欢迎来到易发表网!

关于我们 期刊咨询 科普杂志

高中数学基本思想方法优选九篇

时间:2023-06-16 16:44:34

引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇高中数学基本思想方法范例。如需获取更多原创内容,可随时联系我们的客服老师。

高中数学基本思想方法

第1篇

【关键词】高中数学;数形结合;思想方法;以形辅数;以数解形

高中数学教学设计到三个层次方面的教学:其一是教材中最基本知识和基本技能的教学,即所谓的双基,近期课程纲要修订中将双基已经提升为四基的要求,即增加了基本思想方法和基本活动经验,这是教师教学的最基本要求;其二是教材中诸多知识的整合性学习,这是基于双基之上的一种教学层次;最后,高中数学最高层面的教学是思想方法的教学,只有学会思想方法,才能将变幻多端的试题寓于无形的解决方案中,这是高中数学教学的最终目标.《课程标准》正是这样描述的:要让学生掌握基本的数学思想方法,利用数学思想方法去解决问题.

高中数学思想方法中,数形结合思想是一种贯穿高中数学始终的数学思想方法.其核心在于用代数的方法解决一些几何问题,用几何的方法解决一些代数问题,将几何和代数两座孤岛用桥梁进行了合理的连接,让学生的脑海中建立起了数形互相转换的概念,培养其解决问题的多思路性、发散性、简捷性.

1.以形辅数

数形结合思想方法的作用之一,是以形辅数.用几何本质的图形来反映、解决代数问题是其思想的重要运用,来看两个相关的案例.

案例1 设有函数f(x)=a+-x2-4x和g(x)=43x+1,已知x∈[-4,0]时恒有f(x)≤g(x),求实数a的取值范围.

审题破题:x∈[-4,0]时恒有f(x)≤g(x),可以转化为x∈[-4,0]时,函数f(x)的图像都在函数g(x)的图像下方或者两图像有交点,利用图像解决代数中的不等式问题.

解析 f(x)≤g(x),即a+-x2-4x=43x+1,变形得-x2-4x=43x+1-a,

令y=-x2-4x,①

y=43x+1-a.②

① 变形得(x+2)2+y2=4(y≥0),即表示以(-2,0)为圆心,2为半径的圆的上半圆;

② 表示斜率为43,纵截距为1-a的平行直线系.

设与圆相切的直线为AT,AT的直线方程为:

y=43x+b(b>0),则圆心(-2,0)到AT的距离为d=|-8+3b|5,

由|-8+3b|5=2得,b=6或-23(舍去).

当1-a=6即a=-5时,f(x)≤g(x).

反思归纳:解决含参数的不等式和不等式恒成立问题,可以将题目中的某些条件用图像表现出来,利用图像间的关系以形助数,求方程的解集或其中参数的范围.

2.以数解形

以形解数最典型的代表是高中数学重要核心知识――解析几何.笛卡尔创立了坐标系之后,后代的数学大师们将平面解析几何放到坐标系中,轻松的用代数方法解决了几何问题,这是数形结合思想的另一方面的重要体现.

案例2 已知抛物线C:y2=4x,过点A(-1,0)的直线交抛物线C于P,Q两点,设AP=λAQ.(1)若点P关于x轴的对称点为M,求证:直线MQ经过抛物线C的焦点F;(2)若λ∈13,12,求|PQ|的最大值.

审题破题:(1)可利用向量共线证明直线MQ过F;(2)建立|PQ|和λ的关系,然后求最值.

(1)证明:设P(x1,y1),Q(x2,y2),M(x1,-y1).

AP=λAQ,

x1+1=λ(x2+1),y1=λy2,

y21=λ2y22,y21=4x1,y22=4x2,x1=λ2x2,λ2x2+1=λ(x2+1),λx2(λ-1)=λ-1.

λ≠1,x2=1λ,x1=λ,又F(1,0),

MF=(1-x1,y1)=(1-λ,λy2)=λ1λ-1,y2=λFQ,

直线MQ经过抛物线C的焦点F.

(2)解析:由(1)知x2=1λ,x1=λ,得x1x2=1,y22・y22=16x1x2=16,y1y2>0,y1y2=4,则|PQ|2=(x1-x2)2+(y1-y2)2=x21+x22+y21+y22-2(x1x2+y1y2)=λ+1λ2+4λ+1λ-12=λ+1λ+22-16,λ∈13,12,λ+1λ∈52,103,当λ+1λ=103,即λ=12时,|PQ|2有最大值1129,|PQ|的最大值为473.

第2篇

【关键词】高中数学 教学设计 思维培养

高中数学新课标从改革理念、课程内容到课程实施都发生了较大变化。要实现数学教育教学改革的目标,教师是关键,教学实施是主渠道,而教学设计是实现课程目标、实施教学的前提和重要基础。因此,在高中数学教学设计中必须充分考虑数学的学科特点,高中学生的心理特点,以及不同水平、不同兴趣学生的学习需要,运用多种教学方法和手段,引导学生积极主动地学习,掌握数学的基础知识和基本技能以及数学思想方法,发展应用意识和创新意识,形成积极的情感态度,提高数学素养,使学生对数学形成较为全面的认识,为未来发展和进一步学习打好基础。

一、重新审视基础知识,注重基本技能训练

1. 强调对基本概念和基本思想的理解和掌握。教学中应强调对基本概念和基本思想的理解和掌握,对一些核心概念和基本思想(如函数、空间观念、运算、数形结合、向量、导数、统计、随机观念、算法等)要贯穿高中数学教学的始终,帮助学生逐步加深理解。由于数学高度抽象的特点,注重体现基本概念的来龙去脉。在教学中要引导学生经历从具体实例抽象出数学概念的过程,在初步运用中逐步理解概念的本质。

2. 重视基本技能的训练。熟练掌握一些基本技能,对学好数学非常重要。在高中数学课程中,要重视运算、作图、推理、处理数据以及科学计算器的使用等基本技能训练,但应注意避免过于繁杂和技巧性过程的训练。

