时间:2023-07-02 09:37:25
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇大跨度结构建筑工程实例范例。如需获取更多原创内容,可随时联系我们的客服老师。
本文依据工程实例来对大跨度屋盖钢结构工程桁架施工进行了简要的分析,主要分析的重点内容包括桁架施工要点以及施工方法,桁架的施工关系到大跨度屋盖钢结构工程的整体施工质量,因此对其施工质量的要求更为严格。通过合理的施工以及质量控制,以提升桁架施工的整体质量。希望本文的探究能够为相关的人员提供一定的参考和借鉴。
关键词:
大跨度屋盖;钢结构工程;桁架施工
如今的大型建筑工程建设数量越来越多,而在大型建筑工程中,应用最多的结构形式就是大跨度屋盖钢结构,该结构施工的过程中,应用的主要施工方式就是桁架施工,本文主要就工程实例来对大跨度屋盖钢结构工程桁架施工进行详细的研究,合理的对桁架施工的方法以及施工要点进行了全面的探究,以为提升桁架施工的质量奠定基础。
1工程概况
某建筑工程采用的是钢结构进行施工,建筑总面积为162245.7m2,而钢结构形式主要就是三角结构桁架,其中钢结构的总重量为1200KN,而钢结构中的主桁架的重量则为950KN,其中每一桁架的长度均在45.5m左右,而桁架的两端位置,间隔距离在3.5m,而除了主桁架之外的其他桁架,每榀之间的距离均为8m,桁架支座的标高则主要为25.684m,在桁架的上弦顶部位置,标高则主要为29.560m。该建筑工程的屋面结构为钢结构,其投影所覆盖的面积为5560m2,在钢结构屋盖中,主桁架主要为9榀,而次桁架的数量则为15榀,系管数量33榀,斜撑数量45榀,而在钢结构屋盖上,除了这些部分以外,另外的构成部件则为马道以及屋面檀条等,钢结构的构成元件主要包括管材、钢板以及各种西药的构建等,而选择的管材则主要应为无缝钢管,而钢板则需要采用Q345B,而次要的一些构件则应采用Q235B。
2施工方案
2.1具体施工要求。依据施工现场的具体情况,同时在对桁架结构进行具体分析的基础上,要合理的对屋盖钢结构进行详细的分析,所应用的屋盖钢结构需要在工厂内部进行加工处理,将每一个屋盖钢结构都进行合理的标注,然后依次将加工制作的屋盖钢结构运输到现场进行运用,将桁架尽可能的放置在需要进行桁架施工的工程下方,对拼装位置进行合理的选择,对胎架进行合理的设计、组装以及焊接,在对汽车的吊装位置设计完成之后,就可以对整榀的桁架进行吊装处理。
2.2工厂加工。在该建筑工程中吗,所应用的主桁架截面呈现几何图形样式,而且主桁架截面的尺寸也可以设定为2500×1500mm,其中一个单独的榀桁架的标高则为4250mm,工厂在对桁架结构特点进行详细分析后,就可以依据相关运输的要求以及施工质量控制的方法,在工厂对整榀的桁架进行加工处理,根据相关工艺技术的要求,可以将整段的桁架均分为三个部分,按照阶段进行加工。要切实的保障弯管加工的精确性,利用弧形杆件进行加工处理,按照相应的比例要求,进行放样预拼。所有需要应用到的一些部件,在出厂之前都需要经过严格的检验,只有检验合格的工件才能够正式的投入到施工中,并对每一个工件都进行清晰的标记标注,在安装拼接的时候要严格的按照顺序进行拼接处理。
2.3现场桁架拼接。在将桁架的相关构件制作完成后,就可以运输到现场进行拼接施工。而在拼接处理的过程中,要注意要找拼装基准线的设定标准,采用胎架对桁架进行支撑,对桁架实行有效的拼接处理,这样可以使得桁架的空间可以保持立面结构。要对支撑点的位置进行合理的确定,单元桁架要利用汽车来进行吊装拼接,要注意利用电焊机来对下胎架进行焊接处理,而焊接的顺序则为接口、直腹杆、斜腹杆,在焊接的过程中,也要遵循一定的原则,要保持焊接的对称性。
2.4楼面加固处理。通过现场平面布置图中了解到运输通道至中厅的吊车行走路线的下方均有地下停车场,楼板设计荷载为15kN/m2,通过验算在施工过程中楼面荷载达到30kN/m2,才能满足机械行走、站位吊装要求;在楼板下方采用钢管脚手架进行支撑加固,加固高度为3.72m,用φ48×3.5的脚手架管在加固区域搭设满堂架,此区域满堂架立杆上端必须撑紧,立杆横向、纵向间距为600mm,步距为800mm,通过验算满足施工要求。
2.5桁架吊装。吊装桁架时汽车吊车头朝相对应轴方向,使吊车的工作幅度为8m,50T汽车吊在工作幅度8m时,臂长32.7m可以起吊重量为12.3T>12.28T,吊车工位幅度满足吊装要求。起吊前在桁架两端系上方向牵引用风绳,桁架底部起升到25m时,主臂朝对应轴方向旋转,旋转到另一轴部位左右趴杆,桁架基本到位,微调好轴线及左右距离后,与钢支座焊接固定。固定好后松钩,第一榀桁架吊装完毕,当两榀主桁架吊装就位后及时完成其之间的次桁架和相关构件,以便使两榀主桁架形成一个稳固的整体。
3施工控制要点
3.1施工规划。本工程结构拼装区域场地、进场通道、吊装工位狭小,起吊构件超长,安装、吊装操作空间紧促,在道路布置、桁架拼装、吊装过程中必须确保所选方案合理性。且相当部分数量构件在高空安装,这些比较复杂的操作要求车间制作精度不仅要满足施工规范和设计要求,还必须较好的满足现场安装工艺的需要。此外,对于现场施工人员,特别是起重作业人员和起重指挥人员,分别要有相应的施工经验和指挥协调能力。
3.2施工验算。对于屋盖钢结构本体施工验算:本工程拟采用楼面加固,大吨位汽车进行单榀桁架整体吊装。现场应按照施工顺序确定分析工况,施工区域、通道楼面整体验算,以及楼面、通道加固整体施工验算,整榀桁架吊装的吊点内力施工验算,施工机械、吊索选择施工验算,为工程吊装控制提供具体详细的理论数据进行指导。
3.3施工测量。现场在拼装胎架上拼装、空中安装,应随时进行跟踪测量,确保各阶段组装安装的准确性,施工测量观测点应根据施工规范、控制要求进行确定,确保观测点数据的代表性。施工测量数据应及时与设计数据进行比较,如发现偏差及时向工程技术负责人报告,查找原因并提出整改措施。
4安全保障措施
在大跨度屋盖钢结构的安装过程中,必须要做好一定的保护措施,以免在施工中发生意外事故,给施工现场人员的人身安全带来威胁,同时也避免了事故发生对工期进度的影响。一般要求现场施工中所使用的吊装机索具都应符合国家相关规定,尤其是当这些机械设备需要进行局部变更时,一定要征得工程技术部的批准,以确保安全。
5结束语
综上所述,在对大型建筑结构进行施工的过程中,采用的结构形式通常为大跨度屋盖钢结构,而在该结构工程中,桁架是其中的重要构成部分,桁架施工的质量,将直接影响到大跨度屋盖钢结构的施工质量,要想能够使得大跨度的构件以及相类似的工程可以进一步的得到质量上的提升,就需要合理的采用有效的施工方法对桁架进行施工处理,以保障大型建筑整体的施工质量,从而更好的推动大型建筑的发展和建设。
参考文献:
[1]束伟农,朱忠义.钢结构在机场航站楼工程中的应用[J].施工技术,2011(1).
[2]李乘建.大跨度空间管桁架施工关键技术的研究[D].西安:西安建筑科技大学,2012.
[3]张爱莉.大跨度钢桁架结构施工方案的优选研究[D].重庆:重庆大学,2013.
