时间:2023-06-13 16:14:33
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇安全风险分级方法范例。如需获取更多原创内容,可随时联系我们的客服老师。
Key words: fault tree analysis;fire safety;risk analysis
中图分类号:TU714 文献标识码:A 文章编号:1006-4311(2016)03-0056-03
0 引言
当前,我国企业中消防安全事故时有发生,造成了极大的经济损失和极坏的社会影响,严重阻碍着企业的健康发展。究其原因,主要是因为在消防安全管理中,现代科学方法运用不足,未能将企业消防管理中的安全风险因素定性和定量地表现出来,安全管理措施针对性不强。
本文采用事故树分析法对企业的消防安全进行风险分析。在进行层次分析之前,引入了事故树,通过事故树寻求指标层中各类重要因素,从而提高了层次分析的准确性和有效性。分析结果表明: 采用事故树分析法,可以定量地分析各个风险因素对企业消防安全的影响大小,对制定安全应对措施具有一定的指导意义。
1 事故树分析法的内容和基本程序
基本概念事故树分析法(Fault Tree Analysis,简称FTA)是安全系统工程中常用的一种分析方法。它是将导致事故发生的所有基本原因事件找出,把它们通过逻辑推理方式用逻辑门连接起来,运用定性分析或定量分析的方法得到导致事故发生的基本事件的最小组合及预防事故发生的各种有效方案。
事故树分析虽然根据对象系统的性质、分析目的的不同,分析的程序也不同。但是一般有以下基本程序:
①熟悉系统;
②调查事故;
③确定顶事件;
④调查原因事件;
⑤建造事故树;
⑥化简事故树;
⑦定性和定量分析;
⑧计算顶事件发生概率;
⑨制定安全对策。
2 建立事故树
通过汇总目前国内企业中发生的消防安全事故分析报告,并结合本单位消防管理的实际案例经验,对影响企业消防安全的原因进行定性分析,进而按照层次分析的模型建立事故树。
层次分析的模型一般由目标层(顶事件)、准则层(中间事件)、指标层(基本事件)组成。在层次模型中,分析问题所包含的因素及其相互关系,将有关的各个因素按照不同的属性自上而下地分解成若干层次。同一层次的各个因素从属于上一层的因素或受下一层因素的作用。
为了使事故树中各基本事件能与层次分析模型很好地结合起来,首先将事故树中各基本事件的描述中性化后转为层次分析的指标层因素,然后归纳分类,确定为准则层各因素(如火源出现、消防设备缺陷、安全管理机制漏洞等),而目标层即为企业消防安全事故的发生。企业消防安全事故的事件表如表1所示。
由上述分析建立事故树如图1所示。
3 事故树分析
3.1 最小割集计算
割集也叫截集或截止集,是导致顶上事件发生的基本事件的集合。也就是说事故树中一组基本事件的发生,能够造成顶上事件发生,这组基本事件就叫割集。引起顶上事件发生的基本事件的最低限度的集合叫最小割集。最小割集表示顶事件发生的可能性大小和原因组合,最小割集的数量越多,消防安全的危险性就越大。
根据图1的事故树,运用布尔代数法进行化简,求最小割集。
T=M1M2M3=(X1+X2+X3)(M4+M5+M6)X4X5X6X7
=(X1+X2+X3)(X8+X9+X10+X11+X12+X13+X14+ X5X7X15)X4X5X6X7
=(X1X4X5X6X7+X2X4X5X6X7+X3X4X5X6X7)(X8+X9+X10+X11+X12+X13+X14+X5X7X15)
得到,事故树的最小割集为:
Gl={X1,X4,X5,X6,X7,X8}
G2={X2,X4,X5,X6,X7,X8}
G3={X3,X4,X5,X6,X7,X8}
G4={X1,X4,X5,X6,X7,X9}
G5={X2,X4,X5,X6,X7,X9}
G6={X3,X4,X5,X6,X7,X9}
G7={X1,X4,X5,X6,X7,X10}
G8={X2,X4,X5,X6,X7,X10}
G9={X3,X4,X5,X6,X7,X10}
G10={X1,X4,X5,X6,X7,X11}
G11={X2,X4,X5,X6,X7,X11}
G12={X3,X4,X5,X6,X7,X11}
G13={X1,X4,X5,X6,X7,X12}
G14={X2,X4,X5,X6,X7,X12}
G15={X3,X4,X5,X6,X7,X12}
G16={X1,X4,X5,X6,X7,X13}
G17={X2,X4,X5,X6,X7,X13}
G18={X3,X4,X5,X6,X7,X13}
G19={X1,X4,X5,X6,X7,X14}
G20={X2,X4,X5,X6,X7,X14}
G21={X3,X4,X5,X6,X7,X14}
G22={X1,X4,X5,X6,X7,X15}
G23={X2,X4,X5,X6,X7,X15}
G24={X3,X4,X5,X6,X7,X15}
24个最小割集说明案例中的事故发生24种可能性,且必然是某个最小割集中所有基本事件同时作用的结果。从中可以看出,即使出现火源,但如果各项管理措施到位,能够及时对火源进行监测报警,保证消防设备不出故障,及时控制和扑灭火源,也不会导致消防安全事故的发生。
3.2 最小径集计算
径集也叫通集或者导通集,即如果事故树中某些基本事件不发生,顶上事件就不发生,这些基本事件的集合称为径集。不引起顶上事件发生的最低限度的基本事件的集合叫最小径集。事故树中最小径集越多,系统就越安全。求最小径集是利用它与最小割集的对偶性,把原来事故树的“与门”换成“或门”,“或门”换成“与门”,得到与原事故树对偶的成功树,并将全部事件符号加上“′”。
故,T=M1′M2′M3′
=X1′X2′X3′(X4′+X5′+X6′+X7′)M4′M5′M6′
=X1′X2′X3′(X4′+X5′+X6′+X7′)X8′X9′X10′X11′X12′X13′X14′(X5′+X7′+X15′)
得到,事故树的最小径集为:
P1={X1,X2,X3 } P2={X4} P3={X5}
P4={X6} P5={X7}
P6={X8,X9,X10,X11,X12,X13,X14 ,X15 }
6个最小径集说明只要采取6个最小径集方案中的一个,就可以避免消防安全事故的发生。
3.3 结构重要度分析
结构重要度分析是从事故树结构上入手分析各基本事件的重要程度。
在事故树分析缺少概率数据的情况下,结构重要度是在不考虑各基本事件的发生概率,或者说在各个基本事件的概率都相等的情况下,分析基本事件的发生对顶事件的影响程度。
I(i)=
根据结构重要度的计算原则,即
式中:xi?奂kj 为基本事件属于最小径集Kj,n为最小径集Kj包含基本事件的个数。
计算基本事件的结构重要度,结果如下:
I(4)=I(5)=I(6)=I(7)=0.167 I(1)=I(2)=I(3)=0.056
I(8)=I(9)=I(10)=I(11)=I(12)=I(13)=I(14)=I(15)=0.0208
通过结构重要度系数的排序可以看出:由于可燃物(X4)、对设备设施检修不及时(X5)、设备设施过载、老化及雷电等自然原因(X6)、对消防火源监测报警不及时(X7)造成的火源(M2)对顶事件的影响程度最大,是造成安全事故最直接、最重要的因素。因此,要避免消防安全事故的发生,应以控制火源为重点,制定相关安全风险应对措施,同时,还需在提高消防设备质量、完善安全管理的制度机制方面做好基础工作。
4 消防安全管理体系思路的提出
4.1 消防安全风险因素的应对措施
根据事故树定量分析结果,对牵引供电系统安全影响因素进行排序,进而提出相应的应对措施,如表2所示。
4.2 消防安全管理体系思路的提出
消防安全管理是一个系统工程,通过对安全风险因素应对措施的整合,并结合本单位消防安全管理的实际工作情况,提出企业消防安全管理体系的整体思路:
①通过配备消防在线监测、自动报警和喷淋灭火设备,制定消防安全报警处理工作流程,建立消防安全监测报警工作体系。
②通过对消防安全管理部门的安全管理机构的设立、安全管理责任划分、安全管理调度流程的设计、安全操作流程和行为规范的制定、消防安全意识和技能的宣传培训及消防安全工作奖惩制定的落实,建立消防安全组织保障体系。
③通过引进先进的消防安全设备、制定完善消防安全设备的招标程序、质量验收程序、使用和操作规范、监控和检修制度、维护和保养制度,建立消防设备管理体系。
④通过对消防安全风险因素的识别、风险指标的评估、风险分级应对管控及风险管控后的安全评价,建立消防安全风险管控体系。
⑤通过设立消防安全应急处置的组织机构、应急处置的运行机制和健全消防安全应急预案,建立消防安全应急处置体系。
关键词:风险评估;威胁分析;信息安全
中图分类号:TP309 文献标识码:A文章编号:1007-9599 (2011) 15-0000-01
Threat Analysis of Information Security Risk Assessment Methods Study
Huang Yue
(Naval Command College,Information Warfare Study Institute,Nanjing211800,China)
Abstract:A threat-based analysis of quantitative risk assessment methods,the use of multi-attribute decision theory,with examples,the security of information systems for quantitative risk analysis for the establishment of information systems security system to provide a scientific basis.
