时间:2023-06-19 16:29:06
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇城市轨道通信技术范例。如需获取更多原创内容,可随时联系我们的客服老师。
1.1城轨交通通信技术概述
城市轨道交通专用通信系统,是城市轨道交通系统的核心,其功能强大,涵盖面广,为保障轨道交通安全正常运营、顺利实时调度调整、智能监控提供有力支持。现根据当代国内城市发展建设中所涉及城市轨道交通通信系统实际的设计情况汇总按其功能分为十二大交通专用子系统。首先,作为城市轨道交通通信系统的整体构架,这些子系统在设计上相互依托、相互作用,之间的调度能协调工作,在不同的运营环境下能够智能的相互调节。其次,作为整体构架的分支,各个子系统又拥有对各自子系统内的故障进行检测和报警的功能,由此来保证整个系统的可靠性。如轨道交通通信系统中电话通信子系统,承载着运营管理中的一般性公务联系,而常规性质的城市轨道交通运营服务管理大都通过电话通信子系统来完成。这种辅助型子系统能将自身的作用发挥到极致,而后以一种辅助的方式来确保行车安全、提高运输效率和现代化管理水平、提升旅客舒适度以及突况下提供应急处理手段等方面响应速率,以此成为整个通信系统的重要分支。考虑到实际工程中的轨道交通线路建设为分段式及今后逐步实行三期延伸的工程建设特点,该线路的通信系统应该建设成一个安全可靠、功能合理、技术先进、经济实用并易于扩展的通信网络,这也是我们做进一步规划研究的目的。
1.2关键技术
1.2.1MSTP
MSTP(Multi-ServiceTransferPlatform)(基于SDH的多业务传送平台)是指基于SDH平台同时实现TDM、ATM、以太网等业务的接入、处理和传送,提供统一网管的多业务节点。利用MSTP可以为各个车站站台与控制中心建立保护环路,这种基于MSTP的2.SG环路具有为各站点提供2M业务与10M/100M业务的总线型或点对点式传输信道。通信系统的整体设计思路就是利用这些由MSTP搭建的传输通道将车站设备与中心设备连在一起,从而实现该系统的整体功能。
1.2.2IPoverSDH
由于,数据传输系统是轨道通信系统的重中之重,既要考虑通信技术的发展,又要考虑轨道交通运行安全,还要考虑轨道交通中通信业务种类繁多、面对情况复杂,其对通信系统业务接口的要求很高,因此传输系统选用IPoverSDH和综合业务接入相结合是最佳选择。SDH是当前传输网络中比较好的一种方式,优点是:精准、灵活、简单易用、可靠性强;但它也有缺点:点对点、多点对点的数据传输以及图像视频信号的传输不是很理想。而IP技术则正好弥补了SDH的缺点,所以采用IPoverSDH是解决轨道交通通信网络系统的最佳方案之一。根据城市轨道通信数据传输系统的设计可知,在轨道车站的网络中承载六种相对独立的业务:1、SCADA业务;2、BAS、OA业务;3、乘客诱导、录像回放、广播下载、电源设备监控及专用电话预留业务;4、AFC票务业务;5、公安业务;6、OCC调度业务,在OCC既要接受处理各个分站点的业务,同时还需控制整个行车网络,因此网络管理在OCC控制中心必不可少。SDH数据传输网是由SDH网络单元节点组成,在光纤、微波或卫星上进行同步的信息数据传递、交换等功能于一身,并由统一网络管理系统进行管理维护的综合性信息网。这种网络技术可实现网络的高效管理、实时网络维护、实时业务性能监控等功能,可有效的提升网络数据、带宽等的利用率,能满足城市轨道交通数据传输网的数据传输和交换需求,因此设计基于IPoverSDH技术的网络,能够在很大程度上满足城市轨道交通通信系统的技术要求。在这项技术具体的实施上,采取IPoverSDH来执行多种业务,在每个不同的城市轨道车站和车辆段作为数据信息采集节点,通过公共或者私有网络接入将本节点的数据通过SDH传输信道送至OCC控制中心,在OCC控制中心将采用专有的网络数据分析管理系统对各个节点的信息进行处理。在城市轨道交通的业务中,除了由IP技术处理的业务外,还有时效性很强的业务,这样的业务就必须采用综合业务接入的方式来进行处理。对于综合业务网络的接入,可以选用合适的网络通信设备,利用常规的数据传输通道,采用PCM30/32的方案,就可以方便的提供语音、图像数据等多种系统接口,网络构建十分灵活,可构成点对点、链路、环形等多种拓扑结构。具有64K交互能力,在这种方式下上下电路不会阻塞,也在沿路可根据实际需要设置上下电路。采用双系统供电,可以使整个系统的稳定性及安全系数更高。
2城市轨道交通无线通信系统
当前城市轨道交通网络尤其是无线网络的发展目标是在稳定快速的接入基础上,同时提供可靠语音业务和更宽的宽带数据业务。当前蓝牙、WIFI等各类无线技术的迅速发展普及,让这一目标的实现成为可能。
2.1城市轨道交通下一代无线通信系统关键技术研究下一代城市轨道交通无线网络通信系统的实现,依赖于下列关键技术:大容量快速宽带技术、数字语音集群通信技术、信道切换优化技术、集散式基站及载波复用聚合技术等。这些技术有着各自的特点和要求,而这些技术最终融合于正交频分多址技术。正交频分多址技术有时又称为分离复频变调技术具备高速率资料传输的能力,加上能有效对抗频率选择性衰减通道,每个用户可以使用各自的载波,通过不同频率正交方式来区别每个不同用户。其基本思路是把一高速资料串行分割成数个低速资料串行,并将这数个低速串行同时调制在数个彼此相互正交载波上传送。
2.2多输入多输出(MIMO)技术多输入多输出技术(MIMO)是一种新型的移动通信关键技术。这种技术可在不提升网络负担的情况下成倍的提高通信系统的带宽容量和频谱利用率。MIMO技术包括空间复用、空分多址、预编码以及开环发射分集。MIMO技术将多径无线信道与发射、接收视为一个整体进行优化,比较接近最优的空域时域联合的分集和干扰对消处理。MIMO技术目前最基本的配置是采用下行双发双收的2×2天线配置和上行单发双收的1×2天线配置,高端配置则是下行链路MIMO和天线分集支持四发四收的4×4天线配置或者四发双收的4×2天线配置。当前MIMO技术已经广泛的用在LTE等宽带技术中,日趋成熟,在未来城市轨道交通的通信中也会起着巨大的作用。
3结语
科学技术在迅猛发展,给人民生活产生了巨大变化,人们的生活开始向高科技发展。很多的科技都融入到了人们的生活之中,如信息技术和多媒体体技术都开始服务于人们的生活。科技在城市建设中也发挥了越来越重要的作用。本文主要研究通信技术在轨道交通中的运用。
【关键词】
通信技术;城市轨道交通;运用;研究
当今,经济在迅猛发展,工业化的程度也在不断加快。城市化之路也更加快速,随之而来的是人口的增多,各地往来更加频繁,在人们的日常生活中,就会运用轨道交通作为出行工具,这样才能更加方便人们的出行,才能缓解路面交通的压力,使之更加的顺畅,因此,轨道交通发展成为一个非常朝阳的行业。轨道交通在交通中是一个非常重要的工具,它对于缓解人们的出行压力起到了非常大的作用。在当代网络技术发展的今天,信息化也必将融入到轨道交通上,这样才能促进其更加高效和迅速,才能保证交通安全和可靠,保障人们的出行安全和便捷。
1对城市轨道通信系统进行整体规划
