欢迎来到易发表网!

关于我们 期刊咨询 科普杂志

简述建筑结构概念优选九篇

时间:2023-06-21 09:12:10

引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇简述建筑结构概念范例。如需获取更多原创内容,可随时联系我们的客服老师。

简述建筑结构概念

第1篇

【关键词】 抗震设计; 概念设计; 高层建筑结构

中图分类号:TU208文献标识码: A

地震作用影响因素极为复杂,它是一种随机的、尚不能准确预见和准确计算的外部作用,目前规范给出的计算方法还是一种半经验半理论的方法,要进行精确的抗震计算还有一定的困难,因此人们在工程实践中提出了“建筑抗震概念设计”。结构的抗震设计应该是综合概念设计、计算和结构措施等完整的一系列设计。

1 建筑的抗震概念设计

所谓“建筑抗震概念设计”是指根据地震灾害和工程经验等所形成的基本设计原则和设计思想,依此进行建筑和结构总体布置并确定细部构造的过程。掌握了抗震概念设计,有助于明确抗震设计思想,灵活、恰当地运用抗震设计原则,使设计人员不至于陷入盲目的计算工作,从而做到比较合理地进行抗震设计。

2 高层混凝土建筑结构设计更应重视概念设计

在设计中,虽然分析计算是必须的,也是设计的重要依据,但仅靠此往往不能满足结构安全性、可靠性的要求,不能达到预期的设计目标,因此必须非常重视概念设计。从某种意义上讲,概念设计甚至比分析计算更为重要,因为合理的结构方案是安全可靠的优秀设计的基本保证。高层建筑结构设计尤其是在高层建筑结构抗震设计中,更应重视概念设计。这是因为高层建筑结构的复杂性、发生地震时震动的不确定性、人们对地震时结构响应认识的局限性与模糊性、高层结构计算尤其是抗震分析计算的精确性、材料性能与施工安装时的变异性,结构计算模型的假定与地震时的实际工作有很大的差异以及其他不可预测的因素,致使设计计算结果( 尤其是经过实用简化后的计算结果) 与实际相差较大,甚至有些作用效应至今尚无法定量计算出来。

3 高层混凝土建筑结构抗震概念设计的基本内容

3. 1 首先应重视高层建筑结构的规则性

建筑设计应符合抗震概念设计的要求,不应采用严重不规则的形状设计方案。合理的建筑布置在抗震设计中是头等重要的,提倡平、立面简单对称,因为震害表明,此种类型建筑在地震时较不容易破坏,而且容易估计出其地震反应,易于采取相应的抗震构造措施和进行细部处理。“建筑结构的规则性”包含了对建筑的平立面外形尺寸,抗侧力构件布置、质量分布,承载力分布等诸多因素的综合要求。“规则建筑”体现在体形( 平面和立面的形状) 简单; 抗侧力体系的刚度承载力上下变化连续、均匀; 平面布置基本对称。

3. 2 结构刚度、承载力和延性要有合理的匹配

当结构具有较高的抗力时,其总体延性的要求可有所降低; 反之,较低的抗力需要较高的延性要求相配合。对结构提出了“综合抗震能力”的概念,就是要综合考虑整个结构的承载力和构造等因素,来衡量结构具有的抵抗地震作用的能力。地震时建筑物所受地震作用的大小与其动力特性密切相关,与其具有合理的刚度和承载力分布以及与之匹配的延性密切相关。但是,提高结构的抗侧刚度,往往是以提高工程造价及降低结构延性指标为代价的。要使建筑物具有很强的抗倒塌能力,最理想的是使结构中的所有构件都具有较高的延性,然而实际工程中很难做到。有选择地提高结构中的重要构件以及关键杆件的延性是比较经济有效的办法。因此,在确定建筑结构体系时,需要在结构刚度、承载力及延性之间寻找一种较好的匹配关系。

3. 3 设计多道设防结构

3. 3. 1 超静定结构

静定结构是只有一个自由度的结构,在地震中只要有一个节点破坏或一个塑性铰出现,结构就会倒塌。抗震结构必须做成超静定结构,因为超静定结构允许有多个屈服点或破坏点。将这个概念引申,抗震结构不仅是要设计成超静定结构,还应该做成具有多道设防的结构。第一道设防结构中的某一部分屈服或破坏只会使结构减少一些超静定次数。同时要注意分析并控制结构的屈曲或破坏部位,控制出铰次序及破坏过程。有些部位允许屈服或允许破坏,而有些部位则只允许屈服,不允许破坏,甚至有些部位不允许屈服。例如,带连梁的剪力墙中,连梁应当作为第一道设防,连梁先屈曲或破坏都不会影响墙肢独立抵抗地震力。

3. 3. 2 双重抗侧力结构体系

双重抗侧力结构体系是可能实现多道设防结构的一种类型,而且双重抗侧力结构的抗震性能较好。这里提出的双重抗侧力体系的特点是,由两种变形和受力性能不同的抗侧力结构组成,每个抗侧力体系都有足够的刚度和承载力,可以承受一定比例的水平荷载,并通过楼板连接协同工作,共同抵抗外力。特别是在地震作用下,当其中一部分结构有所损伤时,另一部分应有足够的刚度和承载力能够共同抵抗后期地震作用力。在抗震结构中设计双重抗侧力体系实现多重设防,才是安全可靠的结构体系。

3. 3. 3 总结构体系与基本分结构体系

1972 年 12 月 23 日尼加拉瓜首都发生强烈地震,1 万多栋楼房倒塌。林同炎公司 1963 年设计的美州银行大楼,虽位于震中,承受比设计地震作用 0. 06g 大 6 倍的地震 0. 35g而未倒塌,引起世界同行的高度重视。众所周知,建筑物在地震作用下的运动与由风引起的位移是不同的,在强烈地震作用下,结构会在任意方向变形。在高层建筑中,这种变形更为复杂。当然主要是第一振型,同时也包括具有鞭梢效应的第二、第三振型,变形量很大。所以设计者主要考虑的是如何避免就其结构固有特征会引起倒塌的过大变形。再则,设计高层结构所考虑抗风与抗地震要求的出发点往往是矛盾的。刚度大的结构对抗风荷载有利,动力效应小; 反之,较柔的结构有利于抗震。所以要设计一个抗风及抗震性能都很好的高层结构不很容易。林同炎教授的设计思想是设计一个由 4 个柔性筒组成的,具有很大抗弯刚度的结构总体系。在抗风荷载及设防烈度的地震作用下表现为刚性体系。当遇到罕见的强烈地震时,通过控制各分体系( 柔性筒) 之间的联接构件( 钢筋混凝土连梁) 的屈服、破坏,而变成具有延性的结构体系,即各分体系独立工作,则结构的自振周期变长,阻尼增加,即使超出弹性极限,仍持有塑性强度,可做到摇摆而不倒塌。地震后的实地观察,证明其设计思想是正确的,正如预料的那样,联梁的混凝土剥落,梁中有明显裂缝。但四个柔性筒的本身均无裂缝,筒壁仍处于弹性阶段。

3. 4 抗侧力结构和构件应设计成延性结构或构件

延性是指构件或结构具有承载能力基本不降低的塑性变形能力的一种性能。在“小震不坏,中震可修,大震不倒”的抗震设计原则下,结构应设计成延性结构。当设计成延性结构时,由于塑性变形可以耗散地震能量,结构变形加大,但结构承受的地震作用不会直线上升,也就是说,结构是用它的变形能力在抵抗地震作用。延性结构的构件设计应遵守“强柱弱梁,强剪弱弯,强节点弱杆件,强底层柱”原则,承受竖向荷载的主要构件不宜作为主要耗能构件。

3. 5 应有意识地加强薄弱环节

( 1) 结构在强烈地震下不存在强度安全储备,构件的实际承载力分析( 而不是承载力设计值的分析) 是判断薄弱层的基础。

( 2) 要使楼层( 部位) 的实际承载力和设计计算的弹性受力之比在总体上保持一个相对均匀的变化,一旦楼层( 部位) 的这个比例有突变时,会由于塑性内力重分布导致塑性变形的集中。

( 3) 要防止在局部上加强而忽视整个结构各部位刚度、承载力的协调。

( 4) 在抗震设计中有意识、有目的地控制薄弱层( 部

位) ,使之有足够的变形能力又不使薄弱层发生转移,这是提高结构总体抗震性能的主要手段。

4 做好高层建筑结构概念设计还应注意的问题

( 1) 结构方案要根据建筑使用功能、房屋高度、地理环境、施工技术条件和材料供应情况、有无抗震设防来选择合理的结构类型。

( 2) 不同结构体系在竖向荷载、风荷载及地震力作用下的受力特点。

( 3) 风荷载、地震作用及竖向荷载的传递途径。

( 4) 结构破坏的机制和过程,以加强结构的关键部位和薄弱环节。

( 5) 预估和控制各类结构及构件塑性铰区可能出现的部位和范围。

( 6) 场地选择、地基基础设计及地基变形对上部结构的影响。

( 7) 各类结构材料的特性及其受温度变化的影响。

( 8) 非结构构件对主体结构抗震产生的有利和不利影响,要协调布置,并保证与主体结构连接构造的可靠等。

参 考 文 献

[1] GB 50011 -2001 建筑结构抗震设计规范[S]