Keywords:Risk assessment;Threat analysis;Information security
随着信息技术的迅速发展和广泛应用,信息安全问题已备受人们瞩目,风险评估是安全建设的出发点,在信息安全中占有举足轻重的地位。信息安全风险评估,是指依据国家有关信息安全技术标准,对信息系统及由其处理、传输和存储的信息的保密性、完整性和可用性等安全属性进行科学评价的过程[1]。信息安全风险评估方法主要有定性评估和定量评估。定性评估主要依赖专家的知识和经验,主观性较强,对评估者本身的要求很高;定量评估使用数学和统计学工具来描述风险,采用合理的定量分析方法可以使评估结果更科学。本文提出一种基于威胁分析的多属性定量风险评估方法,建立以威胁为核心的风险计算模型,通过威胁识别、威胁后果属性计算及威胁指数计算等步骤对信息系统的安全风险进行定量分析和评估。
一、风险评估要素分析
信息系统安全风险评估的基本要素包括资产、脆弱性和威胁,存在以下关系:a资产是信息系统中需要保护的对象,资产拥有价值。资产的价值越大则风险越大b风险是由威胁引起的,威胁越大则风险越大c脆弱性使资产暴露,是未被满足的安全需求,威胁通过利用脆弱性来危害资产,从而形成风险,脆弱性越大则风险越大[2]。
二、风险评估模型
威胁是风险评估模型关注的核心问题,威胁利用脆弱性对信息系统产生的危害称为威胁后果。威胁发生的概率以及威胁后果的值是经过量化的。风险按式计算R=f(A,V,T)=f(I,L(V,T)),R风险;A资产;V资产的脆弱性;T威胁;I威胁后果;L安全事件发生的可能性。风险评估模型通过计算威胁利用脆弱性而发生安全事件的概率及其对信息系统造成损害的程度来度量安全风险,从而确定安全风险大小及决策控制。评估过程主要包括威胁识别、威胁后果属性及威胁指数计算。(一)威胁识别。识别信息系统威胁主要有德尔菲法、故障树分析法、层次分析法等[3]。通过德尔菲法,结合对系统历史数据的分析,以及系统漏洞扫描等手段来确定信息系统中存在的威胁。其中,历史数据分析包括对信息系统中资产遭受威胁攻击的事件发生的概率等进行统计和计算。例如:近几年来全球范围内的计算机犯罪,病毒泛滥,黑客入侵等几大问题,使企业信息系统安全技术受到严重的威胁,企业对信息系统安全的依赖性达到了空前的程度,一旦遭到攻击遭遇瘫痪,整个企业就会陷入危机。某企业信息系统,面临的主要威胁有:1黑客蓄意攻击:出于不同目的对企业网络进行破坏与盗窃;网络敲诈2病毒木马破坏:病毒或木马传播复制迅猛3员工误操作:安全配置不当,安全意识薄弱4软硬件技术缺陷:硬件软件设计缺陷,网络软硬件等多数依靠进口5物理环境:断电、静电、电磁干扰、火灾等环境问题和自然灾害。(二)确定威胁后果属性。在评估威胁对信息系统的危害程度时,要充分考虑不同后果属性的权重,才能真正得到符合被评估对象实际情况的风险评价结果。最终确定的风险后果属性类型可表示为X{xj|j=1,2,…m}:其中,xj为第j种后果属性,权重W:{wj|j=1,2,…m}.列出企业信息系统的威胁后果属性及权重:收入损失RL,生产力损失PL,信誉损害PR。权重为0.3,0.5,0.2。(三)确定后果属性值。通过收集历史上发生的有关该类威胁事件的资料数据为风险评估提高可靠依据。最终确定威胁发生概率P:{pi|i=1,2,…n}及相应后果属性值集合V:{vij|i=1,2,…n;j=1,2,…m},pi是第i种威胁ti的发生概率,vij为威胁ti在后果属性xj上可能造成的影响值。由于多种后果属性类型有不同的量纲,为度量方便,消除了不同量纲,得到后果影响的相对值V*:{vij*|i=1,2,…n;j=1,2,…m},vij*表示威胁在后果属性方面造成的相对后果影响值。Vij*=vij/max{vkj}本例中,最终确定的结果见表1。
表1:风险概率与后果属性值
编号 概率 后果属性值
RL w=0.3 PL w=0.5 PR w=0.2
V1/万元 V1* V2/h V2* V3/级 V3*
1 0.45 1000 1 4 0.4 5 1
2 0.35 1000 1 10 1 4 0.8
3 0.1 500 0.5 4 0.4 2 0.4
4 0.08 250 0.25 6 0.6 2 0.4
5 0.02 100 0.1 2 0.2 1 0.2
(四)计算威胁指数。使用威胁指数来表示风险的大小和严重程度。对于威胁ti,定义相应的威胁指数:TIi=pi*∑(wjvij),pi-威胁ti发生的概率,∑(wjvij)-威胁ti可能造成的总的后果影响,wj-后果属性xj的权重,vij-威胁ti在后果属性xj上可能造成的影响值。如前所述,安全风险评价的主要目标是为了度量出各个威胁的相对严重程度,并对其进行排序,以利于进行安全决策。因此,为使评估结果更加清晰和便于比较,这里用相对威胁指数RTI来表示威胁的相对严重程度。归一化,得到各威胁的相对指数。RTIi=(TIi/max{TIk})*100经计算,黑客蓄意攻击93,病毒木马破坏100,员工误操作13,软硬件缺陷11,物理环境1
三、结论及展望
结合企业信息系统实例,得出信息系统的相对威胁程度,使风险评估更易量化,使评估结果更加科学和客观。下一步工作是继续完善该评估模型,设计实现基于该方法的信息系统风险评估辅助系统,更好地促进信息系统安全管理的实施。
参考文献:
[1]GB/T20984-2007.信息安全技术信息安全风险评估规范[S].中华人民共和国国家标准,2007
[2]陈鑫,王晓晗,黄河.基于威胁分析的多属性信息安全风险评估方法研究[J].计算机工程与设计,2009,30(1):39
[3]sattyTL.How to make adecision:the analytichier archprocess[J].European journal of operation research,1990,48(1):9
(二)药品问题广告主要表现
在该段时间内,三大网站中存在问题的4个药品广告中,均为一个广告《打呼噜――当晚止鼾》在不同时段在不同的网站中投放。该广告存在诸多问题。首先,该广告含有不科学地表示功效的断言和保证,在广告中提到“当晚止鼾,一个月呼吸顺畅,二个月睡眠质量提高,三个月告别打呼噜”;电子生物『止鼾器治疗打呼噜,不手术、不吃药,不用电,纯物理疗法,安全可靠,被誉为“绿色疗法”;“安全无毒,对身体没有任何影响;舒适耐用”等等。其次,利用他人名义、形象作证明。“他人”具体是指:医药科研、学术机构,专家、医生、患者或者用户。在该广告中,有利用具体的患者照片以及一些具体患者做广告宣传,“上海的刘芳32岁,是一个患者的妻子……江苏的老人陈老板自述……”这些都是利用具体的患者或者用户的名义做广告宣传。再次,含有“最新技术”、“最先进制法”等绝对化用语和表示。在该广告中,多次提到“采用国际医学界推崇的绿色物理疗法”、“为国际第一个戴在手腕上的止鼾产品,美国原装产品,畅销欧美20年,2010年由北京盛大电子科技有限公司引进中国大陆”等等。
三、解决网络广告问题的对策
一般来说,只要是广告,就要遵守《广告法》,但有关在网络媒体上广告,《广告法》中未提及。对于管理部门而言,出来规定网络公司承接广告业务必须对其经营范围进行变更登记外,如何界定网络广告经营资格,检测和打击虚假违法广告,取证违法事实,规范通过电子邮件发送的商业信息,对域外网络广告行使管辖权等一系列新的课题,都尚待探讨。因此,针对以上网络中的特殊商品广告违法行为,笔者认为应该采取以下对策:(1)网络经营者,网络广告者要牢固树立为人民服务、为社会主义事业服务的宣传宗旨,加强行业自律和职业道德修养,在思想上筑起防范不良广告的“大堤”。网络广告相关从业人员需要认真学习广告法规,特别是特殊商品、服务广告标准,对于违反广告法规的广告应该予以拒绝,净化传播广告的空间,给消费者提供一个良好的信息平台。(2)对于违反广告法规的广告,在追寻广告商责任的同时,应对该网站实施一定的惩罚。网站特别是大型的有一定影响力的网站作为广告的载体,有责任正规广告,为消费者提供真实、准确的信息。对于违法广告的网站,相关部门应该追究其责任,并进行经济处罚。(3)普通消费者应该了解基本的广告法规内容,从而判断简单的广告信息真伪,了解该广告是否合法。普通消费者学习广告法规,能够提高他们的基本素质,帮助消费者辨别广告的真伪,帮助选择信息,从而保护自己的合法权利。
参考文献:
[1]吕蓉.广告法规管理[M].上海:复旦大学出版,2003,9
[2]刘林清.广告监督与自律[M].湖南:中南大学出版社,2003,7
[3]倪宁.广告学教程[M].北京:中国人民大学出版社,2004,8
[4]刘敏.强化媒体治理虚假广告的责任意识[J].现代广告,2010,3
[5]曾红宇,张波.报纸特殊商品的违法违章广告探析[J].湖南大众传媒职业技术学院学报,2011,1
关键词:安全隐患管理;安全隐患定级;风险管理;风险评估;资产全寿命周期 文献标识码:A
中图分类号:F276 文章编号:1009-2374(2017)02-0186-03 DOI:10.13535/ki.11-4406/n.2017.02.090