在对城市轨道交通专用通信系统构建的时候,要从以下几个方面进行规划和设计:①运营的相关人员和系统设备之间的交互方式,要保证所提供的数据信息稳定、可靠;②要制定目标,要保证所运输的物质安全、有效的送到目的地。另外,要尽量保证系统的安全和可靠,这样才能保证系统的畅通运行。在通信系统的每个子系统中,要安置系统报警或者是自行检测系统,从而保证整个系统的通畅运行。在轨道交通机电系统中,通信系统不仅仅是要提供数据、文字和图像的服务,更重要的是运用这些资源保证系统的安全可靠,尽量提升交换的效率,保证客户能够准时安全到达目的地。通信系统有很多的子系统。比如,公务电话,视频监控、广播等,这些系统共同组成了通信系统,每个子系统都有各自的功能,都对整个通信系统起着至关重要的作用,所以每个子系统都要进行详细的制定,都要做到其安全性、可靠性满足运营的要求,这样才能使整个通信系统在运营中有效运行。通信系统的核心是传输系统,它对整个通信系统起着非常关键的作用,制约着其他系统的发展,只有它安全有序的运行,才能保证整个系统的有效便捷运行。
2城市轨道交通通信系统中的关键技术
2.1通信系统中的传输框架设计研究
传输系统中2.5G的MSTP构成的保护环路,能使每个车站和控制中心以及各个车站之间提供2M到10M/100M总线型业务或者是能够保持点点之间进行数据的传输途径,保持车站能够与控制中心的设备相连通的,进而可以让传输通信系统从整体上保持其功能的优良性。公用电话系统是能够利用较远的端口与控制中心相连接的,交换机可以利用交换数据来达到公务电话相连接的目的,还可以实现就中控交换机与市话中继续连接进而达到公务用电话还具有向外连接的功能;专用电话可以实现控制中心和每个车站相互之间的音频调节实现互相之间的通讯联系,并且由控制中心的调节控制台发出来调控的指令;视频监控系统是能够作为车站和控制中心的第二级监控网络的或者控制中心的。涉及到公安控制系统中心在控制车站中的监控的,可以将采集到的视频截图等送达至核心的综合性的显示平台或者车站里面的监控室里面的监控中心的;广播控制台是由车站与控制中心链接的,广播系统可以在广播控制台上进行紧急信息的临时的。广播系统是可以分析出来控制中心的ATS指令来采集所有车辆在运行中的全部信息的,最终实现了对正在运行的列车的到离站时间来进行自动型的预告广播;时钟系统指的是利用控制中心里面第一级别的母钟给每个分级站的第二级别来进行同步的操作,并且还能够向子系统发出与之相关的信号,二级母钟可以再向更低级别的子钟进行同步操作。
2.2对通信接口进行设计研究
从上面我们可以得知,在整个通信系统中,传输系统是整个系统的骨架,是最重要的一部分。它在整个系统中,引领着其他子系统的方向,对其他部分有重要的指导性,它对其他系统的安全和可靠有着非常重要作用。所以要把IPoverSDH和综合业务介入融为一体,这是最好的选择方式。SDH有很多的优点,它成熟,标准,可靠,又灵活通用。这是其他系统无法比拟的,但是也有自身的缺点,比如点对点的传送不是非常好,图像的传输也不是很佳。IP技术对它的缺点正好能够弥补。
3结束语
随着经济的发展,城市也在不断建设和发展。在城市建设中,通信系统的设计和建设是非常重要的,只有迅速建立起通信系统平台,才能保证轨道交通的有效、快速运行,才能保证每个出行人的生命和财产安全,让他们的出行有一个更加安全的保证。本文对通信系统的设计进行深入的研究,根据轨道交通通信系统的一些特点,阐述了如何把通信系统运用到轨道交通上来,从而提升我国的轨道交通的安全运行,提升客运的质量,保证每个出行人员的交通安全,促进我国的经济和社会发展,为城市的美好明天而不懈努力。
作者:李川一 单位:中车建设工程有限公司
参考文献
[1]钟治国.通信技术在城市轨道交通中的应用[D].上海:上海海运学院,2013.
【关键词】轨道交通;城市;无线通信技术;应用;措施
引言
现代城市交通建设中,轨道交通建设是尤为重要的内容,这是因为轨道交通具有用地省、运能大、运行时间稳定的特点,对促进城市发展、交通发展都具有重要的意义。但是轨道交通在建设过程中也具有一定的局限性,比如城市轨道交通的地下空间较为狭小、紧张,所以不利于各类通信电缆的敷设。而通信系统对轨道交通建设而言尤为重要,其直接关系到轨道交通的运行和安全。基于此,就需要根据城市轨道交通的特点和需求,加强对通信系统建设方面的研究。无线通信技术是利用电磁波信号进行信息传播、交换的一种通信方式,其传播不受通信电缆敷设的限制,所以可以解决城市轨道交通通信系统建设的问题。而分析现代城市轨道交通无线通信技术与应用也显得十分重要。
1现代城市轨道交通对通信系统的要求
现代城市轨道交通堵通信系统的要求较高,其不仅要满足轨道交通的安全稳定运行需求,同时还需要满足乘客对通信的多样化需求。所以现代城市轨道交通通信系统必须要达到相应的要求,比如无线网络系统的覆盖面要更广,要实现全覆盖;车载通信系统单元要与控制基站相联系并授权,以此确保系统信息的交流稳定性;基本的通信要保障信息的及时性和双向信息通信的稳定性等[1]。另外,城市轨道交通通信系统中还需要包括PIS系统,以此来为乘客提供媒体服务,如视频播放、广播广告等。基于此,在城市轨道交通建设中,如图1所示,加强对通信系统的建设就显得十分重要。
2现代城市轨道交通无线通信技术与应用措施
2.1Zigbee技术及应用措施
Zigbee技术也成为紫峰协议,是基于IEEE802.15.4标准的一种无线通信技术,其具有短距离、低功耗、低数据速率、自组织的特点,目前在各种工业现场的遥测遥控领域中都有着广泛的应用,且发挥着重要的作用。Zigbee在室内可以达到30~50m的作用距离,如在室外空旷地带,其作用距离可以达到400m[2]。基于Zigbee技术低功耗、低成本、低速率、远距离的特点,也可以加强其在城市轨道交通无线通信系统中的应用。城市轨道交通备用系统电池状态的监测对地铁供电系统的运行起到了至关重要的作用,但是地铁备电系统电池组数量较多,如果每个电池采用专用电缆的方式进行通信,则会造成较大的成本,而通过应用Zigbee技术就可以有效解决这些问题。在具体应用过程中,可以在每个被检测电池组及测量端子处安装Zigbee终端模块,通过自组网方案,以一定数量的终端模块作为群组,向中继Zigbee传输检测数据,最终将传输的监测数据上传至检测系统微机管理系统中,就可以对备电系统电池状态进行有效监测,进而为地铁供电系统的可靠运行提供保障。
2.2WiFi技术及应用措施
目前在生活生产中,WiFi技术都属于一种非常常见的无线通信技术,其在通信方面具有较高的灵活性和可靠性,可以满足人们多样化的通信需求。作为一种高效可靠的无线通信技术,其也可以在城市轨道交通无线通信系统中发挥作用和价值。但是在WiFi技术应用于城市轨道交通无线通信系统实践中也发现了一些问题,WiFi技术与列车移动电视、信号系统CBTC、PIDS乘客信息系统的同在2.5GHz频段,所以会产生一定的干扰。对此,就需要在WiFi技术应用过程中采取一定的措施来保证无线通信质量和效率。比如在WiFi技术应用过程中,为了保证城市轨道交通通信的稳定性和可靠性,可以将WiFi频段固定在5.8GHz,这对于减少干扰问题具有重要的作用[3]。在WiFi技术应用过程中,也可以应用PIDS和CBTC系统,这对于提高WiFi技术的整体应用可靠性也具有重要的作用。但是如果应用PIDS和CBTC系统,则需要对轨道交通系统进行较大的改造,所以这需要根据轨道交通系统的建设需求和现状慎重实施。为了更好地避免干扰问题,也可以对WiFi技术进行创新和完善,比如可以将WiFi与地铁的信号系统设置在不同的信道当中,以此来起到避免干扰的效果。