3. 审视基础知识与基本技能。随着科技的进步、时代的发展和数学研究的不断深化,高中数学的基础知识和基本技能也在发生变化,教学要与时俱进地审视基础知识和基本技能。例如统计、概率、导数、向量、算法等内容已经成为高中数学的基础知识。对原有的一些基础知识也要用新的理念来组织教学。例如,立体几何的教学可从不同视角展开――从整体到局部,从局部到整体,从具体到抽象,从一般到特殊,而且应注意用向量方法(代数方法)处理有关问题;不等式的教学要关注它的几何背景和应用;三角恒等变形的教学应加强与向量的联系,简化相应的运算和证明。

二、关注相关数学内容之间的联系,全面地解和认识数学

数学各部分内容之间的知识是相互联系的,学生的数学学习是循序渐进、逐步发展的。为了培养学生对数学内容联系的认识,在教学设计中,须要将不同的数学教学内容相互沟通,以加深学生对数学的认识和本质的理解。例如,可以借助二次函数的图像,比较和研究一元二次方程、不等式的解;比较等差数列与一次函数、等比数列与指数函数的图像,发现它们之间的联系等。

新的高中数学教学内容是根据学生的不同需要,分不同的系列和层次展开的,因此必须引起课堂教学设计的足够关注。同时,处理这些内容时,还要注意明确相关内容在不同模块中的要求及其前后联系,注意使学生在已有知识的基础上螺旋上升、逐步提高。例如,统计的内容,在必修系列课程中主要是通过尽可能多的实例,使学生在义务教育阶段的基础上,体会随机抽样、用样本估计总体的统计思想,并学习一些处理数据的方法;在选修课中则是通过各种不同的案例,使学生进一步学习一些常用的统计方法,加深对统计思想及统计在社会生产生活中的作用的认识。

三、关注知识的发生和发展过程,促进学生自主探索

在高中数学教学设计中,呈现教学内容应注意反映数学发展的规律,以及人们的认识规律,体现从具体到抽象、特殊到一般的原则。例如,在引入函数的一般概念时,应从学生已学过的具体函数(一次函数、二次函数)和生活中常见的函数关系(如气温的变化、出租车的计价)等入手,抽象出一般函数的概念和性质,使学生逐步理解函数的概念;立体几何内容,可以用长方体内点、线、面的关系为载体,使学生在直观感知的基础上,认识空间点、线、面的位置关系。

在教学设计中,应注意创设恰当的情境,从具体实例出发,展现数学知识的发生、发展过程,使学生能够从中发现问题,提出问题,经历数学的发现和创造过程,了解知识的来龙去脉。教学素材的呈现应为引导学生自主探索留有比较充分的空间,有利于学生经历观察、实验、猜测、推理、交流、反思等过程;还可以通过设置具有启发性、挑战性的问题,激发学生进行思考,鼓励学生自主探索,并在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对数学较为全面的体验和理解。

四、加强现代信息技术与数学教学的整合

第3篇

关键词:高中;数学;函数;思想方法

中图分类号:G632.0 文献标志码:A 文章编号:1674-9324(2014)21-0061-02

一、引言

把数学思想方法作为数学的基础知识是新课标中明确提出来的,它要求在教学过程中,更要注重数学思想方法的渗透。数学思想是指现实世界的空间形式和数量关系反映到人的意识之中,经过思维活动而产生的一种结果,并为了达到某种目的而实施的方式、途径中所含有的可操作的规则或方式。它是处理数学问题的基本观念,是对数学基础知识与基本方法本质的概括,是数与形结合纽带,创造性地发展数学和展现数量变化的指导方针。因而在函数教学中要注重对数学思想方法的渗透,提高教学效率和学生的综合素质。高中函数的学习过程,是学生对函数在感性认识的基础上,运用比较、分析、综合、归纳、演绎等思维的基本方法,理解并掌握函数知识,从而获得对函数知识本质和规律的认识能力的过程。教学中,函数的学习虽然并非等于求解函数题目,但学习函数是建立在对函数的基本概念、定理、公式理解的基础上,并通过对函数题目的解答来实现的。

二、函数与方程思想

函数与方程思想是中学数学函数的基本思想,在中高考中,常常以大题的方式呈现。函数是对于客观事物在运动变化过程中,各个变量之间的相互关系,用函数的形式将这种数量关系表示出来并加以解释,从而解决问题。函数思想是指采用运动和变化的观念来建立函数关系式或构造模型,将抽象的问题运用函数的图像和性质规律去分析、转化问题,最终解决问题。方程思想是指分析数学问题中的变量间的等量关系,建立方程或者构造方程组,运用方程的性质去分析问题,从而达到解决问题的目的。函数与方程思想在数学教学中运用的非常广泛,并注重培养学生的运算能力与逻辑思维能力。

三、数形结合的思想方法

数形结合是数学中的一种非常重要的思想方法。它将抽象的数量关系用直观的方式在平面或空间上呈现出来,也是将抽象思维与形象思维结合起来解决问题的一种重要的数学解题方法。华罗庚曾说过:“数缺形时少直观,形少数时难入微,数形结合百般好,割裂分家万事休。”有时仅从“数量关系”中观察很难入手,但如果把数量关系转化为图形,并利用其图形的规律性质来确定,借助形的明了直观性来描述数量之间的联系,可使问题由难转易、化繁为简。故在面临一些抽象的函数题型时,教师要引导学生用数形结合的思想方法,使解题思路峰回路转。例如,求y=(cosθ-cosα+3)2+(sinθ-sinα-2)2的最值(θ,α∈R),可利用距离函数模型来解决。

四、分类讨论思想方法

分类讨论思想是一种“化整为零,积零为整”的思想方法。在研究和解决某些数学问题时,当所给对象无法进行统一研究时,就需要我们根据数学对象的本质属性的异同特点,将问题对象分为不同类别,然后逐类进行讨论和研究,从而达到解决整个问题的目的。