现代科学技术和工业生产的迅猛发展,一方面繁荣了经济和人们的生活;另一方面现代化大生产隐藏了众多的潜在危险。就电力系统而言,电力网络不断扩展,网络构成及网络控制更加复杂,自动化程度不断提高,高电压、大电流、长距离输电使电网稳定问题愈加突出。现代化的工业和人民生活对电的依赖程度越来越高,对电力可靠性和电压质量的要求不断提高,对电力设备的安全隐患排查工作的要求也越来越高。
国内电力企业经过多年的发展和总结,已逐渐拥有完善的安全隐患排查治理方式。但是基层工作人员在进行隐患排查时或是根据主观经验判断或是依照范例进行对比,各种方法均存在一定的局限性,无法将隐患的严重程度量化。本文主要是借鉴基于资产全寿命周期的风险评估法,对事件发生可能性和影响程度进行量化分析,以定量方法确定安全隐患分级,可以更准确地反映安全隐患的严重情况。
1 安全隐患概述
1.1 安全隐患定义与分级
安全隐患具体指安全风险程度较高,可能导致事故发生的作I场所、设备设施、电网运行的不安全状态、人的不安全行为和安全管理方面的缺失。
根据可能造成事故后果的影响程度,目前电力企业安全隐患分为Ⅰ级重大事故隐患、Ⅱ级重大事故隐患、一般事故隐患和安全事件隐患四个等级。其中,Ⅰ级重大事故隐患和Ⅱ级重大事故隐患合称为重大事故隐患。
1.2 安全隐患定级方法
1.2.1 主观判断法。主观判断法是指工作人员在汇总现场情况后,征询有关专家(一般是基层骨干)的意见,对意见进行统计、处理、分析和归纳,客观地综合多数专家经验与主观判断,做出合理估算,经过反馈和调整后,对安全隐患进行定级的方法。主观判断法的优点是方法简便易行,定级较快。
但是,由于缺乏统一的“隐患标准”,基层工作人员在隐患判断、认定、分级等具体工作中,往往只能依据自身专业知识进行主观判断,宽严程度随人、随单位而变,造成安全隐患定性不准、分级不当、判定标准不一致、隐患信息不翔实等问题。
1.2.2 范例辨识法。范例辨识法是指工作人员参照安全生产事故隐患范例,依据其中编制在列已确定的安全隐患,对比实例、分类样本、描述、文字说明等形式的表述,在实际工作中排查认定安全隐患。
这种方法有效提高了相关工作人员,特别是一线员工和管理人员排查发现安全隐患、给隐患分级分类的准确性,切实促进了隐患排查治理工作的开展,范例辨识法本质上仍属于一种定性方法。
1.3 借鉴资产全寿命风险管理思路辅助定级
上述定性方法面临的主要问题是,电力企业基层人员对隐患排查治理工作的认知程度有限、生产系统已有设备缺陷管理流程和隐患排查治理流程之间存在差别,所以无论是主观判断法还是范例辨识法均存在一定局限性。我们可以借鉴资产全寿命周期风险管理的思路,采用一种定量方法来辅助安全隐患定级。安全隐患具有安全风险程度较高的特征,因此就可以采用量化风险的基本思路,用资产全寿命周期的风险评估法为安全隐患定级。风险评估法较上述方法,主要在于合理考虑事件发生可能性,同时扩展事件影响程度的维度。
2 基于资产全寿命周期的风险评估方法
2.1 基于资产全寿命周期风险评估方法
按照风险评估标准,采取既定的评估方法,从风险发生的可能性与风险影响程度两个方面进行量化,综合评定风险值和风险等级:
风险(Risk)=风险发生的可能性(P)×风险影响程度(F)
式中:R为风险值;P为风险发生的可能性;F为风险影响程度。
2.2 定量计算风险
在风险评估过程中,各专业也可根据自身的专业特点对风险评估标准进行适当调整,选择不同的维度或者增加风险评估模型进行识别和评估,但不同评估标准对风险等级的划分应保持一致。本文将以全面风险评价为主要模型工具。
2.2.1 风险发生的可能性P。风险发生的可能性分为五个级别,分别是极低、低、中等、高、极高。对应业务发生频率为:可能每5年以上发生该类风险(概率极低);可能每1~5年发生该类风险(概率低);可能每年发生该类风险(概率中等);可能每半年发生该类风险(概率高);可能每月发生该类风险(概率极高)。以上依次对应1~5分。
2.2.2 风险影响程度F。风险影响程度从电网安全、人员伤亡、社会形象、直接经济损失四个维度分析确定,选取四个因素的最高值作为损失度。每个维度的风险影响程度分为五个级别,并依次对应1~5分。该五个级别的取值参照《资产全寿命风险评估模型》所定义的取值范围,结合公司对人身伤亡事故、经济损失的承受能力调整后确定。
即:
F=Fmax=Max(F1,F2,F3,F4)
电网和设备安全。将电网安全风险损失度分为五个级别,分别是较小、一般、较大、重大、严重。具体内容执行国家相关标准法规所定级别划分标准,对应影响程度分别为《国家电网公司安全事故调查规程》中定义的七级至一级电网和设备事件;人员伤亡。将人员伤亡风险损失度分为五个级别,分别是较小、一般、较大、重大、严重。对应影响程度为人员从轻伤至一至四级人身伤亡事故。
社会影响。将社会形象风险损失度分为五个级别,分别为较小、一般、较大、重大、严重。对应影响程度为在县域至国际范围不等;直接经济损失。将直接经济损失风险损失度分为五个级别,分别为较小、一般、较大、重大、严重。对应影响程度为1000万元至数亿元不等。
2.3 确定风险等级
2.3.1 一般风险。风险发生的可能性较低或风险发生后对公司的综合损失度较小的风险(1≤风险值≤4)。
2.3.2 中等风险。介于一般风险与重大风险之间的风险(4
2.3.3 重大风险。风险发生的可能性较高,且发生后对公司的综合损失度较大的风险(9
Y轴:P(可能性)
X轴:F(影响程度)
图1 风险评估矩阵
例如:上图中A点风险值为2,属于一般风险;B和C点风险值都为12,属于重大风险。
2.4 安全隐患与风险分级对应
3 基于资产全寿命的风险评估
以下实例选自某电力企业安全隐患管理平台,将对采用风险评估法定级的结果与传统定级方法的结果做出比较。
3.1 实例简介
某电力公司2014年7月15日检修公司500kV XXXX5322线#45-#47杆塔(15米)100MW光伏项目施工隐患。500kV XXXX5322线#45-#47杆塔(15米)100MW光伏项目施工中,大型作业机具距离带电导线较近,现场作业人员较多,且该隐患可能一定时期内较长时间存在,易造成安全距离不够导致线路故障跳闸和人员群体伤亡事故发生。
3.2 传统评估分级
可能导致后果:依据国家电网公司《安全事故调查规程》2.2.7.1条,35千伏以上输变电设备异常运行或被迫停运,并造成减供负荷者,构成七级电网事件。如果造成人员伤亡依据不同的人数构成不同等级的人身事故。
采用范例辨识法,查询“输电专业”“违章施工”相关条目,条目描述“线路保护区内起重作业,不能保证安全距离:220kV ××线#36~#37,110kV ××线#29~#30塔间通过××钢材市场,导线最低点离地仅15米,钢材市场起吊作业频繁,易造成线路跳闸和人员触电事故”,属于“一般隐患”。
3.3 采用基于资产全寿命的风险评估分级
计算风险值:
P取值4――公司可能每半年发生该类风险(概率低)
F1取值1――符合《国家电网公司安全事故调查规程》的七级及以下级电网事件(风险损失度较小)
F2取值4――3人及以上10人以下死亡或者10人及以上50人以下重伤(风险损失度较大)
F3取值2――在地市范围内受到影响,但该影响需要一定时间、付出一定代价消除(风险损失度一般)
F4取值1――100万元以下(风险损失度较小)
F=Fmax=Max(F1,F2,F3,F4)=Max(1,4,2,1)=4
R=P*F=4*4=16
确定风险等级和隐患分级:风险值为16,介于(9,25),根据附表的划分等级属于重大风险。
3.4 比较和结论
风险评估得出的安全隐患分级和原系统录入时评估的等级不一致,原因是本次事件评估人员未充分考虑事件发生可能性较高、长期存在且现场人员多等因素。同时,本事件可能引起较严重的人身伤亡事故,须引起充分重视,评估人员低估了其影响程度。
4 结语
电力企业安全隐患分级工作,是[患排查治理的基础。安全隐患分级工作,目前普遍采用的主观判断法和范例辨识法,经过不断改良和完善,已经可以较大满足实际工作需要。采用基于资产全寿命的风险评估法,对事件发生可能性和影响程度进行量化分析,定性结合定量能更有效核证,可以更准确地反映实际情况。基于资产全寿命周期的风险评估法,将能重点应用于需要特别关注的、可能成为工作焦点的一些隐患的管理,可以更加准确、科学地对隐患进行定义和定级。
采用基于资产全寿命周期的风险评估法虽然能通过定量计算的方法对安全隐患辅助定级,但仍需注意其局限性:(1)虽然基于资产全寿命周期的风险评估法适用面较广,但由于风险评估所采用的取值范围的局限性和通用性,其评估结果有时不能准确反映出管理者期待的个性化结果,宏观的变量取值可能难以反映微观的事件本质,即客观性和主观性不能完全统一,有时应根据企业承受风险能力和实际情况对理论取值进行调整;(2)基于资产全寿命周期的风险评估法在实际使用过程中工作量较大,无法完全替代现有定级方法,其应用范围受到一定的限制,所以应筛选出有上述特定隐患或存在争议的实例加以运用。
相信在今后电力企业安全隐患分级工作不断总结经验的基础上,基于资产全寿命周期的风险评估法会得到进一步完善,更能确切的指导隐患排查治理工作的全面有效开展。
参考文献
[1] 国家电网公司.国家电网公司安全事故调查规程(国家电网安监[2011]2024号)[S].2011.
[2] 国家电网公司.国家电网公司安全生产事故隐患范例(一)(国家电网安监[2010]68号)[S].2010.
