欢迎来到易发表网!

关于我们 期刊咨询 科普杂志

化学反应风险评估优选九篇

时间:2023-07-05 16:19:31

引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇化学反应风险评估范例。如需获取更多原创内容,可随时联系我们的客服老师。

化学反应风险评估

第1篇

关键词:危险化工工艺风险评估研究

中图分类号:G449文献标识码: A

一、危险化工工艺风险等级评估指标体系的设计原则

指标体系的设计原则是根据石化企业危险化工工艺的客观状况、系统性能、动态特征、稳定状态、可控制程度等进行科学的导向,建立完善的指标体系结构。

对于评估指标体系等级的划分要求能够客观的反映危险化工工艺的实际情况,等级划分要科学合理、清晰明确,各个等级都能反映出等级指标中的模式特点,所以指标体系的设计要遵循以下几个方面的标准进行设计。

1.评估指标体系等级的划分要求能够客观的反映危险化工工艺的实际情况,等级划分要科学合理、清晰明确,各个等级都能反映出等级指标中的模式特点,层次分明,突出等级特点。

2.在设计危险化工工艺风险等级指标体系结构中,要突出等级的代表性,避免各等级之间的影响和连带。

3.指标体系等级划分运用科学的定性、定量方式,将等级评估过程转换为定量赋值计算过程,如遇到难以赋值和量化的指标可以采用定性描述的方法将其分类。

4.等级评估指标体系要建立在实际可行性与可操控的前提下,对于资料的分析与处理尽可能的选择可定量获取数据的方式。

二、危险化工工艺概述

1、化工工艺的危险性

化工工艺是指通过原料处理、化学反应、产品精制等化学生产方法,将原材料转变为产品的过程,这些过程通常需要相应的操作条件要求,并需使用特定的仪器和设备,使材料发生物理学上或化学上的变化,而危险化工工艺就是指在化工生产过程中,可能导致中毒、火灾或爆炸等安全事故的工艺。石油化工企业的生产过程主要是将石油、天然气等原材料,通过相应设备使其进行一系列的物理变化或化学反应,其工艺普遍具有连续性强、操作复杂的特点,原料、产品中包含大量有毒、有害、易燃、易爆、高腐蚀性的物质,且反应多是在高温、深冷、高压等特殊环境下进行的,因此反应装置的运行、检修、运输、安装等环节也普遍存在危险性。

2、化工艺危险源的具体分析

1)危险化学品。国务院颁发的危险货物品名表与危险化学品名录中,将危险化学品分为爆炸品、压缩与液化气体、易燃液体、易燃固体及自燃固体、氧化物及过氧化物、以及毒害品和感染性物品等几大类。可以说,这些化学品在石化生产中都有所涉及,其中一些还是重点石化工业的主要原料与产品。以其中的主要危险气体而言,最为常见的就包括液化石油气、氢气、氨气和硫化氢气体等,液化石油气作为一种从油气田或石油炼制中获得的碳氢化合物,可以作为重要的化工原料或燃料使用,但它同时也是一种易燃易爆气体,并具有很强的挥发性且极易受热膨胀,在大量被吸入人体后,还会导致窒息中毒等问题;氢气作为工业原料广泛应用于石化工业的各个领域,生产中需加入氢气通过去硫和氢化裂解来提炼原油,但气体具有无色无味、燃烧火焰透明等特性,因此发生泄漏时,通常很难被察觉,一旦液氢外泄至空气中,就有可能与空气混合引发燃烧爆炸事故;而其他常见的氨气、硫化氢气体等,也各具可燃性、腐蚀性等危险,必须妥善管理,加强预防控制。

2)反应装置的危险性。化工生产设备的危险性主要来自其生产原料、产品、以及相关工艺条件,催化裂解、常减压蒸馏、延迟焦化以及汽油加氢等工艺中,设备的安装、运行,及维护都面临一定的安全风险。以催化裂化装置为例,该装置主要包括反应器和再生器、加热炉和辅助燃烧室、裂解余热锅炉、油气分离器、气分装置等。生产过程主要包括原料油催化裂化、催化剂再生和产物分离3个主要工艺流程,以原油蒸馏所得的馏分油为原料,在热和催化剂的作用下发生裂化反应,以获得轻质油品和液化气等产品,其原料与副产品、产品均易于与空气形成爆炸性气体,在生产过程中产生的硫化氢有毒,且易泄漏,具有中毒危害。故整个装置具有易燃、易爆、有毒等危害特性。此外,工艺中的高温、高压等工艺条件和装置自身的缺陷等也构成了生产过程中的危险性因素。

三、重视风险评估方法的研究

1、危险源辨识

应根据不同企业的具体生产过程对其工艺中各物质与装置的固有危险性、危险物质容量、温度、压力、操作方式、反应放热与腐蚀性等多个项目分等级赋值并进行累计计算,所得的危险程度再结合其风险指标、危害程度及后果、控制方案等建立完备的资料数据库。以危险物质容量为例,该指标是针对工艺装置中各种反应物的含量,参考《危险化学品重大危险源辨识》或《压力容器中化学介质毒性危害和爆炸危险程度分类》等标准进行分级,含量的计算应以反应物的反应形态为标准,有触媒的反应还应去掉触媒层所在的空间。在计算机的自动识别和控制程序设计中,还应完善系统中的查询、保存、修改等功能。

2、风险等级评估指标体系的合理性研究

1)通过建立危险性化工工艺风险等级评估指标体系可以根据化工工艺的工艺参数进行固有危险性划分,再根据安全生产中容易发生危险事故的管理措施进行危险评定,具有很好的可行性。

2)危险性化工工艺的固有危险性可以通过建立定量赋值计算方程,采用计算的方式进行评估,这样得到的结果更加科学与准确。生产过程中容易产生突发事故的风险定性的方式进行分类,综合化工工艺风险进行等级评估建立执行标准,将石化企业化工工艺的危险性降到最低。

3、科学进行风险识别与安全评估

化工工艺应用中,化学反应相关设施仪器安全性、应用材料的运输、属性、冷凝处理、过滤操作、干燥处置、反应混合等环节尤为重要。化工生产中连续的处理过程体现了良好的稳定性,优质的生产效能以及安全等级,因此该环节成为安全评估的首要因素。当然,不同化工工艺具有一定的差异性、显现出的特征有所不同。进行比对分析不难看出,间歇工艺体现了更为简单便利性,其操作处理手段具有良好的弹性。在设计阶段中,可应用精准度有效的数据资料,体现了良好的通用性。风险识别过程中,应关注化学反应呈现出的具体路线。一般来讲一类反应会呈现出若干工艺路线,因此我们应比选出应用路线可降低危险物质的总体用量、预防危险事故的模式,并尽量选择无毒害、危险影响低水平的材料。还应有效的掌控过程条件要求的苛刻性,令其限定在较低水平。例如,在应用催化剂对各类化学危险材料进行稀释处理,可有效的降低反应呈现的剧烈现象。还可积极采用新工艺科技手段,降低危险介质的总体藏量,并提升原材料整体应用效能,降低形成废料量。对于各类过程用料以及化学反应辅助剂,应尽可能的回收再利用,进而有效的抑制化学反应变化对生态环境形成的不良破坏与污染影响。