第2篇

关键词:建筑结构;结构设计;概念设计

中图分类号:TU3文献标识码: A

所谓的结构概念设计就是指用与结构设计相关的理论指导实践的设计工作。而如果在设计的时候,如果缺乏理论的指导,那么建筑在结构设计上就变成了个人的主观设计,而不是理论层面接受的设计。当然在结构设计的时候,其理论应该是科学的合理的,符合现行社会和经济发展的,而且在设计的过程中,先进理论和先进工具的应用也是必须要考虑到的,不能出现落伍的情况。

一、结构概念设计的内涵

1.方案选择的合理性

设计方案的选择是十分重要的,不仅关系到以后工程的质量和结构,还影响着人们的居住。在结构方案的选择上,要遵守科学、合理、发展的原则,而且由于很多种因素都对设计方案造成影响,所以设计出来的方案就是多种多样的。方案设计出来了,又面临着合理的选择上,方案选择的不好,日后发生的后果不堪设想,所以应该进行认真的分析比较,选取的方案既要科学合理,又要经济,所以方案的选择很重要。在对设计方案的可行性进行选择的时候,要对建设地及施工材料等进行全面的分析,保证每一个环节的科学合理,还要有专业人士对各种影响设计的因素进行评估分析,选择出科学合理的结构概念设计方案。

2.结构简图的科学性

结构概念设计首先要有科学专业的理论作为支撑,而且一般情况下利用结构设计简图对结构概念设计的合理性进行评估。在结构简图的选择上,要遵照安全和准确的原则,选取合理的简图。因为如果选取的简图不够科学,那么相应的结构概念设计也会出现相应的错误,甚至对工程的质量问题造成巨大的影响。所以说,结构设计简图在制作时应该做到精确、科学,使出现的误差也在可控范围内,应该进行严格的审查,保证简图的质量。

3.对计算的结果进行准确分析

随着社会和经济的发展,信息技术被广泛的应用,特别是在数字的计算等方面设计出种类繁琐的计算软件,可是各计算软件在计算的结果上确实各不相同,让使用者也不知道哪个是正确的,所以在工程的设计中计算工作经常出现混乱。在进行设计时,软件的选择很重要,应该对各个软件进行系统化分析,根据工程的实际情况和设计的原理等,选择适合的软件,确保计算结果科学准确。

二、建筑结构设计中概念设计的具体应用

1.抗震设计工作中概念设计的应用

在对建筑结构进行抗震设计工作时,通常情况下,设计人员都是在确定了砼的等级以及初始尺寸后,计算出结构的实际刚度,之后依据刚度的计算结构还可以推断出地震力,从而得到需要配筋的数量。由于结构的刚度、地震力以及配筋的数量这三者是成正比例关系,那么结构的刚度越大,推断出的地震力就越大,需要配筋的数量就越多,同样的如果配筋的数量越多,那么结构的刚度就越强,所产生的地震力就越大。可见,如果只是盲目的增加了配筋的数量,实际上也是加剧了地震力的效果,其在抗震设计工作中是无法起到积极的效果的。而如果能在抗震设计工作中应用到概念设计,便可以进一步地拓展设计思路,应用降低作用效应的创新思路,从而取得理想的抗震设计效果。

2.电算分析中概念设计的应用

现阶段,全球都已经进入到了信息时代,计算机技术已经应用到我国的各行各业中,同样的在建筑行业中,计算机技术也得到了广泛的应用。从实际的效果来看,计算机技术确实减轻了设计人员的工作负担,然而在很多因素的影响下,计算机软件本身却也是存在着一定的缺陷的,不同的软件,其具体的缺陷情况也是有所区别的。所以,如果没有采用合适的计算机计算软件,那么对其计算结果会产生极大的影响,所以也应将概念设计应用到电算分析工作中,借助于计算机技术得到了相应的结果后,设计人员应根据自身的实际经验以及专业知识,对电算结果进行及时地判断,从而保证计算结果的可靠性和真实性。

3.方案选择中概念设计的应用

在选择建筑结构的设计方案时,为保证所选择方案的合理性和经济性,也应较好的应用概念设计的思想。具体来说,选择基础设计方案时,应综合的考虑施工现场的地质条件、施工条件、荷载分布情况以及结构类型等因素,确定最优的基础设计方案。设计地基基础时,应根据前期得到的实地勘察报告进行设计工作,如果未得到勘察报告,那么设计人员就应收集相关的资料,全面地掌握施工现场的地质情况。只有具备的完整的信息,才能保证设计工作的合理和准确。

三、概念设计应用中所需要注意的重点

1.根据实际的建筑要求,选择合理的建筑设计结构方案

在实际的建筑工程中,对建筑的设计要求是很高的。概念设计要求工程设计师不仅要有丰富且合理的想象力,还要结合实际情况,对建筑工程的地理环境、施工条件、材料供应能力等综合情况进行分析,结构框架必须明确抗震节点分析、应力、总体的布局结构等具体方面。选择最佳的结构设计方案。例如在利用概念设计对建筑结构的抗震设计中,必须要精确把握建筑材料的性能,对可预测的及不可预测的因素进行分析,重视整体的概念设计理念,利用概念设计对建筑物采取一定的隔震措施,减小在发生地震或者不可抗力的因素对建筑物所带来的重大打击,降低对建筑物的破坏。

2.不可盲目定论,选择恰当的计算简图

计算简图是设计师进行建筑结构设计计算的基础,是维护建筑结构安全的保证,所以要求建筑设计师必须切合实际,根据建筑结构的实际情况及具体要求,选择恰当的计算简图,在保证有足够精确的建筑结构数据的基础之上,利用数据进行概念结构设计,遵循在建筑建构设计中所必须要注意的原则,比如建构延伸性原则和强柱弱梁的原则。在进行建筑结构设计中,依据恰当的建筑设计简图,避免发生因为建筑结构设计的不合理而导致的楼层破坏等问题,这样才能设计出完美的建筑。

3.不过分依赖计算机,正确分析计算结果

在我国目前的建筑结构设计计算中,设计师普遍利用计算机进行计算,可是由于计算机软件的种类繁多,各种软件自身的不健全或是各种缺陷,导致了运用不同的软件所带来的结果的差异化。这就要求设计师要结合具体情况,利用自身的专业技能水平和丰富的经验,认真分析计算机软件的计算结果,进行反复的比较和审核,输入正确的计算参数,选择出最合理的计算结果。概念设计理念为建筑设计行业带来了极大的便利,深入的把握概念设计理念,灵活的运用到建筑结构设计中,才能使建筑结构设计更加人性化、科学化、理想化。

综上所述,在建筑结构设计中,为了确保设计方案的科学性和实用性,设计人员应根据建筑的概念来进行结构设计,不仅要根据相关概念和设计技术进行设计,还需要结合个人设计实践经验,设计出一套适用于施工的建筑结构设计方案,才能确保建筑施工顺利进行。

参考文献:

[1]冯雪源,刘姗姗.建筑结构设计中概念设计和结构措施的应用探析[J].门窗,2014,05:245.

第3篇

关键词:建筑结构;概念设计;结构设计

概念设计的宗旨是在特定的建筑空间及环境条件下, 用整体概念来考虑结构的总体方案, 并能有意识地发挥和利用结构总体系和各基本分体系之间的力学特性与关系。建筑物是一个整体空间结构, 各种构件以相当复杂的方式共同工作, 并不是脱离总的结构体系的单独构件。作为结构工程师, 不应过度依赖计算机和盲目照搬规范, 应把概念设计应用到实际工作中去。

1概念设计的定义

结构设计分为理论和概念设计。理论设计是结构工程师根据计算理论和规范, 在对结构进行计算模型的假设及受力状态的假定的前提下, 对结构进行计算分析, 得出数据式的结果, 然后利用结果进行设计。概念设计是指不经数值计算, 尤其在一些难以做出精确理性分析或在规范中难以规定的问题中, 依据整体结构体系与分体系之间的力学关系、结构破坏机理、震害、试验现象和工程经验所获得的基本设计原则和设计思想, 从整体的角度来确定建筑结构的总体布置和抗震细部措施的宏观控制。

在建筑设计的方案阶段, 从总体出发, 采用概念性近似计算方法, 能迅速、有效地对结构体系进行构思、比较和选择。这种方法虽有一定误差, 但概念清楚、定性准确、手算简单快捷, 能很快选择出最佳方案, 具有较好的经济、可靠性能, 同时也是施工图设计阶段判断计算机内力分析输出数据可靠与否的主要依据。