在高中数学函数教学中,常用到的如由函数的性质、定理、公式的限制引起的分类讨论;问题中的变量或含有需讨论的参数的,要进行分类讨论等。在教学时,要循序渐进的对分类思想进行渗透,使学生在潜移默化中提高数学的思维能力。

五、化归、类比思想

所谓化归、类比思想是把一个抽象、陌生、复杂的数学问题化比成熟知的、简单的、具体直观的数学问题,从而使问题得到解决,这就是化归与类比的数学思想。函数中一切问题的解决都离不开化归与类比思想,常见的转化方法如:①类比法:运用类比推理,猜测问题的结论,易于确定转化的途径。②换元法:运用“换元”把非标准形式的方程、不等式、函数转化为容易解决的基本问题。③等价转化法:把原问题转化为一个易于解决的等价命题,达到转化目的。④坐标法:以坐标系为工具,用代数方法解决解析几何问题,是转化方法的一种重要途径。高中数学教师要熟悉数学化归思想,有意识地运用化归的思想方法去灵活解决相关的数学问题,并在教学中渗透到学生的思想意识里,将有利于强化在解决数学问题中的应变能力,提高学生的数学思维能力。

六、先猜想后证明的思想方法

先猜想后证明是一种重要的数学思想方法,即对于一些无从下手、无章可循的数学问题,教师要敢于鼓励和引导学生进行合理、大胆的猜测,假设它是怎么样的,然后根据这一假设小心求证。牛顿说:“没有大胆的猜想,就做不出伟大的发现。”但是“猜”不是瞎猜、乱猜,而是要在探索中去合理的猜测,要以直觉为先导、以联想为手段、以逻辑为根据、以思维为核心进行猜测。在高中函数章节的学习中,认真应用先猜想后证明的思想方法,有利于促进学生主观能动性的发挥,可以提高他们学习的兴趣和信心,激发其对解决问题的探索创造能力,面对无计可施的问题,可以假设猜测题目的最终答案,然后运用所有的相互关系一步一步地剖析问题,最终解决问题。

七、结语

数学思想是对数学事实、概念以及理论本质的认识,是对数学知识进行的高度概括。数学方法是在数学认识的活动中,对数学知识的具体反映和深入体现,是不断处理和决数学问题,并实现数学思想的重要手段和有效工具。在教学中不断渗透数学思想方法,是对学生数学组织的提高,并在其中有着不可替代的作用。高中数学函数知识中囊括了多种数学思想方法,数学思想方法是解决数学问题的金钥匙,也体现了数学思想方法的工具作用。这些数学思想方法不仅是数学知识的精髓内容,更是让知识转化为能力的纽带。因此,在高中数学函数教学中,教师要熟知这些精妙的思想方法,并渐进性、发展性的渗透到学生思想意识里,不断提高学生的综合思维能力。

参考文献:

[1]路洪香.在函数教学中有效渗透数学思想方法的研究与实践[J].东北师范大学,2007.

[2]帅中涛.高中数学函数教学中渗透数学思想方法的应用[J].读与写(教育教学刊),2012,(03).

第4篇

1.1高职医药数理统计课程目标

高职医药数理统计课程的知识目标为掌握x2分布、t分布及F分布的定义和正态总体的统计量的分布;掌握常用统计描述指标的计算方法、正态总体的均值和方差的置信区间的求法及假设检验方差分析的基本方法;掌握回归分析的基本方法;掌握使用正交表设计实验的方法。熟悉数理统计的基本概念、一元函数微积分及概率论的性质,运算法则;熟悉数据的统计整理方法,以及统计表与直方图的适用范围与绘制方法。高职医药数理统计课程的技能目标为能熟练运用所学知识,科学地搜集、整理、判断数据的性质,对统计数据作区间估计,假设检验,方差分析,相关分析与回归分析,能熟练使用Excel进行统计数据的处理,正确绘制统计表与直方图。会应用加法公式和乘法公式计算随机事件的概率;会计算随机变量的数学期望与方差;学会使用统计分析软件SPSS。

1.2高中数学与高职医药数理统计课程目标的区别与联系

高中数学课程的总体目标是使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。虽然高中数学课程标准中也有获得必要的数学基础知识和基本技能,提高抽象概括、推理论证、数据搜集处理等基本能力,发展数学应用意识和创新意识等条文,但受到应试教育的影响,为了高分通过大量的练习使学生形成“条件反射”,这样使数学的思维属性丧失殆尽,还易导致学生讨厌数学。因此数学学习能力、数学学习中的态度、意志、兴趣、应用意识和创新意识等数学素养的培养是高职医药数理统计所要具备的必要条件。高职医药数理统计虽然也有提高数学素养的目标,但更强调其为后续专业课程的学习奠定必要的基础,更强调课程为专业服务的工具作用,更强调课程的目标的职业导向。两门课程目标虽有所差异,但从数学研究的对象性质、所涉及的概念原理、思想方法以及逻辑思维规律几个方面来看仍然有着不可分割的联系。

2.高中数学与医药数理统计内容衔接现状

2.1高中阶段概率统计教学内容

在新课改下,高中数学均分必修与选修,但各地区高中数学所用版本不一,下面均以人民教育出版社A版为例《。必修3》、《选修2-3》《选修1-2》涵盖了高中概率统计内容。高中阶段主要是引导学生体会统计的基本思想,通过统计案例教学,培养学生对数据的直观感觉,认识到统计结果的随机性。基本概念,多是通过实例给出描述性说明,没有具体的定义。强调对基本概念和基本思想的理解和掌握,重点培养学生的运算、作图、推理、处理数据以及使用科学计算器等基本技能。在《选修2-3》中,学生通过实例了解条件概率的概念,理解离散型随机变量及其分布列、离散型随机变量均值和方差的概念,学会计算简单的离散型随机变量的均值和方差。但没有涉及条件概率的基本性质,没有明确给出概率的乘法公式,没有给出随机变量的严格定义,离散型随机变量未扩充到可列个,未涉及连续型随机变量的定义和分布函数的概念。正态分布也仅通过直观的方法引入其密度曲线,掌握它的特点及表示的意义,并没有给出正态分布的分布函数表、没有介绍标准正态分布,也不需计算正态分布随机变量落到任意区间的概率。未涉及泊松(Poisson)分布、均匀分布与指数分布、参数估计、假设检验、方差分析、相关分析与回归分析等内容,未要学会应用非专业统计软件如:SPSS、SAS等。