关键词 大跨度;钢结构;空间管桁架
中图分类号 T323 文献标识码 A 文章编号 1673-9671-(2012)112-0178-02
钢结构管桁架技术已经在国外流行多年,我国建筑业在经历着快速发展的同时,对建筑的屋盖体系逐步重视。在这个基础上,钢结构管桁架技术得到了深入的研究发展和运用。下面我们就对这种设计结构进行探究。
1 管桁架结构的初步认识
随着技术的发展,钢管结构在当今建筑的使用范围上,已经从大型建筑工程范围上扩展到了工业建筑以及民用建筑范围上。例如上海、长春的体育场,成都的机场航站楼、哈尔滨的滑雪场、扬州体育馆、上海洋子港大桥、广州国际会议展览中心以及北京奥运会老山自行车馆等等,在屋盖体系上都选择了钢结构空间管桁架的设计结构。
管桁架依据杆架布置的不同以及受力特征的不同,一般分为平面、空间两种管桁结构。顾名思义,平面管桁结构就是上、下弦以及腹杆全部处于同一平面。这种结构的外部刚度较差。空间管桁结构的上、下弦同腹杆通常处在三角形截面上,这种结构的跨度大,稳定性高,外观通常也比较富有美感。在外支撑不能布置的时候,采用稳定性高的三角形桁架来构建一个跨度大的空间。这种结构方式减少了支撑够件的数量,所以比较经济。
对于管桁架的连接件杆件截面的种类,一般常用的为圆形、正方以及长方形,选择不同图形的截面相应的桁架类型也有所不同:如果连接件截面是圆形,就选择C-C型桁架;如果连接件截面是正方形,就选择R-R型桁架;如果连接件截面是长方形,就选择R-C型桁架。
弦杆的类型决定了桁架的外形,基本上可以分为直线型桁架和曲线型桁架两种。这其中,曲线型桁架可以更好的体现建筑的美观程度,也被最常用于施工过程中。为了在最小的成本支出下获得最佳的建筑效果,在曲线型管桁结构设计过程中,杆件仍然使用直杆形式,将折线近似来替代曲线。
钢管桁架结构的外形优美,经济成本低,受力较其它材料合理,正是这些相对的优势使得钢结构管桁架在建筑中得到了最普遍的使用。大量的建筑工程实践可以证明,钢管结构的运用一方面满足了建筑的基本原则,另一方面也满足了建筑的基本要求,并且与最新的设计理念吻合。
2 空间管桁架结构的发展现状
现代很多大型的建筑均采用钢结构进行构造的,而且伴随着建筑业的不断深化与发展,建筑理念也发生了翻天覆地的变化与创新,在钢结构的应用和实践上,出现了许多类似跨度大、空间形状相对复杂多变的钢结构的建筑。这些新型钢结构建筑的设计,同时也对钢构件的优化与创新提供了基础。近些年我国出现的,比较著名的类似于水立方、国家大剧院以及中央电视台新办公楼等等大型的体育场馆、文化场馆、展览馆等无一例的使用了大跨度、复杂空间钢结构,来充当建筑自身的屋盖结构体系。
如今,建筑水平的科技含金量已经成为了衡量一个国家建筑水平的标准,其中,空间结构技术发展的好坏决定了建筑水平的科技含量。我国的建筑业从未停止过对于大跨度空间结构研究方面的脚步,相应的施工技术也有了质的飞跃。
大跨度空间管桁架在国家重要的场馆建设时,发挥了不可替代的作用。但是,由于在跨度、桁架截面以及规格上的不同,造成建筑相互间壁厚对接、K型节点等方面上或多或少的存在些差异。
3 空间管桁架结构问题的解决
3.1 主管不等壁厚对接问题及办法
大跨度变截面的主管对接口处,是不等壁厚对接问题主常出现的位置。设计单位往往要求所有的主管对接口,在工厂内实行打内坡口并且要求加折板已充当衬垫。但是,大量的内坡口构件应用到施工中会导致工期的延长、难度的增大。而且,由于国内的无缝管制造技术还与国外有一定的差距,必须要采用卷管制作的方法,这就造成了直缝钢管的圆度差异问题。
按照相关的规定,直缝钢管的外径偏差率不能大于或小于0.75%,弯曲度偏差不能大于3.0mm/m。焊接两个构件时,焊件的宽度与厚度不等同,其中,如果焊件的厚度在一侧上存在着4mm以上的差距,那么就要分别在宽度、厚度方向,沿着一侧或者两侧做成斜角,这个斜角的坡度应该控制在小于或等于1:2.5的范围内。此外,可以通过沿着焊件焊接的缝隙的垂直方向添加插筋板,还可以在焊缝位置加上箍圈对焊接构件进行固定。
3.2 K型搭接节点处不可视焊接问题及办法
搭接节点在节点构造上一共可分为间隙、部分搭接以及完全搭接,这些不同结构的节点在设计与施工的过程中,如何搭接就成了最为关键的问题,也会增加内隐藏焊缝的几率。而相关规定并未对这方面的问题有具体的规定。
通常情况下,主管与腹杆的直径比要控制在大于等于0.2、小于等于1的范围内,腹杆之间的搭接量要控制在大于等于25%的范围内。在节点的选择上,要多选择间隙节点替代部分搭接节点,因为间隙节点比部分搭接节点更容易被组装。对于部分搭接节点的隐藏部分一般是不焊接的,只有出现腹杆与主管之间的不平衡系数大于1.5的情况,那么部分搭接节点就必须要进行焊接。搭接节点的选择,要注意搭接管与被搭接管至少要将25%的宽度叠合在一起,最佳的选择是有一般的宽度叠合。另外,对于部分搭接的K型节点,如果主管垂直方向的内力与腹管内力之间存在低于五分之一的差距,那么被搭接杆件的趾部是不需要进行焊接的。
除此之外,搭接节点构件中,圆管外层直径同构件壁的厚度之间的比值不能大于100。K型节点构件的搭接率应该被控制在大于等于25%、小于等于100%的范围内。如果腹杆出现厚度不同的情况,那么在焊接时,要在厚壁管上方搭薄壁管。综上所述,空间管桁架设计时,不只需要考虑杆件以及杆件节点承受力,节点的构造也是很重要的环节,节点的结构设计可以有效地将各个构件联系起来,对于整个建筑设计起到承上启下的关键作用。
3.3 空间管桁架施工的步骤
“先点焊,后全焊”是管桁架施工的主要程序,在桁架施工中如果有搭接节点存在,就一定要事先明确需要焊接的搭接部位,这也侧面要求施工过程中要对各个构件安装的先后进行有效确认,以防因为构件安装顺序的颠倒导致建筑安全隐患。空间管桁架的安装步骤通常是:主管先行安装,接着安装只管,每安装一个只管后,对直管趾部进行焊接,最后进行支管与支管间的焊缝焊接。
3.4 如何进行相贯口补块
一个建筑工程的施工中,从设计到施工整个过程不可能完美,或多或少都会出现一些不足或者误差,特别是在施工过程中人为的失误会加大这些误差出现的几率。这些失误往往会造成相贯口出现缝隙过大问题,需要及时有效地进行查缺补漏。
1)如果桁架同主弦管相贯口间隙长度大于8mm,那么解决方法之一就是彻底替换相贯口,方法之二就是对相贯口周围部分结构进行切割,切割的要求是长椭圆形,长度要大于或者是等于500mm,针对切割的部分进行替换,在替换中应该打坡口焊接。
2)支管相贯口间隙过大,要对支管相贯口的局部构件补块,补块要求是长椭圆形,长度要大于或者是等于300mm,对于焊接的要求同样是坡口焊接。
4 总结