2概念设计的意义

概念设计的应用面非常广泛,几乎蕴含了所有的结构设计。在不确定因素多、受力状况变化较大的抗震设计、高层建筑设计、基础设计中, 概念设计的应用尤显重要和突出。

概念设计的重要性, 主要体现在三方面:一是因为现行的结构设计理论与计算理论存在许多缺陷或不可计算性。为了弥补计算理论的缺陷, 或实现对实际存在的大量无法计算的结构构件的设计, 都需要用概念设计来满足结构设计的目的。二是由于在方案设计阶段, 初步设计过程是不能借助于计算机来实现的。这就需要结构工程师综合运用其掌握的结构概念, 选择效果最好、造价最低的结构方案。概念设计在设计人员中提得比较多, 但往往被人们片面地理解, 认为其主要是用于一些大的原则, 如确定结构方案、结构布置等。其实, 在设计中任何地方都离不开科学的概念作指导。三是由于计算机计算结果的高精度, 容易给结构设计人员带来对结构工作性能的误解, 过分地依赖于计算机和设计软件, 进行习惯性、传统的结构设计, 对计算结果明显不合理、甚至错误的地方不能及时发现, 使许多的建筑结构留下安全隐患因此, 概念设计在结构设计中具有重要的地位。

3 概念设计的一般原则

3.1合理选择结构方案, 形成良好结构体系

一个成功的设计必须选择一个经济合理的结构方案,即要选择一个切实可行的结构形式和结构体系。必须对工程的设计要求、地理环境、材料供应、施工条件等情况进行综合分析, 并与建筑、水、电等专业充分比商, 在此基础上进行结构选型, 确定结构方案, 必要时还应进行多方案比较,择优选用。

要形成良好的结构体系, 要求结构构件在承载能力极限状态下能共同受力、共同变形、协同工作, 有相同的耐久性, 同时达到极限状态。还要正确处理基础与上部结构之间的关系, 必须把基础与上部结构视为一个有机的整体, 不能把二者割裂开来。

3.2恰当选用计算简图, 正确分析计算结果

结构计算是在计算简图的基础上进行的, 计算简图选用不当而导致结构安全事故屡有发生, 因此选择恰当的计算简图是确保结构安全的重要条件。计算简图应有相应的构造措施来保证。

由于软件种类繁多, 不同软件往往会导致不同的计算结果, 加之由于程序与结构某处实际情况不相符合、或人工输入有误、或软件本身有缺陷均会导致错误的计算结果, 因此工程师的知识、经验是不可缺少的, 工程师应全面了解程序的适用范围、技术条件等, 认真分析计算结果, 慎重校核, 做出合理判断, 不可迷信电脑。

4概念设计的应用

4.1抗震概念设计

地震具有难以把握的复杂性和动态变化的特点, 要准确地预见建筑物所遭遇的地震特性及详细参数, 是难以做到的。只有辅以准确的概念设计, 在宏观上对抗震结构进行控制,正确分析计算结果, 合理地对薄弱环节采取构造加强措施,才能在经济合理的前提下, 设计出抗震性能优良的建筑。为了保证建筑具有足够的抗震能力, 通过概念设计从宏观上控制结构的抗震性能应充分考虑以下环节:①选择对抗震有利的场地及地基, 避免地面变形的直接危害, 采取措施保证地基的稳定性。②进行合理的基础设计, 同一结构单元不宜设置在性质不同的地基土上, 不宜采用不同的基础形式, 设计时宜最大限度地发挥地基的潜力。③建筑物的体型应力求简单、规则、对称, 质量和刚度变化均匀, 以减少地震作用产生的变形、应力集中及扭转反应。④选择合理的结构体系, 抗侧力构件力求均匀对称, 设多道抗震防线, 避免局部出现薄弱部位, 要求结构布置受力明确, 传力简捷。⑤各类构件之间要有可靠的连接, 并具有必要的强度和变形能力, 从而获得整个结构良好的抗震性能。⑥强调结构空间整体性, 平面加强连接, 竖向确保足够的整体刚度。⑦重视对非结构构件的处理, 利用其对主体结构的有利影响, 避免不合理设置导致对主体结构的不利影响。⑧尽量减轻结构自重,减少地基土压力, 从而降低向建筑物传输的地震力。

4.2高层建筑结构概念设计

高层建筑结构概念设计中以下几个问题值得重视:①正确认识高层建筑的受力特点, 选择合理的结构类型。高层建筑的受力特点不同于低层建筑。高层建筑从本质上讲是一个竖向悬臂结构, 水平荷载的影响要远远大于垂直荷载的影响, 水平荷载是结构设计的控制因素。结构抵抗水平荷载产生的弯矩、剪力以及拉应力和压应力应有较大的强度和足够的刚度, 使随着高度增加所引起的侧向变形限制在结构允许范围内。由于高层建筑的受力特点, 选择切实可行的结构类型是非常必要的。②正确选择合理的结构体系。由于高层建筑中抗水平力成为设计的主要矛盾, 因此采用何种抗侧力结构是结构设计的关键性问题。选择高层建筑结构抗侧力体系通常需要考虑的两个主要原因是建筑物的高度和用途。③选择合理的结构布置。结构布置的合理与否很大程度影响着建筑的使用、结构的经济性和施工的合理性。结构布置不当,常常造成薄弱环节, 引起震害。在结构布置时, 应加强结构的整体性及刚度, 加强构件的连接, 加强结构的薄弱部位和应力复杂部位的强度。④提高结构的抗震性能。由于高层建筑的受力特点不同于低层建筑, 因此在地震区进行高层建筑结构设计时, 除应保证结构具有足够的强度和刚度外, 还应具有良好的抗震性能, 结构必须具有一定的塑性变形能力来吸收地震所产生的能量, 减弱地震破坏的影响。

4.3基础中的概念设计

地基土的不确定性很强, 至今还没有哪个模型能够对其作精确的描述。因此, 在基础的设计中, 更需要根据基本理论知识及丰富的实践经验, 分析、预见可能出现的各种问题,从而找到合理的处理方案。因此, 概念设计在基础设计中的作用尤为重要。建筑结构设计常规的方法是将上部结构、基础作为彼此独立、离散的结构单元进行力学分析。实践表明, 这种常规法计算得到的基底应力和基础沉降量往往与实测值相差甚远。事实上, 基础问题的解决不宜单纯只着眼于基础。在上部结构设计过程中, 应该注意由于地基沉降变形差异而引起的上部结构次应力、开裂等不良现象。所以应该把基础和上部结构视为一个统一的整体, 从二者相互作用的概念出发来考虑基础方案。当然, 整体的相互作用分析相当复杂, 合理的方法应该从二者之间满足静力平衡和变形协调两个条件出发进行分析。设计人员除了具备土力学、地基基础的基本理论知识外, 还应该掌握基础与上部结构相互作用的基本概念、原理, 了解基础刚度变化对上部结构内力的影响、上部结构对基础变形的约束作用, 以及采用不同地基计算模型可能在基础和上部结构中产生的差异。这样, 在基础选型、布置以及地基模型、参数的选取时, 才能够从共同作用的角度加以考虑, 力求设计出最为经济、合理的基础方案。

第4篇

关键词:;结构设计;;设计方法; 结构体系

Abstract: below the author connecting with the work practice, from several aspects, tall building structural design concept to pay attention to the issue.

Keywords:; Structure design; ;Design method; Structure system

中图分类号:S611文献标识码:A 文章编号:

对一个超高层建筑来说,与建筑相适应的结构体系、结构布置等概念设计不是绝对的,但合理的结构设计应该是惟一的。我们所要做的工作就是把一些互相制约的因素统一协调,以满足建筑物的安全性、适用性和耐久性的要求。

1结构设计特点

1.1重力荷载迅速增大

随着建筑物高度的不断增加重力荷载呈直线上升,作用在竖向构件柱、墙上的轴压力增加,对基础承载力的要求也更加提高。

1.2控制建筑物的水平位移成为主要矛盾

1.3效应成为不可忽视的问题

超高层建筑高宽比较大,侧向刚度相对较弱,水平位移量大(图2),重力与水平位移所产生的附加弯矩常常大于初始弯矩的10%,必须考虑重力二阶效应。

图1风荷载高度变化示意图2水平位移沿高度变化示意

1.4竖向构件产生的缩短变形差对结构内力的影响增大

竖向构件的总压缩量主要由受力变形、干缩变形和徐变变形三部分组成,对于全钢结构仅需考虑受力变形产生的缩短影响,对于钢混结构、钢组合结构、混凝土结构必须考虑干缩缩短和徐变缩短的影响。一般受力变形瞬时完成,其变形量可用胡克定律作近似计算;干缩变形完成的时间较长,据资料统计约为总压缩量的30%;徐变变形完成的时间更长,线性徐变可由公式简单计算;构件的总压缩量随着构件的高度H平均压应力的增加而加大。