2.2高中概率统计与医药数理统计教学内容的安排

为符合学生认知螺旋式“上升”的特点,高中数学《必修3》是先教统计再教概率,在《选修2-3》中先讲概率分布再讲统计案例。因学生在初中已经具备了的一些概率常识,这些对于学习的统计一些基础理论已经够用了,且概率理论较为抽象,统计则与生产生活密切相关,用统计带动概率的学习,用统计的思想理解随机变量的概念,学生更加容易接受。医药数理统计教学更注重学科的系统性与严谨性,先安排高等数学与概率论的基本知识,再进行统计的教学,并对定理给出必要的证明。

2.3高中数学与医药数理统计教学内容的重复与脱节

2.3.1教学内容重复

文理科高中生都学习频数分布表、频率分布直方图、算术均数、中位数、中位数、线性回归方程等统计学中的概念,随机事件、概率、古典概型等概率论中的概念。对于理科高中生来说,总共学习了46学时的概率统计知识,对于文科高中生来说,总共学习了34学时的概率统计知识。这些知识大约覆盖了医药数理统计课程的10%以上教学内容。

2.3.2教学内容脱节

基础知识点缺失。文科高中数学对不定积分与定积分、排列组合等知识不作要求,但它们却是医药数理统计学习所必需的前期基础知识。

3.高中数学与医药数理统计顺利衔接的措施

3.1教学内容的衔接

教师的教和学生的学在很大程度上取决于教学内容,教学内容的顺利衔接对教学质量的提高起着关键作用.在医药数理统计的教学中,教师有意识地引导、启发学生用严谨科学的态度,用统计学的理论、观点、方法去分析与之相关生产、生活中的案例,使学生意识到高中数学教材中一些不能讲解“深刻”的内容,可以通过医药数理统计的学习,给予相应的解释,使这些统计案例能得到应有高度来认识。大学数学教师把教材中的抽象内容具体化的同时,要考虑到学生的理解与接受能力,使其范围、深度、速度能同学生的实际水平相适应。关于医药数理统计教材内容改革,许多数学教学工作者都作出了尝试,但医药数理统计内容的改革必须依据循序渐进原则或有序性原则,要依据科学的逻辑顺序和学生不同年龄阶段发展的顺序特点编写。改革时,必须密切联系学生学习实际,了解学生学习高中数学情况,关注高中数学教材改革动向,对教学内容的处理应建立在高中数学平台上,较好地把握教学的深度和广度。对于明显重复的部分,进行适当的删减,对于需要加深、扩展的内容,应加以强调和重视。对于因某些高中未教或是文理分科,或者涉及的角度和侧重点不同,应及时补充以免形成空白造成脱节,使医药数理统计教学内容与高中数学教学内容顺利衔接。

3.2教学方法的衔接

第5篇

一、回归课本,注重基础

数学的基本概念、定义、公式,数学知识点的联系,基本的数学解题思路与方法,是第一轮复习的重中之重。回归课本,自己先对知识点进行梳理,把教材上的每一个例题、习题再做一遍,确保基本概念、公式等牢固掌握,要扎扎实实,不要盲目攀高,欲速则不达。复习课的容量大、内容多、时间紧。要提高复习效率,必须使自己的思维与老师的思维同步。而预习则是达到这一目的的重要途径。没有预习,听老师讲课,会感到老师讲的都重要,抓不住老师讲的重点;而预习了之后,再听老师讲课,就会在记忆上对老师讲的内容有所取舍,把重点放在自己还未掌握的内容上,从而提高复习效率。

二、夯实基础,提炼方法

在第一轮复习要求学生打好基础,牢固掌握课本上的重点知识及常用的基本思想和方法。近两年来的高考数学试题的难度比较稳定,对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,通过对数学知识的考查,反映考生对数学思想和方法的理解;命题主要从学科整体意义和思想价值立意,另一个特点是强化对通性通法的考查,淡化特殊的技巧,这更加突出了对数学思想方法核心部分的考查。

数学的思想方法是数学的精髓,只有运用数学思想方法,才能把数学的知识与技能转化为分析问题和解决问题的能力,才能体现数学的学科特点,才能形成数学的素质,因此,在系统复习的阶段,一定要打好扎实的基础,深刻领会数学思想方法,以适应高考要求。例如解析几何的学科特点是用代数的方法研究、解决几何的问题,坐标系是建立代数与几何联系的桥梁,解题时既要善于把几何图形的形状、大小、位置关系等方面的问题通过坐标系转化为曲线方程,又要善于运用代数的方法解决几何问题。

高考试题中主要从以下几个方面对数学思想进行考察:(1)常用的数学方法:配方法、消元法、换元法、待定系数法、降次、数学归纳法、坐标法、参数法等。(2)数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等。(3)数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳与演绎等。(4)重要的思想:主要有函数和方程、数形结合思想、分类讨论思想、转化(化归)思想等。

三、以“错”纠错,查漏补缺

这里说的“错”,是指把平时做作业中的错误收集起来。高三复习,各类试题要做几十套,甚至上百套。如果平时做题出错较多,就只需在试卷上把错题做上标记,在旁边写上评析,然后把试卷保存好,每过一段时间,就把“错题笔记”或标记错题的试卷看一看。在看参考书时,也可以把精彩之处或做错的题目做上标记,以后再看这本书时就会有所侧重。查漏补缺的过程就是反思的过程。除了把不同的问题弄懂以外,还要学会“举一反三”,及时归纳。