【关键词】承压类特种设备 发展趋势 风险分级评价
承压类特种设备主要是指那些能够对人们的生命安全产生巨大危害性的大型承压设备,如危害较大的大型锅炉和众多的压力容器以及重大的压力管道等设施和设备。现今随着我国工业化进程的不断发展,承压类特种设备的应用逐渐增加,尤其是在工业和各项建设都比较发达的大型城市中分布更加的广泛。在2011年的全国特种设备的安全运行的相关报告中,指出,目前我国的承压类锅炉的用量已经达到62.03万台,相关的压力容器也达到了251.54万台,在夜里容器之中不包括压力气瓶,而压力气瓶的用量也达到13563.64万只。同样的大型的压力管道的建设里程也达到83.68万千米。从这些数据中可以看出我国的承压类特种设备的应用已经非常广泛,所以在事故安全的保障上必须得到相关部门的突出重视。同时数据还显示,这些承压类特种设备事故发生的频率在使用环节达到79.62%;在装载环节为6.64%;安装环节为6.16%;改造环节为7.11%;检验环节为0.47%。所以需要运用风险分级评价方法,来抑制事故的发生[1]。
1 承压类特种设备的发展趋势
1.1 石油化工的承压装置的发展趋势
国家经济的不断发展,促使社会对石油化工的产品需求量日益增加,从而使我国的石油化工产品的生产,向更加规模化和大型化的方向发展。在我国大型的石油化工集团(中石化、中海油、中石油)虽然资产已经上万亿元,并且在各个区域也形成了石油化工产业区域竞争的形式,但是为了满足社会不断增长的石油化工需求,弥补我国加入世贸后的国际竞争压力就必须将石油化工的生产向更加规模化的方向经营,所以在石油化工中主要应用的承压类特种设备也相应的面临这停产改革的趋势。所以促使着承压类特种装置向更加规模化和高参数以及长周期的方向发展。如乙烯单套装置,从最初的只能生产几万吨,到现在的生产量能达到近百万吨。
1.2 电站锅炉和工业锅炉的发展趋势
锅炉是我国电站中重要的装置之一,建国之初我国的电站锅炉建设主要依赖别国的技术,如前苏联、波兰等。那是温度只为450℃,后来有了自主研发能力后达到540℃。随着各项技术的不断发展,电站以煤燃料的发电方式成为了我国发电厂的主要动力来源,所以电力锅炉逐渐向超临界的清洁煤技术方向发展。近几年我国正在积极的发展循环式流化床锅炉的发电技术。将推动我国电力锅炉向更加现代化发展。而工业化锅炉在我国制造业中已经有了一定的规模,但是随着工业化进程的加快,工业锅炉将向更加大型化和高效率化以及低排放量的方向发展。
1.3 城市加压管道的发展趋势
在城市化进程的不断推动中,城市各项加压管道相继的建设起来,主要有城市的燃气系统是城市中加压管道的重要组成部分,如加气站建设、调压装置、输配管网等。先进城市燃气系统正在向天然气这种清洁能源发展,所以对清洁能源的应用将更加普遍。
2 承压类特种设备典型事故现实风险分级评价方法
承压类特种设备的事故风险分级评价方法,主要是依据事故发生的时间、位置和类型等具有不同性,在各个环节中都有可能发生事故,所以运用这种评价的方法是承压类特种设备的风险管理的核心内容。在承压类特种设备的典型事故类型中分为固有风险和现实风险,现实风险中包括固有风险的因素和现实风险的因素,是反映的事故在特定的时间、地点、环境等动态的风险类型。所以我们主要探讨事故的现实风险类型。
2.1 承压类特种设备的事故的分级模型
探究承压类特种事故的分级评价方法,需要根据有效预防事故发生的角度出发,根据事故的3E理论,包括技术、教育和管理,以及保证设备安全的重要保障系统4M,包括工作人员、机械设备、环境因素、风险管理,从而确定承压类特种设备可能发生的事故的概率以及事故发生后的影响程度。来确定承压类特种设备的事故分级模型。这种模型的方式主要是从事故的风险角度考虑,考虑设备在使用中的动态状况和现实风险发生的相对频率。运用风险矩阵的模型以及风险的数学函数来确定承压类特种设备的事故分级模型。具体的模型构成和类型如图1 所示。
图1 承压类特种设备风险定性的分级模型
2.2 典型事故现实风险分级评价方法
我们可以根据以定的风险定性的分级模型来来计算现实风险中的风险指数,运用风险指数的分级评价方法,是承压类特种设备的风险分级评价方法的主要依据,具体的风险综合指数如下所示:
在此公式中,R主要是指现实风险中的指数,其它的依次为评价指标的权重以及评价指标的得分,n则为评价指标的数量。我们可以根据风险评价的综合指数来对承压类特种设备的事故现实风险进行分级评价,从而有效的对设备在运行中发生事故进行风险的分级管理和控制。从指数函数中我们可以总结出当R的值非常大时,则说明所评价的承压类特种设备在测评的时间内相对发生的风险频率较大,同样的当R值出于小值时,就说明该设备在评定的时间内所发生的风险频率较小,从而有效的测定承压类特种设备的典型事故风险发生的时间和环境和类型。通过分级评价的方法我们可以根据检测的数据来划分风险的等级并相应的提出风险的控制策略,具体的如图2所示[2]。
图2 风险等级的划分及控制策略
2.3 特种设备的事故现实风险分级评价以锅炉为例
承压类特种设备在我国应用最为广泛的就是锅炉设备,所以我们主要以锅炉为例,来具体的运用分级评价的方法:(1)首先要确定锅炉风险的评价指标,具体的根据锅炉的额定功率,以及相关的能源种类,考虑人员管理方面以及司炉人员的持证时间等因素对锅炉风险发生的影响来确定锅炉的风险评价指标。(2)根据锅炉的风险可能性影响因素矩阵模型,包括技术因素、管理因素以及使用运行因素和后果影响因素等的矩阵模型来确定锅炉风险评价指标的权重。(3)以承压类特种设备的分级风险定性模型为基础来确定锅炉的风险分级模型,然后通过该模型可以准确的收集锅炉风险指标的数据信息,从而有效的确定锅炉的风险值,从而在风险存在的各个方面加以控制和管理。保证锅炉运行的安全[3]。
3 结语
我国工业化进程的不断深化,促使了承压类特种设备的应用将向更加广泛的方向发展,有效的保证承压类特种设备的安全,不仅可以保障人民的财产和生命的安全,同时还有利于整个城市的建设发展,所以就必须对会发生大型事故和危害的特种设备进行有效的风险评价,从而找出风险的存在类型,对事故发生的风险进行有效的管理和控制。
参考文献:
[1] 王新杰,罗云,何毅 等.承压类特种设备使用过程风险分级方法研究[J].工业安全与环保,2014(4):52-55,59.
[2] 杨景标,郑炯,李绪丰等.承压类特种设备系统性风险研究[J].中国安全生产科学技术,2012(8):41-46.
关键词:城市区域 火灾风险 评估
一、火灾风险评估的概念
过去,人们往往依靠经验和直观推断来做出决策。随着计算机容量不断扩大和模块技术的发展,风险评估(risk assessment)和风险管理(risk management)技术作为复杂或重大事项决策的必要辅助手段,在过去的二、三十年间,在决策分析、管理科学、运营研究和系统安全等领域得到了广泛的认知和应用[1]。
通常认为风险(risk)的定义为:能够对研究对象产生影响的事件发生的机会,它通过后果和可能性这两个方面来具体体现。风险概念中包括三个因素:对可能发生的事件的认知;该事件发生的可能性;发生的后果[2]。因而,火灾风险(fire risk)包含火灾危险性(发生火灾的可能性)和火灾危害性(一旦发生火灾可能造成的后果)双重含义[3]。
现在,在文献中可以看到的与“火灾风险评估”相关的术语有fire risk analysis, fire risk estimation, fire risk evaluation, fire risk assessment等,但基本上火灾风险评估都是指:在火灾风险分析的基础上对火灾风险进行估算,通过对所选择的风险抵御措施进行评估,把所收集和估算的数据转化为准确的结论的过程。火灾风险评估与火灾模拟、火灾风险管理和消防工程之间有密切关系,为其提供定性和定量的分析方法,简单地如消防安全设施检查表,复杂的就会涉及到概率分析,在应用方面针对的风险目标的性质和分析人员的经验有各种变化[4]。
较多的人倾向于从工程角度来定义火灾危害性(fire hazard)和火灾风险(fire risk)。火灾危害性指:凡是根据已有的资料认为能引起火灾或爆炸,或是能为火灾的强度增大或蔓延持续提供燃料,即对人员或财产安全造成威胁的任何情况、工艺过程、材料或形势。火灾危害性分析在不同的情况下有不同的针对性,目的是确定在一定的条件下有可能发生的可预见性后果。这种设定的条件称为火灾场景,包括建筑物中房间的布局、建材、装修材料及家具、居住者的特征等与相关后果有关的各种具体信息。目前在确定后果方面的趋势是尽可能地利用各种火灾模式,辅以专家判断。此时,危害性分析可以看作是风险评估的一个构成元素,即风险评估是对危害发生的可能性进行权衡的一系列危害性分析。
从系统分析的角度来看,风险具有系统特性和动态特性。风险实际上并非某一单一实体或事物的固有特性,而是属于一个系统的特性。若系统发生变化,很容易就会使事先对风险所做的估算随之发生变化。火灾风险评估模式包括:系统认定,即明确所要评估的具体系统并定义出风险抵御措施的过程;风险估算,即设定关于火灾的发生几率和严重后果及其伴随的不确定性的衡量标准或尺度,计算和量化系统中的指标的过程;风险评估,对该标准或尺度进行分析和估算,确定某一特定风险值的重要性或某一特定风险发生变化的权重[5]。
二、城市区域火灾风险评估的意义及发展概况
在消防方面,随着人们安全意识的提高和建筑设计性能化的发展,对建筑工程的安全评估日益受到重视,比如美国消防协会制定的“NFPA101生命安全法规”是一部关注火灾中的人员安全的消防法规,与之同源的“NFPA101A确保生命安全的选择性方法指南”,分别针对医护场所、监禁场所、办公场所等,给出了一系列安全评估方法,多应用于建筑工程的安全性评估方面[6]。
目前,我国在火灾风险评价方面的研究,大部分是以某一企业,或某一特定建筑物为对象的小系统。例如,由武警学院承担的国家“九五”科技攻关项目“石化企业消防安全评价方法及软件开发研究”,以“石油化工企业防火设计规范”等消防规范和德尔菲专家调查法为基础,设计了石化企业消防安全评价的指标体系,利用层次分析法和道化指数法确定了各指标的权重,采用线性加权模型得出炼油厂的消防安全评价结果[7]。以某一特定建筑物为对象的火灾风险评价也比较多,如中国矿业大学周心权教授,在分析建筑火灾发生原因的基础上,建立了建筑火灾风险评估因素集,并运用模糊评价法对我国的高层民用建筑进行了消防安全评价[8]。