超高层建筑的竖向构件不但H和较大,而且构件之间的压应力差也较大,因此设计中除了通过控制轴压比使竖向构件之间的压应力较接近外,对钢筋混凝土结构采取逐步将各层柱顶找平后再进行下一道工序的施工办法来减小变形差;对钢结构采取预留柱、墙压缩量的方法来减小变形差;总体结构分析时采取模拟施工方法,减小变形差对内力计算的影响。

1.5倾覆力矩增大,整体稳定性要求提高

建筑物高度的增加使得侧向力引起的倾覆力矩增大,抗倾覆要求提高。实际工程中常常采取增加基础埋深、加大基础宽度或采用抗拔桩基等措施来满足整体稳定性要求。

1.6防火、防灾的重要性凸现

超高层建筑多采用钢混结构和钢结构,而钢材耐热不耐火的特性更易加重某些次生灾害的发生,例如美国世贸中心的倒塌。一般紧急情况下高楼所需要的疏散时间较长,从顶层飞机救援的行动也常会受到各方面因素的制约,使得实施比较困难,因此防火、防灾的设计更为重要,目前关于防灾方面的具体要求我国还没有相应的规程可循。

1.7建筑物的重要性等级提高

超高层建筑常作为当地的标志性建筑,资金投入大,在政治、经济、文化中所起的作用重大,破坏影响较大、波及范围较广,不论其建筑类别均属于重要建筑,因此结构设计的可靠度要提高,一般情况下重要性系数取1.1,特殊情况下也可取1.2。

2结构设计方法

2.1减轻自重,减小地震作用

采用高强轻质材料(如全钢结构、幕墙围护、轻质隔断等),减轻结构自重,减小地震作用。

2.2降低风作用水平力

2.2.1减小迎风面积

正方形平面形式,横向迎风面最小;如计算对角线方向的迎风面宽,则圆形平面最小;在立面上适当位置开洞泄风(如上海环球金融中心大厦,风力降低更直接。

2.2.2降低风力形心

采用下大上小的立面体型,既减小高风压在高处的迎风面积,又降低风作用重心,使建筑物底部的倾覆总弯矩减小。同时下大上小的立面体型对建筑底部来说增大了抵抗矩,提高了稳定性,如巴黎的埃菲尔铁塔。

2.2.3选用体型系数较小的建筑平面形状

体型系数从小到大可选用下列平面顺序:圆形平面!正多边形平面!正方形平面,采用流线光滑的外形,避免凹凸多变的建筑形式,减小整体和局部风压的体型系数。

2.3减少振动,耗散输入能量

采用阻尼装置或加大阻尼比,减少振动影响,如台北国际金融中心大厦%$&。

选用耗能、减振的结构体系,如采用偏心支撑的钢结构具有耗能的水平段,采用橡胶支座可以减振等。

2.4加强抗震措施

2.4.1选用规则结构使建筑物具有明确的计算简图,合理的地震作用传递途径。

如采用圆形、正多边形、正方形等平面形状,可以使整体结构具有多向同性,避免强弱轴的抗力不同和变形差异。功能复杂的建筑常常是多种结构体系的综合,具体设计时应注意以下问题。

(1)结构平面形状尽可能对称。由于地震作用的方向具有随机性,风作用虽有主导方向,但最大值也具有随机性,因此选用具有对称性、多向同性布置的抗侧力结构体系,有利于形心和刚心的重合。

(2)竖向构件尽可能连续,避免抗侧力构件的间断,从而形成薄弱层、薄弱部位,对抗震不利。

(3)设置多道抗震防线,满足“大震不倒”的抗震设防要求。

(4)增加超静定次数,增加重要构件的传力线路,提高结构的抗震能力。赘余度的增多,可以使结构有更多的部位有机会形成塑性铰,吸收更多的地震能量。

(5)在满足强度、刚度要求的前提下,选择具有较好延性的结构材料,增加总体变形能力,增加结构耗能。

(6)建立整体屈服机制,避免失稳破坏,并做到强柱弱梁、强剪弱弯、强节点弱构件、强埋件弱连接设计;对容易失稳的结构,做到强支撑;对受弯构件,做到强压弱拉等。

2.4.2采用多个权威程序(如SATWE、TAT、SAP2000等)进行计算比较,通过动力时程分析,验证薄弱部位;对重要构件补充有限元分析计算,从而使计算的结论更为完整,结果更为可靠。

2.4.3进行小模型风洞试验,获取有关风载作用参数;通过振动台试验,获取有关地震作用参数。

2.4.4采用智能化设计,提高结构的可控性。应用传感器、质量驱动装置、可调刚度体系等和计算机共同组成主动控制体系,提供可变侧向刚度,控制结构的地震反应等。

2.4.5提高节点连接的可靠度,如钢结构节点的焊接处理,钢混结构中型钢、钢板与混凝土的连接等。

3结构材料选用

更轻、更强、更具有延性的材料是超高层建筑结构材料的首选。钢筋混凝土、型钢混凝土、钢管混凝土和纯钢材料都可作为结构构件的主要材料;而外墙围护多采用玻璃幕墙、铝合金幕墙、钢塑复合板材等;内部隔墙多为轻质隔断;楼屋面常选用压型钢板加混凝土面层,并在的钢承重构件表面加防火涂料。

4结构体系选用

更具整体性、更具多道抗震防线、更具延性的结构体系是超高层建筑结构体系的首选,工程中常用的结构体系有:

内筒外框或内筒外框并带角部小筒体(或角形墙)的结构体系,如深圳彭年广场(酒店部分),H=222m

内束筒外框架(巨型柱)并带多个加强层的结构体系,如台北国际金融中心大厦,H=508m(含塔尖部分);

筒中筒结构体系,一般外筒为密柱筒,如前纽约世贸中心,H=412;

内筒外巨型框架加外斜撑结构体系,如上海环球金融中心大厦H=492;

束筒结构体系,如美国西尔斯大厦,H=443;

巨型框架、巨型桁架结构体系,如新加坡华侨银行,45层;

悬挂结构和悬挑结构,由于其侧向刚度仅由内筒贡献,体型上大下小,抗风抗震不利,因此建筑物高度受到限制,如香港汇丰银行大楼,H=175(悬挂);长沙黄兴路综合大楼,H=115.6m(悬挑)。

第5篇

(沈阳职业技术学院外语系,辽宁 沈阳 110045)

【摘要】建构主义认为“协作学习”在知识意义的建构起着关键性的作用,基于建构主义的教学观并通过构建英语网络课程教学平台来提高英语教学水平的研究具有一定的实际意义。但在英语网络平台构建中往往需要很多的技术进行协同作业才能完成。本文将在网络平台构建过程中的技术支持即新概念多媒体快捷技术体系做一简要介绍。

关键词 建构主义;英语网络平台构建;新概念多媒体快捷技术体系

建构主义( Constructivism) 理论又称结构主义,是认知心理学派中的一个重要分支。这一理论最早由瑞士著名儿童心理学家皮亚杰(Piaget)于20世纪60年代提出,皮亚杰将人类与环境的相互作用概括为两个基本过程,即同化(as-stimulation)和顺应(accommodation)。同化过程指把外界刺激提供的信息吸收进来并整合到学习者原有的认知结构(Schema)中去,它是对原有的认知结构的扩充; 而顺应则是指当外部环境发生了变化,由于原有的认知结构无法同化新环境所提供的信息,所以认知结构自身需要发生重组与改造,以适应新环境的变化。人类认识外部世界的过程,正是同化与顺应不断循环的过程,也就是知识的建构过程。

根据建构主义理论,学习是一个动态能动建构的过程,学习者在各种学习环境下,利用自己认知结构中的已有的经验去同化和顺应当前学到的新知识、新信息,学习者的认知结构由此得以发生量和质的改变。正因为如此,建构主义认为知识不是通过教师传授得到的,而是学习者在一定的社会文化背景下,通过他人的协助(包括教师和学习伙伴),自主利用相关学习资源,通过意义的重组与建构的方式而获得的.也就是说,学习者对于教师教授的信息,并不是全盘地被动吸收,而是在自己原有的知识系统上对其进行编码和重组,建构自己的理解,最终形成新的知识。因此,在整个学习过程中,学习者应当占主导地位。长期以来,传统的教学模式把学习看作是学生对外部刺激做出被动反应,即把学生视为知识灌输的对象。这些传统教学模式因违背了学生的认知规律而大大限制了学生的主动性和创造性。然而,建构主义学习理论在强调学生的认知主体作用的同时,并没有忽视教师的的指导作用。建构主义认为“协作学习”在知识意义的建构起着关键性的作用,强调学生之间、师生之间的协作交流以及学生和教学内容与教学媒体之间的相互作用。在学习过程中,教师要为学习者提供各种不同类型的教学媒体和教学资料,并鼓励学生主动探索并完成意义建构,最终达到自己的学习目标。