化工工艺设施在化学反应处理阶段中,还会呈现出偏离健康运转状况问题,进而导致超温超压的危机现象。为此,在风险识别与安全评估阶段中,应注重选择优质的压力管控装置,并做好各类排泄阀门、防爆安全板、通风连接管路、安全阀门的评估判断,做好关键环节的维护保养。同时应评估各类稳定装置,例如紧急操控设施、冷却系统有否会对化工生产工艺产生危险影响,具体的等级标准。就化工生产中危险性较大的操作,应采用全自动智能管控体系,也可引入程序控制系统。当产生爆炸以及安全火灾等危机事故,则可有效的预防安全隐患的不良蔓延与扩充。另外应全面考量管理维护的可靠性,各类设施管路均应配设必要的阀门装置,令其同检修部件可有效断开,确保操作员工自身安全性。另外还应考量进行安全救援系统设备的科学配设,例如布设洗眼区域以及安全淋雨系统设施等。

4、其他管理内容

其他管理内容包括方案设计与评估、数据管理、预算管理等。要确保安全辨识与评价的可靠、实用,必须对包括生态环境污染等内容在内的危险辨识及控制、工艺路线的科学性、作业的安全性、以及工程进度计划等方案进行综合评估;而针对企业的未来发展规划,数据库应具有运行稳定、更新快、可扩充的性能,预算管理则应根据实际风险特点,合理配置安防费用,降低企业的经营成本。

结束语:针对化工工艺技术特征、生产危险性进行必要的风险识别与安全评估尤为重要。我们只有制定科学有效的应对策略,明确化工生产安全状况,掌握危险管控点,方能提升管理效益,营造安全可靠的化工生产与工艺应用环境,实现可持续的全面发展。

参考文献

[1] 赵来军, 吴萍, 许科. 我国危险化学品事故统计分析及对策研究[J]. 中国安全科学学报, 2009, (07).

第2篇

[关键词]化工行业;环境风险;评估研究

由于我国的化工企业数量非常得多,而且大部分的化工企业都呈现出资源能源利用率低、污染物排放数量大,随着社会的不断发展,使得我们赖以生存的环境渐渐呈现出很多的问题。由此可见,对化工行业环境进行风险评估是非常重要的。本文对化工行业特点进行简单的分析,结合目前我国化工行业中所存在的不足,并且对化工行业环境风险评估所面临的不足提出了相应的解决对策。

1化工行业环境风险评估的重要性

由于化工行业与其他行业有着非常明显的不同,因而对于行业环境风险评估具有一定的必要性。首先是由于化工行业所独有的特点所决定。对于相同的化工产品,因原料的不同,其化学反应的过程也呈现出多种多样,根据反应过程的不同,其生产工艺也会随之而不同,加之不同的原料产品,需要与之相适应的生产工艺来制作,具有一定的复杂性。其次就是化工行业中所采用的原料,不仅种类多,而且很多的原料都属于有机物,并且具有很高的挥发性、腐蚀性强、易燃、易爆等化学特点,有的甚至属于有毒、有害的物质。因而在化工的生产过程,容易存在潜在的环境风险,一旦这些潜在的环境风险发生,就会对环境造成很严重的危害。最后就是化工行业的生产过程,基本上都是需要经过高温、高压或者是低温、负压等这些非正常的条件下来生产,如果这些生产条件达不到时,很容易造成化学物品泄露事故,严重情况时还会发生化学反应的爆炸、火灾等,进而对环境造成一定的影响,造成人员伤亡、经济损失等。除此之外,众多的化工行业还存在着周期性的全局停工检修,在此过程中也是很容易造成事故的发生以及对环境产生一定的风险。对于化工行业生产过程中所排放的“三废”也会对环境造成直接的危害。由此可见,由于化工行业本身所具有的独特性,无论是从前期原材料的选择,还是生产过程以及最后化工行业的排放,都会对行业环境造成潜在的风险,因而对于化工行业环境风险的评估成为了重中之重。

2目前风险评估所存在的不足

2.1环境风险评估缺乏落实

对于环境影响评估的工作一般都是针对于建设项目来实施,并且在我国处于刚刚起步发展,对于环境影响的重在规划,很多的部门对此并不了解。而在实际的工作中,化工行业往往是以工业园区来进行规划,而且这些区域内都存放着很多的化工原料、产品等,具有易燃、易爆以及有毒等特点,在生产过程中工艺也呈现出复杂性,很容易造成火灾或者是有毒物体的泄露,因此,对于环境风险评估工作是非常重要的。

2.2相关的法律法规不到位

在追求经济利益的同时,可能会忽略掉生态环境的保护,从而在生产过程中出现一些执法不严的情况。由于化工企业的投入对于当地的经济能够起到一定的促进作用,因而会对环境评估方面有所忽略,对于化工项目审核不严等,最终会为环境带来一定的潜在风险。

2.3缺乏环境风险防范意识

由于化工企业的管理阶层对于相关的法律法规以及环保的政策不够了解,加之对本化工企业的生产规程不够熟悉,对于环境风险意识比较薄弱,因而往往会忽略掉化工企业生产过程容易产生的不安全因素,化工企业内员工的素质低文化差,并且缺乏专业的培训,同样也会使得环境风险意识缺乏。

2.险评估与项目不密切

对化工环境风险的评估需要根据具体的化工项目来进行,由于化工行业的复杂性,其不同的生产工艺所带来的环境风险也是不同的,因而需要依据具体的生产工艺以及设施等重点生产过程以及薄弱的环节进行深入的分析,并对其潜在的环境风险进行全面的了解。而在实际的过程中,对环境风险的评估往往不是建立在相应的化工项目之上而进行分析的。

2.5对风险评估不够深入

由于对化工行业环境评估处于刚刚起步阶段,很多的评估方法与手段还不够完善,只是采用了简单的方法来进行评估,缺乏对环境风险的深入分析,例如运用数学知识来进行对环境风险进行定量的计算分析。

3如何做好化工行业环境风险的评估

3.1做好化工项目的规划环境评估

在化工行业的环境风险评估过程中,既要对单个的化工项目进行单独的环境评估,也要对整个化工行业的发展规划进行评估,并且健立起完善的评估机制,有效落实好环境风险评估制度,对于不符合国家要求的,以及化工企业污染物排放不达标的,都应当做好严格的审批,从而做好化工行业项目的环境风险评估。

3.2不断优化环境风险源的管理

化工企业应当根据自身的特点,对环境风险源有一个全面的了解,并制定出其相应的环境风险应急预案与防范措施,积极改进企业落后的生产设备与生产工艺,采用循环经济与清洁的生产方式,除此之外,化工企业还应当加大资金、人员以及设备、技术等方面的投入力度,借助这些先进的设备与技术,有效降低有害物质与污染物的排放。环境风险的应急预案则主要包括了应急计划、教育、培训以及救援的保障等,主要是用来处理环境事故的方法与程序,对于所制定出来的应急预案,应当随着企业的不断发展,进行及时的补充、修订,与此同时,企业还可以定期组织演练,对于应急预案过程中的漏洞及时补查,从而有效确保企业人员对于化工企业对应急预案流程的熟悉,有助于加强对环境风险事故的处理与协调能力。