2.35G通信技术及应用措施
第五代移动通信技术是现代通信的前沿技术,如图2所示,5G通信技术的出现和应用,可以为城市轨道交通的无线通信系统带来技术上的革命,对提高城市轨道交通无线通信系统的整体水平具有重要的意义。比如基于5G移动通信技术的轨道交通无线通信系统,可以实现高达1Gbit/s的通信速率。MIMO大规模天线技术的应用,可以使得无线接入层的频谱效率和接入终端数量有10倍以上的提升,且通过引入MEC技术,还可以将业务“下沉”到车站接入网侧,为乘客带来零时延的体验[4]。作为新一代移动通信技术,其具有高可靠、低时延的特点,对解决目前城市轨道交通无线通信系统存在的时延长、故障频繁、干扰多的问题具有重要的作用。在5G通信技术具体应用中,可以利用LTE-A技术构建车地无线通信系统核心网络,LTE-A技术具有融合性高的特点,有利于构建高可靠、低延时的轨道交通无线通信系统。在5G通信技术具体应用中,还可以利用MIMO增强技术来实现接入层的大规模高密度的无线网络覆盖,MIMO增强技术的应用可以在很大程度上提高频率效率和系统容量[5]。不过目前对于5G通信技术的应用还处于研究和开发阶段,所以为了提高5G通信技术的应用水平,还需要结合轨道交通无线通信系统的需求和要求,加强对5G通信技术的研究,如图2所示。
关键词:轨道交通;无线通信技术;LTE;应用
随着城市快速发展,城市交通压力越来越大,发展公共交通、轨道交通则成为城市建设的重中之重,高速移动状态下的车地无线传输性能是提升轨道交通通信质量的瓶颈。目前国内城市轨道交通车地无线系统受技术标准体制限制,车地无线实时通信效果不佳,存在着图像传输不连续不清晰、上下行视频并发图像质量差等严重问题,影响运营使用,探讨城市轨道交通中无线通信技术的应用有重要参考价值。
1.城市轨道交通无线通信技术面临挑战
城市轨道交通作为城市建设的重中之重,高速移动状态下的车地无线传输对于通信提供提出了更高的要求,以确保安全运营的实现,满足业务多样化需求。车地无线通信系统要求主要以业务宽带化、运行高速化、管控实时化等为主,城市轨道交通中流媒体、高清广告实时播放等宽带业务需要车地无线网络提供足够宽的传输管道;随着轨道交通最高设计时速从60km/h向120km/h的迈进平均时速可高达200km/h,对高速移动场景下的网络性能力提出挑战;为满足安全运营需求,需将运行列车车厢实时视频监控回传,管控实时化要求较高。以上这些高要求使得无线通信技术的应用遭遇了诸多平静,致使城市轨道车地无线业务的开展受到影响。
目前城市轨道交通行业应用的车地无线专网WLAN解决方案,不仅安全性、可靠性欠佳,在满足行业需求方面更是有着诸多不足,比如抗干扰性能差、安全隐患多、多网络共存且覆盖范围有限、部署和管理维护难度增大、无法保障高移动态下的稳定带宽等,都严重制约了轨道交通建设中无线通信的发展与应用。
2.城市轨道交通中无线通信技术的应用
LTE无线专网是轨道交通车地无线理想选择,以LTE为代表的无线通信技术在解决城市轨道交通无线通信问题方面发挥了重要作用,有利于城市轨道交通建设的推进,下面结合郑州市地铁工程对城市轨道交通中LTE的应用进行分析。
2.1LTE技术优势
LTE是3GPP标准组织制定的目前最先进的无线通信技术,是无线通信技术的发展趋势。城市轨道交通中LTE技术具有以下应用优势:一是抗干扰性能强,有助于保证整体网络环境稳定性,二是无线覆盖范围大,单小区覆盖范围可达1.2km,降低了小区切换频度和设备维护成本,三是支持高可靠性的无损切换和快速及时的无缝切换,以及基于非竞争的快速随机接入,越区切换时延、丢包率低,四是支持高达9级的业务优先级控制,同一张网上可承载多业务,并对不同的业务分配不同的优先级,实现全方位QoS保障。
2.2地铁应用环境
郑州市地铁工程建设中无线通信技术的应用主要面临三个典型挑战,一是乘客信息系统(PIS)数据传输实时性、稳定性无法保证,二是车载视频监控数据无法实时回传,三是设备故障率高、维护困难。轨道交通复杂且专业性较强,对于可靠性、安全性有较高要求,因此无线通信技术的应用必须考虑到与系统内列车控制、乘客信息、行车调度、安全监控、车辆和路轨设备检测等模块的对接,尤其是在快速移动情况下,必须确保通信技术的可靠性,基于4G技术的eLTE成为必然选择,对于实现轨道交通系统的高宽带、多功能、智能化的发展有积极促进作用。eLTE通信技术方案在解决轨道交通运营通信过程中要对系统内业务应用层、承载网络层和终端层等进行优化,三个层面设备互有接口,联合协作,共同支撑轨道交通系统的高效运营,同时联合该其他子系统与设备确保高速运行状态下通信传输的实时性与可靠性。
2.3业务层应用
LTE无线通信技术在提供CBTC(基于无线通信的列车自动控制系统)业务承载的同时,可满足城市轨道交通大流量宽带数据业务,如PIS(乘客信息系统)、CCTV(视频监控系统)、数据采集等。列车自动控制系统作为神经中枢需要切实的安全保障,业务应用层中列车控制信号系统肩负着调节列车运行间隔和运行时分、提高列车运行效率等责任,CBTC系统的应用借助无线通信技术代替了传统轨道电路作为传输媒体来实现列车运行控制,CBTC与eLTE无线通信系统接口的性能、可靠性都为列车运行安全服务。应用WiFi来承载面临着无线干扰问题,采用4G移动通信技术可有效解决干扰问题,通过对eLTE系统相关参数的优化和调整可满足列车控制运行的专业要求。乘客信息系统有承载多媒体需求,eLTE系统为适应PIS系统高清视频实时广播的特点以及不同行车区间的业务需求,通过集成在TAU中的无线通信模块,对接车载的视频播放系统以及视频监控系统,满足实时动态信息的传播与输送需求。
2.4应用实践
LTE端到端技术方案在郑州地铁工程的应用满足了PIS高清化车地无线传输需求,利用匹配轨道应用场景的增强覆盖技术减少了设备数量,利用AFC频偏纠正技术保证了高速场景下的稳定数据传输,利用漏缆、天线、室分多种覆盖方式实现了不同区域的无缝覆盖。超宽带无线车地通信解决方案充分利用了LTE在高速移动状态下接入性能好、业务带宽高的特性,结合专业的无线规划方案,为地铁提供了近20Mbps的下行无线带宽,开创了轨道交通领域乘客信息系统实时高清化的先河,为改善地铁乘车环境、提升运营安全与效率提供了有利保障。另外华为与Funkwerk积极合作,开发了基于LTE模块的同时支持GSM-R和LTE的双模车载台,进一步实现了基于LTE的车载终端的技术突破,为推动eLTE商用提供了强有力支持。
3.结束语
综上所述,城市轨道交通建设中LTE无线通信技术的应用有效规避了传统技术弊端,解决了车地无线实时通信中的诸多问题,为优质地铁乘车环境的建设与轨道交通系统高效管理提供了有力支持,有利于全面提升轨道交通运营工作质量。
【参考文献】
[1]聂淼.浅谈现代城市轨道交通无线通信技术与应用[J].通讯世界:下半月,2015(5):12-14.