在我国,为了顺应全国大学英语教学的新形势和要求,教育部于2004年1月颁发了《大学英语课程教学要求(试行)》的通知。[2]通知明确指出:“各高等学校应充分利用多媒体和网络技术,采用新的教学模式改进原来的以教师讲授为主的单一课堂教学模式”,教学模式改革应使英语教学朝着“个性化学习、自主式学习方向发展”,尤其要确立学生在教学过程中的主体地位,同时充分调动教师和学生两个方面的积极性。

因此基于建构主义的教学观并通过构建英语网络课程教学平来提高英语教学水平的研究具有一定的研究意义。但在英语网络平台构建中往往需要很多的技术进行协同作业才能完成。现将网络平台构建过程中的技术支持即新概念多媒体快捷技术体系做一简要介绍:

该技术体系由桂林理工大学的陈三明博士创建完成。由第一课堂的新概念PPT集成技术——春季技术;第二课堂的学习网站快速搭建技术——夏季技术;PAD移动课堂的APP课件快速设计技术——秋季技术;慕课MOOC平台与翻转课堂的灵活运用技术——冬季技术,组成了整个技术体系。

本文以第一课堂的新概念PPT集成技术——春季技术为例。

1)新概念PPT:PPT+软件蜂群

即在新版PPT平台上,将知识分解成元素,以最佳表达的多媒体小软件(软件蜂群),将对应的元素转换成多媒体屏幕符号。然后集成于PPT平台中,并充分挖掘PPT的内涵功能,形成一套豪华的、快捷的多媒体群件套餐。

2)软件蜂群

(1)文件格式转化软件:

Ispring(PPT转flash技术);Smart Art(将文字转化成图片);wonder share flash软件将多照片生成SWF电子相册插入ppt;flash paper软件将word文档转成flash或pdf格式;格式工厂将视频后从wmv格式转换成Flv格式;在线测验(quiz creator软件)

(2)图片文字效果处理软件:

小图片放大不失真(photozoom软件);光影魔术手;snagit1挖图软件(挖文本、捕捉视频,批量图像转换编辑。);In paint 修图;博客二维码生成(二维码生成器:简单/彩色)陈氏书法家;三维翻页效果(3D page Flip); swiff chart制图工具,动态报表。Edrawmax亿图图示专家 不需要自己画图(各类型图示);inpaint去视频logo软件;mind manager思维导图;SWF quicker绿化工具把下载的flash图片进行修改。

(3)音频视频编辑软件:

音频处理软件Text aloud3可将英文文字直接读出来变成音频MP3,并可以调整语速;录音Audio recording wizard;Adobe audition cs6可以配乐散文,加背景音乐,修正录音效果,降噪,变语速,变调,消除人声,可以中间空白几秒留给学生回答问题等功能;硕鼠视频下载软件;zoomit ctrl+1,PPT缩放小助手缩放 ctrl+2画笔 ctrl+3 休息时间设定显示;flash catcher把屏幕上的flash下载下来;视频处理软件camtasia studio8.4,功能强大。导入视频音频,录制PPT,导出生成视频微课,可以加片头,在视屏中加标题加字幕、添加标注、放大图像、安装后便可以加载到PPT软件中,在PPT中直接录制,并可以预览摄像头。也可以录制屏幕,可以剪掉不想要的视拼,插入其他视频,加入背景音乐应用语音到文本,英文识别率90%以上。

3)实际应用

以大学英语WEB视频微课制作为例:

将PPT的平台平台作为主要制作工具,在其中安装ISpring presenter,这样可以将原有的PPT资料迅速有效地转换成表现效果更强的Flash格式(SWF文件);然后针对不同教学过程的控制部分选用Captivate软件,它是类似于 PPT 的软件,但加入了更多互动效果及流程控制的组件,非常方便教师制作一流的多流程控制演示课件,最后也将其导出为 Flash 格式(SWF 文件),方便插入PPT中;而在设计学生协同作业过程中则借助于 Microsoft公司的OneNote及脑图管理软件Mind Manager,在讨论型学习过程中,这两个软件的有趣使用有效地活跃了学生的学习活动,同是提升了学生们形成团队作业的意识和能力;在线测试软件 Quiz Creator 软件则加入的一些客观题,有效地控制学习质量。其中有单选题、多选题、正误题、匹配题、连线题、调整顺序、单个填空、多词填空、热点图点击等九种类型的客观题,这些各种类型的客观题给教师提供了评判学生学习质量的多种选择,因为是 Flash 的表现形式,因此让学生如同在游戏中答题,增加趣味性,使课程更加生动。

构建英语网络平台的基础是教师自身的学科专业水平,对课程的理解把握,设计归纳是加以多媒体技术的辅助手段将课程二度消化三度转换后形成多媒体艺术品,将课程生动形象的呈现给学生,实现最优的教学效果。这是传统课程的锦上添花无可替代,因此在进行英语教学的理论研究的同时,对于先进的多媒体技术辅助教学手段的不断学习也是十分必要的。

参考文献

[1]Piaget,J.The Origin of Intelligence in Children[M].New York: International Universities Press,1966.

[2]教育部高等教育司.大学英语课程教学要求(试行)[M].上海:上海外语教育出版社,2004.

[3]郑伟,沈丛,杜光明.基于建构主义的大学英语自主学习网络平台建设[J].成都师范学院学报,2013,11(29):88-92.

[4]颜少兰,陈三明.大学英语微型视频课程教学模式重构与技术实现[J].中国校外教育,2011(09):118-134.

[5]吴承义. 基于建构主义教学理论的大学英语教学模式[J].中美英语教学,2005(8).

第6篇

关键词:建筑结构设计、概念设计、结构措施、分析与探讨

在建筑结构设计过程中,概念设计与错够措施是相当重要的一部分内容。良好的概念设计与结构措施在一定程度上反映了结构设计人员的专业设计业务水平,下面主要概述作者对在建筑结构设计中的概念设计与结构措施的认识,并提出几点个人的观点及看法。

一、建筑结构设计中的概念设计与结构措施简述

概念设计的主要内容是从建筑结构设计的总体方案开始,主要是应用人们对于建筑结构抗震设计方面知识去严格把握处理建筑结构设计工作当中的常见问题,如房屋整体机构体系、力学分布计算和结构构件延性等问题。一般认为,我们应用概念设计与结构措施主要是从宏观原则的角度出发对所发现的问题进行合理评价、有效鉴别和优化选择等处理过程,然后再通过计算整理和构造措施,以避免和减少建筑结构设计中出现抗震的薄弱部位。这一过程主要是考验建筑结构设计工作人员判断思维能力,原则上是通过从大量的建筑结构震害经验中总结设计经验,宏观上确定并尽可能地解决建筑结构设计中的常见问题。由此可见,作为专业的建筑结构设计专业人员必需全面了解建筑的整体结构抗震设计的特点,重点是从建筑结构承载力分布情况考虑,发现问题,突出矛盾,以求利用正确的设计理念指导建筑结构概念设计。通常,概念设计所涉及的内容非常广泛,不仅仅要遵循建筑整体总体方案确立的基本原则,还需要考虑到非材料的正确使用和结构关键部位的细部构造设计。

当前,概念设计是建筑结构设计中能够展现先进设计思想理念的重要内容之一。在已经拟定的建筑设计空间中应用概念设计来完成建筑结构的总体设计方案,且可以良好地处理建筑结构构件之间的协调与配合的关系非常重要。但是,鉴于目前建筑行业在设计分工方面明显细分化的现状,专业的建筑结构设计工作人员也只能够单调地依赖与国家编制的规范规程和设计手册等,习惯了传统的设计流程,开拓创新性明显不足,这样就造成概念设计与结构措施的应用推广遇阻,实难以全面发挥预期的作用效果。

从经历几年的实践经验来看,建筑结构设计的概念设计与结构措施是非常重要,之所以重要是因为在我国现在所推行的建筑结构设计理论与计算理论中还存在许多不可忽略的缺陷和问题,如建筑结构混凝土构件内力和截面设计计算,内力计算主要是基于材料弹性理论,而混凝土构件截面是基于材料塑性理论的研究成果,二者之间就出现了一个比较突出的矛盾关系,往往由于这种矛盾关系导致设计计算的结果与使用结构的实际承载力分布情况偏差很大。概念设计与结构措施主要就是利用其先进的设计思想理念以弥补这种计算偏差的缺陷或者说是在设计过程中对不具备可计算性的结构设计实现可计算性。建筑结构设计的概念设计之所以重要还在于建筑结构设计的初步设计阶段是不能够通过依靠计算机来完成的,而主要的设计手段是需要专业的结构设计人员运用自身所掌握的对建筑结构概念的认识并结合经验选择一种成本最低、效果最好的结构设计方案。这就要求设计人员必须深刻地了解各类建筑结构的性能和特点,不断加强自身的专业技能和知识水平,并且能够充分应用,灵活运用。同时,由于现在的计算机技术逐渐在建筑设计与施工行业中起到了相当重要的作用,计算机技术具有计算高速、高精度的特点,这样往往会给建筑结构设计人员造成建筑结构工作性能的误解,对加强设计人员对建筑结构设计概念的意识培养造成极大的影响。