钢结构在建筑领域的作用日趋重要,因为钢结构的自身重量较小而且强度较高,可塑性和柔韧性都较其它材料强,加之钢结构无法比拟的抗震性能,是之成为公认的具有良好性能的结构。钢结构也被应用到了空间结构体系中,尤其是跨度较大,标高较高的大型场馆,空间钢结构管桁架设计做为其屋盖结构发挥着很多的优点,满足了场馆大跨度的要求,而且符合建筑设计的美观实用、经济安全的基本原则。这一设计结构在未来会被更多地运用到实际建筑中去。
参考文献
关键词:地下室顶板;GBF空心楼盖;施工工艺
地下室结构本身具有一定的复杂性,在对其进行施工的过程中,施工人员需要注意的是问题比较多,不仅要保证结构的整体稳定性,还需要对防水和渗水问题加强重视。接下来,笔者主要以具体的工程为例,对地下室顶板结构的施工技术进行深入探讨。
1 工程概况
某建筑工程主要是一种综合体,房屋建筑的高度为100m,其中地上建筑层数为30层,地下为3层。总体的建筑面积为5.5万m2,其中三层地下室的总体面积为1.3万m2。地下三层结构中,一层和二层主要为商场,建筑的高度为4.8m。地下结构除了商场之外还有车库。建筑工程桩主要是以钢筋混凝土灌注桩为主。地上结构主要以框架剪力墙结构为主。本工程在应用的过程中主要采用的是GBF高强薄壁空心管楼盖,空心管处于楼板的中心位置,板体的厚度以及楼板的长度分别为。另外,钢筋结构配置相对比较均匀。
2 GBF薄壁管空心楼盖技术
2.1 GBF薄壁管空心楼盖技术特征
对于地下室顶板工程来说,GBF薄壁管空心楼盖的应用主要是一种以空心楼和暗梁相组合的形式,其中暗梁的厚度需要和楼层相同,高度在不断升高,结构的自重随之减少。如果预应力较低就可以直接满足大开间以及大跨度的整体要求。这样不仅可以降低施工的成本,还可以提升建筑的公共性。
在具体的施工中,GBF管需要由专门的生产厂家来进行供货,但是在材料进入到施工现场之后,检测人员需要对其进行详细地检测,保证楼板的跨度以及厚度等因素都符合GBF管的施工要求。通常情况下,管壁的厚度为25mm,直径为250mm,跨度可以达到40m。由于这种类型的管材自身重量相对较轻,将其埋设在混凝土板的内部,管和管之间就会形成各种不同类型的空隙,最终形成无梁结构的空心楼盖形式。
2.2 GBF薄壁管空心楼盖结构特点
2.2.1 结构特点分析
建筑物结构本身的自重在明显地降低,无论是横向还是竖向的结构成本都相对较低。其中大跨度、大空间的楼层建筑中都可以应用到空心楼盖结构。不仅如此,对于底层建筑来说,无梁结构的应用还需要进一步改进。从这种结构特点上看,应用灵活,而且施工也比较便利。
2.2.2 结构缺点
这种结构的缺点不是十分明显,但是有些缺点如果不被重视必然会对建筑的整体质量造成严重地影响。如果经过长距离的运输,很容易对芯管造成一定的破坏,另外,芯管结构很难进行固定,而且管距离也不容易一直保持均匀直线的状态。另外,在混凝土浇筑的过程中,芯管可能会出现上浮的现象,因此很有可能会带动板筋向上,这样就会使得保护层的偏差过大。另外,芯管的上方和下方都很难进行密实地振捣,很容易出现蜂窝以及孔洞的现象。
3 GBF空心楼盖施工工艺要点
3.1 工艺流程
具体的工艺流程如下:施工人员首先进行的是测量放线,然后对平板底模板进行安装,然后做好GBF芯管的放线工作。在放线结束之后,工作人员需要做好暗梁的绑扎工作,然后对水暖电等设备进行安装。在芯管就位之后,施工人员应该对钢筋以及板面进行绑扎,然后进行检查验收。在一起工作准备完毕之后,就可以进行混凝土的浇筑工作。最后,施工人员应该对混凝土工程进行养护,然后拆除模板。
3.2 模板安装工艺
模板工程的安装意义重大,首先应该搭设底模的支撑脚手架结构,然后安装木龙骨以及钢管结构。底板模板主要采用的是大模板形式。在这一施工环节中,工作人员要对模板的规范程度进行控制。
模板应根据楼盖的总厚度、暗梁的宽度与平面布置作恒载取值,分别进行承载力和稳定性计算,按计算结果设计模板、龙骨与支撑的布置,并考虑兼做薄壁管抗浮锚定要求。
3.3 绑扎钢筋
模板验收合格后,开始绑扎暗梁钢筋、底层板筋及薄壁管间肋钢筋;薄壁管间肋中钢筋网片应点焊成型后再绑扎;将网片的下部与底层钢筋绑扎固定,上部待GBF芯管安装完毕后与上层钢筋绑扎固定;暗梁及底层板筋在绑扎好后并进行初验。
3.4 GBF薄壁管安装
本工程使用的GBF 薄壁管是空心的并且密封的圆形管,所以在进行混凝土浇筑时,会因振动棒的振动和GBF 薄壁管本身的浮力而导致GBF 薄壁管带动钢筋网片上浮。抗浮压筋是单个GBF薄壁管固定的关键,抗浮压筋采用直径10钢筋,每根GBF 薄壁管设置两道压筋,压筋要与马凳筋焊接牢固,不允许漏焊。
4 关键施工技术措施
4.1 空心板的抗浮措施
必须对抗浮控制点进行合理的布置,通常将控制点布置在肋处,可按矩形或者梅花型布置,每肋都设或者隔一个肋交错设置,保证每平方米范围内不少于一个点。抗浮控制点可定在肋梁中上铁与分布筋相交点,也可以定在箍筋的上部或下部。GBF薄壁管的抗浮靠12#的铁丝固定。固定抗浮控制点时,先将铁丝一端在模板上从孔中往下穿出,与模板的支撑系统绑牢后将铁丝端头从孔中住上穿回来;当安放好GBF 薄壁管、绑扎好GBF管顶上的定位箍和抗浮钢筋后,就可将铁丝的两个端头在抗浮控制点处拧紧。为了安装抗浮控制点,需在肋梁部位的底模上打孔。基于方便操作与及时清理打孔随屑考虑,打孔工作应当在模板上普通钢筋刚放好样,肋梁部位已确定后及时进行。
4.2 空心板的定位措施
在本工程施工中,施工重点与难点就是空心板的定位以及抗浮,其施工措施是否合理,对空心板结构体系功能的实现具有直接的联系。GBF薄壁管的定位是靠准10U 型箍筋、GBF薄壁管限位钢筋是靠马镫筋和架立钢筋以及抗浮钢筋来实现。限位钢筋与架立钢筋和抗浮钢筋限制GBF 薄壁管的上下错动,U 型箍筋限制GBF 薄壁管的左右错动;靠四种钢筋的摩擦力限制GBF 薄壁管的前后错动。在安放GBF 薄壁管之前先按布置图放好马镫筋再固定好架立钢筋,放好GBF 薄壁管后再穿定位钢筋和抗浮钢筋,限位钢筋定位要求准确,一定要牢固绑扎或者点焊在抗浮钢筋上,位置绝对不允许错动。
结束语
由于近年来,在地下室顶板施工中,为了对建筑结构的自重进行减轻,增加地下室的实际净高,降低成本,缩短工期,GPF高强薄壁管空心楼盖技术被广泛的运用在地下室顶板施工中。本文主要根据工程实例阐述了地下室顶板采用GBF空心楼盖施工技术控制要点。
参考文献
[1]赵龙.GBF 高强薄壁管在现浇混凝土空心无梁楼盖中的应用[J].北京水利,2012(4):12-13.
[2]林小媚.现浇混凝土大跨度空心楼盖的简捷设计方法[J].广东土木与建筑,2013(7):56-57.
