AP。

3.2无线网卡的配置

在安装无线网卡的计算机或笔记本电脑上安装好驱动程序后,就会出现和普通网卡一样的网络属性,如果其网络属性和有线网络状况下不一样,就可能是驱动程序安装不正确造成的,就要检查驱动程序是否正确,无线网卡的配置与当前网络的参数和AP的DHCP 配置有关,即当AP的DHCP 设为Disabled时,无线网卡的IP地址、子网掩码、默认网关和DNS都必须作相应设置。如AP设置为192.168.1.1,则无线网卡的IP 地址就为192.168.1.x(x为2-254 之间一个地址,但不能和网络中已经分配的地址重复),子网掩码就为255.255.255.0,默认网关就为192.168.1.1,DNS设置就为222.172.200.x(学校的DNS服务器)。

4校园无线局域网的构建

4.1无线校园网构建方法

一是阀值法。通过调整AP的阀值设置,控制AP接入覆盖范围,从而在相同覆盖面积条件下,通过增加AP数量,提高系统容量;

二是频率复用。学校人群主要由管理人员、教师、科研人员和大量学生构成,以上人群工作和学习主要分布在以下区域:教学楼、图书馆、办公楼、实验研究楼、学生宿舍、运动场以及校内各类休闲活动场地(草坪、广场等)。因此,在同一覆盖范围内的多个AP利用802.11g协议规定的13个可用信道中相互干扰最小信道进行设计,客户端无线网卡根据各AP信号强度,选择不同信道工作,从而提高系统容量。

4.2室内无线网

室内:指原先没有安装有线网络的教室、会议室、临时移动办公室等。

设备的选择:室内AP(WST-330)、全向天线、吸顶天线。免费论文,高校校园网。在室内部署WLAN的第一步是要确定AP的数量和位置,也就是要将多个AP形成的各自的无线信号覆盖区域进行交叉覆盖,各覆盖区域之间无缝连接。所有AP通过双绞线与有线骨干网络相连,形成以有线网络为基础,无线覆盖为延伸的大面积服务区域,所有无线终端通过就近的AP接入网络,访问整个网络资源。免费论文,高校校园网。覆盖区的间隙会导致在这些区域内无法连通,技术人员可以通过地点调查来确定AP的位置和数量。地点调查可以权衡实际环境(如教室的面积等)和用户需求,考虑到教学环境对网络带宽、网络速度的要求, 这包括覆盖频率、信道使用和吞吐量需求等。多个AP通过线缆连接在有线网络上,使无线终端能够访问网络的各个部分。免费论文,高校校园网。

通常情况下,一个AP最多可以支持多达80台计算机的接入,数量为20~30台时工作站的工作状态最佳,AP的典型室内覆盖范围是30~100m,根据教室和会议厅的大小,可配置1个或多个无线接入器。针对不同区域无线校园网覆盖方案有所不同:

①教学楼主要为教室,是学生和教师主要活动场所。教室的结构是完整的整体空间,在每个教室根据面积和容纳人数设置一个或多个AP,从而使信号覆盖教室各角落。

②图书馆内多为宽敞、高大空间,适于无线局域网实现网络的覆盖,使用设备少,覆盖率高,可根据室内面积和估计容量布置AP。

③办公楼、实验研究楼和宿舍楼通常是在走廊放置若干AP,让无线信号覆盖各房间;也可通过室外无线覆盖法,在楼外架设AP和增益天线,透过窗户让网络覆盖各宿舍,相对而言通过室外构建网络成本较低,且可以兼顾宿舍周边地带无线上网需要。免费论文,高校校园网。室内拓扑结构如图1所示:

 