二、建筑结构设计中概念设计与结构措施的应用

2.1协同设计工作与结构体系的应用在不断的结构设计研究与实践中我们可以发现,协同工作的概念已广泛存在于我国工业生产设计与制造行业之中,对于工业产品主要要求的是其在没有达到设计寿命时尽可能控制质量不损坏,而对于建筑工程结构的设计,协同工作的概念更被进一步的延伸,要求建筑结构内部构件在能够承载各种极限状态下的合理受力不致破坏,且还需要各个构件之间的相互协调和配合工作。应该注意的问题是建筑结构的协同工作注意表现在建筑基础与上部结构的关系上,务必将建筑基础与上部结构视为一个有机的系统整体,而不能够将二者分开设计处理。对于协同工作概念的理解还要考虑到结构在受到荷载的情况下,建筑结构内部各个构件都具有一定标准的应力承载水平。尤其是对于多、高层建筑物的结构设计时,为了能够使得同层各个承力柱在一个相同的水平位移范围之内,应避免设计过多的短柱。但是,随着建筑物高度与层数的不断增大,为避免底层竖向承力柱的截面积越来越大的情况,就不得不增加多、高层建筑下几层短柱的设计数量。因此,田形柱的设计作为一个特殊的设计手段解决了这个问题。多、高层建筑结构设计的主要目的要求是为了抵抗水平力的作用以防止发生扭转,为了能够有效地抵抗多、高层结构的水平力作用,在一个平面之上的若干个正交方向的尺寸应尽量减小之间的距离,以保证在此两个方向上的惯性矩相等,所以多、高层建筑抗侧力结构的设计应尽量将其设置在建筑结构的四周,以增加整体结构的抗侧刚度和抗扭惯性矩等稳定性能。

2.2 协同设计工作与材料利用率的应用

协同工作与材料利用率的应用是建筑结构概念设计与结构措施的另一项重要内容。设计材料的利用率越高,就体现出建筑结构设计协同工作的程度就越高。我国作为一个发展中大国,建筑结构概念设计的目的还在于能花最少的钱做最好的工程,设计材料利用率的高与低就是直接的体现。最后,我们应认识到协同工作原则也是建筑整体设计的工作原则,在建筑结构概念设计越来越被重视的今天,针对于建筑结构设计专业人员的要求标准,必须要具备深厚的结构设计基本理论知识基础,并且能够在实践经验当中不断吸收先进的设计思想和理念,以精益求精的工作态度完成设计工作。

三、结束语

伴随着我国社会经济的发展和人民生活水平质量的提高,对于我国建筑结构设计也提出了更高的质量要求。在当前计算机技术的高速发展的大环境下,发展比较先进的设计计算理论和对计算机应用的加强都将会是我国建筑结构概念设计的重要保障基础。同时,与时俱进的加快研究与应用新型的建筑施工材料和施工工艺,使得建筑结构设计更安全、更适用、更可靠、更经济。建筑结构设计人员也应充分发挥自身的专业技能和个性,打破传统成规,将建筑结构概念设计的思想进一步推广和应用。

参考文献

[1] 马永正,谢孝忠,周日丰;浅谈底层框架――抗震墙多层砌体结构的抗震概念设计;四川建筑;1999,19(04):107 - 108

[2] 慕容庆;抗震概念性设计在房屋抗震措施中的应用;科技信息;2008,13(19):104 - 105

[3] 孙鹏;建筑结构设计中的概念设计与结构措施;黑龙江科技信息;2011,11(04):307 - 307

[4] 杨俊华,周维宇;概念设计与结构措施;工业建筑;2003,33(02):123 - 128

第7篇

摘要: 笔者对概念设计的有关内容进行了陈述,还分析了概念设计对建筑结构设计的重要性及其应用,为提高建筑结构设计水平提供参考。

Abstract: The author expounded the relevant contents of the conceptual design, and also analyzed the importance of the conceptual design for building structure design and its application, to provide reference for improving the design level of the building structure.

关键词 : 概念设计;建筑结构;优化设计

Key words: conceptual design;building structure;optimal design

中图分类号:TU2 文献标识码:A

文章编号:1006-4311(2015)06-0104-02

0 引言

建筑结构设计中应用概念设计是最新推出的一种建筑结构设计理念,由建筑结构设计通过理性的分析和感性的规划进行的综合运用,在建筑设计行业中运用概念设计,能够帮助设计师正确、合理地处理在建筑结构设计中可能会遇到的具体问题。越来越多的建筑设计师采用概念设计理念完成了众多的成功建筑案例,概念设计的理念被我国的建筑设计行业广泛地应用,特别是在智能建筑、高层建筑等要求高的建筑设计中发挥着巨大的作用。

1 概念设计及其重要性

简单说来,所谓概念是指你方案的根本出发点——比如你是要看场地内部的树或者外围的景色,或者其他的想法。设计的深入就是通过建筑的手法把概念实现和贯彻出来,特别是那些难以做出精确分析,并且难于规范的结构体系,是从工程经验中获得的一些宏观可行的设计角度。你想要的空间就是通过建筑的设计来体现的;所有的外观和细部的创意都是为了体现你的概念。从整体的角度来确定建筑结构的总体布局和设计重点,并能得出估算值,与实际相差不远,所得方案具有一定的经济可靠性,但又避免了繁琐的计算。

所谓概念设计指的是一个由粗到精、由模糊到清晰、由具体到抽象的不断提高和优化的过程。也就是在进行设计的过程中,以设计概念为主线,从而对全部的设计过程进行贯穿,整个设计过程较为完全、全面。同时通过设计概念,有效将设计者的瞬间思维、感性认识两者结合,使其统一上升至理性思维后完成设计。

2 建筑结构总体概念设计

2.1 建筑结构的对称性的重要性

高层建筑体系中,对称性主要是指抗侧力主体结构对称,在平面设计中。一般比较容易实现平面设计中简体框架结构、框架结构和剪力墙结构的对称。而在竖向结构布置中,无论是那些几何图形还是楼层刚度的相关的变化,对称性都应该是立面设计中最值得考虑的问题。不对称的布置会产生刚度以及强度上的突变,使得竖向的应力集中或者是变形集中,从而导致建筑在中小型地震中遭到了损坏、而在大震时就会面临倒塌的严重后果。对于L型、T型、S型等不对称的平面复杂结构,主要取决于建筑功能和设计风格和方向,但这种结构内部结构的基本对称也是可以实现的,结构工程师会对这样的平面做合理的结构布置。设计结构的不对称除了引起变形不利于抗力承重以外,也容易造成材料浪费,成本增加。在水平荷载作用下结构侧移已成为高层建筑设计中的关键控制因素,建筑平面的形状宜选用风压较小的形式,并应考虑邻近高层建筑对其风压分布的影响,还必须考虑有利于抵抗能力和竖向荷载,在地震作用下,建筑平面要力求简单规则。风荷载作用下则可适当放宽,因为结构整体弯曲变形所引起的侧移与结构体系抵抗倾覆力矩的有效宽度的三次方成反比例关系,所以不宜建筑宽度很小的建筑物。

2.2 合理的建筑结构体系选择

①概念设计应对建筑物结构体系有明确的简图和合理的抗震说明。②设计应对整体抗震能力和重力荷载有一定承载能力和防御能力,不能因为部分结构的破坏而影响整体结构。③结构体系宜具有合理的刚度。主体抗侧力结构的刚度合理是高层建筑结构设计的重要指标之一。1)主体抗侧力结构刚度过大,结构的基本自振周期缩短,地震作用加大,结构承受的水平力,倾覆弯矩加大,地基基础的负担加大,此时结构的截面和相应的构造配筋增加较大,不经济。2)主体抗侧力结构刚度过大,势必造成结构所占的面积,空间加大,影响建筑作用,降低建筑平面利用系数,不合理。

3 建筑结构的简化计算

3.1 科学选用结构方案 科学的结构方案包含结构体系以及结构形式的合理性,要确定结构体系的整体布置、抗震节点设计等。在设计时,建筑师对建筑体要求,材料,结构特征以及地质条件施工技术等做整体评估,并同施工方和业主方协商,简化计算,确定结构,拟定策略,方案结构的初选是概念设计的必选之路,也是切实可行的最简单快捷的方法。

3.2 使结构设计经济合理 住宅建筑越来越商品化,作为投资方总是希望利润最大化。由此在结构设计时不仅要满足“规范化计算”,而且还要在安全、符合现行国家规范前提下,从各个环节进行优化设计,多个方案做比较,使最终的成品要安全可靠、经济合理,节能节材,降低造价。概念设计通过对高层建筑简化计算,先确定主体抗侧力结构并合理规划楼层结构和截面,再通过电算对概念设计进行深化和精确,这样不仅能节省电算时间,结果也比较准确,从而使结构设计更加经济合理。

