时间:2023-05-23 11:31:37
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇网络规划与优化范例。如需获取更多原创内容,可随时联系我们的客服老师。
通信运营商早期的政企接入业务以少量的集团接入为主,客户对安全性要求较高,但业务接入数量较少,资源管理简单;随着这几年全业务接入的迅速推进,主要接入用户类型发生改变,家宽、中小政企客户接入数量急剧增加,给全业务基础资源的建设、维护、管理提出了更高的要求,因此需及时开启传输全业务基础网络微格化规划与优化,满足基础资源建设维护和管理需求。
【关键词】网络 传输 微格化
1 微格化规划内容
1.1 一般地区网络架构分析
1.1.1 全业务传输基础网络架构
全业务传输基础网络的三层结构:骨干层、汇聚层与接入层。光纤传输网和城域数据网在汇聚层以下的物理分离,汇聚层以上的波道区分。
1.1.2 全业务基础网络主要问题
(1)部分机房利用原有基站建设,存在着面积小、楼层高、租期短等诸多问题,给全业务基础网络安全与稳定带来隐患。
(2)机房选址条件限制,未完全达到非常理想覆盖和接入效果,造成部分机房覆盖范围过大,接入距离过远等问题,影响接入质量。
(3)因基础网络阶段性建设和业务发展不均衡性,存在较多的跨区接入业务,影响资源的合理利用率。
(4)部分主配光交采用双节点归属两个汇聚机房,近端满远端不能用。
(5)部分主配光交下挂多个辅配光交,主配光交成端满或辅配层落地纤芯少。
(6)因没有更进一步的底层收敛,所有业务都成端到主辅配光交,导致成端利用率高。
(7)因阶段性建设和业务发展不均衡性影响,跨区接入较多,导致早期的主干纤芯利用率高。
1.2 微格规划架构
1.2.1 传统传输基础网络架构向微格化传输基础网络架构转型
全业务基础网络规划的最小区块单元,也是用户业务需求的来源,是网络基础资源需求测算的依据。微格在规划区域内无缝覆盖,承载有多元信息,包含多种业务形态。
1.2.2 微格划分
根据业务形态不同,微格划分为7种:住宅小区、农居点、商务楼宇、政企楼宇、学校、聚类市场、开发区、待建空地。一般每一个业态类型区域划分为一个微格。
1.2.3 微格业务测算
(1)微格纤芯测算:考虑微格内用户数为σ,补偿系数为C;终期渗透率为S;分光比;分光器利用率为F;上行纤芯收敛比r;得出所需的主干光缆独享纤芯数量A。
(2)引入层光交:在各个微格内设置引入层光分配点进行接入光缆收敛:政企商务楼、沿街商铺考虑采用光纤分配箱,驻地网小区及农居点考虑采用小区光交。
(3) 主辅配光交:根据接入半径、纤芯容量、光交成端等条件因素限定设定主辅配光交覆盖范围x,y。综合考虑管道、业务需求等因素设定主配光交G的位置和容量。
(4)汇聚机房:根据用户密度、接入覆盖面积、运营维护成本、机房安全、管道资源等条件限定因素设定汇聚机房覆盖范围及汇聚机房位置。
(5)微格场景类型纤芯计算方式:住宅小区、农居点、综合市场A=S*σ*C/(64*F);政企类重要用户A=12*r;一般企事业网店A=6*r;学校大于1万人A=24*r;学校小于1万人A=12*r;大型商务楼宇A=24*r;中型商务楼宇A=12*r;小型商务楼宇A=6*r。
1.2.4 规划基本步骤
对全网的汇聚接入机房、主辅配层光交、光缆和管道等传输基础网络资源进行排查和梳理,以及区域内所有业态数据的排摸。构建微格平台,以微格信息数据为基础,从底层向上层推导。以微格用户数据、密集程度等为基础,划分微格类型。确定主辅配层光交覆盖范围、接入容量、数量,以及所需的上联主配层光缆芯纤数量。确定全业务汇聚区覆盖范围和全业务汇聚接入机房位置、数量,从而达到全面无缝隙覆盖。
1.2.5 平衡优化
平衡优化对全业务跨区域接入的情况,应通过割接、优化调整主辅配光交以及用户上联光缆到各自归属全业务接入区和规划主辅配光交节点内,提高业务接入反应能力。
制定基础资源预警原则,包含光交成端、主干纤芯、管道资源。
(1)光交成端:对光交成端占用率超过70%的光交,采用新设、扩容光交,释放主干纤芯的方式优化。
(2)主干纤芯:针对主干纤芯占用率超过70%的光交,采用新设、扩容光交,新放主干纤芯的方式优化。
(3)管道资源:对管孔占用率超80%的管道进行梳理,对同一路由的小芯数光缆,可以由光交放出大芯数光缆,在合适位置做接头,将小芯数光缆割至此接头,将剩余光缆拆除,由此对这些光缆进行收敛,从而腾出部分管孔资源。
2 总结
2.1 对全地区进行微格化划分
首次以用户数据、密集程度等为基础,划分7种微格类型:住宅小区、商务楼宇、开发区、专业商业街、聚类市场、学校、待建区域。
2.2 明确业务归属区域
合理布局全业务汇聚区、主辅配层光交区、引入层光配区,划分业务归属。汇聚层规划主要以覆盖距离及人口密度为主要制约因素,主辅配层规划主要以接入半径及纤芯容量为主要制约因素。引入层光配主要以收敛多个微格区业务为主,缩短接入距离降低主干管道利用率。
2.3 传输基础网络平衡优化,提升网络接入质量。
调整主辅配光交以及用户上联光缆到各自归属全业务接入区和规划主辅配光交节点内,从而减少用户接入距离。对于部分光交容量不足,在资源梳理后光交端子占有率在70%以上的光交节点,采用端子板扩容或光交扩容等优化手段来提高光交节点的接入能力。对于部分管孔占有率在80%以上的管道,采用光缆梳理来释放管孔资源达到提高管孔利用率的效果。
【关键词】移动通信;网络优化;教学改革
0引言
近年来,移动通信技术的发展异常迅速,移动通信在日常生活中的地位显著提高,从20年前大款用来谈生意的大哥大,到10年前城市里开始普及的方便通讯用具,再到现在不论城镇乡村大批中青年甚至老年人都已经离不开的万能信息平台,移动通信已经成为人们工作和生活中不可缺少的重要部分,中国庞大用户群的潜力已经几乎挖掘完毕,而围绕着这些用户,运营商之间的竞争也越来越激烈。随着移动通信标准的更新和移动通信网络的大规模建设,提高移动通信网络质量和性能成为移动运营商增强竞争力的杀手锏,如何高效且经济地满足用户对移动通信网络建设和维护的需求,已经成为三大运营商急需重视的问题,移动通信网络规划与优化的工作变得更加炙手可热。“无线通信网络优化与优化”这门课程的设立,正是为了响应通信领域对具备移动通信专业技术人才的需求。无线通信网络规划是根据蜂窝移动通信网络的特性以及需求,设定相应的工程参数和无线资源参数,并在满足一定信号覆盖、系统容量和业务质量要求的前提下,使网络的工程成本降到最低。移动通信网络优化是通过对现已运行的移动通信网络进行业务数据分析、测试数据采集、参数分析、硬件检查等手段,找出影响无线网络质量的原因,并且通过参数的修改、网络结构的调整、设备配置的调整和采取某些技术手段,确保系统高质量地运行,使现有网络资源获得最佳效益,以最经济的投入获得最大的收益。而无线通信网络规划与优化这门课程主要是为了培训移动通信规划与优化工程人员而设立的,是一门涵盖知识面广且相当复杂的专业课;并且需要将理论与工程实践相结合:首先从移动通信网络的基本原理开始,然后引导学生了解和熟悉网络规划与优化的基本流程,使学生们从理论上掌握网络规划与优化的步骤与目标,在此之外再尽量从工程的角度,结合案例分析,引导学生运用所学的方法与理论去解决实际网络运行中出现的各种故障问题,并提出相应的解决方案。我院从数年前就开始开设此门课程,也与企业进行过一些培养合作,在教学过程中遇到过许多问题,并针对这些问题做了一些改进。从学生的成绩、毕业生及用人单位的反馈来看,取得了一定的成果。
1问题归纳
在移动通信理论知识的学习和网络规划与优化案例的分析过程中,教师和学生会遇到各种各样的问题,其中很多问题存在着普遍性。下面将对这些普遍存在的问题进行归纳,为后续教学方法的研究奠定基础。
1.1课程知识面覆盖内容太广
无线通信网络规划与优化课程具有较强的专业性,涉及到的理论知识多而细,且较为复杂。学生首先需要掌握无线通信网络的架构和组成、天线原理和结构、电波传播模型、频率分配、干扰控制等等,然后才能对网络规划与优化的具体步骤进行学习。在理论学习中学生会遭遇铺天盖地的知识点、缩写词、概念、公式等内容,对学生来说难免枯燥,也给教学带来了许多困难。对于本课程来说,长篇大论地教授理论知识似乎不可避免,这样往往会让学生产生对立情绪,教学效果堪忧。理想情况下,先重点讲解移动通信网络的理论基础,然后一步步介绍实际的网络规划和优化操作,会帮助学生打好坚实的基础,在学习系统的理论知识之后再进行实践,可以更顺利掌握网络规划与优化的技术。然而实际情况下,如此多的内容需要在有限的课时内完成,比如我校该门课程的学时数仅为32学时,理论知识学习时间有限,还要留出足够的时间来讲解案例和实际操作,这样教师不得不把大量内容以“填鸭”的方式灌输给学生,容易使学生失去学习该课程的兴趣和动力。