【关键词】 车――车通信 CBTC 通信 自动控制 信号控制系统
引言:
目前,大多数城市轨道交通信号系统都采用了CBTC系统,CBTC系统是基于通信的列车自动控制系统,其结构与应用已非常成熟。
随着技术的进一步发展,基于车――车通信技术的新型轨道交通信号控制系统将很有可能取代现有的CBTC系统,成为主流的轨道交通信号系统。
一、基于通信的CBTC信号控制系统原理及缺点
基于通信的CBTC系统的核心是列车自动控制系统(ATC),它由算机联锁子系统(CI)、列车自动防护子系统(ATP)、列车自动驾驶子系统(ATO)及列车自动监控子系统(ATS)构成。
各子系统之间通过数据通信传输子系统(DCS)作为信息交换网络,实现地面与车上控制相结合、现地控制与中央控制相结合,构成一个以安全设备为基础,集行车指挥、运行调整以及列车自动驾驶自动化等功能等为一体化的自动控制系统。
其业务主要为:对列车实施调度、防护、操纵、多子系统通过计算机网络连接实现网络化信息化。具体功能表现为:列车按照运营图自动运行;为列车门、站台屏蔽门的开闭提供安全监控信息;全线列车及信号设备的自动监控;列车运行及信号运行的日志及数据收集存储;与外部接口系统(如:综合监控系统、时钟系统、乘客信息系统(PIS)、无线通信系统、TCC系统)的数据交互等。
虽然CBTC系统已日趋成熟且在轨道交通领域大量应用,但仍有不少问题亟待解决:如前后车运行联动的问题。CBTC系统虽支持不同控制级别列车的混跑,但当CBTC级别的列车与点式列车互相追踪时,前车车载设备在不同控制级、不同故障类型、不同驾驶模式下对后车运行的影响,以及前后车追踪间隔的设置等,都是需要进一步解决的问题。又如闯红灯防护问题。
在点式级别下,因为没有连续的车-地通信,且应答器作用范围有限,司机很难做到对列车的误启动保护。再如车-地无线传输及同站台换乘车站无线干扰的问题。车-地之间的无线传输对信号传输质量稳定性的影响,以及现场不同系统的复杂信号干扰对线路开通调试带来的困难,甚至在运营阶段由于通信不稳定而导致的列车紧急制动等问题,也需进一步优化。
为了进一步优化结构,解决以上问题,更新一代的基于车――车通信技术的新型城市轨道交通信号系统方案已悄然登场。
二、基于车――车通信的信号控制系统结构分析
基于车一车通信的新型信号控制系统,其本质是以列车为中心的新型CBTC系统。
根据ALSTOM在法国里尔l号线提出的基于车――车通信的新型CBTC系统概念,与传统CBTC系统相比,其结构中去掉了联锁子系统和区域控制器子系统,ATS直接与车载控制器VOBC进行通信,将进路信息发送给车载,车载根据进路信息,直接控制道岔的转动和进路的开放,以及移动授权的计算等与轨旁相关的安全功能。这一设计不但减少了联锁子系统,而且减少了系统的接口数量,从而降低了系统的复杂性。
由于精简了轨旁的设备,基于车一车通信的新型CBTC系统与传统CBTC系统在功能分配上差别很大:CBTC系统中大多数轨旁核心功能,都移至车载控制器上实现,大大简化了系统数据交互的复杂度,减少了信号系统网络负荷,缩短了通信时延,提高了系统整体性能。
在车――车通信方式中,后续列车根据自己的状态,向前行列车请求前车的位置信息。后续列车可根据收到的前车位置信息自行计算移动授权和相关的制动曲线。因此,前后列车之间,仅仅通过交互列车位置信息的简单动作便可实现列车移动授权的计算等功能,而无需由轨旁系统计算后再通过网络发送给车载控制器,这样就大量减少了数据通信量,降低了车载控制器的反应时间,并且能快速更新后续列车的速度曲线。
三、基于车――车通信的信号控制系统的优势
3.1结构简单成本低廉
车――车通信系统省略了联锁子系统和区域控制器子系统,其余各个子系统之间的数据流交互和接口简单清晰,避免了繁琐的流程,降低了各个子系统之间的耦合度,防止了各子系统的干扰,而且系统不用过多的连接,也解决了系统接口不兼容的问题,使系统在使用的过程中比较简单,维护过程中成本低廉。
3.2联锁功能更加灵活
车――车通信系统车载控制器的联锁功能可以在列车运行的过程中使之更加的灵活,可以对道岔道的转动进行控制,让列车能够及时地运行决策,提升列车的运行效率。
在确保运行安全的基础上,防止对各类设备的干扰,节省了大量管理设备的时间,而且在具体的运行设计中也节省了时间。
3.3信息交互能力大幅提升
基于车一车通信的新型信号控制系统取消了轨道旁的控制器设备,所以也不用存储联锁的数据,客观上精简了车――地之间交互的信息量以及交互时间,减少了车载控制器的系统反应时间,使得车载控制器反应的速度非常快,而且会及时地建立速度曲线,列车会将自己的运行状态调整,在列车发出请求后,迅速获得周围列车和设备的位置,在接收到相关的信息后,通过对移动授权的分析,绘制制动曲线。所以,在列车之间,其交互性大大的提高,而且,通过移动授权的计算,完成了各项功能。
3.4运行时间间隔进一步缩短
由于车――车通信系统减少了车载控制器的系统反应时间,于是它能提供更小的运行时间间隔。可以在保证安全的前提下,可以为运营提供更加灵活和多样化的运输组织方案。
3.4节省大量空间
车――车通信系统去掉了联锁子系统和区域控制器子系统,节省了大量的空间,不但提高了整个系统的运行性能,而且使列车在运行的过程中更加的安全。
总体而言,车――车通信系统对传统CBTC系统实现了创新,使信息的交互性更好,有效控制了车载控制器反应时间,使整个系统的运行性能更有保障。
四、结语
基于车一车通信的新型信号控制系统,能够大幅度提高系统的快速反应性能、机动灵活性能及安全稳定性能,具有很大的发展空间和潜力,将是未来城市轨道交通信号系统的发展趋势和方向。
参 考 文 献
[1]安静,王令群,吴汶麒. 基于无线通信的列车控制系统研究及应用综述[J]. 上海应用技术学院学报(自然科学版),2016,02:132-138.
[2]陆[,朱翔,纪文莉,郑国莘. CBTC系统无线通信采用UHF低频段的可靠性分析[J]. 城市轨道交通研究,2016,04:15-20.