与上述的安全评估不同,城市区域的火灾风险评估的目的是根据不同的火灾风险级别,配置消防救援力量,指导城市消防系统改造,指导城市消防规划。对已建成的城市区域的火灾风险评估必须考虑许多因素,即城市火灾危险性评价指标体系,包括区域内所存在的对生命安全造成危险的情况、火灾频率、气候条件、人口统计等因素,进而评价社区的消防部署和消防能力等抵御风险的因素。除此之外,在评估过程中另一个重要的情况是要关注社区从财政及其他方面为消防规划中所要求的总体消防水平提供支持的能力和意愿。随着城市规模扩大、综合功能增强,在居住区商贸中心、医院、学校、和护理场所增多,评估方法还会相应的改变。现有的城市区域火灾风险评估方法主要出于以下两个目的:
(一)用于保险目的
在火灾保险方面的应用的典型事例为美国保险管理处ISO(Insurance Services Office, ISO)的城市火灾分级法,在美国已经被视为指导社区政府部门对其火灾抵御能力和实际情况进行分类和自我评估的良好方法。ISO方法把社区消防状况分为10个等级,10级最差,1级最好。
ISO是按照一套统一的指标来对每个社区的客观存在的灭火能力进行评估,确定该社区的公共消防级别,这套指标来自于由美国消防协会和美国自来水公司协会所制定的各种国家规范。ISO对城市消防的分级方法主要体现在它的“市政消防分级表(Commercial Fire Rating Schedule, CFRS)”上。CFRS把建筑结构、用途、防火间距与公共消防情况(用公共消防分级数目表达)相关联,再以统计数据加以调节后,来确定相应的火险费用。ISO级别仅被保险公司用作确定火险费用的一个成分。ISO分级系统虽然无法反映出消防组织的其他应急救援能力,但实际上也常用于各个区域的公共灭火力量的确定。
市政消防分级表从1974年开始使用,主要考察某城市区域的7个指标情况:供水、消防队、火灾报警、建筑法规、电气法规、消防法规、气候条件。随着技术进步,该表也不断改进。1980年版抽取了CFRS中对公共消防分级的方法,给出了修订后的灭火力量等级表,指标只包括前3项。被删除的指标或者确少区分度,或者在全市范围内进行评估时太过于主观,而且74表格中包含许多评估标准是具体的规定,如果某一社区的情况没有满足这些规定,则归属为差额分,规定降低了表格可使用的弹性范围,无法正确评估情况和技术的变化。故而ISO分级表被视为越来越“性能化”[9]。
(二)用于消防力量的部署
当今的消防组织和地方政府要担负日益加重的安全责任,面对来自公众的对抵御各种风险的更多的期望,以及调整消防机构人员、设备及其他预算方面的压力,迫切需要确认某一给定辖区内的具体风险和危险的等级。
【关键词】安全生产;安全生产控制指标;标准初始风险等级;分级风险动态评估;风险动态控制
随着我国经济的快速发展,企业事故总量依然很大,生产安全形势依然十分严峻。随着企业生产任务的加重,安全生产同样面临巨大挑战。企业安全管理模式经历了事故管理模式、缺陷管理模式、风险管理模式三个阶段。企业有效开展安全生产风险管理,能够促进决策的科学化、合理化,减少决策失误的风险,能为企业提供安全的经营环境,保障企业经营目标的顺利实现,促进企业经营效益的提高。探索性地恰当运用风险管理的理论与方法,已成为关注的一个热点,其对提升企业管理水平、加强安全保障、创造更好的经济社会效益具有十分重要的意义。
1安全生产风险管理
安全生产风险是指在生产过程中可能出现的与劳动作业息息相关的,不以人的意志为转移的,突然发生的,可能对员工的人身造成伤害、对设备造成损坏或对环境造成污染的因素[1]。企业在生产作业过程中面临着许多安全生产风险,这些风险可能来自日常的生产活动,也可能来自突发的环境变化,这些风险都有可能危害到员工的人身安全、设备及财产的完好,甚至会影响到企业、国家的利益。因此,安全生产风险管理成为了企业实施预防为主的重要手段之一。风险管理是以静态风险和动态风险为对象的全面风险管理[2]。而实际生产过程中,风险管理具有生命周期性,在实施过程的每一阶段,均应进行风险管理,并根据风险变化状况及时调险应对策略,实现全生命周期、全过程的动态风险管理。
2风险动态管理
目前,国内企业大多采用“自上而下”的安全监管工作模式,但在这样的模式中,企业的少数监管人员难以切实有效的管理好多数的员工,因此采用“由下至上”的风险动态评估思想,从根本上转变企业现行的被动式的“从上而下”的安全监管工作模式。在风险动态评估过程中,引入了“标准初始风险等级”概念,即假设人的行为良好和作业环境改善后的安全状态(可认为仅指设备设施的安全状态)。运用风险矩阵法评估确定最基层辨识点标准初始风险等级,在此基础上,逐级确定企业各班组、各工段、各车间,直至整个企业的标准初始风险等级。同时,将目前企业实行的“自上而下”、相对静态的安全生产控制指标量化和考核制度相结合,形成了上下联动、动静结合的分级动态评估及控管网络。通过以上所述的风险动态管理过程,各级组织管理层都能清楚掌握本级风险发生变化是由下级的某个或某几个基层辨识点风险变化造成的,为其安全监管提供最有效的基层动态监控数据;同时,也让基层作业人员清楚了解自身处于何种风险状态,强化其风险意识和认知。风险动态管理主要包括风险动态分析、风险动态评估和风险动态控制三个过程,企业进行动态风险管理的流程。
3风险动态分析
风险辨识的目的是确定危险的种类和危险的来源,是风险分析和风险评估的主要依据,更是风险管理成败的基础,如果风险辨识不全面不细致,风险管理就会留下死角,而这些风险管理上的盲点必将导致风险管理的失败。根据事故致因基本理论,企业根据人因失误的危险、设备的危险、物质的危险、环境的危险和管理的危险五个方面对企业历年事故进行事故致因因素辨识与分析,在此基础上,通过踏勘分析、滚动修改完善的形式,设计出人、机、物、环、管等五个事故致因因素的信息采集项目[3],科学制定切合企业自身特点的辨识点风险动态分析表。同时,采用风险矩阵法评估确定各辨识点的风险等级[4-5],不同企业可根据自身情况划分不同的风险等级,例如将风险等级划分为三级,即高风险、中风险、低风险。
险动态评估
4.1建立分级风险动态评估模型
由于客观情况是在不断的变化,风险的性质和情况也会随之变化[1],因此在充分认识和了解研究对象具体情况的基础上,在不同条件下,选定最佳的管理技术和方法,并在运用过程中,根据具体情况定期或不定期地进行评估,以达到预期的风险管理目标效果。按照辨识点、班组、工段、车间、企业五个级别搭建风险评估体系,即由最基层辨识点风险开始,逐级构建不同的评估模型和计算方法,推进风险管理进班组到岗位。不同企业的组织结构分级情况及生产实际情况有所不同,因此,科学且切合实际的分级风险动态评估模型建立如下:设Ri为各级风险值(i=1代表班组级,i=2代表工段级,i=3代表专业厂级,i=4代表公司级,下同),Xi为各级总辨识点中上升为中风险的辨识点数量(且仅为导致人员轻伤而非物损坏的辨识点)(Xi=Ni-Mi),Yi为各级总辨识点中上升为高风险的辨识点数量,Z剩i为各级分阶段剩余指标数Z剩i=Z0i-Z'i(其中Z0i为分阶段总指标数,Z'i为前期累积已发生指标数),Mi为各级标准初始风险等级的中风险点数量(与企业阶段性计划整改相关联),Ni为各级阶段风险状态的中风险点数量。(1)在实际运用时,应从下至上逐级求得各级风险动态值,并将已评估出的下一级的风险值作为评估上一级整体风险时的一个辨识点,例如由班组中各岗位辨识点风险值求得班组整体风险,又由工段中各班组风险值求得工段整体风险(即评估班组时辨识点为各岗位,评估工段时辨识点为各班组),以此类推,最终得出企业整体安全生产风险动态值。(2)当Xi<0,即通过相应整改,各级别中某些风险点的风险级别下降。(3)当Z'i>Z0i时,应对Z0i指标进行修正,修正后的指标为Z'oi,则:本级修正:Z0i<Z'i≤Z总i,则Z'oi=Z总i-Z'i,此修正为必须修正;上级修正:Z'i>Z总i,可向上级申请机动指标。
4.2确定各级标准初始风险等级
根据第3节中的辨识点风险动态分析表,在假设人的不安全行为处于良好状态的前提下,结合设备设施安全状态、作业环境可改善后的安全状态,确定辨识点、班组、工段、车间、企业的标准初始风险等级,以此为标准,通过建立的模型可动态监测到风险的偏离。在确定标准初始风险等级时,采用了关联及组合风险评价方法。风险等级相同:如有关联或组合的若干个风险因素的风险等级相同,则最终的风险等级为该相同的风险等级;风险等级不同:如有关联或组合的若干个风险因素的风险等级不同,则最终的风险等级取单一风险中风险等级最高的。如有必要,还应再升高一级。若按照以上两种情况确定的风险等级仍然不能完全体现出该风险整体的严重程度,仍可继续升级风险等级[6-7]。
4.3分解各级阶段性安全生产控制指标
安全生产控制指标,是对安全生产情况实行定量控制和考核的有效手段[8]。在企业的年总安全生产控制指标数的基础上,提出了本级阶段性安全生产控制指标(Z0i),即根据本级生产饱和度(如安全生产工作目标、生产任务、季节特点等),同时结合历年安全生产事故发生规律统计分析,按时间(月份或季度)分阶段分解年总安全生产控制指标的指标,如图2。通过阶段性安全生产控制指标,建立了纵向到底、横向到边的安全管理网络。在标准初始风险等级结合作业层实际情况的同时,阶段性安全生产控制指标则结合了管理层的实际情况,使最后建立的分级风险动态评估模型具有实际的指导意义。
4.4评估各级动态风险等级
在确定各级标准初始风险等级和分解各级阶段性安全生产控制指标的基础上,再次运用辨识点风险动态分析表对最基层的各风险辨识点的风险等级进行动态评估,得出各风险辨识点的动态风险等级,然后,根据4.1中的分级风险动态评估模型进行逐级的动态评估,从而得出各级的动态风险等级。
5风险动态控制
通过逐级、动态的风险评估,企业将得到不同时间段各级的风险状态:高风险、中风险、低风险。企业可根据不同的风险等级编制不同等级的风险控制实施方案。通过辨识点风险动态分析表和风险控制实施方案,企业各级管理人员不仅能够清楚风险状态及风险具体存在的地方,同时也能明确应采取的针对性措施,从而进行有效的风险动态控制,从而提高了企业各级的风险控制水平,且使各项风险控制措施得到有效落实。