关键词:建筑工程;高支模技术;应用
中图分类号:TU198文献标识码: A
引言
现阶段城市建设发展迅速,大跨度、高空间的建筑拔地而起"这些高大空间结构形式复杂而又奇特在一定程度上美化了城市的面貌,也是现代化新型设计理念在不断地翻新更迭的体现"新型建筑的大量崛起,高支撑模板体系因其适应性广、承载力强等特点。在模板工程中得到广泛的应用。目前,在高支模现浇混凝土施工中,由于施工工艺措施不当以及施工过程中管理不善等原因导致的支撑系统失稳倒塌事故经常可见。
一、高支模技术
建筑工程施工中所采用的高支模主要是指高支模是指支模高度等于或大于4.5m时的支模作业,而水平混凝土构件模板支撑系统跨度超过18m或高度超过8m,集中线荷载大于20kN/mz或施工总荷载大于15kN/m2模板支撑架叫高大支模。高支模施工技术是施工人员在对超高结构建筑工程施工以及大跨度结构时,一般所采用到的是一种支模作业技术,尤其是在建筑工程的主体结构施工中,高支模技术的应用率更高。高大支模技术若想在工程施工中进行应用,就需按照国家所颁布的相关标准及规定,由其工程项目的主要负责人组织相关的专业技术人员,对高支模板的具体施工流程以及注意事项进行讨论研究,并结合实际情况项目施工,编制出完整、可行的施工方案,在没有获得专家论证和审批之后,该技术不可正式的实施。
二、工程实例
(一) 工程概况
某高层建筑面积20006m2,共18层,1-8层是长方形,9-12层是凹字形。内收部位形成露台,露台规格为18m大8.4m。露台上空在18层处用单层设计一个空圈的造型,梁的截面为300×600和350×ll00,梁底距离露台38.4m。这是一个典型的高支模工程,按规范要求应作专项施工设计。模板的设计由模板及支撑系统两部分组成,本工程的施工难度是支撑系统,本文对工程施工中采用钢管高支撑系统的施工进行叙述。
(二)模板体系本工程模板使用20mm松木板或18mm的厚夹板拼装成梁底板,梁侧板使用20mm厚松木板或定型铁板。各板经直边后使用60×40松木枋拼装成所需规格柱模板,梁底板、侧板每块长度为1.95m,柱侧板为柱高减最大梁高,所以本工程柱侧板最高项式为4.8m,最低为2.2m。柱侧板安装前根据所放轴线在楼面用砼钉和20mm松板钉固定框,柱板支撑使用可调节式钢支顶作支撑,柱箍使用80mm×80mm木枋,间距不得大于40cm,或用角钢,间距控制在50cm。柱侧模板拼装时,板与板间不能齐口,错位大于50cm以提高模板组合刚度。板缝宽控制在2mm内,拼装好的模板应平放齐整,并注意模板的干湿度,使用前应使用其它材料复盖,以免引起因爆晒和长期扭曲堆放而变形。
(三)高支模施工顺序
安全技术交底-地基基础处理-按施工方案要求确定立杆间距-放出轴线及梁位置线,定好水平控制标高-梁板立杆-顶托设置-设置顶托内主楞方木-架设梁底次楞方木于顶托内方木上-梁底模及侧模安装-设置板底顶托内主楞方木-架设板底次楞方木于顶托内方木上板-模板安装-高大模板工程专项验收-柱混凝土浇筑-梁板钢筋绑扎-梁板混凝土浇筑-变形监测。
(四)地基承载力问题解决方法
模板支架方案的安全目标实现,与其底部的地基承载力能否满足设计计算要求关系最为密切。分析过程为:架体基础若回填素土,不能满足该支架的设计计算荷载要求。有两个方案可供选择:(1)是回填素土,后做地面混凝土垫层,能满足承载力要求;(2)是按照碎石类土分层夯填密实,能满足承载力要求。考虑做混凝土垫层影响工期进度,成本太高,故此采用碎石类土作为地基回填土,不仅仅可以降低成本,而且可保证地基承载力载力。支架地基为2-7m深的碎石类回填土,做回填土干密度试验,合格后方可进行上层土的回填,回填时做到分层夯实。地基土回填且整平完成后,支架底铺设50厚木垫板,开始搭设模板支架。
三、模板拆除的技术措施
(一)(1) 高支模的拆除施工中需要遵循原则是“后立先拆,先立后拆”。并要注意在拆除过程中不可硬撬硬挖,使用蛮力,要避免对混凝土表面伤害。要及时进行清理拆除下来的模板,把模板表面的残浆铲除干净,而后均匀涂满隔离剂,要对模板变形的部分进行修正。(2) 在拆除支架以及现浇结构的模板时,需要确认混凝土强度已经达到了施工规定及设计要求,并且要向上级申请,得到批准后才可以进行模板的拆除,杜绝没有经批准擅自拆除模板。(3) 在拆除柱模板、构造柱、梁侧模、圈梁侧模等侧模之前,要确保混凝土的强度已经达到了保证其表面和棱角不会受到拆模损伤且不会粘模的条件方可进行拆模。(4) 在拆除梁板底模之前,必须保证混凝土的强度已经达到了设计及施工规范的要求,而后提出拆模申请,将混凝土同条件养护拆模试块强度报告附在拆模申请中。对于小于8m的梁板底板净跨度,必须达到混凝土设计强度的百分之七十以上,并经过了拆模申请,方可进行拆模; 对于大于 8m的梁板底板净跨度以及悬挑梁板,必须达到混凝土设计强度的百分之百,或待28d后方可进行拆模施工。(5) 对于穿墙对拉螺杆,一般可在拆模12小时后予以抽除,但抽除的前提条件是不能影响到其它支撑杆件,尤其是梁板和底板模板的垂直支撑。
四、完善高支模施工的措施
(一)重视建筑高支模施工验收以及质量检查
建筑模板工程施工上,必须严格按照模板工程质量控制程序施工,严格执行交底制度,操作前必须有单项的施工方案和给施工队伍的书面形式的技术交底。其次对于存在质量通病的问题,制定预防措施并防患于未然,从而来确保模板工程的施工质量。
(二)安全注意事项
(1)为了确保安全,高支模架搭设不仅仅严格遵守国家地方相关规范要求外,还需考虑以下因素: 最外排立杆要高出架体及楼板面1.5m,并在搭设间距30mm的水平杆,为了临边安全防护,防止发生高空坠落事故,需张挂密目式安全网。(2) 安排在白天进行混凝土浇筑,从而便于变形观测以及施工组织,浇筑混凝土时控制浇筑速度,从跨中向两边扩展浇筑,并先进行梁混凝土浇筑,然后返回了浇筑楼板,都是为了确保为模板支架受力均衡。每层不超过500mm,大截面梁的混凝土浇筑应分层进行。保障高支模架施工过程中均衡受载,混凝土浇筑时人员应分散,不可集中一处以及钢筋等材料不能在支架上集中堆放;混凝土浇筑时严禁凝土在出料口堆积。(3) 在地面高支模区域用临时护栏与周围区域进行隔离,护栏要牢固可靠,护栏高度不低于1.2m,在高支模搭设、拆除和混凝土浇筑期间,无关人员不得进入隔离区域。4.3加强对建筑高支模施工现场和施工企业的质量安全管理。加强对建筑企业安全生产的监督检查,按照“谁审批谁负责、谁主管谁负责”管理的原则,督促帮助企业增强安全意识,加强对职工的教育培训,健全安全生产机构,提高安全生产技能,从而不断提高企业安全生产水平。
结束语:
超高层建筑不断兴建,高支模施工是整个工程施工中的核心组成部分"其施工的好坏直接影响到超高层功能的运转。结合高支模施工特点,综合考虑高支模施工要点、施工措施、施工要求等方面,采取合理、规范的措施,真正达到优质结构工程的要求。在高支模施工上解决了很多技术难题,取得了良好的效果,可为同类工程施工提供好的借鉴。