关键词 城市轨道交通,信息通信系统,信息传输系统
城市轨道交通信息通信系统是直接为轨道交通运营和管理服务的,是指挥列车运行、进行运营管理、公务联络和传递各种信息的重要手段,是保证列车安全、快速、高效运行的不可缺少的综合系统。它主要由以下分系统组成:传输系统、公务电话系统、专用电话系统、广播系统、电视监控系统、电源系统、时钟系统和无线通信系统。这是一个复杂的大系统,各个部分互相结合、协调,以完成具体的功能。现代城市轨道交通之所以具有快捷、高效、可靠、安全等众多的优点,是与完善而先进的通信系统分不开的。城市轨道交通信息通信系统将向两个方向发展:一是宽带化趋势。为了提高各种业务的质量,势必要增加带宽。二是各种新系统的开发应用。为了不断完善城市轨道交通的服务,相应功能的分系统将不断融合入现有城市轨道交通信息通信系统中。本文将依次对城市轨道交通信息通信系统的各个分系统进行阐述,并分析其技术构成和发展趋势。
1 传输系统
传输系统是城市轨道交通信息通信系统的核心,它负责为各种应用业务提供通道。轨道交通系统的主要业务包括:语言、数据和图像。不同业务对系统的带宽、时延、可靠性等各不相同,这就要求传输系统有足够的灵活性和可靠性以保证各种业务的顺利完成。业务按不同的类型可分为:车站-中心业务和邻站业务两种。
在轨道交通系统中,需要通信业务的一般是控制中心、车场和各个车站。由于车场和车站业务比较相似,可将其归为同一类业务。具体业务流程如图1 。
图1 通信系统业务流程示意图
图1 是逻辑上的业务流程示意图。在物理上为了保证传输系统的安全可靠,须采取环形组网的方案,以利于自动保护的需要。这样,控制中心连同所有的车站和车场组成一个自愈环,即使某段光纤坏掉,也可保证业务在备用通道上正常进行。其实现机制如图2 。图中,传输环一般有两个光纤环组成,当一个环中断时,系统自动跳到另一个环上, 即图a 情形;而当两个环在同一个地方断开时,则两侧的节点自动打环,形成如图b 的通路。
城市轨道交通信息通信系统可分为两部分:传输部分和接入部分。其模型如图3 。其中,传输层只负责提供各种通道,保证各种业务能安全可靠的从一个节点传到另一个节点;接入层需完成业务的接入和业务的汇聚两个基本功能;然后把汇聚好的业务交由传输节点完成传输。 技术将会在未来的城市轨道交通信息通信系统中被采用。
(1) 千兆以太网技术( GE) 。GE 与以太网、快速以太网兼容。GE 的实施具有直接、快速和千兆位的特点,设备便宜,传输距离长,可以满足城市轨道交通通信系统组网的要求[2 ] 。同时,原来以太网的不足,如多媒体应用无QoS 、多链路负载分享、
图2 通信系统环形组网方案虚拟网等,随着新技术、新标准的出现已经和正在得到解决。10 Gbit 以太网的出现和成熟也为GE 的升级扩容提供了强有力的支持。
(2) CWDM (粗波分复用) 技术。DWDM 技术已经成为大容量电信骨干网的首选,其优点是技术简单、大容量、易扩容等。而且随着DWDM 技术
图3 城市轨道交通信息通信系统模型图的成熟和广泛使用,它的价格也将逐步降低,其性
传输系统作为整个通信系统的核心部分,它的价比将更具优势。所以,当未来城市轨道交通通信技术选择十分重要。随着通信技术的不断发展,用带宽需求进一步提高的时候,DWDM 技术将是很于城市轨道交通的传输技术也不断的更新换代,尤好的方案。同时,由于考虑到城市轨道交通通信的其近几年通信技术的迅猛发展,为传输技术的选择实际需要, 可以选择成本更低, 使用更可靠的了提供了更广阔的范围。我国现在使用的各种传CWDM 技术。CWDM 的特点是波长数量较少(一输技术及其优缺点如表1 。般在4~12 波),波长间隔较大,价格便宜[3 ] 。最但是,随着通信新技术的涌现和成熟,随着轨后,随着各种新兴的电信技术的涌现和采用,城市道交通新业务的出现和带宽需求的上升,以下几种轨道交通信息通信也完全可以借鉴和运用。
表1 各种传输方式的比较
2 公务电话系统
城市轨道交通信息通信系统公务电话子系统, 是轨道交通运营控制的重要通信工具。一般公务电话系统根据轨道交通的规模具有不同的容量。通常情况而言,一个车站基本上为一个2Mbit 通路(30 个电话) 。公务电话系统可设1~2 个交换局, 通常交换机置于控制中心,各个车站通过远端模块实现电话的接入。此时,需应用传输系统提供的2Mbit 通道。
公务电话系统通过2Mbit 中继线接入市局,并从中获取时钟。呼出可采用全自动DOD1 方式,呼入采用部分全自动直拨DID 、部分采用半自动接续BID(人工/ 自动话务员) 的混合进网中继方式或其它方式。考虑到与其它城市轨道交通系统的互连, 可采取2Mbit 中继线连接的方式,为解决信令不一致可增加网关设备。近几年,交换机已趋于成熟, 公务电话系统的选择余地十分宽广,但要注意选择稳定可靠、扩容方便的交换机,以适应轨道交通的高速增长和话务量及其它业务上升需求。同时,也可考虑选择合适的电信运营商,由公共通信网以虚拟网方式解决,以节省建设投资与运营成本。
公务电话子系统还兼有其自身的特点 区间电话设置。区间电话用于列车司机或维修人员与有关单位进行联系及一般通话用。每隔300 m 左右设置一台户外电话机,1~3 台话机使用一个用户号码。轨道两边各敷设一条电缆,每3 个电话使用同一对线,同一个号,电话采用热线方式。
3 专用电话系统
专用电话子系统是调度员和车站(车场) 值班员指挥列车运行和指导设备操作的重要通信工具。行车调度直接关系到行车安全,需要设备高度安全可靠,操作方便快捷。专用电话系统由调度电话系统、站间电话系统、站内集中电话系统、紧急电话系统、市内直线电话等组成。调度电话系统中又分为:列车调度电话系统,用于控制中心列车调度员与各车站、车场值班员及行车业务直接有关的工作人员进行业务联络,并可兼管防灾调度系统;电力调度电话系统,用于控制中心电力调度员与各主变电站、牵引变电所、降压变电所等处工作人员进行业务联络;公安调度电话系统,构成公安指挥中心值班员与各车站(场) 警务值班室警官之间的直接通信联络,调度台一般设在控制中心内。站间电话是直接为行车服务的,要求能及时、迅速沟通相邻两车站的通话。相邻两车站值班员之间通话利用交换系统的热线功能提供,用户摘机即能及时、迅速沟通两车站值班室,站间电话由车站电话总机完成。站内集中电话类似调度电话系统,总机设在车站控制室,采用多功能数字电话机,分机设置在车站值班员所控制的部门,采用模拟电话机,系统功能由调度交换机及站内集中机功能来完成。紧急电话是在紧急状态下供乘客或车站工作人员使用, 每台电话都设置成热线电话,用户摘机即连接至车控室值班员数字话机上。在主变电所、控制中心至供电局调度之间可设置专线直通录音电话。在每个车站站长室和警务室各设置市内直线电话,控制中心和派出所设置市内直线电话。
专用电话系统由枢纽主系统和车站分系统两级结构组成。枢纽主系统和车站分系统通过数字传输设备提供2Mbit 数字通道,将调度电话、站间电话、站内集中电话和紧急电话等业务综合起来, 便于安装、调试、使用、维护和管理。2Mbit 数字通道同样由传输系统提供,考虑到专用系统的小容量特点,为了节约带宽,可采用多个车站组成一个2Mbit 环合用一个2Mbit 通道的方案。
4 广播系统
广播系统采用二级广播控制方式,由控制中心一级和车站一级组成。一般分为三个部分:控制中心广播系统,车站广播系统(可根据实际需要连接多个车站子系统),停车场广播系统。控制中心通过综合接入系统提供的RS 422 或RS 485 通道与车站广播系统互连。一般情况下,广播业务为中心到车站的点到多点业务,而中心对车站系统的监控维护通道则为点对点业务。
控制中心行车调度员和环控调度员可对全线各站进行监听及选站和选区广播。当轨道交通发生故障或灾害时,广播系统自动转为抢险通信设备。停车场广播系统由值班员、运转值班员和检修库值班员向工作人员播放车辆调度、列车编组等有关作业音讯。
车站广播系统由控制中心的总调、列调、防灾调(列调兼) 和各车站的正副值班员使用,为旅客播放列车到发信息、导向信息及紧急状态信息等服务音讯,为工作人员播放作业命令及管理音讯。车站广播区分为上行站台、下行站台、售票区、站厅、出入口和办公区等。车站行车值班员和环控值班员可通过广播控制台对本站区进行选区广播或全站广播。
5 电视监控系统
闭路电视监控系统作为一种图像通信,具有直观、实时的动态图像监视、记录和跟踪控制等独特功能,是通信指挥系统的重要组成部分,具有其独特的指挥和管理效能,已成为城市轨道交通实现自动化调度和管理的必备设施[ 5 ] 。
轨道交通电视监控系统为二级结构,分为车站一级监视和中心一级监视。车站摄像机输出的图象信号分成两路,一路送车站控制器,车站值班员可选择本站不同位置摄像机的图像。另一路送车站前端处理机进行图像编码、压缩,然后经传输系统送至控制中心,在控制中心解码后送至图像监视器。控制中心行车调度员可选择任一车站的任何一个摄像机的图像信号,也可将车站几路图像信号送至控制中心。彩色图像信号的传送一般采用MPEG-2 图像编码技术。
电视监控系统的传输为不对称传输,车站到中心传输图像信息,需要大带宽(2~6Mbit) ;而中心到车站,只发送控制命令(图像选取和摄像机控制命令),为低速数据业务,只需采用RS 422/ RS 485 通道即可。充分考虑到图像业务的实时宽带性质, A TM 技术是目前最佳的传输机制,采用A TM 作为传输媒介传输数字视频,可以利用A TM 按需分配带宽、按需连接的特点,在保证图象质量(QoS) 的情况下,大大节省所占带宽[ 1 ] 。