3.3 确保计算结果的准确性 现代基本上采用计算机软件设计建筑结构,这样的设计软件较多,往往各类软件计算的结果存在一定差异。因此,设计师不能太依赖软件,而应从实际出发,并根据自己多年的经验,对数据进行具体分析,并严格按照制度进行。

4 概念设计在建筑结构设计中的应用

4.1 平面设计 平面设计总图用来正确确定临时建筑及其他设施位置,以及修建工地运输道路和解决排水等所需的资料;一切已有和拟建的地下、地上管道位置。用来决定原有管道的利用或拆除以及新管线的敷设与其他工程的关系,并注意不能在拟建管道的位置上搭设临时建筑。

4.2 剖面设计 建筑剖面设计主要解决层高 (净高)、室内外高差、垂直交通(楼梯的竖向布置)这三个问题。是建筑师对建筑物内部的处理,结构工程师能够在剖面图中得到更为准确的层高信息及局部地方的高低变化,剖面信息直接决定了剖切处梁相对于楼面标高的下沉或抬起,又或是错层梁,或有夹层梁,短柱等,对剖面的设计能直观的反应设计要点。

4.3 建筑基础设计 建筑基础设计不仅与地基相互作用,也牵涉到上部结构的稳定性。要考虑到地区的原始材料,如气候问题,交通、公共排水沟,易燃易爆妨碍人体健康的设施布置等。也要考虑到建筑地域的竖向资料和土方平衡,用来解决水、点管线的布置和土方的填挖,取土、弃土位置,还要考虑到楼层材料和承重力,控制高低层的沉降差很重要,地基沉降量不能过大,过深。依附于天然地基的建筑,低层一般采用双向条形或单独地基,若高低层不分开,应确保地基条件好,或者直接采用桩基,地下室有直通要求或上部结构层数差别大,必须做成整体基础就可采用这种形式。通往地下车库的通道应平行于外壁,便于铺设防水层,也能保证高层建筑的整体连接。

5 结束语

总而言之,概念设计是建筑结构设计中不可或缺的一部分,建筑设计人员在进行结构设计时,应该重视相关结构的概念设计,而不是仅仅依靠先进的计算机技术来进行设计,充分利用自身的设计经验和实践实际,不断提升自身的设计专业技能,才能不断提高概念设计的水平,从而提升建筑结构设计的品质。

参考文献:

[1]牛慧娟,马小龙.浅议建筑结构设计中的概念设计[J].内江科技,2008(02).

第8篇

【关键词】地下水,建筑结构,设计,危害,探讨

中图分类号:TU2文献标识码: A 文章编号:

一,前言

在进行建筑结构设计中,地基设计是最为重要的部分,地基的稳定将直接关系到后续施工中整个建筑的工程质量。但是,在建筑结构设计中,会因为地质地貌的差异,土质,地下水的水位,升降情况等多个方面的影响,而使得建筑结构的设计变得更加艰难。地下水的浮力,压力会在建筑水位升降中,对整个建筑结构产生强大的反力作用。因此,在进行建筑结构设计中,要研究地下水的蕴藏情况,埋藏条件,存在情形和周围地质的关系,要重视地表水对施工的抗浮影响,潜水的工程抗浮,结构支撑于地基的抗倾稳定验算等的主要地下水等多方面的因素,探究地下水对建筑结构设计的危害,在此基础上做出科学合理的设计,对保证整个工程的顺利进行,保证施工的质量有着十分重要的意义。

二.建筑结构设计和地基基础设计简述

1.建筑结构设计概念和重要性

建筑结构设计就是在遵守建筑结构设计规范的基础上,在综合考虑到建筑功能,并对施工地点的地质水文条件做出准确勘探的条件下,对建筑结构的梁柱,地基等承重构件做出科学合理规划的过程。

2,建筑结构设计的重要意义

在我国,进行建筑结构设计时候,必须勘察其地质条件,据建筑的用途和地质条件,确定抗震等级,并综合考虑到各种建筑构件的科学组合,避免组合上的缺陷,同时,要对建筑结构构件的承载力和相关的极限状态做出验算,保证整个建筑结构的承载在极限范围内部。科学合理的建筑结构设计,不仅仅是后续施工的基础,更对整个工程有着十分重要的指导作用,将直接关系都工程的质量和成本控制。因此,找出影响建筑结构设计的因素,并作出科学合理的控制措施,是整个工程顺利进行的关键。

三,地下水对工程建筑的危害探究

1.地下水水位变化对建筑工程的危害

地下水的水位一般会受到降水,季节变化等因素的影响而产生水位的升降,地下水位的上升下降,会对整个建筑结构的设计产生极其消极的影响,。首先,当水位上升的时候,不仅仅会造成地震沙土液化速度加快,规模扩大,更会使得建筑结构下的岩土发生断裂,变形扭曲,滑坡,崩塌等多种地质灾害,严重降低了整个建筑结构中基础地基的承载能力,不利于整个建筑结构的稳定,不利于整个建筑结构抗震性能的增强。其次,地下水的过大下降,常常诱发地裂、地面沉降、地面塌陷等地质灾害以及地下水源枯竭、水质恶化等环境问题,对岩土体、建筑物的稳定性和人类自身的居住环境造成很大威胁。最后,地下水的冻胀也会对建筑结构的设计产生消极影响,主要表现在,当冻胀的地下水升温使得水浸湿和软化岩土时候,会使得地基土质的强度会大幅度降低,使得建筑物的沉降幅度变大,地基容易发生很大幅度的变形,造成建筑结构的稳定性差。

2.地下水会对建筑物的建筑构件造成很大的侵蚀性。地下水会对建筑构件中的混泥土,可溶性石材,和建筑主体中的管道,金属构件等造成很大的腐蚀和侵蚀,不仅仅会加快各种构件的老化,寿命缩短,更大幅度降低了整个建筑结构的稳定性和刚度。

3.地下水的水力状态容易发生改变,会使得在饱和的砂型土质的建筑结构设计变得更为艰难。当水力发生变化时候,土质的效应力大幅度降低,容易形成流砂,使得建筑结构下的土体发展流动,造成地表地基的坍塌,威胁建筑结构的稳定。

四,地下水对建筑结构设计的受力影响

1,地下水对地基基础设计中应力计算的影响

在建筑结构设计中,最关键是要确保地基的稳定,进行地基设计时候,首先要做到的就是要精确计算出自重应力和附加应力。在计算地基任意深度的自应重力时候,要以地下水位为分界线,地下水上面的土质,一般采用的是土质的自重应力。如果地基位于地下水的下面,那么,地基在水下的砂性土需要综合考虑到地下水的浮力作用。如果还是粘性土质则变得更为复杂,需要根据不同的情况而定,一般认为,如果在地下水下面的粘性土质的液性指数不小于零,那么,此时土质会是一种流动的状态,每个土质颗粒之间有很多自水,这种情况下,土体便受到了地下水的浮力作用。因此,在进行地下水位之下的自重应力的时候,要根据实际情况,综合考虑,分析确定是否需要将地下水的浮力纳入其中。如果液性指数在零之下,那么土质会保持在固体的状态,土质就不会受到地下水的浮力,在实践操作中,一般都会按照不利的状态来进行综合考虑分析。

2.地下水对天然地基承载力的影响

在建筑结构地基的设计中,要做好天然地基承载力的计算,地下水对地基有着十分重要的影响作用,一般而言,都会表现在两个方面,其一,位于地下水位之下的土质,会很容易失去表观凝聚力,而这种凝聚力多半是由毛细管和弱结合水所形成的,当失去凝聚力的时候,会使得土质的凝聚力大幅度降低。其二,当受到地下水的浮力时候,土质将会很大程度的降低了自身的凝聚力,也因此会使得建筑结构设计中地基的的综合承载力变弱。在实际建筑结构设计中,都会假设地下水水位上下的土质强度都是一样的,只是单一的考虑到地下水的浮力对土质的承载力产生的影响,当建筑结构设计的地基持力层在地下水位下面,而且不具有透水性,那么,不管基底上层的土质是否具有透水性,都统一使用保护重度,当地基的持力层具有透水性的时候,可以将有效重度纳入范围。

五,抗浮设计方案与具体措施

除箱形基础和内部无柱的地下构筑物外,采用片筏基础的地下室的结构一般难以满足整体抗浮的刚度和强度要求,故将地下室划分为若干结构单元进行抗浮验算是合理的,抗浮设计需结合结构单元抗浮验算的结果选择或调整结构抗浮方案及措施。抗浮方案及措施有:

1.主体工程采用桩(挖孑L桩除外)基础时,单层地下室或裙房地下室可用桩协助抗浮,因为受地下水变化的影响,该桩可能抗拔也有可能承压。

2.主体工程采用天然地基时,单层地下室或裙房地下室可采用加大恒载(如覆土)抗浮,或将单层地下室和裙房及裙房地下室的结构处理成垂直荷载作用下的子框架结构支承于主体结构上,由主体结构协助抗浮。后者需修正原设计对应于子框架的梁柱内力与配筋和主体结构中支承子框架的节点的梁柱端的内力和配筋,修正的原则是取二次设计中承载力大的配筋和截面。主体结构离支承子框架节点较远的梁柱端内力受影响较小,一般可以不必修正。