参考文献:
关键字:预应力钢结构 普通钢结构 工程应用
中图分类号:TU394文献标识码: A 文章编号:
一、前言
随着社会与经济的发展,人们对于建筑的要求早已经不仅仅局限于建筑功能上的满足,更对建筑传递出的精神有了更高的追求。在一定程度上,一个城市的建筑水平可以反映出一个城市或者一个国家的经济与技术的发展水平。作为一个城市或者国家大型公共活动的举办场所,大跨度结构建筑通常会以一种标志性建筑的身份出现。
近些年,大跨度建筑是伴随着建筑材料和建筑结构方面的进步而得到迅速发展的,各种新型建筑材料与结构的结合,例如以钢结构为代表的网壳结构、悬索结构,钢材与各种高科技膜材料完美结合的膜结构,使大跨度建筑可以一次次打破结构对于建筑空间的局限,使灵活通透的室内大空间一次次成为现实。
作为重要的建筑材料,钢材在建筑革命中的贡献极大,第一次伦敦世界博览会上出现的水晶宫令世人眼前为之一亮,大而通透的空间使水晶宫成为19世纪英国的建筑奇观之一而存在;巴黎国际博览会上出现的埃菲尔铁塔,同样创造了一个建筑神话,埃菲尔用钢铁制造出一件高耸的艺术品,成为世界建筑史上的一件技术杰作。
预应力钢结构是作为钢结构性能的提升出现的,它的出现弥补了钢材性能上许多不足,从而将钢材的性能在很大程度上做出提高。
二、钢结构
钢结构是将钢材作为主要建筑材料的一种新型建筑结构形式,钢结构与传统的建筑结构相比,在空间的灵活和通透上有着很大的优势,钢结构的优点主要取决于该结构所使用的材料。钢材是现代建筑中常用的建筑材料,与混凝土一样,成为现代建筑的风格标志。能在建筑工程材料中拥有如此地位,是由钢材的特性决定的,钢材的优势具体表现在:
1、同样的荷载承受能力,钢材较其它建筑材料自重轻很多,这在很大程度上减轻了建筑静荷载;
2、与混凝土、石材、木材等材料相比,钢材具有更强的变形能力和更好的整体刚性。建筑结构对于荷载的承受能力存在极限状态——承载力极限状态和正常使用极限状态。我们对建筑结构的要求是建筑需要满足正常使用极限状态,钢材在结构整体刚性的优势,使其成为许多大跨度以及超高层建筑的首选材料;
3、钢材具有很好的匀质性,各向同性,这种特性避免了建筑受材料力学性能上木桶效应的限制。
三、预应力钢结构
预应力钢结构就是将钢结构中部分普通钢材用经过处理后得到的预应力钢材代替,并且结构中其他的构件承载力在一定程度上得到提高。它的原理就是在结构或者是构件受力相对较大的局部,以与之将要受到的荷载方向相反的预应力对钢材事先进行人为处理,从而可以在结构受到荷载作用时,钢材构件可以通过自身材料内部存在的应力与之平衡一部分,使钢结构在合理的变形范围之内可以承受更大的荷载,从而为建筑形式提供更大的可能性。
预应力技术简而言之就是事先使材料经过变形,从而减少其在使用过程中的变形,降低因为材料变形而带来的对于工程的破坏。预应力技术早就存在,只不过在预应力钢结构出现之前没有系统的计算研究,从而未能大范围推广。例如,在古代通过引入预应力,制造出来的雨伞和木桶,都能在强度比较高的情况下得到各自相应的使用功能。
四、预应力钢结构在工程中的应用
预应力钢结构一般都用于大跨度的建筑以及桥梁结构,在具体的工程实例中,预应力钢结构也随着工程技术的进步而有了很大的发展,它在工程中的应用具体为:
1、用于传统的钢结构,优化结构性能。例如预应力网架和预应力网壳等结构中,此类工程的代表为攀枝花市体育馆;
2、通过布置索系来提高结构的稳定性,例如悬索结构中的稳定索与承重索在结构中可以产生出一个反向曲率的索系,通过该索系,使结构在承受不同方向的荷载作用的时候更为容易,从而提高了结构的稳定性和刚度,此类工程的代表案例为北京工人体育馆;
3、用于张拉整体体系之中。该结构体系出现较晚,第一个真正的工程实践是1988年的汉城奥运会的竞技馆。在该结构体系中,预应力为各个但与提供所需的刚度,所以,刚度的增加是与预应力的增大相同步发展的,而预应力则是通过每个单元里面压杆和索件之间内在的压缩和拉伸来得到的;
另外,预应力钢结构在新型结构张力金属膜结构中以及吊挂型的悬索结构中都有广泛的应用。
五、预应力钢结构与普通钢结构之间的对比
钢结构在建筑中大范围应用较预应力钢结构早,但正是由于钢结构自身存在一定物理性能上的局限性,后者才顺势而生,所以预应力钢结构与普通钢结构相比有着自身无可替代的优越性,具体表现为:
1、预应力钢结构能够充分利用钢材的强度,优化钢材在承受荷载时的应力分布状态。钢材虽然具有强度高度特点,但同时在承受越来越大的荷载的同时,由于材料本身的高弹性以及高韧性,钢材会发生很大的变形,这会使钢材的强度得不到有效的利用,例如相同条件下,在允许的变形范围之内,预应力钢结构荷载承受能力是普通钢结构的2~3倍;
2、预应力钢结构与普通钢结构相比可以提供更高的结构稳定性。荷载作用下的预应力结构变形是与结构自身应力方向相反的,所以与普通钢结构相比,在结构自身内部应力得到平衡之前前者所能承受的荷载较后者大出很多,由此可以提高结构的稳定性。预应力的存在还可以优化结构整体的循环应力的特征,从而使钢材本身的疲劳强度大大提高;
3、使建筑自身形成的荷载更小,从而使结构的多项属性得到改善。例如,由于结构自身更为轻巧,在地震时建筑荷载会小很多,因此提高结构的抗震性
4、更为节省材料。预应力钢结构中受弯构件可以通过结构自身预应力将一部分弯矩转换为轴拉力,从而降低弯矩的峰值,使缩小结构构件的截面成为可能,因此相对于普通钢结构,预应力钢结构在钢材的使用上可以更为节省。一般情况下,单次张拉后,预应力钢结构比普通钢结构节省钢材10%~20%,经过多次张拉后,这一数值最多可能达到40%,而采用预应力创新体系结构后,该结构与传统的普通钢结构相比,甚至节省了几十倍的钢材。例如,在1984年建成的天津宁河体育馆中采用预应力钢结构后,省钢率达到11%~12%,而在四川攀枝花体育馆结构中,应为采用了预应力钢结构,整个工程钢材节省率达到了38%之多。
六、结语
由于符合建筑结构和形式的发展趋势,在传统钢结构的基础上实现材料性能上的弥补,预应力钢结构在近些年有了迅速的发展。在当今工程竞标十分激烈的情况下,更好的结构与更低的工程造价对于企业十分重要,所以对于每个建筑项目的结构形式都应当择优。预应力钢结构的发展,使建筑在形式上有了更大的选择空间,同时对于材料的节省,也使该结构成为符合生态建筑的结构形式。
参考文献:
[1] 宋少民,孙凌土木工程材料[M]. 武汉理工大学出版社 2010
[2] 张建荣建筑结构选型[M]. 中国建筑工业出版社 2011
[3]刘丽华,王晓天建筑力学与建筑结构[M]. 中国电力出版社 2008
关键词:建筑工程;预应力技术;应用
中图分类号:TU198文献标识码: A 文章编号:
当今社会中,随着我国经济的发展和人们生活水平的提高,人们对于自身的生活质量的要求也越来越高了,这就对于我们的建筑设计提出了更高的要求。这种要求的出现必然会引发我们对于新技术的探索以解决类似的问题,此时,预应力技术便出现在了我们的视线中,并且起到了非常重要的作用。预应力结构的形式也是多样丰富的,常用的形式有:无梁平板结构、有梁大板框架(或剪力墙)结构、转换层结构、门架结构和吊车梁以及特殊结构如水池、筒仓、大悬挑结构等。
1 平板结构中的预应力技术应用
在国内建筑工程项目的建设中,预应力技术的应用与发展经历了一个较长的过程。传统的普通钢筋混凝土梁板结构体系,需在柱间及隔墙下设置框架梁和次梁.这必然导致室内明梁纵横交错,降低了楼层的有效高度影响了室内美观和使用功能,装修也较难处理;由于室内明梁的存在隔墙布置的任意性受到限制,室内功能的重新调整比较困难,而一栋建筑物在其50 年甚至 70 年使用期内都不需对空间重新分隔和变换使用功能是很难想象的,特别是一般的商场建筑及办公楼建筑。若设计中楼盖体系采用普通钢筋混凝土平板结构或预应力平板结构,以上问题则迎刃而解;工程若采用普通钢筋混凝土无梁平板结构,由于内隔墙较多。附加荷载较大,要使普通钢筋混凝土平板的裂缝控制等级及挠度满足规范要求,计算所需板厚较厚,同时普通钢筋用量也较大,不经济。为了提高整个楼盖的抗裂性能,减薄板厚,减轻结构自重,提高其使用功能,采用近年来在大量工程中得以广泛应用的现代高效预应力技术结构技术,将整个楼盖设计为后张部分预应力技术无梁平板结构是一个良好的选择。
这种预应力无梁平板,除在楼板周边保留必要的边梁和在局部少数有隔墙的地方及洞口边缘保留梁之外,室内明梁全部取消,仅在必要的地方设暗梁以改善楼板的受力性能,每单元整个室内顶板为一整块的平面。部分钢骨柱中配置了型钢,使得普通钢筋、型钢和预应力波纹管在布筋过程中也会出现位置相互干扰, 因此梁柱节点处的布筋成为工程的难点。另外预应力筋张拉端处的群锚锚具体积较大, 无法放置到柱中,只能采用外锚的形式,致使预应力筋张拉后的混凝土封锚成为施工中的难点。某些预应力梁为多跨连续梁,预应力筋较长,预应力筋在柱两侧需要搭接处理, 搭接处的预应力筋布置也是预应力梁施工中的难点。
2 转换层结构中的预应力技术应用
目前,随着我国城市居住用地的日趋紧张,对于建筑工程的结构和功能配置也提出了更高的要求,特别是对于结构的质量验收设定了具体的标准。预应力筋是预应力分项工程中最重要的原材料之一,预应力筋进场时,要求厂家提品合格证外,还应提供反映预应力筋主要性能的出厂检验报告,两者也可合并提供,但主要项目、内容应基本齐全。我国高层建筑发展迅速,且多为多功能综合性建筑,需要大柱网、大空间的公共设施在下部,从受力的角度讲这是不合理的,解决这种矛盾的最常用方式就是设置结构转换层。
随着预应力技术的逐渐成熟,预应力材料及施工费不断下降,即使用材料等强代换的概念从经济上来比较预应力混凝土结构与钢筋混凝土结构,在许多情况下后者并不比前者经济。因此我国高层建筑转换层结构中采用预应力技术的情况越来越多。预应力技术经过了几十年的工程实践和不断研究,已经是比较成熟的一项工程技术,在今后的发展中,还将日臻完善。工程实践告诉我们,预应力技术以种种优势,在某些建设领域有着强大的生命力和竞争力,甚至在其还未完全占领的领域仍然具有强大的发展力。另外,混凝土浇筑时要注意预留同条件养护混凝土试件,以便张拉时以其强应检测值作为预应力筋后张拉的依据。在浇完混凝土后要及时清理干净锚垫板的面上的混凝土,以确保锚具能顺利地安装。
3 框架结构中预应力技术的应用
框架结构建筑的柱子与柱子之间一般会设置数量不等的明梁,大板上布置隔墙的结构体系。这种结构于平板结构有很多相似之处,柱距比较大,由于省去了次梁,避免了室内错综复杂的次梁,内景好,增加净空,抗裂好,省材料省模板和拆模人工,施工快速等优点。预应力筋的垂直位置由固定架控制,预应筋的水平位置应保持顺直。在就位固定后。泌水孔应设置在波纹管最高点及两端部。先在波纹管上方开一直径20mm 的圆孔,在开口上用带嘴的塑料压板和海绵覆盖,并用铁丝固定在波纹管上,接头周边用胶带封严,以防漏浆,在塑料压板的嘴上接上直径 25mm 的塑料管,向外延伸至梁面以上500mm,兼作泌水孔。若这种大板配合预应力宽扁梁使用,则也能很大限度的减低层高或提升层净高,如 9 米跨的预应力宽扁梁可以做到450mm 高 , 比 做 普 通 预 应 力 梁 650mm 少200mm 高,比普通混凝土梁 800mm 少 350mm。由于结构种还带有明梁,结构仍然属于框架或剪力墙结构,可以用于平板结构所不太适宜的高层或抗震设防烈度比较大的地方。有梁大板结构适合用于住宅和办公楼,尤其是住宅,不设次梁,既避免了室内难看的次梁景观,也利于住户自行隔断房间以实现不同的功能,即使更换了新住户,改造房子时仍然可以再次自行布置房间。长沙市高 12- 16 层的亚华住宅小区和 l6层的湘名园住宅小区都是采用这种结构形式的,住宅的使用功能得到了住户的一致好评。当然这种结构体系仍然适合用于商场等公共建筑。
4 特种结构及其他
除了上述的三种比较常见的应用以外,还有一些其他的应用方式。尤其是随着公共事业的发展,各种特殊功能的构筑物不断出现,有些特殊构筑物的使用功能及受力性能常常需要预应力技术才能实现,预应力技术在这些特殊功能构筑物中发挥了重要的作用。
(1) 大悬挑结构,体育建筑在各大中城市兴起,体育建筑的形式多样,风格各异,使预应力技术的应用丰富多彩。如南京为承办第三届城运会兴建的四座体育馆,关键结构部位都是采用预应力技术; 江苏省的仪征化纤体育场、无锡市体育场、南京师范学院体育场的观众席都采用了大悬挑的预应力混凝土雨蓬。随着钢结构的发展,许多雨蓬采用钢结构,可以获得更大跨度,但是造价和维修费用都比较高,所以在适当跨度内预应力混凝土结构还是有很大的优势。(2) 储罐与筒仓,一般地,储罐与筒仓对抗裂要求比较高,预应力技术广泛用于这种结构主要利用预应力主动轴力来抵抗混凝土拉应力来提高抗裂性能; 尤其是圆筒结构,环壁的混凝土只受环向轴力作用,正是预应力最适合的结构形式。绕丝后张预应力混凝土水池在国内应用了几十年,主要采用预压应力来抵消由于水对筒壁产生环向拉应力。这样用高强钢材提高了抗裂性能就可以在同等抗裂条件下减小截面尺寸,带来可观的经济效益。(3) 其他,各种用途的塔式结构如电视塔、通信塔、灯塔及各种水塔中,预应力技术同样得到了广泛应用。还有预应力技术基础也不少见,主要形式是预应力条基、箱基和筏基。此外,预应力钢结构、叠合结构采用预应力的技术也在不断成熟中,工程实例也越来越多。
结语
综上所述,预应力技术是建造大跨度、高层结构建筑中应用的核心技术之一, 采用预应力技术的建筑具有节约建筑材料、增大结构跨度、减少结构自重、增强使用功能、提高综合效益等优点,值得在国内建筑行业中推广。
参考文献
[1]唐晓梅.试述预应力技术在建筑工程中的应用[J].预应力技术,2009(30).