3.3提高对环境风险的防范意识

随着我国相关法律法规的不断完善,化工企业应当不断提高对环境风险的防范意识,并且制定出其相关的防范保障措施,并对员工进行相关知识的学习与培训,定期开展防范环境风险教育与宣传的活动,从而加强化工企业对环境风险的防范意识。

3.4做好对化工项目的风险分析

化工企业在生产过程中大部分都会涉及化学物品,因而需要对化工行业生产的过程、工艺等物料有一个全面的了解与分析,依据不同的物料与生产工艺,对不同生产流程进行分析,从而对整个生产过程做到环境风险识别与评估,针对生产过程中的重点阶段与薄弱环节进行系统分析,对不同的生产工艺流程进行跟踪分析,并制定出其相应的防范措施。

3.5采用多种方法进行风险评估

在进行化工行业环境风险评估过程中,最为常有的方法就是定性与定量的方法相结合,可以有效地降低定量法中主观性偏差和定性法中客观性的偏差缺陷,在具体的评估过程中,先通过定性的方法来对化工行业环境风险进行简单的论述,并且运用数学模型来对环境风险进行定量的计算与分析,在计算与分析过程中包括事故概率分析法、事故树分析法以及事件树分析法等,其中比较常用的事故树分析法,可以使得风险事故之间的各种要素之间的逻辑关系能够清晰明了,并且由事件的发生频率而计算出事故的发生概率。

3.6强化对环境风险的应变能力

根据化工企业所经营产品的不同,其环境风险也是各自不同,因此,在进行化工行业环境风险评估过程中,要根据企业自身的实际情况,对环境的评估工作要定期进行开展,这样有助于保证企业对于环境风险的处置与预警措施具有长期性与有效性,并且有效降低生产环节对于环境所造成的影响,除此之外,还需要加强预测与管理灾害事件,在不断加强企业对环境风险决策管理的同时,强化企业对环境风险的处置应变能力,对于化工企业生产过程中所产生的环境风险隐患加以消除,并采取有效措施把危害降到最低。化工企业的生产经营在一定程度上促进了经济的发展,然而其化工行业的环境风险随时存在于企业的生产过程中,为保证化工行业的可持续发展,保证生产过程中的安全性,企业需要结合自身的发展情况,不断地加强环境风险防范意识,提高对环境风险的处置与协调能力,优化环境风险源的管理,完善相关法律法规,把化工行业环境风险评估工作切实落实到位,确保环境风险评估工作的顺利开展,做好对风险事故的预测能力,尽量减少化工环境风险事故的发生,避免为企业带来一些不必要的经济损失。

参考文献:

[1]林武.化工项目环境风险评价探讨[J].攀枝花科技与信息,2013(1).

[2]于学珍,成文东,李贺.环境风险评价与安全风险评价相容性研究[J].安徽农学通报,2013(16).

第3篇

【关键词】化工工艺;风险辨识;方法探究

中图分类号:TE08文献标识码: A

引言

近年来,化工生产事故时常发生,造成的损失也越来越大。从本质来讲,这就是化工工艺风险没有得到有效识别和控制的具体表现。化工生产涉及到很多危险化学品、化学反应条件以及化学反应,因此化工生产具有很大的风险。如何能够有效识别和控制化工工艺中存在的风险,已成为保证化工行业安全生产和可持续发展的核心内容。

一、化工工艺的概述

1、化工工艺概念

化工工艺即化工技术或化学生产技术,是利用化学原理,经过化学反应将化工原材料转变为产品的方法和过程。在生产中用到的所有措施即称为化工工艺。化学生产过程一般可概括为3个主要步骤:

1.1 原料处理。根据不同的化工生产情况、不同的化工原料,经过净化、提浓、乳化、混合或粉碎等多种不同的预处理,使原材料符合化工生产的具体要求。

1.2 化学反应。化学反应是化工生产的关键环节。在一定的温度、压力等条件下,让经过预处理的原料发生化学反应,通过合理控制反应速率,得到所需要的化工产品。化学反应的类型多样,氧化、还原、复分解、磺化、异构化、聚合、焙烧等。不同的化学反应类型,反应条件也不同,通过适当的化学反应,可以获得目的产物或其混合物。

1.3 产品精制。化工工艺中的每一个步骤都需要在特定的条件下通过化学或物理转变来完成,再运用分离的方法,除去化学反应中得到的副产物和杂质,获得符合成分规格的产物。

2、危险化工工艺

在化工生产过程中,可以引起火灾、中毒、爆炸等事故的工艺就被称为危险化工工艺。电解、合成氨、氯化、硝化、加氢、氧化、裂解等15类工艺都属于危险化工工艺的范畴。国家安全监督管理总局在《首批重点监管的危险化工工艺目录》中规定了所有典型的危险化工工艺[1]。

二、化工企业危险化工工艺风险分析

1、化工工艺的危险性

通俗来讲,工艺即生产方式,化工工艺即利用原料处理、产品精制、化学反应等多元方式开展的生产手段,来达成既有材料转化为目标化工产品的过程。具体的化工工艺流程作业中,每个环节、每个流程的的每个细节均需按规定要求和规范进行操作,唯有如此,才能使材料经过专业设备、仪器的作用,最终表现出预期的物理变化或者化学变化。而危险化工工艺则指:在具体化工工艺作业中,存在火灾、爆炸、中毒等诸类风险,或者可能发生相关事故的化工工艺。在某种程度上将,化工企业在工艺开展过程中,本身危险有害物质大有存在,加之包括化工原料、设备因素、作业不当等因素,隐患之钟时刻长鸣,一旦缺乏科学而严谨的相关化工工艺考察,没能进行良好的工艺保护措施,就很可能引发隐患,使整个化工企业处于危险状态。

2、化工工艺风险识别标准与内容

2.1 化工工艺风险识别主要参数标准

根据国外较好的风险识别机制经验,我国制定了一套适合在中国发展的化工工艺风险识别标准。化工生产主要存在火灾、爆炸和中毒等三种危险因素。化工生产每一部分的风险值范围在0-10,通过评估化工工艺每部分的风险值来最终评定事故的风险值。因为风险识别工作是在科学准确的参数标准基础上进行评价的,所以特别针对事故隐患中的严重程度制定标准参数。我国根据总成绩将风险价值分为重度、中度、轻度三部分,以便能够简洁地表达事故严重程度的概率。重度危险一般在七大部分的风险参数总分达到5分或5分以上。遇到重度危险时,要避免出现重大的生产安全事故,需要对当前化工工艺进行彻底的风险防范和工艺流程的改造。