四、创建知识网络体系

在第一轮复习时,注意加强课本上各知识点的联系,使学生对知识系统化网络化,加深对知识的理解和记忆。(1)横向联系。数学考试中对数学知识的考查,特别注意“点”和“面”的结合。考查的面宽,知识点在每份试卷有100多个,例如函数是高中数学的主干,其知识和方法,与不等式、方程、数列、平面三角、解析几何、极限与导数的联系十分密切,相互渗透,相互作用,自然成为高考中考查的重点内容。向量是一个重要的运算工具,不能把它作为一个独立的单纯的知识点学习,应学会使用这个工具。(2)纵向联系。例如函数是高中数学的一条主线,在高中数学中占有重要的地位,由于对函数知识的综合考查能够比较全面看出学生运用数学知识解决问题的能力,所以高考中对函数的考查是一个重点。在复习函数时,我们由函数的概念入手,到函数的性质:定义域、值域、图象、单调性、奇偶性、周期性、最(极)值、对称性、可逆性、连续性、可导性等十一个方面来学习。尤其是处理函数的最(极)值问题、值域问题、单调性问题、不等式等都可以用导数这一工具来解决,常使问题大大简化。同时总结中学数学的常见的函数:正比、反比、一次、二次、指数、对数、三角以及由它们复合而成的一些基本初等函数,较熟练地掌握它们的图像和性质。所以复习函数由浅入深,逐步到位。第一轮复习中在课堂上对一些重点、难点概念要注意重点复习。系统复习知识不是简单的重复和机械的记忆,而是要把所学的知识形成网络化,形成体系,基本达到综合、灵活应用的水平。

五、处理好讲练关系,提高运算能力

第6篇

关键词:高中教学 函数教学 教学思想 方法浅谈

一、前言

数学思想从本质上是对数学的事实以及理论进行深刻的了解和学习,从而能够概括数学知识。对于数学思想来说,数学方法是用来表现数学思想的工具和手段,不仅如此,数学思想是依靠数学方法在数学认识活动中的反映从而体现出来的。

二、数学思想方法的定义

数学思想方法是一种对问题的分析以及探索的技巧,是更好地解决问题的一种思路,同时也是为更好地分析及解决问题提供的一种有效的、具有很强可操作性的数学解题方法。

三、数学思想方法运用的重要意义

对数学思想方法的运用是全民推进素质教育的需要。全面地推进素质教育是在我国当代教育中比较重要的一项任务,从现在的高考试题来看,它重点考查的内容是学生对知识理解的准确性、深入性以及灵活运用的能力。对于学生的考查更加注重于数学思想方法以及数学能力,所以说数学思想方法在高中函数教学中的应用具有重要的意义。

四、高中数学函数教学中渗透数学思想方法的应用策略

通过典型例题的讲解,对数学思想方法进行应用通过对一些典型的例题的讲解,可以使学生对一些题目的具体解题方法以及思路进行掌握,对于类似的问题可以快速地找到解答的思路以及方法,进而对数学思想方法进行运用。

而老师根据数学思想的要求要对一些解题方法进行传授,所以可以根据这一例题对相关的其他的例题的解题方法进行一个概括的讲解,进而使学生在遇到类似的问题时能准确快速地找到解题方法。通过举一反三的方法,对数学思想方法在函数教学中进行应用数学思想方法要求学生有很好的解题方法,所以在对函数进行讲解的时候就可以运用举一反三的方法,对一些题目进行反复的训练,进而使学生对题目的解题方法有一个更加全面的理解和掌握。

五、函数与方程思想

函数与方程思想是中学数学函数的基本思想,在中高考中,常常以大题的方式呈现。函数是对于客观事物在运动变化过程中,各个变量之间的相互关系,用函数的形式将这种数量关系表示出来并加以解释,从而解决问题。函数思想是指采用运动和变化的观念来建立函数关系式或构造模型,将抽象的问题运用函数的图像和性质规律去分析、转化问题,最终解决问题。

六、数形结合的思想方法

数形结合是数学中的一种非常重要的思想方法。它将抽象的数量关系用直观的方式在平面或空间上呈现出来,也是将抽象思维与形象思维结合起来解决问题的一种重要的数学解题方法。华罗庚曾说过:“数缺形时少直观,形少数时难入微,数形结合百般好,割裂分家万事休。”有时仅从数量关系”中观察很难入手,但如果把数量关系转化为图形,并利用其图形的规律性质来确定,借助形的明了直观性来描述数量之间的联系,可使问题由难转易、化繁为简。

七、分类讨论思想方法

分类讨论思想是一种“化整为零, 积零为整”的思想方法。在研究和解决某些数学问题时,当所给对象无法进行统一研究时,就需要我们根据数学对象的本质属性的异同特点,将问题对象分为不同类别,然后逐类进行讨论和研究,从而达到解决整个问题的目的。

在高中数学函数教学中,常用到的如由函数的性质、定理、公式的限制引起的分类讨论;问题中的变量或含有需讨论的参数的,要进行分类讨论等。

八、集合思想

集合是指由一些特定的事物组成 的整体,而这些事物中的每一个称为这个集合的一个元素。将集合思想融人到高中函数教学中,培养学生的集体意识,并利用高中数学重要特点――严谨性,在逻辑用语中教会学生认真看清楚题目。理解题 目的意思,并能够从题目中给出的条件推敲出其他的条件,能够分析哪些是有帮 助的、哪些是误导自已的。将有帮助、有用的条件归为一个整体。从而为成功解题做好铺垫。