3.抗浮锚桩协助抗浮。抗浮锚桩的结构设计方法基本上同锚杆,适用范围比较大。常用于大空间、大面积的单层地下室或裙房地下室及地下构筑物抗浮,当水压力较大时,用分布抗浮锚桩无梁地下室底板的方案易于设计且比较经济。

4.地下罐体的抗浮设计应注意其基础或基墩在地下水的影响下可能受压也可能受拉,要做两个方向受力的强度验算。

5.在必要时要做抗拨桩或抗浮锚桩的拨和压的双向受力验算,承压验算宜考虑桩土协同工作,桩主要起抗倾斜作用,注意抗浮验算单元应与协助抗浮的方案吻合,位于地下水位以下的室外抗浮覆土要扣除地下水的浮力,悬挑出室外的地下室底板可以适当考虑上面覆土的内摩擦角按倒梯形截面计算抗浮力,抗拔桩和抗浮锚尽量布置在柱、墙下或对称布置在柱下,共同形成基础梁的支座,可以使抗拔桩和抗浮锚桩的受力均匀。当基础梁的刚度较小时,要避免跨中抗梁的内力计算,因基础梁的竖向位移刚度从柱下至跨中各点不相同,所以布置在基础梁跨中的抗拔桩和抗浮锚桩对基础梁跨中是新约束,应注意计算简图的处理,调整基础梁的配筋,工程地质勘查应考虑协助抗浮的抗拔桩和抗浮锚桩的布置方案对桩长的影响。

六,结束语

建筑结构的设计关系到整个建筑工程的后续施工,关系到整个建筑工程的工程进度,工程成本控制和工程质量的保证。加强地下水对建筑结构设计影响的研究,找出地下水浮力对地下室和建筑物结构施工设计的重要影响方式,和发生原因,有助于建筑结构设计的科学化和合理化。地下水是建筑结构设计中无可避免的载体,水压力和地下水的浮力都会优先于地基对建筑物的结构产生反力作用,因此,在建筑结构设计中,要对地下水这一最重要的影响因素做出深入研究,这是保护地基稳定的关键环节。同时,通过探究发现,地下水主要还是通过影响到建筑结构设计中的基础设计的受力,主要是建筑结构的自应重力和建筑结构的承载力,要从建筑结构设计中的抗浮力上面加以改善和修正,尽力保证建筑结构设计的合理性和科学性,保证工程的质量。

参考文献:

[1] 陈晓坚 地下水在建筑结构设计中出现的问题探讨 [期刊论文] 《广东科技》 -2010年8期

第9篇

关键词:工业建筑;结构设计;复杂性;安全性

DOI:10.16640/ki.37-1222/t.2017.13.101

对于工业建筑而言,其结构设计合理与否,不仅决定着工业建筑建设质量,也影响着工业建筑建设资金投入。只有科学的设计,工业建筑结构才会合理,与生产活动和工艺要求等相适应。工业建筑与民用住宅建筑不同,其结构设计更复杂,安全性要求更高,要适应生产活动和工艺要求。介于此,进行工业建筑结构设计的复杂性与安全性分析是必要的,利于加深对工业建筑结构的认识。

1 工业建筑简述

1.1 概念

工业建筑,指的是提供人民从事各类生产活动的建筑物或构筑物[1]。其中,构筑无有烟囱、水塔等,建筑物有化工厂房、纺织厂房、医药厂房等各类型厂房。

1.2 特点

工业建筑主要特点:(1)要有足够的面积和空间;(2)符合生产工艺要求,安全性要求很高;(3)具体的生产活动不同,工业建筑结构形式也不同,要根据生产活动及其特点进行结构设计;(4)屋面排水、通风、采光及构造处理等方面复杂性较高。

2 工业建筑结构设计的复杂性与安全性

2.1 结构选型

由于工业厂房建成后的使用用途不同,不同的工业厂房,其生产工艺等方面要求是不同的[2]。所以,进行工业厂房结构选型时,要充分考虑工业厂房的使用用途、施工条件等因素,不仅要使用材质好、寿命长的材料,还要确保建成后的工业厂房结构能够灵活的适应的生产容量等方面变化。下面对工业建筑常用的结构形式进行了分析:

第一,筋混凝土结构。钢筋混凝土结构,具有建材采购方便、施工便利、耐火耐蚀、现场建筑、成本低等优势。而且,按照这种结构建造出来的建筑,有着很广的适用性,很多厂房都采用钢筋混凝土结构。

第二,钢结构。钢结构一般采用工业化体系建设,工期短、成本低、施工方便,且适用于大跨度、大空间的工业厂房。但是受材质限制,这种结构防火、防腐蚀性能较差,如果工业建筑采用这种结构类型,必须注重防火、防腐蚀方面设计。

从以上内容可以看出,一般情况下,工业建筑结构建议采用钢筋混凝土结构,因为这种建筑结构优势明显,不需要特别注意防火、防腐蚀方面的设计,安全性较高。但是如果是大跨度、大空间、振动较大的工业建筑,适宜采用钢结构。

2.2 平面布置

确定工业建筑选址后,以生产工艺流程为依据进行建筑总平面设计,合理确定各分区、竖向设计、公用设施等[3]。进行工业建筑总平面布置时,除了以生产工艺流程为依据外,还要考虑职工生活用户、生产经营管理用房、福利设施用房,以及污染问题,按照全局角度考虑平面布置。为了确保总平面布置的合理性,设计者可以采用计算机软件辅助设计,如建筑信息模型,基于同一模型设计多种设计方案,优选出最佳平面布置方案。

2.3 生产工艺要求

建造后的工业建筑是用于生产活动的,为了生产活动的正常运作,工业建筑结构设计必要以生产工艺为依据,将生产工艺和生产活动做出结构设计的出发点,这样才能保证工业建筑结构设计合理。

对于工业建筑而言,其生产工艺要求主要体现在三个方面:(1)生产流程。生产流程影响着各部门、各工段平面的次序和相关关系;(2)运输方式及工具。运输方式及工具影响着工业建筑结构类型选用、平面布置等设计工作;(3)生产特点。生产活动具有污染、易燃易爆等特点,做好生产环境、防腐蚀等方面的设计工作。

2.4 防腐蚀设计

工业建筑建成投入使用后,受生产工艺和生产活动影响,生产过程中经常使用或产生酸碱盐类物质,容易腐蚀建筑物。所以,进行工业建筑结构设计时,要特别注重防腐蚀设计。

第一,选用防腐性能好的材料,或对建材采用防腐措施。如,门窗使用木质、塑料、玻璃钢等防腐性能好的材料;金属挂件涂抹耐腐蚀的涂料,在金属表面形成防腐层;地面采用沥青混凝土、花岗岩等材料。

第二,结构构件采用钢筋混凝土材质,同时是混凝土表面涂抹耐腐蚀的涂料。如果结构构件使用钢材,务必要做好防腐蚀措施,必须在钢表面涂抹环氧树脂漆等材质的防腐蚀涂料。

第三,带有腐蚀性的生产活动要集中布置在下风侧或水流的下游,限制酸碱盐类物质腐蚀工业建筑结构。

2.5 防震设计

防震设计是关键的,它在工业建筑结构设计上占据首要位置,因为它直接决定着工业建筑后结构的安全性。根据我国相关规定,工业建筑方防震设计要求比较高,如果不能达到安全性要求,一旦遭受意外的冲击振动,所造成的后果是严重的,特别是生产活动具有易燃易爆特点的,危及工业建筑区内及周围范围内的人员生命安全。因此,进行工业建筑结构设计时,必须合理进行防震设计,符合抗震要求。

当工业建筑结构规则、对称,整体性比较好时,按照工业建筑结构及其抗侧力结构进行抗震设计;当工业建筑结构整体性比较差使,要按照工业建筑结构抗震设计要求采用相应的加强措施,增强工业建筑结构的抗震性;当工业建筑厂房的结构高差比较大时,必须将生产用房与生活用房、管理用房等分开来布置,并分开相邻的抗震缝,便于提高结构的抗震性。此外,抗震缝两侧要布置墙等构件,并按照设计要求合理控制抗震缝宽度。

3 结论

综上所述,工业建筑不同于民用住宅建筑,其结构设计具有较高的复杂性与安全性。为满足工业建筑结构设计的复杂性与安全性要求,要认真的进行工业建筑结构选型、总平面布置、防腐蚀设计、防震设计等工作,使工业建筑结构设计符合生产工艺要求,满足建造后的使用用途,达到相关设计标准。

参考文献:

[1]潘绍洁.工业建筑结构设计的复杂性及安全性[J].科技展望,2016(07):33.

相关文章