2.2 化工工艺风险识别的主要内容

2.2.1 危险化学品

目前,我国已有相对完善的危险物品名单统计,并对相关的化学物质收录在案,给相关化工企业工艺安全风险预防提供了一定的参考。在名录中,国务院以不同危险化学物品的性质为基础,对其进行了类型划分,大体涵盖:易燃液体、易燃固体、易爆炸物、液化气体、压缩物等。毋庸置疑的现实情况是,在当前几乎所有化工企业的工艺生产也环节上,都会或多或少的涉及到以上几种危险物质的应用和处理,更有部分危险化工物品是化工企业工艺流程中不可或缺的主打原料。

2.2.2 反应装置的危险性

除了危险化学品外,化工工艺的安全隐患还来源于另外一大因子,即化工工艺进行所需的反应装置与设备。化工企业的运行,化工工艺的开展必须借助于一定的设备,各材料在设备内发生相关物理、化学反应。然而在这一过程中,反应设备出现故障、设备参数设置不当等可导致设备内环境发生变化,其内的化工原料、化工半成品、以及正常化工工艺的进行受到影响,不能朝预期方向进展,很可能伴生有毒气体、易燃、易爆等物质,这些物质在突发故障的设备环境下,因不明情况多、发处理复杂,极有可能引发规模较大的化工工艺安全事故[2]。

三、危险化工工艺风险辨识方法探究

安全重于泰山,全面预防化工企业危险化工工艺风险的发生,就必须搭建科学严谨的危险化工工艺评估体系,辨识危险源、开展安全评价、优化安全设计等工作,消减和清除工艺风险因子,形成安全生产数据库进行监督和管理。

1、危险源辨识

不同的化工企业其工艺风险源也不尽相同,各企业应以自身既有工艺为基础,深挖各工艺具体开展中所涉及的危险物质,可能面临的设备、装置风险。并对工艺所涉及的危险物质的温度、压力、容量临界、操作方式、触媒、腐蚀性和反应放热等多个因子进行分析,对危险物质各风险因子的危险系数进行等级划分,同时进行因子赋值并将所有因子进行累计计算,累计计算所得结果反映了该危险物质的风险程度。再将该类危险物质纳入风险数据库时,应对应增加其风险指标、危害程度及后果、控制方案等内容。

2、从化工生产设备的角度

在化工工艺过程中,存在着大量生产设备的安全风险,生产设备是化工工艺风险识别的重要检测项目。在化工过程中,只有保持生产设备工作的连续性,才能保证生产设备的高效率生产和良好的安全性能,更好地降低化工过程的风险性。

3、从化学反应过程的角度

在一个化学反应过程中,要严格进行风险识别检测,尽量不要使用反应剧烈、易中毒、易爆等反应材料。如果使用较为危险的原材料,最好选择在与外界隔离的环境下进行反应,避免外界受到反应物的破坏。

4、从安全防护系统的角度

在任何化工工艺的流程中,都会有其相应的安全防护系统,用于预防一些生产事故的发生。提高化工生产安全防护系统的安全系数主要通过政府、经营者和企业三方面采取不同的措施来加强化工工艺风险识别。

政府部门要加大对化工企业的安全管理、监督和指导力度,一经发现事故隐患,需责令相关企业采取有效的应对措施,对事故发生未采取相关防护措施的企业给予严厉的警告,甚至可以依法处理。“安全第一,预防为主”是每个经营者必须坚持的最低原则。在生产过程中,无论生产任务有多么重要,都要在确保员工生命安全的前提下进行操作,不要盲目只追求生产效率。只有这样,才能让企业经营效益得到最大化。

在企业的管理中,要建立安全的管理责任系统,系统化地管理企业,让企业在一个安全的环境中发展,时刻坚持安全第一、预防为主的原则,寻找生产中存在的不安全因素,更好地完善系统的薄弱环节,制定安全管理责任系统的制度,更好地杜绝事故的发生。

加强安全教育培训是企业安全生产的有效保证,特别是要加强员工对安全生产的认识,定期为员工提供相关的安全教育培训和各种安全操作练习,让员工总结事故发生的原因,认识发生事故的严重性,更好地让员工以安全第一的思想完成每一步生产工作[3]。

5、其他管理内容

其他管理内容包括方案设计与评估、数据管理、预算管理等。要确保安全辨识与评价的可靠、实用,必须对包括生态环境污染等内容在内的危险辨识及控制、工艺路线的科学性、作业的安全性、以及工程进度计划等方案进行综合评估;而针对企业的未来发展规划,数据库应具有运行稳定、更新快、可扩充的性能,预算管理则应根据实际风险特点,合理配置安防费用,降低企业的经营成本。

【结束语】

综上所述,在化学工业的发展过程中,只有了解化工过程的工业特点,才能更好地进行相关的生产风险识别和安全评估。在明确化工安全生产的形势下进行科学、有效的风险管理,在化工过程中要加强存在的不安全因素的识别工作,并及时采取措施,营造一个化工生产和安全的技术环境。

参考文献:

[1]周仲园,陶刚,张礼敬,张良,潘毅伟.危险化工工艺的风险评估研究方法综述[J].工业安全与环保,2013(02):87-89.

第4篇

关键词:风险评估 URS DQ FAT

中图分类号:F274 文献标识码:A 文章编号:1674-098X(2016)10(a)-0114-02

1 法规要求

《药品生产质量管理规范》2010版第五章――设备,共分六节、31条。其中涉及到设备采购、验收方面的条款要求共7条,条款规定详情如下。

第七十一条 设备的设计、选型、安装、改造和维护必须符合预定用途,应当尽可能降低产生污染、交叉污染、混淆和差错的风险,便于操作、清洁、维护以及必要时进行的消毒或灭菌。

第七十三条 应当建立并保存设备采购、安装、确认的文件和记录。

第七十四条 生产设备不得对药品质量产生任何不利影响。与药品直接接触的生产设备表面应当平整、光洁、易清洗或消毒、耐腐蚀,不得与药品发生化学反应、吸附药品或向药品中释放物质。

第七十五条 应当配备有适当量程和精度的衡器、量具、仪器和仪表。

第七十六条 应当选择适当清洗、清洁设备,并防止这类设备成为污染源。

第七十七条 设备所用的剂、冷却剂等不得对药品或容器造成污染,应当尽可能使用食用级或级别相当的剂。

第七十八条 生产用模具的采购、验收、保管、维护、发放及报废应当制定相应操作规程,设专人专柜保管,并有相应记录。

2 风险评估

2.1 系统影响性评估(GEP)

系统影响性评估是用于确定项目的调试和验证范围的活动。此过程用于判定哪些系统除了需要遵循GEP之外还需要进行验证,哪些系统仅需要遵循GEP进行调试。

2.2 部件关键性评估(CCA)

针对设计文件可进行部件关键性评估(Component Criticality Assessment,CCA)工作,其可用于判定系统的哪些部件除了遵循GEP之外还需要进行确认。