1.2课程内容更新速度太快
移动通信技术是近年来发展最快的技术之一,不仅仅是3G、4G的技术在飞速发展完善,5G技术也已经提上日程。移动通信技术课程教材的建设往往跟不上技术的发展,这就要求我们根据当前通信网络的实际发展情况以及网络规划与优化实际操作的改变来修改教学内容。旧的通信技术逐渐被淘汰或改进,新的无线传输思想和概念不断出现,并应用到新的系统中。在教学中需要使学生对现有移动通信系统及未来的发展方向有较为系统和全面的认识,从而对网络规划与优化操作的变化能够从原理上进行理解和掌握,因此我们的教学内容必须及时更新,适应技术的发展,否则难以使学生学以致用,也势必影响学生的学习兴趣,从而影响教学质量。但如果不断更新教材,对教师来说是比较沉重的负担,因为每次更新教材教师都需要花较多的时间去阅读和掌握,然后再重新编写教案和讲稿等等。另外,受限于教材的编写和出版周期,即使经常更新教材,也需要我们在教学中不断自行修改和补充,这也进一步增加了教学的内容和难度。
1.3授课对象对移动通信基础知识的掌握有所不足
在过去与网络规划与优化相关的教学论文中,经常会提到这门课程由于应用性极强且涉及大网络做背景,需求一定的实验和实践操作,才能理论与实践相结合,获得较好的教学效果。而我们由于与企业进行合作,课程的对象不仅仅是本科生,也面向企业员工。过去的文献指出,对一般高校学生来说,存在着理论和实践脱节的问题:学校受限于资金和场地等原因难以提供相应的实验和实践环境,多采用传统的课堂讲授的方式,学生能接受的只有与网络优化相关的一些原理性的方法、流程和算法知识,如果面临实际的网络操作就无从下手。针对这些问题,过去的文章中提出了一些有效改革手段,类似的手段我们也有所采用。另一方面,据我们所知,企业员工也存在着理论和实践脱节问题,只不过和高校学生处于完全相反的方向。从我们对合作企业的了解来看,实际从事网络规划与优化工作的员工中有相当一部分并没有系统学习过移动通信网络的基础课程。这些课程对学生的专业基础知识需求较高,要求熟练掌握信号与系统、通信原理的基本知识,还要能用一定的电磁波、微波理论基础来分析电磁波传播特性。此外,相对有线传输方式,无线信号传输需要从时域和频域的不同方面分析和理解信道、信号的特性。无线信号传输过程中存在很多不确定因素,采用的数学模型更加复杂,这样就会有较为繁琐的数学公式推导,要求学生有足够的数学功底。学生必须先打好上述的这些基础,再去学习通信技术的一系列基础知识,才能达到对移动通信完全彻底的掌握。许多员工原本并没有这方面的专业知识,或是对专业知识掌握不牢,主要是从实践中学习网络规划与优化的步骤、要点等,往往知其然而不知其所以然,导致事倍功半。对于这样的人员来说,如果从头开始对移动通信网络的基础知识进行系统的补充,则需要消耗较多的时间和精力进行专门培训,比较难以实现。
2无线通信网络规划与优化课程教学的几点思考
基于上述归纳的问题,本文针对无线通信网络规划与优化教学提出几点改进意见。
2.1明确授课目的,改变授课重点
本课程的目的有两个方面:一是,为企业预培养合格的网络规划与优化人才;二是,为企业员工补充必要的无线通信基础知识。这两个方面看似有所区别,实际上存在着完全相同的核心。作为企业,必定会对新员工进行实际工作内容的培训,以及让老员工带领新员工尽快熟悉操作。因此对高校来说,在教学过程中做到让学生在较大程度上掌握对网络规划与优化的实际操作过程并不是必需的,但如果让学生通过本科课程牢牢掌握无线通信基础知识和网络规划与优化原理,这样的学生能够轻易理解每一个操作步骤的意义,因此可以预见能够在企业顺利完成培训。另一方面,对企业员工开课的目的是给他们补充移动通信网络的专业基础知识,而实际操作对他们来说也早已熟悉。因此,与着重加强实验、实践教学环节的常见教学改革方向相反,我们做出对基础理论教学环节进行着重加强的决定。但这并不意味着放弃在实验、实践方面的教学,毕竟本课程注重的是实用性,并且单纯的理论教学会让学生感觉本课程是一门生涩枯燥毫无用处的课程。为了对这方面进行兼顾,我们选择将日常网络规划与优化工作中遇到的一些的实例进行拆分,把拆分后的适当部分加入到相应的理论知识点中作为例题,这样既可以让学生对实际操作有一定的了解,避免理论脱离实际;又可以为理论教学添加必要的缓冲和总结,避免枯燥的理论教学。而这种做法的难点在于对实例的选择和拆分有比较高的要求,需要花费较多的精力去解决,但好处在一劳永逸:一旦完成这方面的例题准备,哪怕通信技术再更新,也只需要在同一层次和方向上找类似的实例进行同样的拆分。在此之外,我们也会请企业教师进行数个课时的授课,主要是在讲解网络规划与优化的流程之后带给学生更多实例,这些实例的复杂程度比理论教学中遇到的更高。
2.2对教学内容进行精简和改动
由于本课程覆盖范围太大,知识点太多,且授课时间有限,需要对教学内容进行精简和改动,这样可以充分利用授课时间,以传授更多实用信息。首先,尽可能避免把上课时间浪费在教授过时的或者已经学习过的知识上。例如,在目前的课程内容中一般会安排天线原理、电波传播模型等章节作为基础知识进行教授,然而这些章节的知识点在微波与天线以及通信原理等前期课程中都有所涉及。因此,授课时要注意避免知识上的重复,对已经学习过的内容只需要进行简单回顾即可,着重强调各章节之间的联系,把教学重点放在学生比较不熟悉的领域,例如覆盖、容量等等。然后,减少对掌握网络规划与优化具体操作来说没有实际帮助的教学内容。例如公式推导过程,作为本科教材,经常会习惯性地将从已知公式推导得出新公式的过程放进课程中。这样对学生来说固然容易加深理解,但对以实际应用作为目的的本课程来说其实意义不大。本课程的公式多且复杂,一一讲解其来历会占用太多时间,作为学生也很难全程都集中精力听讲,更何况很多公式都是从经验公式推导而来,并没有太多的理论意义。此外,根据对企业员工的调研,大多数此类公式只需要掌握其意义和用法即可,而且一些在本科期间学习过这方面课程的员工早已忘记公式的来历,但并不影响他们的工作。
2.3承前启后,兼顾不同的移动通信系统
目前运营商所服务的移动通信网络是从2G到4G同时存在的,并且已经开始考虑5G网络,因此我们的教学不仅需要兼顾历代通信系统,还需要对它们之间的联系进行承前启后的分析讲解。不同世代的移动通信系统之间有着非常多的异同,一一讲解需要太多的时间,但因为课时的关系,我们需要在重点考虑网络规划与优化的层面上适当选择相关的知识点进行详细讲解,对其余内容只能一笔带过。移动通信系统的发展实质是移动通信向更快数据传输、更好服务的不断发展。历代的移动通信技术都离不开蜂窝网络的基本架构,虽然技术细节存在很多不同,但网络规划和优化就是针对构成蜂窝网络架构的每一个节点进行的,在这方面可以说是万变不离其宗。因此我们把蜂窝网络、天线选择、频率分配、覆盖和干扰分析等学习任一代移动通信技术都不可缺少的基础内容在前半部分的课程中进行讲解,然后在讲解技术方案和通信标准这些存在代差的内容时,才对各代移动通信系统加以区分。把重心放在对于经典移动通信系统的介绍,通过对不同系统的学习去更好地理解它们之间的异同,从而更进一步地体会不同系统对于系统容量,位置更新方式,鉴权方式,越区切换策略,信道的分配和使用等方面的处理,并且,更重要的,网络规划和优化方面的异同。
3结束语
无线通信网络规划与优化的教学不仅需要教师随着通信标准的变化不断更新教学内容,还要求教师能够培养出适应这种变化的网络规划与优化人才。本文总结归纳了无线通信网络规划与优化在教学中出现的一些常见问题,并针对这些问题提出了三点改进建议。这些改进要求任课教师相当程度的投入,因此最好是能够组织编写一部专门的教材,我们已经在这方面做了一些工作,相信能对这门课程的教学起到足够的帮助。
【参考文献】
[1]李汶周.浅议高职无线网络优化课程的教学改革[J].卷宗,2014(8).