九、高中数学教学应如何加强数学思想方法的渗透

1.提高渗透的自觉性

数学概念、法则、公式、性质等知识都明显地写在教材中,是有“形”的,而数学思想方法却隐含在数学 知识体系里,是无“形”的,并且不成体系地散见于教材各章节中。教师讲不讲,讲多讲少,随意性较大,常常因教学时间紧而将它作为一个“软任务”挤掉。对于学生的要求是能领会多少算多少。因此,作为教师首先要更新观念,从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学知识和渗透数学思想方法同时 纳入教学目的,把数学思想方法教学的要求融入备课环节。其次要深入钻研教材,努力挖掘教材中可以进行数 学思想方法渗透的各种因素,对于每一章每一节,都要考虑如何结合具体内容进行数学思想方法渗透,渗透哪些数学思想方法,怎么渗透,渗透到什么程度,应有一个总体设计,提出不同阶段的具体教学要求。

2.把握渗透的可行性

数学思想方法的教学必须通过具体的教学过程加以实现。因此,必须把握好教学过程中进行数学思想方法 教学的契机――概念形成的过程,结论推导的过程,方法思考的过程,思路探索的过程,规律揭示的过程等。 同时,进行数学思想方法的教学要注意有机结合、自然渗透,要有意识地潜移默化地启发学生领悟蕴含于数学 知识之中的种种数学思想方法,切忌生搬硬套、和盘托出、脱离实际等适得其反的做法。

3.注重渗透的反复性

数学思想方法是在启发学生思维过程中逐步积累和形成的。为此,在教学中,首先要特别强调解决问题以后的“反思”,因为在这个过程中提炼出来的数学思想方法,对学生来说才是易于体会、易于接受的。如通过 分数和百分数应用题有规律的对比板演,指导学生小结解答这类应用题的关键,找到具体数量的对应分率,从而使学生自己体验到对应思想和化归思想。其次要注意渗透的长期性,应该看到,对学生数学思想方法的渗透 不是一朝一夕就能见到学生数学能力提高的,而是有一个过程。数学思想方法必须经过循序渐进和反复训练,才能使学生真正地有所领悟。

十、结束语

高中数学的函数部分在整个高中教育部分都很重要,甚至对将来的大学高等函数都起到一定的基础,所以老师们要对函数进行有效教学,让教学思想方法更加全面。

第7篇

关键词:听课 作业 复习 习题 信心 兴趣

和初中数学相比,高中数学的内容多,抽象性、理论性强,一些初中数学成绩较好的学生,甚至在中考中取得优秀成绩的学生,经过高中一段时间的学习后,数学成绩出现明显的分化与下滑趋势。如何让学生尽快的度过“适应期”?这是每一位高中数学教师和高中学生家长十分关心和亟待解决的问题。现就怎样学好高中数学谈几点建议。

一、认识学好数学的重要性

“数学是锻炼思维的体操”,高中数学具有概念抽象,逻辑性强,教材叙述比较严谨规范,抽象思维和空间想象能力明显提高,习题类型多,解题技巧灵活多变,不仅注重计算而且还注重理论分析等特点。因此,数学的重要性不仅蕴含在各个知识领域之中,更重要的是它能很好的锻炼人的思维,有效地提高能力。高中数学学习将要求学生勤于思考,善于归纳总结规律,掌握数学思想方法,做到举一反三,触类旁通。对于这些能力,如理解能力、分析能力、运算能力、归纳总结的能力,则是关系到学习效率的重要因素。所以,有很多人说“得数学者得高考”,或许就是这个道理吧!

二、重视听课效率的关键性

“课堂是学习的主阵地”,高中数学的教学任务主要是通过课堂教学完成的,跟上教师的思维,提高听课效率,对于学好高中数学尤为重要。为提高听课效率学习中应注意以下几点。

1.课前预习学会“读”。学起于思,思源于疑。问题是学生思考的起点和动力,因此,养成课前预习,学会“读”书的好习惯尤为重要。学会“读”书,及做好粗读、细读、研读三项工作。

2.听课的过程学会“听”。听懂课是学好数学的前提,为提高听课效率,要全身心的投入课堂学习,要做到全神贯注,即耳到、眼到、心到、口到、手到。

耳到,即专心听讲。注意听老师每节课所提到的学习要求;注意听定理、公式、法则的引入与推导的方法和过程;注意听概念要点的剖析和概念体系的串联;注意听例题关键部分的提示和处理方法;注意听疑难问题的解释及一节课的小结,另外,还要注意听同学们的答问,看是否对自己有所启发。

眼到,即仔细看清老师每一步的板演。要努力做到在听课的同时看课本和板书;看老师的表情、手势,生动而深刻的接受老师所要表达的思想。

心到,即注意力集中,用心思考。听课时跟上老师的思路,分析老师如何抓住重点,解决疑难的。

口到,即随时回答老师的提问。上课能够在老师的指导下,主动回答问题或参加小组讨论,提高听课效率。

手到,即在保证听懂前提下,适当地、有重点地做好笔记,养成记笔记的好习惯。

若能做到上述“五到”,精力便会高度集中,课堂所学的一切重点内容将在头脑中留下深刻的印象。

三、利用完成作业的检验性

通过作业不仅可以及时巩固当天所学知识,加深对知识的理解,更重要的是把学过的知识加以运用,以形成技能技巧,从而发展智力,培养能力,保障后序学习的顺利进行和学习能力的提高。因此,完成作业时应努力做到以下几点:

1.先看后做,两者结合。只有先将课本的基本原理和法则弄懂,才能减少作业的错误,顺利完成作业。从而达到巩固知识,事半功倍的效果。

2.注意审题,规范作答。每道作业都要搞清题目所给予的条件,应用所学知识,找到解决问题的途径和方法。同时,态度要认真,作业要规范,书写要工整,推理要严谨,养成“言必有据”的好习惯,准确运用学过的定理、公式、概念等。

3.独立完成,乐学其中。作业要自己独立思考、自己动手体会,只有亲身的体会,才能促进自已对知识的消化和理解,才能培养锻炼自己的思维能力,同时也能检验自己掌握的知识是否准确,从而克服学习上的薄弱环节,逐步形成扎实的基础。