2.3 风险评估

风险评估是一种用于评估并描述系统、设备或工艺的关键方面,以构成编写验证方案的基础方法。

在判断出关键部件/功能后,对关键部件/功能继续进行风险评估,并确定适宜的控制方法。

3 设备采购、验收流程中的风险管理

3.1 设备的投资计划――购买

对于新设备投资计划,由相应职能部门根据公司生产、研发、生产效率、设备更新等方面的需求发起项目。项目立项需纳入变更控制程序以评估GMP风险并跟踪实施过程,经批准立项。

3.2 用户需求URS书

是指使用方对厂房、设施、设备和检验仪器等硬件设施系统等提出的自己的期望使用需求说明,是使用方综合自己的使用目的、用途、环境等提出的具体方案。

3.3 设计确认

设计确认(DQ)是文件证据证明厂房、设施、支持系统、公用系统等要求设计。设计确认是一项可以有效规避风险的工作,是所有确认的起点和基础。

3.4 工厂验收测试(FAT)

设备依据设计完成生产建造,发货前在客户见证下,由供应商在设备制造场地对待交付的设备进行工厂验收测试,该测试旨在保证设备已经严格按照要求完成了组装调试。

3.5 设备调试与现场验收测试(SAT)

与FAT相似的是,现场验收测试也是为了保证设备已经按要求完成了组装和调试,所以有些测试项目与FAT相同。所不同的是,FAT是由设备的制造商在制造工厂测试,而现场验收测试是由设备的使用方在设备的使用场所进行的测试,所以更偏向于一些在设备制造工厂无法进行的测试。

现场验收测试将由供应商在设备/系统到使用现场后进行检查以保证其文件、安装和功能的正确性,并由用户指定的人员进行见证。

现场验收测试包含静态和动态测试活动。测试活动在现场由供应商在移交设备给使用方之前进行,每一项现场验收测试工作都用文件记录下来。

3.6 安装确认(IQ)、运行确认(OQ)、性能确认(PQ)前的风险评估

(1)2010版GMP要求。

第一百三十八条 企业应当确定需要进行的确认或验证工作,以证明有关操作的关键要素能够得到有效控制。确认或验证的范围和程度应当经过风险评估来确定。

第一百四十条 应当建立确认与验证的文件和记录,并能以文件和记录证明达到以下预定的目标。

①设计确认应当证明厂房、设施、设备的设计符合预定用途和本规范要求。

②安装确认应当证明厂房、设施、设备的建造和安装符合设计标准。

③运行确认应当证明厂房、设施、设备的运行符合设计标准。

④性能确认应当证明厂房、设施、设备在正常操作方法和工艺条件下能够持续符合标准。

(2)下面以实际案例来进行风险评估。

实际案例见表1。

4 结语

通过对设备采购、验收(各阶段确认)的风险评估,同时也简述了如何证明、规避、降低各项目中存在的风险。通过对新设备采购、验收的风险分析得知:经过确认与验证,能及时发现风险点,为后续进一步采取措施提供了书面依据。

参考文献

[1] 国家食品药品监督管理局认证中心.药品GMP指南:质量管理体系分册[M].北京:中国医药科技出版社,2011.

第5篇

海洋中的微生物对腐蚀的影响远远大于前面这几种,因为微生物不仅数量上占优势而且在效率上占有优势,微生物在自身生理与外界环境之间会吸收外界的养分排出氨、CO2、H2S等这些都可以对海底油气管线产生不利影响,此外如果管线处在微生物繁殖兴盛的地方,气腐蚀速度还会加倍的增加。内部环境的影响–成分的影响油田的采出物是油气水的多相物,过程中会伴随着很多衍生物,H2S、CO2作为油气开采的伴生物或者是组分之一,使油管中的腐蚀问题时有发生,在外部因素的影响中CO2对油气管线的腐蚀机理不同于CO2在内部的影响机理,虽然在水里CO2的腐蚀性对管道很强,管道内部的CO2存在则使得污垢在管道内壁产生集结,造成额外的能量损耗。由于海洋石油的油管内输送的是油气水多相混合物,H2S在水中溶解会对管道产生腐蚀,其自身分离的离子会吸附在金属表面与管道金属成分发生微电化学反应,削弱金属成分间的分子间作用力、促进金属的腐蚀、溶解。此外,由于管线自身的一些缺陷,如加工处理时造成金属表面不平整、金属管道内壁上有微裂纹等等,在海水、石油中的固体颗粒都会对微裂纹产生接触冲击、直接磨损影响管线的稳定,在长时间的冲击下或者是在大的波动下就会造成破裂,这些都是一种对海洋集输管线的腐蚀。

管线的使用寿命很大程度上与防腐养护的程度有关,外层防护针对管道腐蚀主要是受外来因素的影响,所以要加强表面防腐处理,表面处理质量的高低对防腐程度有着很大的影响,表面除锈、防护涂层等都会对防腐有着重要的影响,目前随着抗静电涂料以及涂层防腐涂料的发展,这些新的防腐技术越来越受到石油管道集输的重视。另外在选材上也做了一些改进,通过选用优质钢材提高了材质出厂时的检测标准,使得材质表面的一些裂纹、划伤被重新处理,减缓了油管腐蚀的速率,另外可以在钢材的加工过程中加入合金贵金属,在金属钢材成型前形成多层经过表面热处理的防护涂层,这样油管的防腐使用效果会增加4倍以上,若加入微量的稀土元素效果会更好。电化学防护参照陆地集输管线的防腐方法可以利用电化学的基本原理阳极失去电子受损、阴极得到电子得到保护将海管进行阴极化处理,将管线与比较活跃的金属(如牺牲阳极)相连形成电解质,这样可以缓解输油管线被作为电化学阳极而发生腐蚀。特殊防护对一些海水活动、微生物活动比较活跃的地方可以添加外层防护套管,通过牺牲防护套管来达到保护管道的目的;对油气管线所经过的海域进行详细的水文地质调研,了解这一区域的海水情况,并根据海水变化情况对集输管道进行额外的防护;根据管道经过的浅海、滩涂等不同地形开展不同的防腐蚀处理,做到具体情况具体应对;还可以在海管进行铺设时对腐蚀情况进行风险评估;通过不同铺设路线的风险评估对比选择出优化的铺设路线也可以做到对海管的防腐防护。

目前我国海洋石油正在处于一个全面发展的阶段,渤海、黄海以及南海都是我国海洋石油发展的重点区域,海洋油气管线的防腐有重要意义,虽然海管的防护处理已经取得了长足的进步,可是目前仍然有很多问题存在,如小容器的喷涂防腐、水域管道腐蚀情况的评估与预测等都是急需解决的问题,所以海洋石油集输管道的防腐以及防护任务仍然很重,就目前海洋石油的发展形势来说海洋石油集输管道防腐处理以及保护措施的研究也具有广阔的研发前景。