6 电源系统
电源系统是保证通信系统正常工作的必要条件,因此通信电源必须安全可靠。电源系统由配电设备、整流设备和蓄电池组成。系统配置不间断电源(U PS) 交流供电设备,为各自动控制系统的计算机提供不间断220 V 交流电压。U PS 的工作原理为:同时有两路市电输入,取其一路,当该路出现故障时,自动切换至另一路;当两路都出现故障时,启动蓄电池继续供电。
整个电源系统设有电源集中监控。在控制中心,所有U PS 将通过传输系统的低速数据通道进行信号传输,监控中心的计算机也将通过传输系统的低速数据通道进行信号采集,在监控中心计算机上装有软件,可实时监控到当前各个站点U PS 的状态及使用情况。各站点使用现场的U PS 和开关电源一旦发生故障,警铃将提醒现场有关人员进行及时的处理,同时在监控中心的计算机上同样可看到输出故障的警告显示。
7 时钟系统
为了统一整条城市轨道交通系统的时间,通信系统设有专门的时钟系统。时钟系统由GPS 全球卫星标准时间接收单元、主控母钟、各站辅助母钟、子钟及传输设备组成。主、备GPS 信号接收机向中心母钟提供同步时钟源。当GPS 系统出现故障,还可以使用高精度的晶振供时钟源。主控母钟输出的标准时间信号通过接入网提供的低速数据信道(RS 422/ RS 485) 传给各站辅助母钟,以供车站各系统和子钟的使用。中心母钟产生精确的标准同步时间码,通过传输网提供给通信传输系统、无线系统、调度电话系统、公务电话系统、有线广播系统、电视监视系统、信号系统、售检票系统、防灾报警系统、设备监控系统、电力监控系统等。
8 无线通信系统
无线通信系统为行车调度员与司机、车站值班员与司机、司机与司机以及公安、环控、维修等用户提供移动通信手段。无线通信将主要采用数字集群式调度系统,信道集中控制方式。集群式调度系统由移动交换控制器、基站、中继器、漏泄同轴电缆、车载台、便携台和有线传输通道组成,可采用单基站大区制或多基站小区制。无线调度系统分为行车调度、环控调度、公安调度和维修调度等通话组。组间不能交叉呼叫,各组享有不同的优先权, 不同的无线用户也拥有不同的优先权。
参 考 文 献
1 Timothy Kwok. A TM The Paradigm for Internet , Intranet , and Residential Broadband Services and Application. Prentice Hall PTR , 1998
2 David G. Gunningham. 千兆位以太网组网技术. 北京:电子工业出版社,2001
3 (美) 卡塔洛颇罗斯基. 密集波分复用技术导论. 北京:人民邮电出版社,2001
Abstract: This paper starts from the composition of urban rail transit engineering communication system, combs the cost composition and proportion of communication system, analyzes the technical and economic indicators of each subsystem and the main factors influencing the indicators, and provides reference for the follow-up project.
关键词:城市轨道交通工程;通信系统;技术经济指标;分析
Key words: urban rail transit engineering;communication system;technical and economic indicators;analyze
中图分类号:U239.5 文献标识码:A 文章编号:1006-4311(2017)22-0055-02
1 概述
城市轨道交通通信系统是一个适应城市轨道交通运输效率、保证行车安全、提高现代化管理水平,并能迅速、准确、可靠地传递语音、数据、图像和文字等各种信息的机电系统。
通信系统由专用通信系统、公安通信系统、民用通信引入系统组成[1]。
专用通信系统包括传输系统、无线通信系统、公务电话系统、专用电话系统、视频监视系统、广播系统、乘客信息系统、时钟系统、办公自动化系统、电源系统及接地、集中告警系统等子系统。
公安通信系统包括公安视频监视系统、公安无线通信引入系统、公安数据网络、公安电源系统等子系统。部分城市根据公安部门的要求增设了公安传输系统。
民用通信引入系统包括民用传输系统、移动通信引入系统、民用电源系统等子系统。
2 总指标及费用比例
通信系统由专用通信、公安通信及民用通信引入系统三部分组成。由于4B、6B、6A、8A等4种编组类型车站规模不一样,导致各项目通信系统正线公里指标存在一定差异。
目前约100多个在建或规划建设城市轨道交通的大中型城市主要采用6B编组,本文以6B编组的通信系统作为分析对象。工程实例经历了实践检验,具有代表性。合肥市轨道交通3号线为6B编组,线路全长37.20公里,设站33座,站间距1.16km,设车辆段及停车场各1座,其通信系统包括专用通信、公安通信及民用通信引入系统3部分,是6B编组通信系统的典型代表,其初步设计概算费用及指标如表1所示,编制期为2014年10月。本文以合肥市轨道交通3号线通信系统为例,分析通信系统的主要技术经济指标、费用组成及比例。
各城市对民用通信引入系统是否纳入城市轨道交通投资做法不统一。有些城市,例如武汉,民用通信引入系统由运营商自行建设、维护,费用由运营商承担,不纳入城市轨道交通投资,有些城市,例如合肥,民用通信引入系统由地铁集团建设、维护,费用纳入城市轨道交通投资。
通信系统费用一般由专用通信、公安通信及民用通信引入系统3部分组成。专用通信、公安通信及民用通信引入系统分别占通信系统费用的60%、20%、20%,如图1所示。
■
3 主要技术经济指标
合肥轨道交通3号线通信系统指标为1552.76万元/正线公里,通信系统指标主要受站间距、公安系统方案、民用通信引入系统是否列入、线路敷设方式、移动通信新技术等因素影响。一般6B编组城市轨道交通工程通信系统指标约为1450万元/正线公里,较合肥轨道交通3号线低,主要原因是其站间距较合肥轨道交通3号线大。
3.1 专用通信系统
专用通信系统费用指标约为930万元/正线公里,指标主要受站间距等影响,其指标如表2所示。
3.2 公安通信系统
公安通信系统指标约300万元/正线公里,公安通信系统指标主要受站间距、公安通信系统方案等影响,其指标如表3所示。
3.3 民用通信引入系统
民用通信引入系统指标约为320万元/正线公里,主要受站间距、线路敷设方式及移动通信新技术等影响,其指标如表4所示。
4 指标分析
通过费用组成及比例分析,得出专用通信、公安通信、民用通信引入系统分别约占通信系统费用的60%、20%、20%。
专用通信系统方案比较稳定,主要设备是影响其指标的关键因素;公安通信系统指标主要受系统方案影响;民用通信引入系统指标主要受线路敷设方式、移动通信新技术影响,因此,公安通信系统方案、线路敷设方式、移动通信新技术等是影响通信系统指标的重要因素。
4.1 公安通信系统指标分析
公安通信系统指标与系统方案有关。以公安视频监视系统为例,公安通信系统视频监视系统的服务器、存储设备、摄像机可以与专用通信系统视频监视系统共用,也可以独立设置。武汉轨道交通11号线东段公安通信系统与专用通信系统共用视频监视系统的服务器、存储设备和摄像机等设备,仅新设少量视频监视终端,公安通信系统指标为169.86万元/正线公里,合肥轨道交通3号线独立设置公安视频监视系统的的服务器、存储设备和摄像机等设备,公安通信指标为305.13万元/正线公里,较武汉轨道交通11号线指标高135.27万元/正线公里。
4.2 民用通信引入系统指标分析
民用通信引入系统指标与线路敷设方式有关,当线路采用高架或地面敷设时,不需设置民用通信引入系统车站级设备。以宁波至奉化城际铁路工程(以下简称“宁奉城际”)民用通信引入系统为例,该线仅在宁波轨道交通3号线陈婆渡站引出处有一小段地下区间,仅需在此地下区间设置民用通信引入系统,其民用通信引入系统指标仅为10.65万元/正线公里,其指标如表5所示。
民用通信引入系统指标与移动通信新技术有关。随着移动通信技术的发展,新的移动通信制式也需引入到城市轨道交通中,民用通信引入系统指标增加。以4G信号引入为例,工业和信息化部于2013年12月4日向中国移动、中国电信、中国联通发放4G牌照,在此之前的城市轨道交通未考虑4G信号引入,如武汉轨道交通7号线初步设计于2013年10月批复,未考虑4G信号引入,民用通信引入系统指标为260.35万元/正线公里,而合肥轨道交通3号线考虑引入4G信号,民用通信引入系统指标为316.60万元/正线公里,较武汉轨道交通7号线指标高约56.25万元/正线公里。
参考文献:
[1]建设部标准定额司.城市轨道交通工程设计概预算编制办法[S].北京:中国计划出版社,2007.