图1 室内WLAN拓扑结构

4.3室外无线网

室外:指校园操场及其他室外公共场所等。

设备的选择:高功率无线AP(WST-400)、无线全向天线、无线定向天线。全向天线:在所有水平方位上信号的发射和接收都相等。定向天线:在一个方向上发射和接收大部分的信号。室外考虑因素与教室、会议室不同,在校园区室外配置无线接入点要复杂一些,要把各自成一个局域网而又有一定距离的各栋楼房连接起来。在网络的每一端接入AP,并在距离远或信号弱的地方同时外接高增益天线,就可以实现有效距离内两个网段之间的互连。例如:在图书馆楼顶架设一个全向室外天线和一个室外定向天线。全向天线覆盖校园各教学楼和操场;在教学楼上架设定向天线,将信号传递给理学楼A;理学楼A上也要架设定向天线,将信号传递给理学楼B;在理学楼B上架设全向天线可以将无线信号覆盖草坪, 同时也可以将信号传递给理学楼C。其他实验楼、体教楼依此类推。具体操作时,要根据实际情况(如各栋楼之间的实际距离以及障碍物等)来考虑选择设备(如设备型号、是否要加用全向、定向天线, 以及增减设备数量等)。在楼房上架设无线网络设备还需加装避雷器、防潮箱等辅助设备,以防止无线网络设备的损坏。

针对校园湖、体育场以及各类休闲区域一般多为室外空旷地带,可使用室外型AP配合功率放大器和大功率天线,以取得大面积网络覆盖。由于目前802.11g无线局域网自身的局限性,建筑的布局和结构基本决定了每个AP的覆盖范围。因此,在进行无线网络规划时,必须先对每个建筑物进行详细的信号强度测试,同时根据在AP间无线覆盖缝隙最小的条件下,尽量扩大AP间距的设计原则定位每个AP的位置。室外网络拓扑结构如图2所示:

 

图2 室外网络拓扑结构

4.4校园无线局域网安全设计

在安全方面,由于无线局域网中数据是以广播的形式传播的,容易被非法用户截获,给无线局域网用户带来损失。因此,就必须使用无线加密功能,对传输的数据进行加密。在无线局域网安全设计上,WLAN 技术提供了与有线网络等价的标准——专用(WEP)安全体系结构,并提供了128位的加密密钥。Cisco1100或1240系列无线AP采用了基于IEEE802.11g标准的集中安全体系结构。这种新安全体系结构利用Cisco Secure Access Control Server 2000 EAP型RADIUS(远程授权拨号接入用户服务)服务器软件,提供与网络登录集成的集中用户认证,用户提供学校授权的用户名和密码后,客户机将通过AP与放置于网络中心的RADIUS服务器交互确认信息,RADIUS 服务器对客户机进行认证后,将密钥发送给AP,借助这种基于标准的集中管理体系结构,无线网络安全才能够得到保证,并且可以满足不同等级信息安全的要求。

5结束语

校园无线局域网具有灵活性、低成本、移动方便、易安装等特点,随着无线技术的快速发展,无线局域网在技术上已经日渐成熟,应用日趋广泛,无线网络虽然还不能完全脱离有线网络,但无线网络已经成功服务于某些高校,以它的高速传输能力和灵活性日益发挥重要的作用,但无线局域网也存在数据可靠性、安全性、网络传输距离有限等问题,大学校园应大力进行校园无线局域网技术研究和实用化工作,有效弥补校园有线网络的不足,应用无线局域网技术最大限度地扩展延伸校园有线网络。

参考文献

[1]黎连夜.网络综合布线系统与施工[J].机械工业出版社,2003(1):42-44.

[2]吕兴军.高校无线局域网的规划与设计[J].徐州工程学院学报,2007(12):10-12.

[3]贾青,刘乃安.无线局域网中AP互通性的研究[J].电力系统通信,2005(4):16-17.

[4]王友贵,张春梅.无线局域网技术在校园中的应用[J].安庆师范学院学报(自然科学版),2003(1):17-19.

[5]王传喜.无线局域网技术在校园网中的应用[J].中国教育网络,2006(3):63-64.

[6]王执毅.校园无线局域网的建设[J].理工科研,2007(1):24-36.

[7]荣曼生,郭兆宏.校园无线网络的构建及其在教学中的应用[J].中国电化教育,2005(10):56-69.

[8]汤金松,安宝生.无线网络在教育系统中应用分析[J].中国远程教育,2003(19):60-62.

[9]阮洁珊,沈芳阳,韩贵来,林志,周晓冬,黄永泰.无线局域网技术及其安全机制分析[J].计算机与现代化,2004(3):21-23.

相关文章
相关期刊