作者:江波 单位:中石化北京埕岛西项目部

第6篇

关键词:风险评价;城市燃气;燃气管网改造

随着现役的燃气管道的铺设时间日渐久远,一部分的管线已经进入了更新改造期,甚至有些已经超出了安全使用期限,如何有计划有针对性地进行改造安排,已成为科学管理的一项重要内容。1992年美国Muhlbauer W.K详细论述了管道风险评价模型[1],但是这些模型是以美国系统为基础,一些项目的数据采集在我国现实较为困难,无法直接应用到现实改造的指导中,这就需要根据本地区的管网特点,建立相适应的风险评估体系,使得管网改造的经济性和效率得到提高。文章结合沈阳市燃气输配管网的特点,探讨风险评估体系的建立方法。

1 燃气管网改造的必要性及存在的问题

沈阳使用燃气的历史最早可以追述到日本人于1923年兴办的“奉天瓦斯作业所”,管道化的历史较为悠久。目前近3000公里的管线中,仍有一部分现役管线是铺设于上世纪中前期,其早已超过了正常的安全使用期限;80年代铺设管线也已经步入更新期,已到服役期的管线的运行,逐渐成为城市生活中的重大隐患。

城市的发展对管线所处位置的变化影响也非常大,许多原来铺设到人行道或者绿化带的燃气管道现在已变为在车行道下,最初的埋深当不能满足现在的要求时,将使得由于重载的增加而使管线发生破坏;部分早期管道铺设时的小街小巷,现在已经成为繁华的商业区,一旦发生泄漏事故,损失将非常严重;各种违章建筑占压燃气管线,一方面使得管线上载荷增加,造成管线负担;另一方面管线无法得到及时的监护,泄露之后将直接威胁违章建筑内的安全。

沈阳地区所使用的气源较为复杂,市区部分使用天然气,冷热交替会在管道内形成残留水,一方面会引起水堵,影响燃气供应,另一方面会引起电化学腐蚀;东部地区使用煤层气,其中含有粉尘等杂质,会在输送过程中沉积在管道壁上,造成管道堵塞;在西部地区部分使用人工煤气,其中含有的焦油、杂质等会引发管材的化学反应,造成管线腐蚀穿孔,相对于全部使用纯天然气的城市来说,气质问题也是沈阳地区进行管线风险评估不可忽视的一个重要方面。

燃气管线的正常运行关系到千家万户的安全,所以对城市埋地燃气管线的改造势在必行,但在资金较为有限的情况下,如何科学合理地安排改造计划,变定性分析为定量或半定量分析,提高资金的使用效率和改造的针对性,风险评价体系的建立,可较为直观地作出对比,为决策者提供改造参考和依据。

2 风险评价方法的选择

管道的风险评估实质上是对管道建设及运行成本的经济性的评估。20世界中后期,世界主要的发达国家的燃气管道相继进入老龄化阶段,在投入力量一定的条件下,如何平衡降低事故发生、延长管道使用寿命及合理使用维护费用等的问题上,各国针对自己的国情开始了创造性的研究。美国及欧洲一些公司,开始尝试用经济学中的风险分析理论来对管道进行安全性评估,并各自逐步建立起各种行之有效的风险评估方法,经过几十年的开发与研究,创造了良好的经济效益和社会效益[2]。其中以美国人Muhlbauer W.K的管道风险评价模型最为典型。

Muhlbauer在他的模型里面分第三方损害指数、腐蚀指数、设计指数、误操作指数以及泄漏影响系数等方面进行评价,每一方面中又细化为几类,其适用范围广,已经成为各种燃气管线风险评价体系的基础。目前燃气管道常用的风险评估技术有:危险性及可操作性研究(HAZOP),定量分析评价(QRA)或概率风险评价(PRA),初步风险分析(PHA),故障树分析(FTA)[3],失效模型与影响分析(FMEA),时间树分析(ETA)等。

与许多燃气建设较早的老城市一样,沈阳地区在最初的管线投入运行之后,许多工程技术资料没有及时归档,造成管道的很多基本的工作参数无法取得;靠手工记录时期的运行参数,系统性不强,都使得一些成熟的风险评估技术无法直接应用到本地区的风险评估中,这就需要结合本地区现有的资料,建立一套可操作性较强的风险评估体系,直接应用到实际工作中。

大部分风险评价方法的理论性较强,需要选取的因素较多,运算复杂,而这里我们将直观性和可操作性为首要的参考因素,故选取综合指数评价法作为风险评估体系的基本方法。将要改造的管线划分成段,对每一段管线依据评分标准对各主要因素逐项打分,分值与其权重系数相乘得到各因素的指数,所有指数相加即为此管段的风险总分。对总分进行排列,即可做出优先改造的顺序。权重系数采用专家评分法,我们发放了调查表,分别对三种管材的风险影响因素权重进行评分,经过数据综合处理后得到各因素的权重值。然后对每项因素细化为具体的评分项,经论证后付予一固定值。当某段管线的资料齐全时,经加权计算相加后其综合指数值即为一固定值。本方法结合到燃气GIS电子地图信息系统,在后台将各种属性进行量化后,即可得到某段管线的风险指数值,而且随着管线属性的变化(如发生抢修事故、其他管线施工造成相应管线之间距离变化、有违章建筑搭建等),其风险指数也会发生变化,当超过一定数值时,便进行系统提示,为管线的维修、重点监护以及改造提供参考和依据。

下面以铸铁管评分体系为例,介绍其相应的因素的权重及细化的评分条件:

2.1 评价因素权重表(如表1)

2.2 每一项评价因素的评价项

材质:灰口铸铁;球墨铸铁。

接口类型:承插(青铅水泥,灰口,梯唇);机械式(压兰,丁晴橡胶接口)。

管径:100mm;75mm;250mm;350mm;450mm;200mm;300mm。

管道位置:车行道下;人行道下;绿化带内。

与建筑物距离:I中压:0-0.5m;0.5-1.0m;1.0-1.5m;1.5-2.0m;2m以上。II低压:0-0.2m;0.2m-0.4m;0.4m-0.7m;0.7m以上。

管线年代:1970以前;1970-1980;1981-1983;1984-1995;1996-2005;2005-2013无资料,或者不详。

管道深度:I车行道:0.5m以下;0.5-0.8m;0.81-1.1m;1.11-1.4m;1.4以上。II人行道:0.3m以下;0.31-0.6m;0.61-0.9m;0.91-1.2m;1.21-1.4m;1.4m以上。III庭院线:0.1m以下;0.1-0.15m;0.16-0.3m;0.31-0.45m;0.46-0.6m;0.6m以上。

所处地区环境:无任何活动;低活动程度地区;中等活动程度地区;高活动程度地区。

泄露频率及泄露种类:I2次及以上:管材腐蚀,自身断裂;管材断裂(沉降等原因);接口泄露(微露);外力破坏;II1次:管材腐蚀,自身断裂;管材断裂(沉降等原因);接口泄露(微露);外力破坏;III无泄漏。