[2]余晓玫.移动通信课程教学改革初探[J].黑龙江科技信息,2015(6).
[3]蒋锐.4G时代的《移动通信系统》课程教学改革的探讨[J].江苏第二师范学院学报(自然科学),2015(3).
【关键词】 TD-SCDMA 网络优化 覆盖
一、引言
网络规划是3G移动通信系统建设中一个非常重要的环节,是决定网络性能优劣的最基本前提。由于网络规划涉及大量的复杂计算和概念抽象,如无线覆盖预算、绕码相关性计算、码资源分配、相邻小区规划、链路损耗计算等,网络规划必须借助与工具软件进行。
3G移动网络优化与分析软件可以将实际网络建设中的复杂规划计算通过快速仿真处理,用图形和数据表的方式给出直观的网络规划结果。另一方面,对于网络规划中的一些抽象概念也可以通过仿真软件进行直观展示,有利于建立完整的对移动网络规划的理解。
二、系统结构与组成
3G移动网络优化与分析软件定位于TD-SCDMA技术,是一种新型的网络优化与分析软件,该软件采用分布式、分层、模块化、可伸缩、可组合的体系架构,从基础网络、业务、用户三个层面衡量网络,并对关键指标进行分析,结合功能强大的地理信息系统(GIS),为用户提供基本运营指标的显示、定位与分析,不仅可以使运营商有效把握网络所提供的业务运行质量,还可以运用于实际教学,全面展现网络规划与优化工作的核心内容。
GIS在通信系统的应用相当广泛,如本地资源网、光纤接入网、电信线路管理等都是基于GIS的开发应用,这种电信地理信息系统把电信设备与当地的地图结合起来,再结合图库转化技术,实现了电信设备的地图化管理。基于GIS的TD-SCDMA网络规划与优化系统将各种类型的基站同本地地图有机地结合,能够分析、优化网络中基站的覆盖状况,及时获取基站的工作信息,从而了解整个网络的运行状况。
本系统结构采用三层架构Client/Server模式,网管数据库基于Oracle而建,为TD-SCDMA网络提供性能管理、故障管理等数据资料,并记录网络中所有基站各个时刻的指标信息,如图1所示。规划与优化系统并不对网管数据库进行修改,只是通过网管数据库提供的接口,实时读取相关数据,将其导入到后台本地数据库中。本地数据库基于SQL Server而建,数据库中保存有系统实现各项管理和优化功能所需要的数据资料。在本地数据库基础之上,建立起呈现在客户端的各项管理和优化功能模块,其主要功能是:覆盖规划是对网络中现有基站的覆盖状况进行图形化显示,首先,软件将导入数据库中的基站信息,并结合详细地地图经纬度信息,在地图上显示出来,然后根据内嵌无线链路传播模型,软件能够自动根据基站的相关数据计算覆盖半径,并将覆盖面积用图形化的形式在客户端显示出来,便于维护管理人员进行查看; 邻区规划是对每个基站下的相邻小区进行规划,能够查看邻小区信息,实现自动邻区数据的输出; 频点规划是对每个小区的频点进行规划设计,方便维护人员的使用; 扰码规划是可以实现全网扰码规划、局部扰码规划和小区扰码规划等功能;性能分析可以实现基站信息的导入分析,根据实际维护工作的需求,实现添加、删除、管理与维护各个基站的信息,为网络规划与优化工作带来方便。完整的软件使用功能介绍可以查阅软件的帮助说明。
三、系统实现的关键技术
3.1 基于栅格法的无线信号覆盖
无线网络规划中,覆盖规划的主要功能是通过无线信号的传播模型对规划区域进行覆盖计算。传播模型按照适用环境来划分可分为室外传播模型和室内传播模型;按照传播模型来源划分可以分为经验模型和确定性模型。以往的研究人员和工程师通过对传播环境的大量分析研究已经提出了许多传播模型,用于预测接受信号的中值场强。目前得到广泛使用的传播模型有Okumura-hata模型、COST321 Hata模型及通用模型等几种[9]。
本系统采用的传播模型是一种通用模型,它的系数由Hata公式导出。通用模型由下面的方程确定:
(1)首先根据基站的分布位置确定需要进行覆盖规划计算的Raster数据的范围,即所有基站在东南西北四个方向上最边缘的位置。这样做可以有效减少计算空间,加快计算和显示速度。(2)从第一个扇区开始,根据扇区设定的参数确定每个扇区需要计算的范围。在数据范围内逐格计算信号强度结果,对于已经存在信号的象元取信号强度的最大值为Raster数据值。并在Raster数据多余波段存储信号强度最大的扇区索引,直至所有的扇区都计算完。(3)根据计算的信号Raster数据,按照设定的信号强度大小,对符合要求的Raster数据部分按指定的颜色和图层进行显示。
3.2 基于Thiessen多边形的数据可视化
理论上小区的边界范围通常采用正六边形表示,但实际系统中由于基站位置的随意性,小区边界不可能用正六边形来表示,只能用多边形表示。本系统中采用Thiessen多边形法对小区的边界范围进行图形化展示。
荷兰气候学家A・H・Thiessen提出了一种根据离散分布的气象站的降雨量来计算平均降雨量的方法,即将所有相邻气象站连成三角形,作这些三角形各边的垂直平分线,于是每个气象站周围的若干垂直平分线便围成一个多边形。用这个多边形内所包含的一个唯一气象站的降雨强度来表示这个多边形区域内的降雨强度,并称这个多边形为泰森多边形。泰森多边形又叫Voronoi图或Dirichlet图。Delaunay三角形是由与相邻泰森多边形共享一条边的相关点连接而成的三角形。Delaunay三角形的外接圆圆心是与三角形相关的泰森多边形的一个顶点。泰森多边形是Delaunay图的偶图。
泰森多边形具有以下特性:(1)每个泰森多边形内仅含有一个离散点数据;(2)泰森多边形内的点到相应离散点的距离最近;(3)位于泰森多边形边上的点到其两边的离散点的距离相等。泰森多边形可用于定性分析、统计分析、邻近分析等。泰森多边形示意图如图2所示。
仿真系统利用Thiessen多边形计算扇区范围的步骤如下:(1)将每个基站看做是平面上的一个离散数据点,用Bowyer_Watson算法构建这些数据点的Delaunay三角网。(2)在得到的Delaunay三角网中,对每个顶点的三角形的边做垂直平分线,连接每条垂直平分线,得到Thiessen多边形。(3)根据每个基站上的扇区之间的相对角度与设定的扇区计算半径,计算扇区的覆盖扇形。(4)把得到的覆盖扇形与基站的Thiessen多边形求交即计算出每个扇区的覆盖区域。
3.3 带边数约束的无向网络构建
在无线网络的邻小区规划中,邻区规划的目的在于保证在小区服务边界的手机能及时切换到信号最佳的邻小区,以保证通话质量和网络性能。邻区规划数量应该遵循适当原则,决定两个扇区是否为邻小区主要取决于两个扇区之间的距离、天线朝向角、扇区周围的无线网络环境以及扇区预设的最大邻区数量。
邻区数据在规划区域以内本质上可以表达为一个或多个有向图网络,而邻接链表法是存储有向图结构最有效的方法之一[8]。仿真系统在进行邻区自动规划时,采用邻接链表法记录邻区数据,将扇区作为网络中的节点,扇区的邻小区关系作为网络中的边,邻小区的重要性作为边的权值加以存储。邻小区规划计算的过程就是带边数约束的无向网络构建的过程。邻区规划步骤为:首先对符合要求的节点进行连接形成无向图;然后将不符合参数约束的节点按照重要性排序删除超出数量的边,此时的无向图即为邻区规划的结果。带参数无向网络构建的过程如图3所示。
邻区规划算法有两个关键问题,一是对扇区之间可以设置邻小区的条件的确定,二是当扇区的邻小区超过最大数量时对超出的数量如何取舍。系统首先将各扇区的邻小区链表都置为空,然后根据扇区所属基站之间的距离以及他们的相对朝向角决定是否应该将两个扇区设置为邻小区。为了解决第二个关键问题,算法引入邻区优先级参数P。CellA与CellB的P值为:
K为距离角度归一化参数,可以自行设置,将距离与相对角度统一处理。对每个扇区的邻小区链表都按照权值排序。当某个扇区的邻小区数超过最大数量时,剔除链表中权值最大的邻小区。
四、系统功能
系统采用多文档界面的开发模式,系统界面包含标准化的菜单、工具栏以及导航树。在主体程序的框架下,用不同的子窗体分别用于显示环境地理信息数据、移动网络基站数据和网络规划仿真结果数据。系统运行界面如图4所示,图中显示为利用Thiessen多边形法计算所得到小区的边界。
仿真系统利用ArcEngine在GIS图形图像方面的显示和处理功能,网络规划中的各过程都可以形象直观地在软件中显示。系统对基站覆盖规划计算,将计算结果得到的Raster数据按照设定的信号强度标准分为7种颜色,每种颜色覆盖的范围因所设定的强度标准而异。系统的仿真计算效果展示如图5所示。
系统对移动网络进行自动邻区规划后,可以对任一一扇区进行邻区关系查询。如图6所示。其中红色阴影小区为查询的源小区,绿色阴影小区为源小区的邻小区。仿真计算的结果可以直观展示出相邻小区之间的角度、距离、位置关系,以及邻小区数量等信息。
3G网络综合解决方案
TD-SCDMA、WCDMA等3G网络综合解决方案,包含了传播模型校正、网络预规划、站址勘查与选址、无线网络规划、网络预优化,以及后期网络优化等完整系列的过程;从点、线、面来规划与优化网络,使得网络建设与优化工期大大缩短。
传播模型校正获得了合适特定地理区域传播模型,为无线网络规划与优化提供了基础。
网络预规划,从覆盖、容量、质量三方面,初步估算出网络规模和投资成本。
站址勘查和选址,选出合适站址(包括根据现有2G站址获得3G站址),以及推荐出可用站址。
网络规划,从覆盖分析和容量仿真两个方面模拟出网络性能,输出公共信道和业务信道的覆盖预测结果、终端用户接入成功率、数据业务的吞吐量等。其中,将2G业务转换到3G网络中,是百林通信方案中的一大亮点。
网络预优化,快速自动优化天馈参数,获得小区个性化参数(如:P-CCPCH发射功率、机械下倾角、方位角、天线挂高)。
网络优化,基于路测、OMC-R等采集到出的现网数据,分析网络问题,针对频率、邻区、扰码等问题提出解决方案。对于城市主干道、高速公路、高速铁路等线性网络,百林通信开发出了特有的LO(LineOpting,线目标优化)工具软件,可加速线性网络优化。
针对不同通信标准,解决方案中使用不同的规划工具、优化工具。其中,NeST是百林通信的规划系列产品,Optimizer是百林通信的优化系列产品。比如对于TD-SCDMA网络,NeST支持“BBU+RRU”方案。
GSM网络优化方案
百林通信GSM网络优化方案,主要实现频率优化、邻区优化、切换优化等。基于现网路测、OMCR、Scanner数据、CQT、MS测量报告等数据,分析网络,发现网络问题,给出解决建议方案,在优化工具相关软件中模拟出建议方案效果,从而给出网络优化方案。
对于频率优化,百林通信提供局部优化和全网翻频优化,支持MRP多组复用模式、跳频优化、BSIC检测与优化等。频率优化时,使用业界领先的DFFN分频算法和步步推分频算法。DFFN算法考虑了网络空间结构、频点间隔、频率复用度以及邻区关系等多方面因素;步步推分频算法则是,结合了现有网络工程师频点优化经验,将工程经验转化成优化工具软件,快速提升优化速度。
【摘要】针对综合运输网络中干线运输和末端配送的分离问题,本文将两者综合考虑,统一用双层规划模型表达。上层规划优化物流总成本,下层规划考虑客户配送成本最小化。采用遗传算法求解该双层模型,实例计算结果验证了该模型的可行性和求解方法的高效性。
【关键词】综合运输;网络优化;车辆路径问题;双层规划;遗传算法
随着物流行业的不断飞速发展,多种运输方式被集成在一起共同发挥作用,综合运输体系不断完善,多式联合运输已经成为我国乃至国际物流及运输业发展的趋势。在整个物流环节中,从货品出发的源头开始,干线运输方式的选择、运输线路的优化以及末端配送的方案都是联合运输中的主要内容。在干线运输环节,公路、铁路、水运等运输方式都已发挥了重要作用,综合交通体系在国内和国际多个层次已经逐渐形成。
在干线运输环节的优化问题,包括两个方面,运输方式的选择和运输路径的优化,而两个问题又是相互影响的,因此本文合并为多种运输方式的联合运输优化问题。在这一方面已经有所研究。已有的文献大多是以运输时间长度、运输成本费用或者服务水平中的一个或多个作为研究目标进行最小化求解,建立联合运输路径的选择与优化的模型。魏际刚等对多式联运中系统协调问题进行了研究,提出了布局、结构、信息等5个方面的问题。刘舰等建立了基于综合运输成本最小和运输风险最小的多目标综合优化模型,孙华灿等建立了一个含路径合理性约束的联合运输路径优化模型。
在配送环节,一般定义为车辆问题(Vehicle Routing Problem,简称VRP)。蒋忠中等并采用模糊数表示车辆行驶时间和顾客服务时间的不确定性,建立了VRP的模糊规划模型;贺国先在满足车辆满载约束的同时充分考虑货物的运到期限,继而建立配送方案模型。求解配送路径优化问题的方法很多,常用的有旅行商法、动态规划法、节约法、扫描法以及蚁群算法、遗传算法和禁忌搜索等人工智能方法。
作为一个整体的物流过程,运输和配送都是不可缺少的,而且两者之间也是相互影响和作用的,上述文献中大多数只考虑了其中某个环节,问题设定有一定的缺陷性。基于此本文将干线运输的综合运输方式优化选择和车辆路径问题综合考虑,建立一个统一的模型研究该问题,将运输费用、中转费用、运输时间、配送费用等作为总成本联合优化。同时考虑到问题的复杂性,本文引入双层规划问题求解该模型,在优化物流成本的同时也充分考虑了用户配送选择问题。
1.综合运输问题
物流过程中综合运输方式完成一次运输任务的过程中,可包括任何两种方式之间的转换,即公-铁、公-水、水-铁、水-公、铁-水、铁-公。由于不同运输方式之间相对独立,运输方式的转换仅发生在枢纽点,不是任意位置。
一般来讲,物流过程都是以公路运输开始,以公路运输结束。但根据物流业务的不同,两头的公路运输过程可能有所差异,可能是直送,也可能是配送。为不失一般性,本文假定开头的一段公路运输过程,是直送,结尾的一段公路运输,是配送过程。配送过程的优化,就是VRP问题,直送过程,会涉及到运输方式和路径的选择,同中间环节的铁路运输、水路运输一起,构成联合运输的优化问题。
2.综合运输网络优化模型
综合运输虽然理论上从起点到终点中途可以多次变换运输方式,但在实际中,这样处理不但会大大加大运输成本,降低经济效益,而且考虑到物理设施建设的有限性,实际运作也不具有可行性,因此,根据当前运输领域运作实际,我们假定直接连接起点和终点都是公路运输方式,后续可根据需要变换方式和路径,并且整个物流过程中,变换运输方式最多2次,否则视为不合理路径。根据上述描述,可构建联合运输网络图如图1所示。但需要注意的是,终点位置并不是唯一的,终点位置会直接影响到配送总费用,终点位置的确定也就是设施选址问题。配送过程从图1终点出发,配送到附近的多个网点,完成整个物流过程。
2.1 综合运输优化模型
图3构建了一个无向图G=(V,E),V表示网络中的所有物流中转或起止节点;E表示边集,包括不同方式的运输线路和运输方式之间的转换连接。起点出发都统一用公路运输。模型假设在两个节点之间货物不可分割,即2个节点间只能选择一种运输方式,每个节点有资格和能力进行转变运输方式的操作,会花费时间和经济成本,但不考虑仓储费用。
联合运输环节建立模型如下:
目标函数由运输费用、变换运输方式费用(简称换装费用)构成。式(1)中表示从节点i到i+1之间,运输方式为k时的运输费用;,1表示选择该k种运输方式,0表示不选k种运输方式;表示在节点i由k到l的换装费用,,1表示节点i选择由k到l,0表示节点i不选择由k到l。式(2)表示2个节点之间只能选择一种运输方式,式(3)表示在某一个节点处,至多发生一次转换,式(4)表示如果在节点i运输方式由k转换为l,则从节点i-1到城市i,运输方式为k,从节点i到节点i+1,运输方式采用l。
2.2 车辆路径问题
车辆路径问题是指在客户需求位置已知的情况下,确定车辆在各个客户间的行程路线,使得运输路线最短或运输成本最低。配送中心配送的车辆调度及路线安排问题可描述为:在配送中心位置、客户点位置和道路等已知的情况下,对m辆车,n个客户点,确定车辆分配(每辆车负责的客户点)及每辆车的行车路线,使成本最小。
其中J为服务网点的集合,K为配送车辆的集合,QK是车辆的最大容量,Cij是从i到j的配送费用,dj网点j的需求量,Ujk是顾客被访问的顺序号,N是网点总数量,,若车辆k从顾客i行驶到j则为1,否则为0。式(6)为目标函数,以总的配送费用最小为目的。式(7)为每个顾客只能被服务一次的约束条件。式(8)为防止同一个地点之间巡回的约束条件。式(9)是车辆容量限制约束条件。式(10)是保证巡回路为封闭回路的约束条件,即车辆从物流中心出发,最后一定要再回到物流中心。
3.双层规划模型
双层规划模型是多层规划的特例,由上层模型(U)和下层模型(L)组成。上层决策者通过设置的值影响下层决策者,因此限制了下层决策者的可行约束集,上层决策者通过下层决策者的目标函数与下层决策者相互作用。下层决策变量y是上层决策变量的函数,即y=y(x),这个函数被称为反应函数。
Abstract: In the study of wireless sensor networks, the routing problem is one of the most important issues, which has a multi-hop characteristic in terms of data transmission. Dynamic programming principle is to performance this feature, and using this principle to design sensor network routing algorithm is most suitable. After analysis and estimates, this paper considers that routing algorithm can achieve maximum energy savings.
关键词: 路由;路由算法;无线传感器网络;跳数值
Key words: routing;routing algorithm;wireless sensor networks;hop value
中图分类号:TP393.1 文献标识码:A 文章编号:1006-4311(2014)06-0192-02
0 引言
随着社会通信技术的发展与进步,我国在传感器和计算技术方面有了突飞猛进的发展,当世界各国出现计算能力、感知能力的微型传感器,表明通信技术的发展已逐步全球化。我们所说的这个传感器网络可以感知和采集网络内的环境信息,还能实时的监测对方的信息,然后经过分析有效的传送到需求客户手中。这种网络的优势就在于他能在任何环境、任何地点、任何时间来获取大量的可靠信息。所以,其通常被应用于国家安全、国防军事以及交通、卫生和家庭等多个领域。
伴随着网络处理器的飞速发展,能够利用很少的成本产生大量的有效传感器节点,并且在某些特定区域内散播,从而形成无线传感器网络。随着这种技术的发展,使得管理和控制算法被急需,这同时也是对传感器网络发展的一个巨大的挑战,经过分析研究,大部分科学人员认为算法的核心就是传感器网络中的路由问题。
1 无线传感器网络路由问题及其研究状况
无线传感器网络的一个重要组成部分就是传感器,它通常包含信息处理单元、能量单元、感知单元以及信息交换单元,特殊的传感器还会包含移动器、位置定位系统和能量生成器等等。收集和感知数据是任何一个传感器所具备的基本功能,它通常通过多跳的方式向汇点传送信息,而后汇点通过网络与用户进行信息传递,同时任务管理中心也是运用这种方法为各个节点布置任务。
传感器的主要功能是信息的收集、处理以及传播,上文所讲的路由问题是在一定的指标背景下所存在的延迟、容错性、消耗水平、网络的寿命等等情况,要积极有效的改进汇点与源节点之间的信息疏导,要依据各个国家实际情况的不同制定不同的路由协议。路由协议可以分为多跳路由协议以及单跳路由协议,LEACH属于单跳路由协议,多跳路由协议则包含很多种,同时多跳路由协议也可分为多径路由和单径路由。我们通常所接触的rumor即为单径路由,Braided和MESH则为所径路由。我们在设计传感器路由的同时要考虑的关键问题就是传感器网络中能量是否有效,同时还要考虑它信息的可靠性。最近新提出的ACO(蚁群优化算法)是将如何对复杂组合进行优化这一问题作为首要解决问题的一种启发式算法。这种算法在实验中得到了较为满意的结果。
2 基于动态规划的路由算法
在研究决策的过程中,动态规划是最行之有效的一种方法。它的基本原则就是将M阶段过程的问题立即转化为M个单阶段的问题,然后运用不变嵌入原理进行求解,这是最为优化的一个战略。经实验证明,这种处理问题的方式是解决无线传感器网络路由问题的最优方法。
2.1 传感器网络节点跳数生成算法和网络结构特点 在实验中,我们一般用G=G(V,E,w)来表示带权重的连通图,它代表的是无线传感器网络,节点集—V,边集—E,w则代表一个费用值。V中的任何一个节点都代表着一个传感器,对于vk,vl∈V,ekl=(vk,vl)∈E仅仅代表vk,vl可以交互纤细。由于能量有限,并不是任何两个传感器都可以实现信息交互。
算法1:节点跳数生成算法
A:s代表汇点,跳数表示为h(s)=0,对于?坌■∈v-{s},标记为h(vi)=∞,并且使之满足h=0。
B:循环生产跳数,如h节点的跳数所传播信息用hop-num来表示;收到的节点为vi更新其跳数,更新法则为h(vi)=min{h(vi),h+1},则其停留时间h=h+1。
C:最终停止的条件就是当多有的节点都不改变跳数,算法结束。
定理1:设置节点vi的跳数为h(vi)=k,k=1,2,…,H-1,因此,vi的临界节点集可以表示为k-1,k,k+1的三个子集的合并,即N(vi)=Nk-1(vi)∪Nk(vi)∪Nk+1(vi),而且,当h(vi)=H时,N(vi)=NH-1(vi)∪NH(vi)。
2.2 传感器网络最小跳数和最小跳数最大剩余能量路由 借助于传感器网络,实现点对点的有效传递,在设计路由算法时要首先考虑的问题就是传输延迟。一般情况来讲,信息传输的跳数与传输延迟是成正比的。
算法2:MinHR(s,t)
将源节点s、t与汇点输入,记录h(t)=h
A:初始化:令j=0,vj=t
B:循环:While(j
在Nh-1-j(vj)中任意选择一个节点,记为t=v0v1…vh-1vh=s。
由此我们可以看出,在每次数据交换,传送的信息到达汇点的跳数都会减1,因此,在跳数路由算法经过n次的迭代,终究会结束。
在传感器路由的设计中,能量问题也是一个非常关键的问题,同时网络节点中的能量消耗并不均匀,如网络出现故障,其剩余的能量通常会很多,为了保证网络的寿命,就要选择下述算法。
算法3:MinHMaxRER(s,t)
输入源节点s、t和汇点,记录h(t)=h
A:初始化:令j=0,vj=t
B:循环:While(j