4.更正错误,记好反思。准备一个“错题本”是非常必要的。一方面记录错题。把平时的错题及时记录下来,并用红笔醒目的加以标注,同时要注明错误成因,正确思路、方法及对应习题,争取经过更正、记录;另一方面,记体会感受。数学学习是智、情、意、行的综合,在听、看、想、说、做的基础上,伴随着积极地情感体验和意志体验。记下学习过程中自已创新的思维见解、自已的学习感受,可以更好的调控自己的学习行为。

四、确定复结的保障性

1.做好及时的复习。每天学习结束后,做好当天的复习尤为重要。尽量把当天所学想的完整些,然后打开书和笔记加以对照,把没有记清的补充完整并着重记忆。通过尝试回忆,不仅使当天上课内容得到巩固,也可以检查当天课堂听课的效果如何,便于听课方法和听课效果的改进。

2.做好章节(单元)的复习。一章节(单元)学习结束后,也应采用尝试回忆的方法进行阶段复习,完善自己的知识结构,并做好章节(单元)小结。章节(单元)小结内容应包括以下部分:①本章(单元)的知识网络。②本章(单元)的典型例题和基本思想方法。③本章(单元)的自我体会。即体会自己做错的典型问题,分析原因及正确答案;体会记录下来的自己感觉最有价值的思想方法和例题;体会你还存在的未解决的问题,若能主动研究、另辟蹊径,则难能可贵。

五、确保习题数量的合理性

有不少同学把提高数学成绩的希望寄托在大量的做题上,我认为“不要以做题的数量论英雄”,重要的不在做题多,而在于做题的效益要高。做题的目的在于检查你的知识和方法是否掌握的很好,如果你掌握的不准甚至偏差,那么多做题的结果反而巩固了你的缺陷,因此,在准确地把握基础知识和方法的基础上做一定量的练习是必要的。

对于中档题,讲究做题的效益更为重要。中档题练习后,要进行一定的“反思”,思考一下题目所用的基本知识是什么,数学思想方法是什么,为什么要这样想,是否还有其它的想法及解法,本题的分析方法和解法在解决其它问题时是否也用到过,把以上的“反思”联系起来,你就会有更多的收获和经验。所以,要重视老师布置的每一道作业,每一次测验,尽可能的把准确性放在首位,把通法通解放在首位,不一味的追求速度和技巧,也是学好数学的重要问题。

六、深知兴趣、信心的推动性

兴趣和信心是学好数学的最好的老师。“伟大的动力产生伟大的理想”,只要明白学习数学的重要性,你就会有无穷的力量,并逐步对数学产生兴趣,有了一定的兴趣,信心就会随之增强。这样同学们就不会因为某次考试成绩的不理想而泄气,而是会不断地总结经验和教训,在不断地总结和反思中你的信心就会不断地增强,你也就会越来越认识到兴趣和信心是你学习中最好的老师,它将推动你不断前行。

总之,高中数学虽难学,但并不是无法可循。只要在学习过程中不断地摸索、不断地领会,就可以最大限度地减少分化,尽快地适应高中数学知识的学习,形成良好的数学素养。

第8篇

一、对重点的传统知识作适当拓广

新课标对传统的高中数学知识作了较大的调整,内容变化也较大,有的从整个编排体系上都作了改变。但是,传统的高中数学知识中的重点内容仍然是高中学生学习的主要内容,在教学中对这些知识内容应拓广加深。

例如,增加了函数的最值及其几何意义,函数的最值常常与函数的值域有联系,而求函数的值域的基本方法有观察法、配方法、分离常数法、单调性法、图像法等,这些基本方法应该让学生了解。 二次函数,它一直是高(初)中的重点基础知识,在高中数学中二次函数可以与其它许多数学知识相联系,因此拓广和加深二次函数是必要的。例如在高中数学中如闭区间上二次函数的值域;二次函数含参数讨论最值;利用二次函数判断方程根的分布等,这些内容可作适当拓广。 要补充“十字相乘法”、“一元二次方程的根与系数的关系”等知识。函数的图像,除了学习指数函数和对数函数、五个简单幂函数的图象外,应该对三种图像变换:平移变换、伸缩变换、对称变换作适当拓广。《标准》强调指数函数、对数函数、幂函数是三类不同的函数增长模型。在教学中,要求收集函数模型的应用实例,了解函数模型的广泛应用;要求将函数的思想方法贯穿在整个高中数学的学习中,学生对函数概念的认识和掌握,需要多次反复,不断加深理解。

又如,数列一直是高中数学的重点知识。按照教材要求,首先讲数列的一般知识,然后学习等差,等比数列的有关知识,而数列的递推关系,是反映数列的重要特征,也是经常用到的,在讲完了等差,等比数列之后,仍然可以考虑把数列的递推关系的问题适当加深,使学生能解一些简单的递推题目。课本要求掌握等差数列、等比数列求和,而对于非等差数列、非等比数列求和问题,常转化为等差等比数列用公式求和也可用以下方法求解:分组转化法、裂项相消法、错位相减法、倒序相加法。

圆锥曲线是解析几何的重点内容,是高中阶段传统的数学内容,强调知识的发生、发展过程和实际应用,突出了几何的本质。新教材要求学生能够经历椭圆曲线的形成过程,目的是让学生对圆锥曲线的定义和几何背景有一个比较深入地了解。新教材设计了一个平面截圆锥得到椭圆的过程,“有条件的学校应充分发挥现代教育技术的作用,利用计算机演示平面截圆锥所得的圆锥曲线。”在这里要拓宽学生视野,树立数形结合的观点,要善于把几何条件转化为等价的代数条件,进而利用方程求解,在解析几何中,对运算能力也较过去要求更高,这就需要加强理解能力的训练,使学生解决一要会算,二要算对这两大难点。