关键词:桁架结构;支座形式;承载力
桁架结构杆件受力形态简单,以单向压拉为主,通过对桁架各杆件的合理布置,可以调整结构的内力分布,使得桁架结构具有较大的承载能力以及刚度。因此桁架结构被广泛运用于大跨度厂房以及体育馆等建筑工程中。本文通过有限元模拟不同支座形式下的桁架结构的承载能力,所得结论可为建筑工程屋架的相关设计提供参考依据。
1 计算模型
某钢桁架结构总跨度20m,桁架最高点为5m,桁架节点均采用外径为16cm,内径为10cm的圆形钢管焊接而成,本例采用的单元为beam189单元,对于材料属性的结构参数以钢材定义,其中弹性模量定义为180Gpa,泊松比为0.28,材料密度为7850kg/m3。定义好材料属性以后,建立桁架的三维模型,所建立的模型有限元如图1所示,对模型加载自重作用,并在底梁的每个节点施加竖向向下的300 kN的荷载。
2 不同支座的桁架应力影响分析
对有限元模型进行支座约束,本例采用简支支座处理以及固定端支座处梁两种方式对桁架结构的端节点进行约束。
根据图2可以看出,虽然在两种支座形式下结构的应力分布均呈现出对称分布,但是各个杆件的分布形式相差较大,在简支支座中,应力最大值出现在上弦杆处,为67.9Mpa,应力最小值出现在斜腹杆处,最小值为0.1127Mpa,下弦杆所承受的应力在上弦杆与腹杆之间。
当支座形式为固定支座时,应力最大值出现在仍出现在上弦杆处,其应力最大值与简支梁相差不大,为62.2Mpa,而应力最小值则出现在下弦杆与斜腹杆的焊接节点上,最小值为0.012Mpa,说明固定支座在一定程度上使得下弦杆所受到的应力变小了,斜腹杆所受应力任然较小。
3 不同支座的桁架变形影响分析
根据图2可以看出,支座形式的不同对桁架结构的变形产生了较大的影响。由于支座形式以及约束形式分布对称,因此两种支座形式下的变形是对称分布的。在两种不同的结构形式下,其位移最小值均出现在桁架结构的左端点处,由于支点约束均未出现位移,简支支座的位移最大值出现在下弦杆处,位移值为2.38cm,固定支座的位移值出现在下弦杆与斜腹杆的焊接点处,位移值为1.61cm,整体上看,简支支座的斜腹杆变形较大,而上弦杆变形较小,而固定支座的斜腹杆变形较小而上弦杆变形较大。
4 结语
通过对不同支座形式的桁架结构的应力变形的比较分析,可以发现当支座形式为简支支座的时候,桁架结构应力极值与固定支座的应力极值相差不多,但是下弦杆承受的应力要远大于固定支座时;而桁架结构在简支支座时的位移极值也远大于在固定支座的时候。因此当桁架结构采用固定支座时,会具有较大的承载能力。
参考文献
关键词:钢结构;优点;设计;方法
中图分类号:TU318文献标识码:A 文章编号:
一、钢结构的特点
随着社会经济的飞速发展,人们对生活质量的要求也越来越高,在现代建筑工程中钢结构是一种较为新型的建筑结构形式,近期发展迅速,其优势是尤为明显的,其特点主要体现在以下几个方面:
1.钢结构建筑质轻高强。钢结构与混凝土结构相比,质量轻,且强度高,用一个鲜明的例子来形容:对于跨度相同、承受荷载相同的屋架,一个是钢筋混凝土屋架,另一个是钢屋架,则钢屋架的自身质量仅是钢筋混凝土屋架1/3~1/4,从这个例子可以充分看出钢结构质轻高强的特点,基于这个优点,钢结构适合大跨度的建筑使用。
2.钢材的材质均匀,基本符合力学计算的假定。我们在进行力学计算时,首先要假定此刚体是材质均匀、各向同性的,而在钢结构力学计算时,无需假定此条件,因为钢结构的材料本身就满足这个性能,这一点非常难能可贵,优势较为明显。
3.钢材的塑性、韧性好。塑性好,表明材料抵抗静力荷载的能力较强,韧性好,说明材料抵抗动力荷载的能力强,钢材的塑性、韧性均较好,表明钢结构建筑既能抵抗较大的静力荷载又能提抗较大的动力荷载。基于这个特点,钢结构建筑抗震性能较为优越。
4.钢结构构件制作精度高、施工周期短。钢结构的基本构配件均在标准的钢结构厂房进行制作,制作精度可想而知,普通的钢筋混凝土结构构件是无法与其比拟的,施工单位只需从生产钢结构构配件的企业把构件运到施工现场,在现场进行连接,目前主要采用焊接、螺栓连接的方式进行构件组装,这样一来,既提高了结构构件的制作精度,又加快了施工进度,施工周期短。
此外,钢结构工业化程度高、综合效益高、属于无“湿作业”的环保建筑、符合我国提出的可持续发展的结构形式。对于缺点而言,钢结构建筑耐热不耐火,温度达到200℃,钢材会出现“蓝脆”现象,抵抗力下降,钢结构建筑目前造价较高、维护费用较贵等等,这些是钢结构的不利之处,随着社会的发展和技术水平的提高,相信这些缺点会得到逐一解决的。
二、钢结构设计心得
1.判别是否适合钢结构。做结构设计时,要事先结合钢结构的特点以及实际工程造价,看项目是否适合钢结构。
2.建筑的概念设计。概念设计是指不经数值运算,尤其对一些难以作出精确计算的问题,依据结构体系之间的力学关系、结构破坏机理、震害、试验数据和工程经验,从整体的角度来确定建筑结构的总体布置和抗震细部措施的宏观控制。概念设计对一个工程的整体设计而言,举足轻重,如果不进行事先的概念设计,即便以后的设计计算再精确也不是一个好的设计方案。概念设计可以省掉后期设计的繁琐计算,具有较好的简捷性和经济可靠性,同时也是判断计算机内力分析输出数据可靠与否的主要依据。
3.结构选型与结构布置。进行结构选型时,应考虑不同结构形式的特点进行选择结构布置方案。在工业厂房中,当有较大悬挂荷载或大范围移动荷载时,可以选用钢网架的结构形式;对于基本雪压大的地区,在屋面的处理时尽量选用曲线明显的屋面形式,因为这样利于积雪滑落;建筑设计允许时,在框架中布置支撑会比简单的节点刚接的框架更经济。总之,结构的布置要考虑体系特征、荷载分布情况及性质等综合因素,一般来讲,刚度均匀,力学模型清晰,尽量限制大荷载或移动荷载的作用范围,使其以最直接的路线传给基础,柱间支撑的分布应均匀,其形心要尽可能的靠近侧向力的作用线,否则应考虑结构的扭转,结构的抗侧应有多道防线。
4.节点设计。节点设计是钢结构设计中重要的内容之一。在结构设计前,应当对节点的形式细致思虑。实际设计中,经常出现的一种情况是:节点设计完毕,设计的节点与结构分析所得模型中设定的形式不一致,如果不足以确定这种不一致带来的偏差在允许范围内,通常是5%,就应当提前避免。钢结构节点连接的不同对结构影响较大,例如,有些刚接点即便能承受一定的弯矩,然而其会产生较大转动,与结构分析中的假定相悖,这样会导致实际工程钢结构构件变形大于设计计算数据等不良后果,我们在具体设计时一定要充分注意这一点,避免不必要的误差和麻烦出现。此外,在钢结构设计时还要注意:结构截面的初步估算,主要是梁柱和支撑等的断面形状与尺寸;受弯构件的强度计算和整体稳定计算;轴心受力构件和拉弯、压弯构件的计算;弯扭屈曲与换算长细比;图纸编制;保温隔热;防火设计;防水;抗震设计等方面的问题,由于时间关系,在此不一一列举,这些将是我以后研究的重点和主要分析目标。
三、钢结构在民用建筑上的发展重点
钢结构用于民用建筑,主要发挥它的轻质高强以及良好的塑性和韧性,同时兼顷到其利于产品化、机械化。故钢结构主要用于民用建筑以下几个方面:
1.层民用钢结构。此类型多为大跨度的公共建筑,采用钢结构不但可提供较大空间、较美的造型,还为其改建和扩建提供方便。如单层钢结构的网架不但很容易跨越大空间,而且其经济性、安全性较好,适应性很强,制作、安装方便,设计、计算简便,网壳可设计成风格多变,立体美观的各种大跨度建筑。我国在这方面已有大量工程实例。
2.高层钢结构。高层建筑高度较高,如采用钢筋混凝土结构,不但向上运送混凝土不方便,而且庞大的躯体使得下部地基承受巨大压力,这就迫切需求钢结构这种轻质高强的材料。高层建筑采用钢结构时,构件并不是全部采用钢材,而多为混合结构,即下部可采用钢骨混凝土结构或组合结构,而上部一般都为钢结构。
3.中低层民用建筑。该类型多为民用住宅,层数一般在3 层到10 层之间。我国钢结构在中低层民用建筑,特别是住宅中的应用,目前还处于初步阶段。主要表现在:
(1)住宅产业仍属劳动密集型,住宅科技投入少,标准化体系尚未形成。(2)劳动生产率低,人均年竣工面积长期在20 多平方米徘徊。(3)产业化水平低,仅为15%,与美国、日本的70%~80%相差甚远。(4)住宅部件、产品配套性差,系列化产品不到20%。
综上所述,钢结构建筑是一种优点突出、新型的、环保的、性价比较高的建筑结构形式,这种结构在我国的发展可谓迅速,基于它的诸多优点,受到消费者的普遍欢迎,其设计也变得愈发重要,作为建筑结构设计人员,一定要注意几点:首先别结构形式是否适合钢结构,重视建筑概念设计,注意结构选型和布置,重视节点设计等方面的工作,只有这样,我们才能设计出既经济又可靠的钢结构建筑。
由于笔者能力有限,研究还较为肤浅,有不当之处,还请各位同仁专家给予批评指正,希望通过本文的研究,能为我们的结构设计人员尤其是钢结构设计人员提供一些理论依据和参考,也希望为研究本课题的同行起到抛砖引玉的作用。
参考文献:
[1]钢结构设计规范(GB50017-2003)[M].中国计划出版社.2003.