当Nh-1-j(vj)中选择剩余能量最大的节点当做下一跳节点,所以:vj+1=■{?着r(vi)}
J=j+1
C:结束条件:当j=h时,本算法结束。
输出:从t-s的最小跳数最大剩余能量路径t=v0v1…vh-1vh=s
2.3 传感器网络最小跳数最小费用路由 在设计传感器网络路由时还要考虑一个关键因素—能量消耗,一般来讲,在路由算法的实验中要求费用最小,我们可以设计如下算法:
算法4:MinHMinCR(s,t)
源节点s、t和汇点,记录h(t)=h
A:初始化:令v0=v0,0=t,Nh={v0,0},f 0(v0,0)=0
B:前向循环:For(j=1,2,…,h)
Nh-j=■Nh-j(vj-1,i)
对于?坌vj,l∈Nh-j,计算:
f j(vj,l)=■{f j-1(vj-1,i)+?着(vj-1,i,vj,l)}
C:后向循环:vh=s
For(j=1,2,…,h-1)
vh-j=■{f h-j+1(vh-j,i)}
D:终止条件:当v0=t时算法结束。
输出:从t-s的最小跳数最小费用路径t=v0v1…vh-1vh=s
3 最小跳数最小费用路由与最小费用路由之间的关系
在传感器网络应用工程中,能量的消耗并不符合“三角不等式“,图1充分的描绘出了最小跳数最小费用的充要条件。
定理2:从图1可以看出,最小跳数最小费用路径的充要条件就是传感器网络一定满足“三角不等性“。
4 能量消耗分析
本章节研究算法的能量消耗。如果全部的传感器都具备同样的发射半径和感知半径,并且它的发射数据包消耗的能量和数据包的包长成正比,我们可以计算出,在动态规划背景下,三种路由算法都能改进能量消耗过快的情况,并且它比数据前传等路由算法所消耗的能量要小很多。
5 结论
最近几年,一些专家学者开始研究无线传感器网络,至今为止,路由问题仍然是其最为核心的问题,经过研究实验证明,数据传送多跳特点仍然是路由算法的最佳方式。因为传感器网络的网络环境是现实中具体的网络,所以想要设计一款通用的路由算法可谓是难上加难。我们要根据不同的具体应用,设计不同的路由算法。本文通过研究计算,给出了最小费用路径的一个充要的条件,但是,如何设计求解最小费用路径的具体路由算法,是我们下一步研究的方向。
参考文献:
[1]裴莉.无线传感器网络应用综述[J].科技信息,2010(33).
[2]司海飞,杨忠,王琣.无线传感器网络研究现状与应用[J].机电工程,2011(01).
[3]肖军,李科,王建华.无线传感器网络通信与路由研究[J].电脑知识与技术,2008(18).
1概述
随着计算机网络的飞速发展,带动了信息产业的提升;在巨大的信息产业面前,网络建设的势头也是急剧增加;作为培育人才的摇篮,校园网络的建设和发展,逐渐被人们所重视;目前我国的校园网络建设尚存在应用层次比较差的特点;而基于校园网络的可靠性、安全性、适用性的矛盾也日益突出。如何利用现有资源,保障校园网络改造、扩充网络应用水平,以实现校园网络飞速发展,是摆在校园网络建设者面前重要问题和挑战。
2网络方案设计建设原则
2.1方案设计原则
校园网络系统由软件、硬件两个部分组成。软件部分包括应用软件和系统软件。Internet应用、规模化教学管理、办公管理系统是应用软件部分;系统软件主要是服务器操作系统、工作站操作系统、网络设备上的操作系统、网络管理系统以及安全系统。硬件部分主要由网络布线系统、网络设备、主机(服务器)系统以及各种外设组成。
2.2方案建设原则
2.2.1网络规模。规模决定应用的大小,校园网络要实现与相关横向的网站互联、实现Internet的互联、还要实现国际网络的通信流畅,能够快速搜索国内外最新学术信息,并在使用功能上能够辅助课堂和实践教学的作用。为学院各部门的信息交流和资源共享提供保证;并保证网络高性能、可扩展。
2.2.2网络业务。电子邮件功能及OA;电子图书馆;讨论和交流功能;视频点播;无线网络;宽带上网。
3网络方案技术选择
3.1方案技术选择前提
校区网络建设应该以应用为核心,在设计中充分考虑到教育管理、教学和专业性质的教学要求,并且网络技术上应该具有一定的先进性,同时还要为以后的扩展留有一定的空间。以太网技术是现在最富有弹性的网络技术之一,从校园网的要求来看,使用以太网技术是最佳选择。
3.2方案技术选择要求
一是网络的可靠性;二是网络的速度反应性;三是完整维护性;四是安全性;五是可控管理性;六是符合发展趋势性。
4网络设计实施
4.1.1网络拓扑总体设计
石家庄邮电学院园区的网络点主要分布在办公大楼(145个信息点)、教学楼六栋(160个信息点)、图书馆(90个信息点)、实验楼电脑室(共两间,分别62个和64个点)、教师宿舍(70个信息点),学生宿舍(六栋楼,共约384个信息点),饭堂(5个信息点),体育馆(10个信息点),实验楼的部分实验室(15个信息点)。
拓扑总体设计:
4.1.2IP及VLAN方案
4.1.3Internet接入方案
(1)Internet接入规划:校区网络出口为双路千兆光纤接入,在成本允许的情况下,采用双路固定公网IP的方式接入骨干网;设置权限同时采用有线加无线方式在校区布置内网。
(2)Internet接入方式:校园网与骨干网通过固定IP方式,采用光纤接入,在校园网入口处,添加安全防火墙;网络内部用户,在使用校园网的时候,可以通过多终端进行接入。
4.1.4网络管理及安全
(1)网络管理模式
校园网管理模式主要分为两个方面,用户管理和设备管理。用户管理的内容:校园网络的用户分为多种,多数是学生,剩下部分有教师;用户管理在大体上可以分为:流量统计、行为分析、访问控制三方面。设备管理内容:数据网络是光纤和双绞线通过综合布线的方式把各式各样的设备连接起来的,网络渗透到校园的各个角落。
(2)网络流量统计方案
网络流量统计方案,现在惯常做法是使用服务器和直接使用路由器两种操作手法;服务器有日志功能,读取即可;路由器则可通过采集数据和分析手段来实现。
(3)安全方案
安全问题最大的防范手段就是安全管理能够彻底被执行,所以安全方案的实施,必须在技术上保证安全管理的可实施性。一是网络分段技术;二是交换式集线器到桌面技术;三是虚拟局域网(VLAN)划分技术。
4.1.5设备选型及依据
校园网中主要的设备是路由器和交换机一是选择交换机时,应选择在国内市场上有相当的份额,具有高性能、高可靠性、高安全性、高可扩展性、高可维护性的产品,以及良好的售后服务。二是选择路由器时,采用成熟的、经实践证明其实用性技术的产品。
4.2网络安装与维护
校园网络规划设计实施完成以后,尔后最大的问题就是网络就是网络的安装和维护问题;安装维护有几个点必须要把握好,一是系统的集成方案问题,这要在安装之前彻底进行考证和分析;二是基础建设是否给予支持,基础建设内容包括布线、设备性能以及实施的平台环境等因素;三是对应用软件的测评工作;四是安装后的维护管理功能方面,主要是针对于校园网的特殊性,而采取的网络管理是否能到位问题的纠错工作。
结语
校园网络的建设是大势所趋,信息化的硬件设施是每一个高校必备的物质保证,只有将校园网络规划设计好,那么,校园网络才能发挥更好的作用,也才能完成为社会未来发展培育人才的伟大任务。
文/高清平 吴海虹
危险物品是一类具有物理、化学或生物特性的物品,容易在生产、贮存和运输中引起泄漏、燃烧、爆炸和中毒等灾害事故,往往对影响范围内的人口、财产和环境造成严重伤害。为了尽量减小危险物品的运输风险,实践中常采取强化驾驶员培训、规定危险物品容器规格、规范危险物品的运输车辆标志和安全技术条件等措施。