6实例分析
基于某生产企业真实背景开展了安全生产风险动态管理研究。针对每个评估对象的特点,采用现场观察、询问、交谈、查阅有关记录、工作任务分析等方法,通过踏勘分析、滚动修改完善的形式,设计了人、机(物)、环、管等事故致因因素的信息采集项目,分别从如何正确选择工器具、合理选择作业方法、确定现场安全防控重点等方面提供了信息,并辨识出其生产过程中实际和潜在的危险源,共22个风险辨识点,通过一线人员工作经验和风险矩阵法,对风险发生的可能性、风险发生的后果以及风险等级进行了初步判定。结合每个风险辨识点初步判定风险状态,根据关联及组合风险评价方法,综合判定该企业的标准初始风险等级为中风险。通过统计该企业往年安全生产事故情况,分析出该企业易发生安全生产事故时段为5~8月和10~11月两个时间段。根据该企业已确定的年总安全生产控制指标情况(4个轻伤),结合该企业生产任务实际情况以及易发生安全生产事故时段,确定该企业分阶段安全生产控制指标。再次通过辨识点风险动态分析表分析,对最基层的各风险辨识点的风险等级进行动态评估。
经过为期一个月的生产运行后,该企业共有2个下降为低风险的辨识点,4个上升为中风险的辨识点,没有上升为高风险的辨识点。结合对应的分阶段安全生产控制指标,将动态风险等级和标准初始风险等级相对比,按照分级风险动态评估模型计算得出:Y=0且0<X<Z因此,该企业在该阶段的风险等级为:中风险。此时,企业应综合考虑生产任务和管理等因素,调动相关专业人员进行致因因素排查和整改,在可以采取相应措施降低风险的情况下,立即与一线工作人员协商积极、迅速展开措施使之降低或恢复初始风险状态;如不能有效降低风险,开风险控制小组会议,提出强化的管理措施,达到风险动态控制的目的。
7结论
根据风险管理基本理论,紧密结合企业实际生产及管理情况,运用定量与定性相结合的方法,最终建立了科学且具有可操作性的分级风险动态评估模型。通过风险管理全过程,企业根据自身的组织结构和各级风险等级,采取风险控制实施方案进行分级控制,提高整个企业的风险警惕敏感性,并使得安全生产目标分解,各级安全责任分明,实现了企业的整体风险控制,有效减少了企业事故发生数量,减小了企业和社会的损失。
参考文献
[1]陈少荣.安全生产风险管理与控制[M].北京:化学工业出版社,2013
[2]罗云,樊运晓,马晓春.风险分析与安全评价(第二版)[M].北京:化学工业出版社,2013
[3]孙华山.安全生产风险管理[M].北京:化学工业出版社,2012
[4]李树清,颜智,段瑜.风险矩阵法在危险有害因素分级中的应用[J].中国安全科学学报,2010,4(20):83-87
[5]党兴华,黄正超,赵巧艳.基于风险矩阵的风险投资项目风险评估[J].科技进步与对策,2006,(1):140-143
[6]何学秋,林柏泉,田水承,等.安全工程学[M].徐州:中国矿业大学出版社,2000
[7]隋鹏程,陈宝智,隋旭.安全原理[M].北京:化学工业出版社,2005
关键词:城市区域火灾风险评估
一、火灾风险评估的概念
过去,人们往往依靠经验和直观推断来做出决策。随着计算机容量不断扩大和模块技术的发展,风险评估(riskassessment)和风险管理(riskmanagement)技术作为复杂或重大事项决策的必要辅助手段,在过去的二、三十年间,在决策分析、管理科学、运营研究和系统安全等领域得到了广泛的认知和应用。
通常认为风险(risk)的定义为:能够对研究对象产生影响的事件发生的机会,它通过后果和可能性这两个方面来具体体现。风险概念中包括三个因素:对可能发生的事件的认知;该事件发生的可能性;发生的后果[2]。因而,火灾风险(firerisk)包含火灾危险性(发生火灾的可能性)和火灾危害性(一旦发生火灾可能造成的后果)双重含义。
现在,在文献中可以看到的与“火灾风险评估”相关的术语有fireriskanalysis,fireriskestimation,fireriskevaluation,fireriskassessment等,但基本上火灾风险评估都是指:在火灾风险分析的基础上对火灾风险进行估算,通过对所选择的风险抵御措施进行评估,把所收集和估算的数据转化为准确的结论的过程。火灾风险评估与火灾模拟、火灾风险管理和消防工程之间有密切关系,为其提供定性和定量的分析方法,简单地如消防安全设施检查表,复杂的就会涉及到概率分析,在应用方面针对的风险目标的性质和分析人员的经验有各种变化。较多的人倾向于从工程角度来定义火灾危害性(firehazard)和火灾风险(firerisk)。火灾危害性指:凡是根据已有的资料认为能引起火灾或爆炸,或是能为火灾的强度增大或蔓延持续提供燃料,即对人员或财产安全造成威胁的任何情况、工艺过程、材料或形势。火灾危害性分析在不同的情况下有不同的针对性,目的是确定在一定的条件下有可能发生的可预见性后果。这种设定的条件称为火灾场景,包括建筑物中房间的布局、建材、装修材料及家具、居住者的特征等与相关后果有关的各种具体信息。目前在确定后果方面的趋势是尽可能地利用各种火灾模式,辅以专家判断。此时,危害性分析可以看作是风险评估的一个构成元素,即风险评估是对危害发生的可能性进行权衡的一系列危害性分析。
从系统分析的角度来看,风险具有系统特性和动态特性。风险实际上并非某一单一实体或事物的固有特性,而是属于一个系统的特性。若系统发生变化,很容易就会使事先对风险所做的估算随之发生变化。火灾风险评估模式包括:系统认定,即明确所要评估的具体系统并定义出风险抵御措施的过程;风险估算,即设定关于火灾的发生几率和严重后果及其伴随的不确定性的衡量标准或尺度,计算和量化系统中的指标的过程;风险评估,对该标准或尺度进行分析和估算,确定某一特定风险值的重要性或某一特定风险发生变化的权重。
二、城市区域火灾风险评估的意义及发展概况
在消防方面,随着人们安全意识的提高和建筑设计性能化的发展,对建筑工程的安全评估日益受到重视,比如美国消防协会制定的“NFPA101生命安全法规”是一部关注火灾中的人员安全的消防法规,与之同源的“NFPA101A确保生命安全的选择性方法指南”,分别针对医护场所、监禁场所、办公场所等,给出了一系列安全评估方法,多应用于建筑工程的安全性评估方面。
目前,我国在火灾风险评价方面的研究,大部分是以某一企业,或某一特定建筑物为对象的小系统。例如,由武警学院承担的国家“九五”科技攻关项目“石化企业消防安全评价方法及软件开发研究”,以“石油化工企业防火设计规范”等消防规范和德尔菲专家调查法为基础,设计了石化企业消防安全评价的指标体系,利用层次分析法和道化指数法确定了各指标的权重,采用线性加权模型得出炼油厂的消防安全评价结果。以某一特定建筑物为对象的火灾风险评价也比较多,如中国矿业大学周心权教授,在分析建筑火灾发生原因的基础上,建立了建筑火灾风险评估因素集,并运用模糊评价法对我国的高层民用建筑进行了消防安全评价。与上述的安全评估不同,城市区域的火灾风险评估的目的是根据不同的火灾风险级别,配置消防救援力量,指导城市消防系统改造,指导城市消防规划。对已建成的城市区域的火灾风险评估必须考虑许多因素,即城市火灾危险性评价指标体系,包括区域内所存在的对生命安全造成危险的情况、火灾频率、气候条件、人口统计等因素,进而评价社区的消防部署和消防能力等抵御风险的因素。除此之外,在评估过程中另一个重要的情况是要关注社区从财政及其他方面为消防规划中所要求的总体消防水平提供支持的能力和意愿。随着城市规模扩大、综合功能增强,在居住区商贸中心、医院、学校、和护理场所增多,评估方法还会相应的改变。现有的城市区域火灾风险评估方法主要出于以下两个目的:
(一)用于保险目的
在火灾保险方面的应用的典型事例为美国保险管理处ISO(InsuranceServicesOffice,ISO)的城市火灾分级法,在美国已经被视为指导社区政府部门对其火灾抵御能力和实际情况进行分类和自我评估的良好方法。ISO方法把社区消防状况分为10个等级,10级最差,1级最好。ISO是按照一套统一的指标来对每个社区的客观存在的灭火能力进行评估,确定该社区的公共消防级别,这套指标来自于由美国消防协会和美国自来水公司协会所制定的各种国家规范。ISO对城市消防的分级方法主要体现在它的“市政消防分级表(CommercialFireRatingSchedule,CFRS)”上。CFRS把建筑结构、用途、防火间距与公共消防情况(用公共消防分级数目表达)相关联,再以统计数据加以调节后,来确定相应的火险费用。ISO级别仅被保险公司用作确定火险费用的一个成分。ISO分级系统虽然无法反映出消防组织的其他应急救援能力,但实际上也常用于各个区域的公共灭火力量的确定。市政消防分级表从1974年开始使用,主要考察某城市区域的7个指标情况:供水、消防队、火灾报警、建筑法规、电气法规、消防法规、气候条件。随着技术进步,该表也不断改进。1980年版抽取了CFRS中对公共消防分级的方法,给出了修订后的灭火力量等级表,指标只包括前3项。被删除的指标或者确少区分度,或者在全市范围内进行评估时太过于主观,而且74表格中包含许多评估标准是具体的规定,如果某一社区的情况没有满足这些规定,则归属为差额分,规定降低了表格可使用的弹性范围,无法正确评估情况和技术的变化。故而ISO分级表被视为越来越“性能化”。
(二)用于消防力量的部署
当今的消防组织和地方政府要担负日益加重的安全责任,面对来自公众的对抵御各种风险的更多的期望,以及调整消防机构人员、设备及其他预算方面的压力,迫切需要确认某一给定辖区内的具体风险和危险的等级。具体地说,城市区域风险评估在消防方面的目的就是:使公众和消防员的生命、财产的预期风险水平与消防安全设施以及火灾和其他应急救援力量的种类和部署达到最佳平衡。
关于火灾风险对于灭火救援力量的影响,美国消防界对此的关注可以说几经反复,其间美国消防学院、NFPA等都做了许多工作。直至20世纪90年代,国际消防局长协会成立了由150名专业人士组成的国际消防组织资质认定委员会(theCommissionofFireAccreditationInternational,CFAI),经过9年的广泛工作,制定了“消防应急救援自我评估方法”,和制定标准的社区消防安全系统。另外,NFPA最终还制定了NFPA1710和1720两个指导消防力量部署的标准,分别帮助职业消防队和志愿消防队和改进为社区提供的消防救援的水平。根据NFPA最近的调查,NFPA1710将在全美30500个消防机构中的3300~3600个得到正式的应用,也推广到加拿大有些地区。