关键词:钢筋混凝土; 高层结构设计;解决措施;
中图分类号: TU318 文献标识码: A
当前我国建筑行业得到飞速发展,高层结构的建筑群不断涌现,使得高层建筑的设计理念、施工技术以及建筑材料都发生了重大的变化。作为现代建筑普遍采用的结构形式,钢筋混凝土结构具有强度大、稳定性高、耐久性强以及抗震性能好等优点,使其在现代高层建筑结构中得到广泛应用。要满足高层建筑中钢筋混凝土结构的实际需求,其结构设计是至关重要的。因此,探讨钢筋混凝土高层结构设计中存在的问题,了解设计过程中遇到的难点和重点,并采取科学合理的手段来完善和提高钢筋混凝土高层结构设计,以此提高钢筋混凝土高层结构设计质量。
一、 钢筋混凝土高层结构的发展
高层建筑的发展历程:高层建筑的发展历史悠久,最早出现应该是古埃及的金子塔和我国古代寺塔建筑等,至今已有几千年的历史。随着社会经济的不断发展,人们对于高层建筑的研究也越来越深入,高层建筑结构体系设计也越来越完善,真正意义上的高层建筑最早出现在19世纪末的美国芝加哥,采用框架式结构建造的11层保险商务大楼,被人们称作是高层建筑结构设计的重要转折点,从此拉开了现代高层建筑的序幕。
二、钢筋混凝土高层结构特点
钢筋混凝土高层结构的设计不同于一般的中层及以下建筑结构的设计,这两者有本质的区别,高层建筑结构自身水平的荷载因素在设计中占主导地位,因此,在对高层建筑的结构设计和施工中,注意的地方非常多,对技术水平要求也高,随着建筑高度的增加,水平作用力使得建筑结构的好坏和建筑材料的用量都存在很大的不同。
三、 结构概念设计
建筑结构设计在满足建筑工程实际效果和使用功能的同时,还需具备良好的质量保障,这也是建筑结构最重要的环节。在现代高层结构设计中,人们提出了“概念设计”的理论,其实建筑结构概念设计是提高结构抗震性能的一种设计方法。在设计过程中,选择优质的结构设计方案对建筑整体抗震非常有利。对结构设计的各个延性构件,要进行具体的分析。并采取相应的解决措施,避免一些薄弱层出现损坏的现象。在高层结构设计中,强调概念设计也说明其重要性。结构工程师在工程设计过程中必须按照规范和标准,并掌握结构概念设计的相关原则,从宏观上避免出现设计失误或者计算失误的情况,保证工程的本质安全。
四、 钢筋混凝土高层结构设计常见的问题分析
以下通过实例来分析和探讨钢筋混凝土结构设计中常见的问题。某市一大型超市位于该市东城黄河路南侧。该建筑地下一层,地上 17 层。建筑长度 102.4m,宽度为 53.6m,高度为 76.65m,1~3 层高度为 4.5 m,四层及四层以上层高 4.2 m,地下室层高 4.2m,房屋主楼最大跨度 14m,抗震缝以上裙房最大跨度为 20 m。该建筑工程主楼结构为现浇钢筋混凝土框架剪力墙结构体系,抗震裙房为框架结构。主楼采用桩筏基础,桩采用预应力混凝土管桩。抗震缝以上裙房采用柱下独立桩基承台基础,主楼上部结构的嵌固端为地下室底板顶部。针对该建筑工程实际情况,分析和研究其结构设计中存在的问题,进而提高和完善该建筑工程结构设计的要求。
4.1. 结构设计问题
确定剪力墙结构加强部位的墙体厚度。在进行高层结构抗震设计过程中,剪力墙的底部加强部位要确定其墙体厚度,采用约束边缘构件和构造边缘构件等措施来起到加强抗震的效果。这样能够避免薄弱处进行剪切时造成损坏,还能提高整体建筑抗震性能。针对这一问题,应严格按照《高层建筑混凝土结构技术规程》进行设计。墙体厚度要按照规范规定取值,同时要根据建筑工程实际情况和抗震等级来确定墙体厚度。确保剪力墙底部加强部位抗震时不屈服,保证其安全稳定。
4.2 地基设计问题
地基与基础设计一直是结构工程师比较重视的方面,不仅由于该阶段设计过程的好与坏将直接影响后期设计工作的进行,同时,也是因为地基基础是整个工程造价的决定性因素。因此,在这一阶段,所出现的问题也有可能更加严重甚至造成无法估量的损失。在地基基础设计中要注意地方性规范的重要性问题。
目前,广东应用预应力管桩作为钢筋混凝土高层建筑基础设计的楼层高度已达到 40 层。凡是采用预应力管桩作为高层建筑地基设计的地区,其地基出现质量问题及事故的发生率明显降低。采用预应力管桩进行地基基础设计能够提高桩基质量,其优点表现在这几个方面:第一,预应力管桩桩身混凝土强度高、设计选用范围广、成桩质量可靠,对持力层起伏变化较大的地质条件适应性强、单桩承载力造价低;第二,管桩运输吊装方便,接桩便捷、成桩长度不受施工机械的限制,桩身耐击,穿透力强,是高层建筑工程中施工速度快、工效高、质量可靠、性价比高的桩型。地基设计要严格按照相关规范和标准进行,重视细节部分的规范设计。同时应根据地质情况具体问题具体分析,所有桩基均应进行承载力和桩身强度计算。桩基应选用中、低压缩性土层作桩端持力层。桩基设计时,应结合地区经验考虑桩、土、承台的共同工作。因此,在地基设计过程中,不仅要参考国家设立的地基设计规范章程,也要按照岩土工程勘察报告所提的地质条件,选择合理的桩型。
五、 结构计算与分析问题
5.1高层结构设计要进行结构计算,针对案例中采用的结构体系,可以采用楼板整体平面内无限刚假定模型进行计算。在计算过程中要根据建筑工程实际情况灵活应用,主体结构及基础计算采用中国建筑科学研究院 CAD 工程部 PKPM(多层及高层建筑结构空间有效元分析与设计软件 SATWE)。其中整体分析采用 STAWE 高层版,JCCAD 计算软件,主楼整体分析计算为多余地震下的弹性计算。
5.2采用振型分解反应谱法,高层建筑整体计算的嵌固部位为地下室顶板。抗震设计是高层结构设计的重点,结合工程实际情况,按照《高层建筑混凝土结构技术规程》来确定该工程项目的抗震等级。然后根据建筑结构要求,对相应的抗震等级进行评估和计算,确定抗震效果满足高层建筑结构设计的质量标准。
5.3非结构构件的计算与设计。在高层建筑中,往往存在一些由于建筑美观或功能要求且非主体承重骨架体系以内的非结构构件。对这部分内容,尤其是高层建筑屋顶处的装饰构件进行设计时,由于高层建筑的地震作用和风荷载均较大,因此,必须严格按照规范中的非结构构件的计算处理措施进行设计。
六、结语
钢筋混凝土高层结构设计作为现代建筑行业的主要结构形式,其优势推动了建筑行业的发展,提高了建筑行业的整体质量。在进行钢筋混凝土高层结构设计时,不仅要保证高层建筑的使用功能和外观效果,还应充分考虑设计安全质量的问题,这也是高层结构设计的重中之重。通过本文了解到了钢筋混凝土高层结构设计过程中常见的问题,并对其问题进行讨论和分析,从中分析出高层结构设计需要注重选型设计、地基设计以及结构计算三个方面的内容。因此,在以后的钢筋混凝土高层结构设计中,应充分考虑这三个方面的制约因素,并在实际工程中将各项工作落实到位,从而进一步提高高层建筑结构设计质量和水平。
参考文献