与其他管线的距离:未达到标准(垂直);未达到标准(水平);未达到标准但有保护措施(垂直);未达到标准但有保护措施(水平);满足标准。

土质与管道周围环境:潮湿(pH值5以下);潮湿(pH值5-6);干燥。

管道保护措施:没有任何保护;警告带;套管保护;警告带+套管保护;警告带+有套管保护+钢盖板。

气源种类:纯天然气(干);混天然气(湿);人工煤气(焦炉气等);煤层气。

占压:严重占压,存安全隐患;有占压;轻微占压;无占压。

施工质量:施工次数少,经验少的单位;外委单位;输配公司,管网工程处等内部单位。

压力级别:中压;低压。

根据每一评价项的影响程度赋予相应的数值,设定影响最显著的值为10,其余项依次递减。

2.3 计算方法

所评价管线的分数=Σ(每项评价因素分值*权重)

2.4 评估建议

2.5 实例分析

某年沈阳市管网改造计划草案中,自然排序较为靠后的沈河区风雨坛街西侧的中压管线为1982年的水泥接口铸铁管,管径为DN400,管线位于机动车道上,埋深约2米,管线所处街道两侧为居民区以及五爱市场,人员活动频繁,曾发生过三次泄漏事故,泄漏点均为接口处。通过赋值计算,此段管线的风险评价分数为87分,属于强烈建议立即更换的范围,虽然在最初的计划改造管线的排序中处于第八位,但风险评价分数之高,立即引起了诸如监管、安全等相应部门的重视,列为重点改造项目。经过现场开挖发现,此段管线的失效程度也远高于分数较低的管线。

3 结束语

在目前情况下,应用由16项因素组成风险评价体系对燃气管线的运行风险进行分析基本上可以达到预期的要求,能够对改造计划和过程进行有效的指导。但是随着管网改造的进行,管线材质逐渐由铸铁向钢管和PE管转变,而且管线的各种资料也在逐渐地完善,如何进一步优化评价因素及其权重值,使其更加贴近实际情况,更具指导意义,将是本项目继续研究的方向。

参考文献

[1]Muhlbauer W K.管道风险管理手册 [M].第2版.杨嘉瑜,等译.北京:中国石化出版社,2005.

[2]Jones D,Dawson J. Risk Assessment to Pipeline Life Management [J]. Pipes and Pipeline International,1998,43(1):5-18.

第7篇

关键词:石化企业 承压气瓶 爆炸 规避措施

中图分类号:TH49 文献标识码:A 文章编号:1672-3791(2015)03(a)-0153-01

1 石化企业常用气瓶安全特点

石化企业常用气瓶能够正常使用的环境温度在-40~60°C,工作气压应不小于0.2MPa,装气体的沸点应不大于60°C,此类不包含灭火器瓶和吸附气体的气瓶。如果按照气瓶内充装物的性质分类,石化企业气瓶可分为永久气体气瓶和液化气体气瓶。永久气体气瓶所充装的物质在常温下呈气态。石化企业中经常用到的气体有氢、氮、氧、空气、甲烷、一氧化碳、稀有气体等。液化气体是指在最高使用温度下使用时,压力不小于0.1MPa,且它的临界温度不小于-10℃的气体。高压液化气体和低压液化气体统称为液化气体。

石化企业常用气瓶类型不一,绝大部分气瓶为40L的无缝钢瓶和容积较大为400L的焊接钢质气瓶。气瓶的组成部分为瓶体、瓶阀、瓶座、底帽、防震圈等,在一些焊接钢瓶中还需要加一个护罩。为了保证气瓶的安全,防止其在充装或使用时发生危险,都会设置气瓶的安全附件。

2 分析石化企业常用气瓶的爆炸原因

根据相关部门统计,在充装过程以及使用过程中,因操作不当使气瓶发生爆炸的事件时有发生。气瓶爆炸分为两类:一类是物理性爆炸,另一类则是化学性爆炸。

气瓶物理性爆炸是指由于物理因素而造成的爆炸。一般情况下,如果气瓶内压力超过气瓶强度所能承受的压力值时,就会使气瓶破裂而引起爆炸。引起物理性爆炸的主要原因有:气瓶直接受阳光照射、明火、热辐射,气瓶中气体受热膨胀,对气瓶压力剧增加,直至超出气瓶的材料强度,在这些情况下,都会使气瓶产生不可恢复的形变,甚至会引起爆炸。除此之外一些人为因素造成的气瓶爆炸,例如,在搬运气瓶过程中未戴上瓶帽,搬运时手托或者碰击瓶阀等因素,致使气瓶颈部或阀门上的螺纹损坏,瓶阀很有可能会被瓶内的气体压力冲出而从瓶颈脱离,导致事故的发生。在搬运气瓶或贮存气瓶的过程中,由于跌落或碰撞到坚硬的物体时,尽管在冷状态下,气瓶同样会发生爆炸。气瓶在生产过程中不符合安全标准,生产环节不精密;或气瓶没有定期按规定进行合格检验,有些气瓶常年失修,使用不当,使得气瓶瓶壁锈蚀、变薄、裂纹而引发爆炸;充气时不考虑冲气量,从而气体过多,使瓶内压力过大而产生爆炸等。

化学性爆炸是指物质本身发生化学反应而产生的爆炸。石化企业中产生爆炸的原因很多。企业或居民擅自改装钢瓶,并随意装填气体引发爆炸;水电解制氢的生产过程中得到的氧副产品中含有部分氢;操作者在开启关闭阀门时由于相互挤压摩擦而引发燃烧、爆炸;气瓶内混入的气体能够发生化学反应,引发爆炸;两种或多种气体混合达到气瓶爆炸的极限而后引发的爆炸等。例如,在氧气瓶中,如果瓶内有油脂,其与压缩氧接触后会剧烈地氧化燃烧,进而释放大量的热,致使瓶内温度升高,瓶内的气体压力也会随之升高,当其超过钢瓶所能承受应力的极限值时,就会引发爆炸。而且,钢瓶也会因为氧化反应对气瓶造成不可恢复的损伤,最终失去使用价值,造成经济损失。

3 化学承压气瓶爆炸的预防措施

气瓶爆炸事件通常是由多种原因造成的,为了能够安全有效规避事故发生,在检验气瓶质量等各个检测工作中,一定要严格遵守《特种设备安全监察条例》、《气瓶安全监察规定》、《气瓶安全监察规程》中的注意事项以及法律法规。

预防气瓶爆炸,要从根源做起,强化安全管理是根本措施。操作时要由专业的操作人负责并实施管理;根据相关法规制度,确立有自己特色的企业安全管理制度,加强操作流程的规格;加大检查和维护气瓶投入的力度;对气瓶运输、储存和使用的操作人员进行安全管理培训教育;完善对事故的应急预案,落实救援人员,提高有关部门应对突发事件的能力。

对于运输和装卸气瓶的安全对策要引起重视。为了不影响城市道路通畅以及安全,应尽量避免在城市中行驶,同时应在运输车辆上标明运输工具的安全标志,司机以及陪同人员也能根据突发状况做出有效准确的行动。严格控制气瓶充装前的排查工作,严格遵守操作流程,在各项流程中注意静电接地等安全措施。永久气体充装时要尤为注意,必须由专人负责,必须严格防止可燃气体或助燃气体混合,并防止过量充装。储存气瓶应本着通风、干燥、避免阳光直射的原则,同时必须按照气体的特有性质控制存储间内的温度、湿度。