在已有的研究中,考虑了运输管理者和运输者的相互作用和不同决策目标。但是,尚未考虑路段风险和费用参数的随机性,尚未评价参数随机性对运输管理者和运输者决策行为的可能影响,也未研究其对危险物品运输网络设计的影响,难以保证危险物品运输网络的稳健性。鉴于此,笔者在已有研究的基础上,构建了在随机性风险和费用参数条件下,运输管理者和运输者相互作用的随机双层规划模型,上层模型描述运输管理者规划危险物品运输网络使风险最小,下层模型描述运输者在运输管理者规定的危险物品运输网络中选择路径使运输费用最小。设计了基于随机模拟的遗传算法求解该随机双层规划模型。
为便于研究,本文作如下假设:假设在危险物品运输网络的设计中,运输管理者仅考虑使运输风险最小,运输者选择运输路径仅考虑使运输费用最小。采用事故率风险模型测度危险物品的运输风险,以事故率表示路段的单位运输风险值,即每十亿车·公里发生的事故次数。假设运输网络中路段运输费用和风险具有随机性,服从对数正态分布,忽略动态性。因此本文模型属于静态模型,适用于中长期危险物品交通规划和政策评价。忽略路段上危险物品交通量对路段行程费用和风险的影响,危险物品的交通分配服从最短路分配原则。
模型求解
双层规划问题是一个NP-hard问题。其求解算法主要有极点搜索方法、罚函数方法、分枝定界法、进化逼近方法等。随机双层规划问题由于参数具有随机性,增加了问题的复杂性。对随机变量为连续型随机变量的情形,可以采用以抽样为基础的分解和近似策略,用一系列抽样点的积分值表达期望值,从而将其转化为确定型规划。其中,蒙特卡洛积分策略可以描述为:设机模拟的遗传算法求解随机双层规划的思想可以表达为,在上层规划可行集中随机产生初始种群,种群中的各个个体对应不同的危险物品运输网络设计方案;根据上层规划的随机种群,求解下层规划对应的随机规划问题,并将计算结果反馈给上层规划。上层规划根据反馈结果计算上层规划种群中个体的适应度,并对种群进行选择、交叉和变异等操作。循环迭代上述过程,直至满足中止条件。
基于随机模拟的遗传算法的具体步骤如下:
Step1:随机抽样。随机产生服从相应概率密度函数的个样本。
Step2:输入参数。输入种群规模,交叉概率,变异概率和迭代次数。
Step3:产生初始种群。在可行集中随机产生规模为pop_size的初始种群。
Step4:适应度计算。根据蒙特卡洛积分策略,计算个体的目标函数值和适应度。
Step5:遗传操作。对种群进行选择、交叉、变异和重插入等遗传操作。
Step6:中止条件判断。如果群体中的最优适应度在规定的进化代数内没有改善,或者迭代达到规定代数,停止迭代。此时具有最优适应度的个体作为最优解。否则转Step4。
算例分析
设有如图1所示的运输网络,共有8个节点和15条路段。路段事故率和费用值均服从对数正态分布,概率密度函数的均值和均方差见表1所示。为简化计算且不失一般性,设路网中危险物品有2个OD对交通量,第1类危险物品从节点1到节点8的交通量为1,第2类危险物品从节点2到节点8为的交通量为1,其中路段6-7、6-8和7-8上两类危险物品的事故率和费用概率密度函数不相同。
为了研究危险物品运输网络规划问题,分析三种情景。第一种情景是忽略运输管理者的管理行为,假设管理者不规定危险物品运输网络,运输者可以选择任意路径通行危险物品运输车辆。此时,危险物品运输网络规划问题,本质是运输者选择运输路径使运输费用最小,对应的规划模型是模型式(1)~(6)忽略上层规划的情形。第二种情景是忽略运输者的路径选择行为,认为运输者必须选择运输管理者指定的风险最小路径。此时,危险物品运输路径规划问题,本质是运输管理者规划运输路径使运输风险最小,对应的规划模型是模型式(1)~(6)忽略下层规划的情形。第三种情景是同时考虑运输管理者和运输者的决策行为,认为运输管理者和运输者相互作用。运输管理者的决策影响运输者的决策,运输者是在运输管理者规定的危险物品运输网络中选择运输模式和路径,作出出行决策,从而使运输费用最小;同时,运输者的决策又反过来可以影响运输管理者的决策行为。此时,危险物品运输路径规划问题,本质是运输管理者和运输者相互作用的双层规划模型,对应的规划模型是模型式(1)~(6)的情形。根据双层规划模型式(1)~(6),不同情景下的求解结果见表1。
表1中的数据表明,三种情景的求解结果和目标值并不一致。在事故率和费用值忽略随机性(取点估计值)情形下,最小费用路径是1-3-8和2-5-6-8,最小风险路径是1-3-8和2-5-7-8,考虑管理者和运输者相互作用时的最有路径是1-3-8-7-5-2,此路径具有最小的风险值92.1801,但是费用值87.5093远大于最小费用值22.9930。在考虑参数随机性条件下,具有类似的结论。结果表明,危险物品运输网络规划中,采用不同的规划主体和规划目标,会产生不同的规划方案,为保证网络规划的科学性,应该考虑运输管理者和运输者决策行为的相互作用。
考虑参数随机性与忽略随机性两种情景在三种规划目标下的结果均不相同。客观上运输费用和风险具有随机性的情况下,规划中忽略其随机性可能导致规划方案的重大错误。同时,在考虑参数随机性条件下,不仅管理者的决策影响运输者,而且运输者的出行决策也会反过来影响管理者的决策。例如,如果将最小风险路径1-3-6-8和2-5-6-7-8确定为允许危险物品通行的运输网络,那么运输者根据费用最小选择的路径将是1-3-6-7-8和25-6-8,此时风险值急剧增加到6.71 x107,并非风险最小,远大于5.1182 x102。因此,在规划中不仅应该考虑风险和费用参数的随机性,而且应该同时考虑运输者和管理者决策行为的相互作用。
关键词: 回归测试; 测试用例; 神经网络; BP网络
中图分类号: TN711?34 文献标识码: A 文章编号: 1004?373X(2015)19?0114?03
Abstract: Regression testing means after modifying the source code, re?testing to confirm whether the discovered defect is repaired, and whether detection and modification have brought in a new bug or caused the errors in other codes which possesses a large proportion of the workload during testing procedure. The fundamental principle of neural network is analyzed, and the thought of BP algorithm is introduced into the case set selection of regression testing. The algorithm to select regression testing case package is presented. The functions which may be influenced by code modification are screened out by samples training, and the higher priority use case can be screened out. A set of regression testing strategy with high efficient and easy operation was summed up through the accumulation of testing practice.