关键词:城市轨道交通;LTE;车地无线通信系统
1 背景
近年来,我国城市轨道交通建设已经进入了快速发展阶段,其安全性和舒适性得到社会的普遍关注。一方面,乘客已不满足于少量的类型单一的文本、声音信息服务,城市轨道交通迫切需要提高信息服务水平,从服务上吸引乘客。另一方面,国外城市轨道交通恶性事件频发,地铁列车需要增加足够的监控措施,以防范于未然,城市轨道交通需要直观地了解现场情况,迫切需要高速率的车载视频信息传输。总之,随着城市轨道交通服务水平和管理水平的不断提高,城市轨道交通对车地无线通信系统的性能,诸如:上下行的传输带宽、高速移动接入、场强可控性、无线干扰等提出了更高的要求。
2 当前主流技术比较
城市轨道交通车地无线通信系统作为传输网络的延伸,提供地面与列车之间的通信,为视频监控系统、乘客信息系统等提供车辆与车站、控制中心之间的无线传输通道。车地无线通信系统需要具有高可靠性,支持列车运行速度80公里/小时或更高速度下的视频信息、多媒体信息的实时传输,且系统应具备防止黑客和非法信息入侵的功能,确保播出信息的安全。
当前可供选择的无线传输技术主要有:TETRA、GSM、CDMA、3G、TRainCom-MT、WLAN、WiMax、LTE等。
TETRA、GSM、CDMA均为非常成熟的无线技术,有着广泛的应用实例,但是这三种技术对于车地之间无线数据传输的要求均存在速率不足的缺陷:TETRA的下行速率约为几十Kb/s,上行速率约为几Kb/s;GSM和CDMA的上下行速率大致相当,下行速率约为几十Kb/s,上行速率约为十几Kb/s。三者均无法满足车地无线通信系统所需要的传输速率。
WLAN作为一种宽带无线接入网技术,其网络化、宽带化等特点具有相当的优势。WLAN目前存在多种标准,如:802.11a、802.11b、802.11g等。802.11a工作在5.8G频段,干扰较少,传输速率可以达到54Mb/s,但5.8G频段属于非免费开放频段,需要申请。802.11b工作在2.4G频段,传输速率最高达11Mb/s。802.11g也工作在2.4G频段,由于使用OFDM调制技术,其数据传输速率提高至54Mb/s。但WLAN天线覆盖范围较小,轨旁AP在直线隧道一般每间隔200米布设一个,系统越区切换频繁。
LTE(Long Term Evolution,长期演进) 是3G的演进,是3G与4G技术之间的一个过渡,是3.9G的全球标准,如下图1-1所示。它改进并增强了3G的空中接入技术,采用OFDM和MIMO作为其无线网络演进的唯一标准。与3G相比,LTE具有高数据速率、分组传送、延迟降低、广域覆盖和向下兼容等技术优势,被视作从3G向4G演进的主流技术。载波聚合技术,在频谱灵活分配、系统容量、覆盖等综合方面,有着无可比拟的优势。而采用漏缆覆盖模式的2X2MIMO的传输,将会实现速率的倍增。从目前看,主流运营商几乎一致支持LTE标准。
图1-1
3 基于WLAN技术的车地无线通信网络兼容性分析
基于IEEE 802.11标准的WLAN技术是目前城市轨道交通通信系统主要可用的宽带数据无线通信技术,该技术于2004年在国内开始使用,并且逐渐成为国内城市轨道交通通信系统主流的车地通信技术,已经在北京、上海、广州等很多大城市运用。近年来,通信PIS系统可用的宽带数据无线通信技术制式相对通信系统来说较多,但是国内的城市轨道交通已经开通的和正在实施中的线路采用WLAN方案占多数。综上,目前城市轨道交通环境中车地无线通信系统以两张WLAN网络共存的情况为主。
两个无线通信网络电磁兼容是工程实施中必须考虑的问题。根据已经实施项目的实际使用情况,信号系统和PIS系统的电磁兼容主要有以下三个方案:
(1)信号系统和PIS系统分别使用不同的频段,例如,PIS系统采用4.2GHZ的频段,而信号系统采用3.1GHZ的频段。
(2)信号系统和PIS系统采用同一家WLAN供应商,将信号系统和PIS系统集成建设。
(3)信号系统和PIS系统采用相同频段,当两个系统采用相同频段的时候,在工程实施中一般采取以下三个措施来减少相互之间的干扰:合理规划无线频点;协调AP点位置;选择不同天线极化方向。
4 WLAN技术车地无线通信中存在的问题
车地无线通信系统采用2.4GHZ开放频段,所有使用2.4GHZ WLAN技术的设备均为车地无线通信系统的干扰源,系统不可避免的会受到民用通信设备(如WiFi、MiFi、蓝牙)的干扰,严重的可能会导致车地无线传输系统无法正常工作,影响车地无线通信系统的可靠性。而且随着无线智能城市的建设以及手机上网应用的普及,将会有更多的干扰源出现。
5 LTE技术优势
若要从根本上解决车地无线通信中的干扰问题,保证通信系统可靠、稳定的工作,智能通过采用专用频段及更新进的无线通信技术来解决,如图1-2。因此,LTE技术的出现,堪称车地无线通信干扰问题的救星,其主要具备以下几个优势:
(1)以分组域业务为主要目标,系统在整体架构上基于分组交换。
(2)在20MHz频谱带宽下能够提供下行100Mbps、上行50Mbps的峰值速率。0~120 km/h移动场景下平均吞吐速率达到60Mbps,上行速率16Mbps,下行速率44Mbps。
(3)LTE技术的数据业务速率和频谱利用率高。
(4)支持成对或非成对频谱,可灵活配置1.4MHz-20MHz间的多种系统带宽。TDD LTE可以调整上下行流量。
(5)扁平化组网方案,网络架构简单,网元节点少,系统可靠性高。
(6)增加小区边界比特速率,提供1bps/Hz的小区边缘速率。小区覆盖半径可达100km。
(7)严格的QoS机制保证实时业务(如VoIP)的服务质量。
(8)采用频偏补偿机制,有效克服多普勒效应,确保高速移动场景下的无线链路质量。
(9)切换时参考频率偏移变化,提高切换成功率,保证高速切换场景下的带宽稳定。
(10)多RRU共小区,减少由于切换带来的时延、抖动、丢包,保证高速切换场景下的带宽稳定。
(11)无须在隧道中另外布设天线,可共用商用通信的泄漏电缆。隧道内单个RRU覆盖1.2KM漏缆,能够提供稳定的覆盖。
(12)LTE技术采用扁平化网络结构,有效地缩短了端到端的数据传输时延,更加满足城市轨道交通特别是信号系统的应用需求。
6 结语
本文通过介绍城市轨道交通车地无线通信技术,主要针对WLAN技术和LTE技术进行比较,突出LTE技术在当今的各种优势,由以上分析并结合各种无线传输技术的特点及城市轨道交通的业务需求,推荐采用LTE作为城市轨道交通车地无线传输技术。LTE使用专用频段,抗干扰能力强,可以共用商用通信系统的泄漏电缆,施工难度小,且未来可以承载更多的业务,如:语音集群。虽然LTE系统初期投资较大,但核心网设备可为多条线路所共用,随着城市轨道交通线路的不断新建,系统的总体建设投资将与采用其它无线传输技术基本持平。
参考文献
[1]TD-LTE无线通信系统在铁路上的应用 尹福康 铁路通信信号工程技术 2013年。
关键词:轨道交通;通风空调;发展趋势
中图分类号:C913文献标识码: A
一、城市轨道交通通风空调系统的功能