英国对消防救援力量的部署标准是依据内政部批准的“风险指标”,把消防队的辖区划分为“A”、“B”、“C”、“D”四类区域,名为“风险分级”系统。其目的是对消防队的辖区进行风险评估,确定辖区内的各种风险区域,进而确定该风险区域发生火灾后应出动的消防车数量和消防响应时间。1995年,英国的审计委员会了一份题为“消防方针”的考察报告,认为这种方法没有充分考虑建筑设施的占用情况、社区的人口统计情况和社会经济因素,也没有把建筑物内的消防安全设施纳入考核范围。故而由审计委员会报告联合工作组与内政部的消防研究发展办公室一起,设立了一个研究项目。该项目的目的是开发一套供消防机构划分区域的风险等级,对包括灭火在内的所有应急救援力量进行部署,用于消防安全设施的规划并能解决上述问题的风险评估方法,再对开发出的方法进行测试。最后Entec公司开发出了计算软件,并于1999年4月以内政部的名义出台了“风险评估工具箱”测试版。
三、国内外近期的城市区域火灾风险评估方法
(一)国内的城市区域火灾风险评估方法
张一先等采用指数法对苏州古城区的火灾危险性进行分级,该方法的指标体系考虑了数量危险性,着火危险性,人员财产损失严重度,消防能力这四个因素。1995年李杰等在建立火灾平均发生率与城市人口密度﹑城区面积﹑建筑面积间的统计关系基础上,选取建筑面积为主导参量,建立了以建筑面积为单一因子的城市火灾危险评价公式[12]。李华军[16]等在1995年提出了城市火灾危险性评价指标体系,该体系中城市火灾危险性评价由危害度﹑危险度和安全度三个指标组成,用以评价现实的风险,不能用来指导城市消防规划。
(二)美国的“风险、危害和经济价值评估”方法
美国国家消防局与CFAI于1999年一起,在“消防局自我评估”及“消防安全标准”的工作的基础上,更突出强调了“火灾科学”的“科学性”,开发出名为“风险、危害和经济价值评估(Risk,HazardandValueEvaluation)”的方法。美国消防局于2001年11月19日了该方案,这是一个计算机软件系统,包含了多种表格、公式、数据库、数据分析方法,主要用于采集相关的信息和数据,以确定和评估辖区内火灾及相关风险情况,供地方公共安全政策决策者使用,有助于消防机构和辖区决策者针对其消防及应急救援部门的需求做出客观的、可量化的决策,更加充分地体现了把消防力量布署与社区火灾风险相结合的原则。该方法的要点集中于两个方面:1、各种建筑场所火灾隐患评估。其目的是收集各种数据元素,这些数据能够通过高度认可的量度方法,以便提供客观的、定量的决策指导。其中的分值分配系统共包括6类数据元素:建筑设施、建筑物、生命安全、供水需求、经济价值。2、社区人口统计信息。用于收集辖区年度收集的相关数据元素。包括居住人口、年均火灾损失总值、每1000人口中的消防员数目等数据元素。
该方法已在一些消防局的救援响应规划中得到应用。以苏福尔斯消防局为例,它利用该方法把其社区风险定义为高中低三类区域,进而再考察这些区域的火灾风险可能性和后果:高风险区域包括风险可能性和后果都很大的以及可能性低、后果大的区域,主要指人员密集的场所和经济利益较大的场所;中等风险区域是风险可能性大,后果小的区域,如居住区;低风险区域是风险可能性和后果都较低的区域,如绿地、水域等,然后再把这些在消防救援响应规划中体现出来。
(三)英国的“风险评估”方法
英国Entec公司研发“消防风险评估工具箱”,解决了两个问题:一是评估方法的现实性,是否在一定的时限内能达到最初设定的目标。经过对环境、管理、海事安全等部门所使用的各种风险评估方法的进行广泛考察之后,研究人员认为如果对这些方法加以适当转换,就可以通过不同的方法对消防队应该接警响应的不同紧急情况进行评估。二是建立了表达社会对生命安全风险可接受程度的指标。
Entec的方法分为三个阶段。首先应该在全国范围内,对消防队应该接警响应的各类事故和各类建筑设施进行风险评估,这样得到一组关于灭火力量部署和消防安全设施规划的国家指南。对于各类事故和建筑设施而言,由于所采用的分析方法、数据各不相同,所以对于国家水平上的风险评估设定了一个包括四个阶段的通用的程序:对生命和/或财产的风险水平进行估算;把风险水平与可接受指标进行对比;确定降低风险的方法,包括相应的预防和灭火力量的部署;对不同层次的灭火和预防工作的作用进行估算,确定能合理、可行地降低风险的最经济有效的方法。
国家指南确定后,才能提供一套评估工具,各地消防主管部门可以利用这些工具在国家规划要求范围内,对当地的火灾风险进行评估,并对灭火力量进行相应的部署。该项目要求针对以下四类事故制定风险评估工具:住宅火灾;商场、工厂、多用途建筑和民用塔楼这样人员比较密集的建筑的火灾;道路交通事故一类危及生命安全、需要特种救援的事故;船舶失事、飞机坠落这样的重特大事故。
第三个阶段是对使用上述评估工具的区域进行考查,估算其风险水平,与国家风险规划指南对比,并推荐应具备的消防力量和消防安全设施水平。
参考文献:
1、ThomasF.Barry,P.E.Risk-informed,Performance-basedIndustrialFirerotection.
TennesseeValleyPublishing,2002.
&n2、HB142-1999Abasicintroductiontomanagingrisk:AS/NZS4360:1999
3、ISO8421-1:1987(E/F)
4、RichardW.Vukowski,FireHazardAnalysis,FireProtectionHandbook,18thedition,1995.
5、Brannigan,V.,andMeeks,C.,“ComputerizedFireRiskAssessmentModels”,JournalofFireSciences,No.31995.
6、NFPA101AGuideonAlternativeApproachestoLifeSafety.2000edition.
7、赵敏学,吴立志,商靠定,刘义祥,韩冬.石化企业的消防安全评价,安全与环境学报,第3期,2003年
8、李志宪,杨漫红,周心权.建筑火灾风险评价技术初探[J].中国安全科学学报.2002年第12卷第2期:30~34.
9、FireSuppressionRatingSchedule,ISOCommercialRiskServices,1998edition.
10、NFPA1710:ADecisionGuide,InternationalAssociationofFireChiefs,Fairfax,Virginia.2001.
11、Entec,ReviewofHighOccupancyRiskAssessmentToolkit.23August2000.
12、李杰等.城市火灾危险性分析[J].自然灾害学报95年第二期:99~103.
13、InformationontheRisk,HazardandValueEvaluation,USFA,1999.
14、MichaelSWright,DwellingRiskAssessmentToolkit:1999.
一、工作目标及基本程序
1、工作目标
1)建立风险分级清单
2)建立风险分级责任清单
3)完成西安区域风险防控手册
2、基本程序
成立组织机构——编制工作制度和工作方案——召开启动会——初步培训——收集资料——编制文件(指南、台账、记录)——危害因素辨识培训——辨识危害因素——风险分析——判定风险等级——制定控制措施——措施逐级评审与审核——划分管理责任——组织全员学习、落实控制措施——组织定期评审、更新风险信息——实施分级管控——实现持续改进。
二、组织机构与职责
一)、成立构建“风险分级管控”工作领导小组:
组 长XX负责人
副组长:XX负责人
成 员:各职能负责人、项目负责人、EHS专、兼职人员、项目专业口负责人
组长职责:
1.负责领导构建、实施“风险分级管控”工作;
2.负责提供构建、实施过程中必要的经费和组织保障;
3.确定逐级责任,批准实施相关规章制度;
4.批准实施年度工作计划;
5.督促并定期组织检查“风险分级管控”构建、实施效果。
副组长职责:
1.协助组长完成“风险分级管控”构建工作;
2.拟定年度工作计划;
3.具体组织“风险分级管控”体系构建、实施;
4.拟定构建、实施过程中必要的经费和组织保障方案;
5.定期组织危害因素辨识及风险评估结果的评审、修改。
成员:
1.积极配合组长、副组长的工作,完成交代的任务;
2.积极组织各分管单位完成危害因素辨识;
3.统计、汇总各分管单位的结果并上报“风险分级管控”工作领导小组。
三、具体实施步骤
(一)筹划部署阶段
1、工作对接,制定标准,风险分级管控工作领导小组委派专人与第三方机构完成对接工作,收集必要的资料,制定工作计划。
2、召开启动会,风险分级管控工作领导小组组长组织召开公司风险分级管控构建工作启动会,由风险分级管控工作办公室主任宣贯《风险分级管控构建工作方案》,要求方案切实可行,会议内容全员参与学习。
3、初步培训,组织相关人员参与由第三方机构组织的培训,培训内容主要包括“风险分级管控”基本概念、构建办法等基本理论,要求有通知、有签到、有考评、有总结。
(二)风险分级管控体系构建阶段
1、收集完备公司基础信息,组织人员列出资料清单,并对现场进行勘察、收集资料。
2、在第三方机构指导下,结合公司实际情况,编制形成企业《风险分级管控体系实施指南》。编制完成后,组织相关人员就风险辨识的相关方法、辨识要求进行培训学习,要求有通知、有签到、有考评、有总结。
3、选择典型项目构建风险辨识分级管控机制
(1)选定两到三个部门、项目成立示范点,由风险分级管控工作领导小组进行指导,被选定的项目积极落实风险排查工作,要求建立安全风险基础档案。
(2)对排查出的风险进行评分、分级,建立风险辨识分级台账。
4、编制形成阶段性工作汇总报告,西安区域组织其他项目对示范点进行观摩,并在公司范围全面推广,要求各部门、项目全面开展落实风险分级管控工作,后将各自风险分级管控工作方案及成果统一报至风险分级管控工作领导小组办公室。