二、对新增加的知识内容加强基础训练

新课标中增加了一部分新的数学知识,特别是选修系列中新内容较多,有些新内容与高等数学有关,对这些内容在教学中不宜当作高等数学知识来讲,应该关注学生感受背景,认识基本思想。

例如,“数列”部分内容有增有减,增加的内容有:等差数列与一次函数的关系;等比数列与指数函数的关系。突出了数列与函数的内在联系,强调数列是一种特殊的函数,让学生体会等差数列、等比数列与一次函数、二次函数的关系。这部分内容指出要保证基本技能的训练,但训练要控制难度和复杂程度。

又如“导数及其应用”部分内容有增有减,增加的内容有:函数的单调性与导数的关系;利用导数研究函数的单调性;函数在某点取得极值的充分条件和必要条件。应认识导数的本质是什么,这里的导数不应作为微积分初步来讲,把一些较复杂的复合函数求导也引入到教学中。

再如,古典概率问题,与排列组合有联系,又有区别,学生应理解清楚概率的意义,建立随机思想,而处理实际问题时又要会合理应用概率计算公式及原理。

三、加强数学应用问题的教学

新课标对高中数学知识的应用、数学建模提出了更高的要求,新课标的教材在这方面也大大加强了,许多知识是从实际问题引出,最后又要回到解决实际问题中去,但是作为教材受篇幅限制,不可能包括所有内容,而实际问题又是不断发展,不断产生的,因而对应用问题仍有许多地方可以进一步丰富素材。

例如,《标准》强调指数函数、对数函数、幂函数是三类不同的函数增长模型。在教学中,要求收集函数模型的应用实例,了解函数模型的广泛应用;要求将函数的思想方法贯穿在整个高中数学的学习中,学生对函数概念的认识和掌握,需要多次反复,不断加深理解。

又如,“分期付款”、“购房按揭”、“贷款买车”等目前生活中大量存在的实际问题,是与数列有密切联系的,讲完数列之后,可以让学生去分析研究目前各种分期付款的形式,在讨论问题中深化对数列的认识。

再如,教学中,要防止将导数仅仅作为一些规则和步骤来学习,而忽视它的思想和价值,指出任何事物的变化率都可以用导数来描述,注重导数的应用,例如:通过使利润最大、材料最省、效率最高等优化问题,体会导数在解决实际问题中的作用:强调数学文化,体会微积分的建立在人类文化发展中的意义和价值。

四、拓广数学知识的背景

第9篇

一、新课标对高中函数教学内容的新要求

《高中数学新课标》中关于函数部分的内容,加强了对函数概念定义和函数应用的新要求,要求使学生通过丰富的教学实例,进一步认识函数是由变量变化而发生变化的重要的数学模型;同时要让学生通过实例去体会不同函数类型的含义.例如,高中数学新课标在《高中数学大纲》的基础上对函数的定义域、函数值域等以前较为困难的定义进行了淡化,也不再过于强调反函数的概念,只要求学生知道指数函数y=ax(a>0,a≠1)与对数函数y=logax(a>0,a≠1)互为反函数就可以了,目的是使学生更好地理解函数的基本思想方法和实质.

二、高中数学函数教学实例分析

(一)函数的奇偶性

函数的奇偶性是函数的一个重要性质.我们在教学中可以先概括出函数奇偶性的准确定义,随后再进一步通过例题讲解分析出函数的奇偶性和单调性之间的关系.

例 已知函数f(x)是偶函数,且在(-∞,0)上是减函数.基于此,判断f(x)在(0,+∞)上是减函数还是增函数.

解 由于偶函数的图像关于y轴对称,故猜想f(x)在(0,+∞)上是增函数,证明如下:

任意取值x1>x2>0,则-x1

f(x)在(-∞,0)上是减函数,f(-x1)>f(-x2).

又 f(x)是偶函数,f(x1)>f(x2).

f(x)在(0,+∞)上是增函数.

例题点评 这道题主要是要先结合图像的特征,然后进一步找出奇函数或偶函数在关于原点对称的两个区间上的单调性的关系.

(二)方程根与系数的关系

例 设二次函数f(x)=ax2+bx+c(a>0),方程f(x)-x=0的两个根x1,x2满足0

(Ⅰ)当x∈(0,x1)时,证明:x

(Ⅱ)设函数f(x)的图像关于直线x=x0对称,证明:x0

解 (Ⅰ)首先要证明x

x1,x2是方程f(x)-x=0的根,f(x)=ax2+bx+c,

f(x)=a(x-x1)(x-x2).

由于0

又 a>0,则得出g(x)>0,即f(x)-x>0.x

根据韦达定理,有x1x2=c[]a,0

根据二次函数的性质,函数y=f(x)在闭区间[0,x1]上的最大值在x=0或x=x1;由于f(x1)>f(0),所以当x∈(0,x1)时,f(x)

(Ⅱ)f(x)=ax2+bx+c=ax-b[]2a2+c-b2[]4,(a>0),函数f(x)图像的对称轴为直线x=-b[]2a,并只有一条对称轴,x0=-b[]2a.

x1,x2是二次方程ax2+(b-1)x+c=0的根,根据韦达定理,得x1+x2=-b-1[]a.

x2-1[]a

x0=-b[]2a=1[]2x1+x2-1[]a

解析 由题意可以联想到:方程f(x)-x=0可变为ax2+(b-1)x+1=0,它的两根为x1,x2,可得到x1,x2与a,b,c之间的关系式,因此利用韦达定理,结合不等式的推导,顺利地解决这道题.

三、有效提高函数教学效果的几点建议

(一)多注意新课程的全套教材

我们在高中数学函数的教学中应要注意研究新课程标准和教材的编写意图,还要对其他版本的教材进行横向比较,了解各学段函数部分的教学内容与要求以及前后教学内容的衔接,进而在教学中充分了解当前的教学活动要从哪里开始,用什么样的教学方法提高教学效果等.

相关文章
相关期刊