通风空调系统作为城市轨道交通中的重要设备系统之一,担负着对城市轨道交通内部空间的空气温度、湿度、空气流速、空气压力和空气品质进行控制的任务。列车正常运行时,为乘客和工作人员提供一个适宜的人工环境,满足其生理和心理要求;当列车阻塞在区间隧道时,向阻塞区间提供一定的通风量,保证列车空调等设备正常工作,维持车厢内乘客在短时间内能接受的环境条件;当发生火灾事故时,提供迅速有效的排烟手段,为乘客和消防人员提供足够的新鲜空气,并形成一定的迎面风速,引导乘客安全迅速地撤离火灾现场;为各种设备提供必要的空气温度、湿度以及洁净度等条件,保证其正常运转。
从系统功能上可以看出,以满足乘客出行为目的的城市轨道交通需要通风空调系统为乘客和工作人员营造一个安全良好的内部空气环境,这是保证其开通运转必不可少的基础条件。
二、城市轨道交通通风空调系统的现状
国外城市轨道交通通风空调系统是随着工程建设不断发展的,从最初完全采用自然通风到后来设置机械通风,再发展到空调降温,基本上与地面建筑设备技术是同步前行的。国内城市轨道交通从1969年北京地铁一期工程的通风系统开始,经过上海、广州等城市的工程建设和运营,通风空调系统不断完善,并在工程实践中学习和借鉴欧洲国家和美国的技术和经验,目前城市轨道交通通风空调系统已经能够满足功能需求,技术比较成熟和可靠。
目前城市轨道交通通风空调系统广泛采用(1)通风系统(含自然通风、活塞通风和机械通风);(2)站台不设屏蔽门的通风空调系统;(3)站台设置屏蔽门的通风空调系统这三种形式。具体到某个地下车站或某段地下隧道,通风空调系统的布局可能差异较大,但系统构成则是相同的。
城市轨道交通通风空调系统存在诸多问题,其中最主要的问题包括:
1、系统设置构成复杂,控制运行不便;
2、占用面积和空间巨大,地下机房面积一般在1200~2500m2左右,占地下车站总面积的12%~30%;
3、系统运行能耗巨大,以地铁为代表的城市轨道交通的电力能源消耗主要体现在地铁列车的牵引用电和通风空调系统用电两个方面,在现有地铁线的实际耗能统计中,通风空调系统的能耗已经达到了地铁总能耗的50%左右;
4、系统优化和技术创新,以及新产品、新技术、新工艺的应用进展缓慢。
三、城市轨道交通通风空调系统发展展望
1、安全健康
通风空调系统担负着城市轨道交通内部的空气环境控制的重任,事关乘客和工作人员的健康与安全,系统设置和设备配置上一定要以此为最基本的出发点。以往工程上采用的系统形式也都是以此为前提的,但随着工程建设速度的加快,遇到的复杂实际情况越来越多,例如城市地下长大隧道、山岭隧道、过江(河、海)隧道等。山岭隧道经常伴随着大埋深情况,过江(河、海)隧道经常具有较大长度,因此在隧道中部设置中间风亭的代价将极其巨大,甚至技术上不可实施;长大隧道由于结构施工的要求,其结构形式多种多样,隧道通风和排烟仅依赖已有的技术措施已不能完全满足要求或技术经济合理性很差,这些都导致传统的系统设置和运行模式无法适应实际的需要。中庭式车站、双洞或三洞式全暗挖车站等多种新型建筑和结构形式车站目前也屡见不鲜,通风空调系统必须根据实际需要不断改进,实现既满足人员健康要求又保证安全的目标。
在实际工程建设的地质勘察过程中,不断遇到地下气压较高的有害气体的情况。当城市轨道交通线路穿越储气层时,在设计、施工和未来运营过程中,一定要认真考虑有害气体对工程的危害以及对工程后期运营带来的不利影响,这是通风空调系统面临的新问题,如果没有合理可靠的技术手段,将会威胁人员的健康尤其是安全。现实问题要求通风空调系统适应新情况,发展新技术,解决新问题。随着列车运行速度的提高,隧道内的空气压力也随之发生变化,国内已经有若干条城市轨道交通线路列车最高运行时速达到了120km/h,空气压力的波动对人员的舒适造成较大影响,情况严重时会危及健康。通风空调系统需要针对空气压力的变化,结合人员的健康要求,提出合理有效的控制标准,并会同有关专业共同加以解决。
2、经济节能
传统的城市轨道交通通风空调系统存在两大突出特点,一是占用面积和空间巨大,一般来说地下车站设备及管理用房一半的面积被通风空调机房占用。二是运行能耗极高,南方城市约50%的运营能耗为通风空调系统耗能;而北方城市通风空调系统的能耗也达到运行总能耗的近1/3。
设计、科研单位和生产企业应高度重视这两大难题,并加以解决。目前出现的集成系统等就是在这方面作出的有益尝试,但这些与工程建设的需要,尤其是国家节能减排的国策要求还有很大差距,还需要继续努力,继续探索,要从系统的精确计算、系统制式的选择、系统设备的配置、系统控制、系统运行模式以及新设备的研发与应用等多个角度来做大量的工作。
从系统制式的选择上看,合理的系统方式设置对节省所占用的土建空间和运营节能至关重要,应当结合气候条件、运力因素、土建结构类型、地质情况、建设标准和经济实力进行综合的技术经济比较,发展和采用合理的系统制式。例如,日前通过由国内多位著名专家鉴定的课题---“可调通风型站台门通风空调系统”就是一项意义重大的创新和探索。课题组开创性地提出了可调通风型站台门的理念,研制了相应的产品,并且提供了基于可调通风型站台门的适用于不同气候条件的新型环控系统形式,能够很好地满足城市轨道交通各种正常及事故工况下通风空调系统的全部功能需求,节能效果显著;同时,还可以有效解决严寒地区冬季站内温度偏低的技术难题。
在系统方式和系统构成方案确定后,系统设备的选用及配置就成为重要的环节,在工程建设中,考虑到不同运营时期客流量和热负荷的不同,通风空调应采用不同的设备配置标准以适应负荷的变化,达到最大的运行节能效果,因此,应该大力提倡设备的科学分期安装实施,尽管这样增加建设管理上的事务。另外,应从建设和运营管理及投资体制方面综合研究适当的对策和政策。
3、环保美观
从城市景观角度考虑,凸出地面的风亭和设置在地面的冷却塔、风冷机组等设施与设备无疑会对城市景观造成影响。在一些敏感区域和道路、建筑物布局紧张地段,以及居民集中地区,这些矛盾极为突出。这就需要在风亭位置的选择、风亭尺寸的选用、风亭建筑形式等方面多加研究。对于通风空调系统也应进行创新性研究,以利于解决此类问题。例如目前出现的蒸发冷凝式系统就是其中的一项实际举措,这项技术采用蒸发冷凝机组取代传统意义上的冷却塔装置,设置在地下,并充分利用水的汽化潜热将热量散发,实现制冷效率的提高,也有利于节能。
城市轨道交通通风空调系统对城市环境的噪声与振动影响也不容忽视。城市轨道交通线路可能穿越城市不同环境要求的区段,其对周边的环境噪声与振动影响应满足环保的要求。从这个意义上分析,城市轨道交通通风空调设备应低噪声、低振动和低能耗。
结束语
城市轨道交通通风空调系统技术需要总结国内外城市轨道交通通风空调系统的实际应用经验,结合新的理念,采用新的技术,改造和提升传统系统方式,加快系统技术的更新和促进技术进步,并充分结合工程建设的具体情况,解决在技术上和运行上存在的诸多不足,实现通风空调技术在城市轨道交通领域的科学理性探索和符合工程实际、满足国家需要的高水平发展。
参考文献
[1]付维纲.深圳地铁空调通风系统的设计[J].广西质量监督导报,2008.