Keywords: regression testing; testing case; neural network; BP network
0 引 言
软件分析,设计过程中难免有各种各样的错误,需要通过测试查找错误,以保证软件的质量。软件测试是由人工或计算机来执行或评价软件的过程,验证软件是否满足规定的需求或识别期望的结果和实际结果之间有无差别。大量统计资料表明,软件测试工作量往往占软件开发总量的40%以上。而回归测试作为软件生命周期的一个组成部分,在整个软件测试过程中占有很大的工作量比重,软件开发的各个阶段都会进行多次回归测试。在渐进和快速迭代开发中,新版本的连续使回归测试变得更加频繁,而在极端编程方法中,更是要求每天都进行若干次回归测试。因此,研究回归测试方法,尽可能地将软件存在的问题找出来,对保证软件质量和提升测试工作效率都是非常有意义的。
1 相关工作
1.1 回归测试
回归测试是指修改了旧代码后,重新进行测试以确认修改没有引入新的错误或导致其他代码产生错误。对于一个软件开发项目来说,项目的测试组在实施测试的过程中会将所开发的测试用例保存到“测试用例库”中,并对其进行维护和管理。当得到一个软件的基线版本时,用于基线版本测试的所有测试用例就形成了基线测试用例库。在需要进行回归测试时,就可以根据所选择的回归测试策略,从基线测试用例库中提取合适的测试用例组成回归测试包,通过运行回归测试包实现回归测试。
在软件生命周期中,即使一个得到良好维护的测试用例库也可能变得相当大,这使每次回归测试都重新运行完整的测试包变得不切实际。一个完全的回归测试包括每个基线测试用例,时间和成本约束可能阻碍运行这样一个测试,有时测试工作不得不选择一个缩减的回归测试包来完成回归测试。
1.2 相关技术的研究
测试用例的优化技术旨在以小的运行代价尽可能多地发现系统Bug。假设测试用例是能发现缺陷的;测试用例的运行效率是一样的。测试用例的集合的选取不仅是减少用例的数目,降低用例的执行代价,也需要考虑测试覆盖能力,即缺陷发现能力。在测试用例选择优化的问题上,已有很多文献对此进行了研究,如配对测试法[1]、关系树模型[2]、蚁群模拟退火算法[3]及一些其他新的理论和方法[4?7]。
2 回归测试用例集生成方法
2.1 基本原理
神经网络是通过对人脑的基本单元――神经元的建模和联接,探索模拟人脑神经系统功能的模型,并研制一种具有学习、联想、记忆和模式识别等智能信息处理功能的人工系统。
神经网络的一个重要特性是它能够从环境中学习,并把学习的结果分布存储于网络的突触连接中。神经网络的学习是一个过程,在其所处环境的激励下,相继给网络输入一些样本模式,并按照一定的规则(学习算法)调整网络各层的权值矩阵,待网络各层权值都收敛到一定值,学习过程结束,从而以新的方式响应环境。
2.2 BP神经网络
Back?Propagation Network,由于其权值的调整采用反向传播(Back Propagation)的学习算法,因此被称为BP网络。网络中心思想是梯度下降法,通过梯度搜索技术,使网络实际输出值与期望输出值的误差均方值最小。网络的学习过程是一种误差边向后传播边修正权系数的过程。一般分三层:输入层(Input Layer),隐层(Hide Layer),输出层(Out Layer),也可以有2层或更多个隐层。层与层之间采用全互联方式,同一层单元之间不存在相互连接,如图1所示。
由于神经网络具有自学习、自组织和并行处理等特征,并具有很强的容错能力和联想能力,因此,神经网络具有模式识别能力。在神经网络识别中,根据标准的输入输出模式对,采用神经网络学习算法,以标准的模式作为学习样本进行训练,通过学习调整神经网络的连接权值。当训练满足要求后,得到知识库,如图2所示。
BP算法的具体步骤如下:
(1) 用小的随机数对每一层的权值[W]初始化,以保证网络不被大的加权输入饱和;
(2) 计算网络各层输出矢量以及网络误差[E;]
(3) 计算各层反传的误差变化并计算各层权值的修正值以及新权值;
(4) 再次计算权值修正后误差的平方和;
(5) 检查误差是否小于给定误差,若是,训练结束;否则继续。
输入信号[Xi]通过中间节点(隐藏层节点)作用于输出节点,经过非线性变换,产生输出信号[Yk,]网络训练的每个样本包括输入向量[X]和期望输出量[t](类别),网络输出值[Y]和期望输出值(真值)[t]之间的偏差,通过调整输入节点与隐藏层节点的连接强度取值和隐藏层节点与输出节点之间的连接强度以及阈值,使误差沿梯度的方向下降,经过反复学习训练,确定与最小误差项对应的网络参数(权值和阈值),训练即告停止。学习样本的数量和质量影响学习效果和学习速度。
为了训练一个BP网络,需要计算网络加权输入矢量以及网络输出和误差矢量,然后求得误差平方和。当所训练矢量的误差平方和小于误差目标,训练则停止;否则在输出层计算误差变化,且采用反向传播学习规则调整权值,并重复此过程。当网络完成训练后,对网络输入一个不是训练集合中的矢量,网络将给出输出结果。
2.3 回归测试用例包选取
基于全量的测试用例库,回归测试包的选择策略可遵循下述基本算法进行:
(1) 识别出软件中被修改的部分。
(2) 从原基线测试用例库[T]中,排除所有不再适用的测试用例,确定那些对新的软件版本依然有效的测试用例,其结果是建立一个新的基线测试用例库[T0。]
(3) 依据一定的策略从[T0]中选择测试用例测试被修改的软件。
(4) 如果必要,生成新的测试用例集[T1,]用于测试[T0]无法充分测试的软件部分。
(5) 用[T1]执行修改后的软件。
在上述步骤中,第(2)和第(3)步测试验证修改是否破坏了现有的功能,第(4)和第(5)步测试验证修改工作本身。第(3)步中,将神经网络知识结合到测试领域,通过对样本的学习,确认修改没有引入新的错误或导致其他代码产生错误。
其主要思想为:对于[q]个输入学习样本:[P1,P2,…,Pq,]已知与其对应的输出样本为:[T1,T2,…,Tq。]通过网络的实际输出[A1,A2,…,Aq]与目标矢量[T1,T2,…,Tq]之间的误差来修改其权值,使[Al (l=1,2,…,q)]与期望的[Tl]尽可能地接近,使网络输出层的误差平方和达到最小。
3 回归测试实践的优化
在项目测试过程中,不仅需要应用高新的测试技术,也要从宏观上制定可行的测试策略,解决在有限的时间中使测试覆盖率最优化。本文从项目实践角度出发,提出以下的回归测试策略:
(1) 对所有已修复Bug进行验证;
(2) 对新增功能进行全量重点测试;
(3) 对原有功能,按优先级进行测试。基于一定的风险标准从基线测试用例库中选择回归测试包。首先运行最重要、关键和可疑的测试,而跳过那些非关键、优先级别低或者高稳定的测试用例,这些用例即便可能测试到缺陷,这些缺陷的严重性也较低,不影响系统的功能。一般而言,测试从主要特征到次要特征。
(4) 对修复的Bug可能会引入新的Bug的功能模块重点测试,可采用本文介绍的神经网络进行样本训练和用例筛选。将回归测试局限于被改变的模块和它的接口上。通常,一个回归错误一定涉及一个新的、修改的或删除的代码段。在允许的条件下,回归测试尽可能覆盖受到影响的部分。
(5) 如果情况允许,测试全部用例的策略是最安全的策略。但已经运行过许多次的回归测试不太可能揭示新的错误,而且很多时候,由于时间、人员、设备和经费的原因,不允许选择再测试全部用例的回归测试策略,此时,可以选择适当的策略进行缩减的回归测试。
4 结 语
将神经网络知识引入到测试领域是一个比较新的研究,本文就此方向进行了研究,并给出了实例说明。然而,BP神经网络需要大量的样本数据用来训练和测试,当样本数量不够时,预测的误偏差可能会较大,回归测试开始时,由于数据样本不足,可能会存在预测的偏差,所以下一步的研究方向将是如何克服这一问题。
参考文献
[1] 廖剑锋,蔡贤涛.组合测试中用例集的选择策略[J].计算机工程与应用,2012,48(11):65?70.
[2] 钮鑫涛,聂长海,CHAN Alvin.组合测试故障定位的关系树模型[J].计算机学报,2014,37(12):2505?2518.
[3] 聂长海,徐宝文,史亮.一种基于组合测试的软件故障诊断方法[J].东南大学学报:自然科学版,2003,33(6):681?684.
[4] 徐宝文,聂长海,史亮,等.一种基于组合测试的软件故障调试方法[J].计算机学报,2006,29(1):132?138.
[5] YILMAZ C. Covering arrays for efficient fault characterization in complex configuration space [J]. IEEE Transaction on Software Engineering, 2006, 32(1): 20?34.