关键词:煤矿安全;双重预防机制;安全风险分级管控;隐患排查治理
1煤矿双重预防机制的基本概念及其重要意义
1.1煤矿安全风险分级管控的定义
煤矿安全风险分级管控是指煤矿安全生产管理实施过程前,煤矿企业对照国家规定的分级标准,辨识其中表现最突出的安全风险、生产作业风险因素的级别或者等级。从而能够科学合理确定风险评估所有必需的要素,同时建立安全风险评估的分析数据库,煤矿企业结合自身生产实际,并根据安全生产评估的数据分析其研究结果,继而采取有效的管控控制措施,从安全作业风险组织、安全作业制度、安全作业技术、安全作业应急管理等各个方面,确保煤矿安全风险的生产作业风险始终能够保持在完全处于有效的受控制的范围之内,以较高的效率严格预防遏制“认不清、想不到”的各类煤矿生产安全事故的频繁反复发生[1]。
1.2煤矿隐患排查治理的内容
煤矿安全生产隐患治理的内容包括隐患排查治理的问题内容,以及及时排查治理的登记跟踪,煤矿隐患排查治理问题工作的主体主要是指各级煤矿企业相关部门负责人,由各级煤矿企业相关部门的负责人按照本煤矿安全隐患治理问题及时排查登记管理制度,同时组织煤矿企业管理人员、生产技术人员、经营管理人员和其他煤矿企业相关的工作人员,对在日常煤矿安全生产活动中可能因为事故导致煤矿安全事故等情况,进行及时、有效地安全隐患问题大排查,对在安全隐患问题大排查中暴露出的各种安全隐患,按照危险等级确定顺序,并及时进行隐患排查治理登记、跟踪,同时按照“五到位”各项工作的指导原则及时组织,有效地进行安全隐患排查治理、整改,从而实现完成煤矿企业的安全生产经营管理的各项业务工作的全过程闭环控制管理,进行切实可行且安全有序高效率地准确解决安全生产作业在煤矿日常生产“查不清、管不住”的安全隐患治理问题。
1.3两项工作的相同点和不同点
安全风险分级管控和隐患排查机制这两项煤矿安全管理的工作,从两者的基本关系来看,按照矛盾的理论观点,两者有不同之处,虽然两者同为煤矿安全生产管理的同一类事务,归属同一类事务的两个基本方面,性质是相同的,但是两者工作的侧重点和在实际工作中的应用顺序又是不同的。(1)两项工作的相同点。安全风险分级管控和隐患排查机制两项安全管理工作的主要任务目的是一致的,主要任务目的都是从煤矿安全生产风险管理的角度出发,深刻认识到煤矿安全生产管理的重要性,通过对煤矿安全生产隐患中危害风险的超前管控、对重大煤矿安全生产事故隐患的事前事中排查、事后及时治理作为重要手段,坚决把各类煤矿重大事故都及时消灭在隐患风险危害的萌芽阶段,更加高效率地及时防范各类型煤矿安全生产重大事故的再一次发生。由此可知,安全风险分级管控和隐患排查机制两项安全管理工作都一样,对各类煤矿安全事故隐患风险进行事前排查,其实质都一样,也就是准确辨识安全管理经营者和服务事业单位自身,可能必然存在的各类煤矿安全事故隐患风险危害以及安全生产重大风险的影响因素,然后及时地研究采取其他管理而制定的相应措施,在各类煤矿安全事故没有完全发生前,对这些隐患危害风险因素分别及时进行事前风险控制和事中排查事后解决。两项安全管理工作均严格按照实行分级管理,都将安全管理生产危害风险最高等级级别分级为“红、橙、黄、蓝”(其中以下红色为危害风险程度最高级别),4个级别的划分让煤矿企业对风险最高等级分别及时进行管控,将各类煤矿安全事故隐患危害风险等级分为重大类型安全隐患和一般重大安全隐患分别进行事前排查事后治理。(2)两项工作的不同点。安全隐患事故风险项目排查治理和风险评估治理工作是一个具有周期性的一项煤矿安全生产治理工作,作为一个隐患排查治理及专项排查辨识决策治理,是在一定时间内或者一段时期进行开展的一项管理工作。而煤矿安全隐患治理则仅仅只是日常排查的一项工作,煤矿企业每天都需要按时进行隐患的排查治理,其中包括由煤矿作业风险的管理人员、技术人员以及安监人员对煤矿企业的安全作业风险治理重点区域或是实际生产的每一个工作面、每一个车间进行的定期的常规的日常煤矿隐患排查,并且所在煤矿工作岗位上的煤矿作业风险治理技术人员在日常进行煤矿作业风险治理评估过程中也不一定需要随时随地进行排查这些安全事故隐患。
1.4双重预防机制的理论价值及意义
(1)体现了“预防为主”的指导思想。双重预防机制实现了安全生产管理新的关口再次地向前移。“安全第一、预防为主”,作为我国生产企业风险管理工作的一项重要基本方针,双重预防机制的理论价值就直接体现了“预防为主”的指导思想。目前,在建立事故风险安全预防综合治理体系方面,基本建立健全完成。由双重风险应急重大事故安全处置风险治理体系转向双重重大事故生产风险安全预防,实现了今年以来全国安全生产技术企业生产风险管理工作形势明显好转。(2)体现了风险管理全过程的思想。双重过程预防管控机制对作业风险管控进行两个全过程预防管理。首先,在可能产生风险隐患之前对现有风险隐患进行实时预控,即通过对现有风险隐患进行实时识别、评估、分级,并及时采取有效率的预防管控风险措施,达到有效减少作业风险、降低作业风险以及危害严重程度的主要目的,在风险隐患可能产生的各个源头阶段起到有效控制风险作用,防止风险隐患反复产生;其次,在风险作业管理过程中,对已经发现产生的风险隐患情况进行实时排查,即对各项风险可能控制相关情况及时进行跟踪监测,随时随地关注各项风险可能失控相关情况;再次,对隐患排查中已经发现的各项风险可能失控(也称即风险隐患)相关情况立即采取措施一并进行综合治理(也称即风险隐患综合治理),总结研究分析造成风险管控各个环节可能失效的主要原因,不断对安全生产风险管控分级预防管控的管理机制和管控措施体系进行创新完善。
2双重预防机制在煤矿系统内大型煤矿的管理实践与应用探讨
2.1安全风险分级管控和隐患排查治理机制实施工作情况
(1)全面规范开展安全生产风险识别辨识。组织领导全体企业员工通过全方位、全过程对企业相关的安全生产管理系统、生产工艺、设备维护设施、作业管理环境、工作岗位、人员使用行为等各个方面信息进行安全风险分析辨识,并逐一将经过辨识后得出的安全生产风险数据进行分析记录[2]。(2)有效管控安全风险。根据确定的管控危害风险类别和管控风险管理等级,明确公司所属企业矿区应排查暴露出各类危害风险的管控危害管理职责层级,矿长为主要危害风险管理责任人,与煤矿公司所属分管副高级助理矿长、总工程师等管控重大风险类别类型风险,矿各直属职能部门、区队管控较大风险类别类型风险,班组管理成员个体管控一般风险类别类型风险,员工参与所属企业个人组织个体管控低风险类别类型风险。近年公司先后采取安全管理制度体系规范风险管理、技术手段、设备生产技术规范更新、个体生产风险管理防护、监测设备风险管理监控、应急处置风险管理等多项安全综合管控风险管理控制措施,确保安全高效生产并对风险进行实时安全可控、在线管控。
2.2对策建议
(1)加大对双重风险预防管理机制建设宣传和学习培训教育力度。每年针对我们煤矿各管理层级员工开展关于双重风险预防管理机制建设方面的专项宣传培训并不断加强学习宣传教育工作,让我们全体煤矿员工都深刻接受并自觉学习践行煤矿风险管理优先的经营理念,学习煤矿风险管理的相关基本知识,掌握煤矿风险因素辨识和煤矿隐患风险排查的基本操作方法。(2)出台双重风险预防管理机制强化企业管理标准。围绕双重风险预防管理机制主要涉及的企业危险源识别辨识、风险评估、防控管理措施、隐患风险排查和企业隐患风险治理等企业重点工作环节和管理内容,出台一系列分别适用于企业集团公司所有煤炭产业板块不同特点的企业技术管理方法规范标准、工作规范标准和风险管理规范标准,指导企业系统内所有煤矿能够更好、更全面管理内容,出台一系列分别适用于企业集团公司所有煤炭产业板块不同特点的企业技术管理方法规范标准、工作规范标准和风险管理规范标准,指导企业系统内所有煤矿能够更好、更全面地组织开展企业风险评估预控管理工作[3]。(3)建立风险分级管控制度和隐患排查治理制度。这两项工作制度的建立主体主要是煤矿安全生产单位。双重预防机制的建设有助于煤矿企业的安全生产经营单位进行安全生产的标准化建设,同时通过自查自纠自整改,进行定期的安全风险评估及隐患排查,不断完善安全风险举措,实现煤矿安全生产的关口前移。(4)建立风险数据库。将作业流程以及客观存在的危险有害因素进行危险源的辨识。辨识完所有的风险因素之后,根据LEC风险评价的方法进行风险评估,然后按照不同的等级分为四级,分别为重大风险,较大风险,一般风险和低风险。针对不同的风险,我们需要采取一定的风险管控措施。当然不同层级的风险分级管控要体现出来,一般最高层级需要控制重大风险和较大风险,而最低的班组级别需要控制到四个层级的风险,采取的管控措施也就更加细致。此外,结合我们日常的安全检查,形成隐患排查台账,对于排查出来的隐患,要及时进行整改,对未按期进行整改的,后续要进行闭环整改跟踪。(5)建立岗位风险告知卡。建筑物或作业平面区域的风险四色图以及作业风险比较图。将以上三类图片粘贴在作业现场醒目的位置,起到警示和提示的作用。岗位风险告知卡中应明确岗位的风险因素、安全举措、应急措施、还有醒目的安全警示标识。建筑物的风险四色图,可根据作业范围或设施设备的风险程度来进行评估,以最高的风险确定本区域的风险程度。作业风险比较图是根据所有的作业活动进行的风险评价,包括作业程序的暴露程度,发生的频率以及后果的严重程度。双重预防机制是一个全员参与的过程,而不是安全管理人员的闷头工作。因此,在风险数据库,作业风险比较图,建筑物的四色图,以及岗位风险告知卡方面,应让尽可能多的员工参与其中,才能更加深刻的了解岗位的风险,也知道岗位的应急处置。
3结语
综上所述,煤矿事故预防管理机制建设必须具有鲜明的综合理论性和科学性、先进性和理论综合性的实用性。通过理论研究如何建立煤矿安全风险分级管控,对我国煤矿企业人、机、环、管各方面都有要求,而不是需要人员进行有效的的安全控制,推动煤矿企业进行煤矿安全事故生产风险管理体系安全长效机制的稳固有效发展建立,双重预防机制将广泛发展应用成为我国煤矿企业进行煤矿安全事故生产风险管理的未来发展趋势。
参考文献:
[1]李爽,毛吉星,贺超.安全管理中危险源辨识的顶层设计与体系设计[J].煤炭经济研究,2017,37(07):59-64.
[2]王中兴,李晓琴,张维克.论安全风险分级管控和隐患排查治理双控体系建设[J].安全,2018,39(02):43-45.