购买和使用的气瓶要有制造许可证,产品必须合格,气瓶使用前应进行安全排查,对盛装气体的成分进行确认,对于不符合安全管理标准的不予入库。使用时一定严格遵守使用说明书中的要求,并且熟读注意事项。

由于气体种类复杂,所以气瓶的类型也各不相同。为了能够准确识别出填充在气瓶的气体的种类以及该气体的压力范围,通常要选择合适的气瓶进行充装,以提高气瓶的高效性,避免在充装、运输、使用过程中及定期检验时由于失误而产生不必要的损失。对石化气瓶的漆色和字样,我国作了明确的规定。如气瓶外表的涂层颜色、字样的色环,必须要严格符合GB7144中《气瓶颜色标志》的规定。

要定期清理不合格的气瓶。严格按照相关标准规定进行检验,如在气瓶的使用过程中,发现有严重损坏、或存在危险隐患时,提前检验,检验必须要严格符合《气瓶定期检验站技术条件》的规定。对于存放时间过长的气瓶,在使用之前要进行严格排查。对没有达到安全要求的气瓶要作破坏性报废处理。

4 结语

气瓶与人民生活和工业生产息息相关,因此,保证它的安全性就尤为重要。相关部门也正在致力于解决气瓶在运输保存所隐藏的问题,使其更可靠,更安全、更高效。用户也要在使用时注意气瓶安全,详细阅读说明书,同时做到不私自充装气体,以免发生意外。

参考文献

[1] 姜宗博.风险评估技术研究及其在承压设备中的应用[D].北京:北京化工大学,2013.

[2] 辜冬梅.车用压缩天然气(CNG)气瓶事故风险评估[D].成都:西南石油大学,2013.

第8篇

首先,制药企业设备技术人员应根据产品工艺要求确定的设备列出设备功能,与设备供应厂家联系,确定产品功能,以及设备供应厂家设备性能。由于药品生产的特殊性,制药企业应从设备的结构进行分析,确认设备组成模块,确认各模块功能是否与企业产品工艺要求相一致。在发现与寻找设备功能的过程中,应列清设备功能种类,找到适合产品性能、适合生产需要以及新版GMP要求的设备。

其次,制药企业从自身工艺出发确定设备验证范围,应对设备验证范围的确定,一般除考虑工艺要求外,即考虑设备在工艺路线上的重要性,对于直接或间接可能对产品产生影响的设备必须进行设备验证;另外,在确定哪些设备应进行设备验证确认时,也应考虑设备在产品生产过程中的风险性,如果进行风险评估后,设备风险系数较大,在设备使用前也应进行设备验证,并对设备验证数据进行分析总结,避免在实际生产运行过程中设备风险升高,对产品质量造成隐患。其中,因为制药企业设备的特殊性,在设计初期应对设备材质、设备功能进行确认,以免因材质选择不适当,造成产品变质、腐蚀等不符合规范要求现象。新版GMP中规定制造设备的材料不得对药品性质、质量产生影响,其所用材料需具有安全性、可辨别性及一定的使用强度。因而材料的选用应考虑在药物等介质的腐蚀性、接触性、气味性的环境条件下不发生反应,不释放微粒,不与所生产的药物或有要求的工艺介质发生化学反应或吸附,这就使得制药企业在进行设计确认时对选材应持谨慎的态度。对于金属材料的选择,一般制药企业无菌制剂接触药品的设备材质均为316L不锈钢,口服制剂接触药品的设备材质均为304不锈钢。对于非金属材料的选择,一般要求其耐腐蚀、无毒性、不掉渣、不掉毛、耐磨损、能够耐得住消毒剂。特殊用途的还应结合材料的耐热、耐油、不吸附、不吸湿等性质考虑选用,密封填料和过滤材料尤应注意卫生性能的要求。根据工艺要求及实际需要应对供应商开始进行遴选工作。在确定设备的关键参数后,接下来的工作就是根据产品工艺属性和设备关键参数遴选出最优的设备供应商。设备在采购初期,应该由设备需求部门提出设备新增计划,对设备进行规划设计,不仅仅是针对设备主要性的功能性项目,一些设备非主要部件也应在设备设计中加以重视。诸如,与无菌制剂药物直接接触的部件,均应为316L不锈钢,且应具有不附着物料的高光洁度,尤其是设备边角、搅拌桨、拨叉等部位,外廓结构均应简洁、方便清洁、消毒,但是在此应澄清一个问题,一些亮的表面其粗糙度值并不一定高。

二、制药设备设计管理中应注意的问题

第9篇

【关键词】 高硫煤 脱硫效率 硫份 调整

1 引言

1.1 系统概述

(1)台山电厂1-5号机组均为600MW。锅炉是上海锅炉厂制造,亚临界控制循环(CE公司燃烧技术)、中间再热四角同心反切、平衡通风固态排渣炉,设计煤种为神府东胜煤。锅炉型号分别是SG2026/17.5-M905(1、2号机组)和SG2028/17.5-M907(3、4、5号机组)。

(2)脱硫系统采用日本千代田CT-121鼓泡塔的石灰石-石膏湿法脱硫工艺。其中1、2号机组设计带有GGH,3、4、5号机组设计无GGH,5号机组同步安装了脱硝装置。其余1-4号机组正在加装脱硝装置,预计2013年底全部完工。

(3)1、2号脱硫系统共用一个烟筒,采用不锈钢内胆,经过GGH加热后烟气温度约为80度排放。3、4、5号机组采用独立的钛管烟筒,外面公用一个烟囱,烟气温度约为50度排放。

(4)脱硫系统主要由烟气系统、SO2吸收系统、石灰石浆液制备系统(湿磨)、石膏脱水系统、工艺水系统、废水处理系统等组成。

(5)煤场储煤量最大为37万吨,分为A、B、C三个煤场,燃煤堆高12米,满足5台机组17天耗煤量,上煤系统设置两条皮带,带宽1.4米,带速2.5m/s,额定输送出力1600t/h。

(6)锅炉煤种硫份按照0.5%设计,脱硫校核煤种硫份为0.7%,目前公司向印尼、南非、越南、澳洲、俄罗斯、马来西亚等国家购煤,煤质中硫份变化较大。

(7)1、2号机组分别于2003年12月和2004年2月脱硫投入;3、4号机组于2006年11月投运,5号机组于2007年4月投运。脱硫系统运行时间最长8年,最短4年。均面临设备不断老化的现象。

1.2 主要设备及技术参数

1.2.1 煤种分析(表1)

1.2.2 脱硫设备参数(表2)

2 燃用高硫煤的可行性分析

2.1 利润分析(表3)

在煤种同质情况下,从国外进煤(硫份高),对公司的盈利模式存在有利因素。在不消耗国内煤炭资源的同时,鼓励多从国外进口煤源。

2.2 对锅炉和脱硫系统设备的影响

(1)如氧量值控制在2.4-2.5%时,掺烧一定比例高硫煤,灰熔点会有所降低,锅炉结焦、结渣加剧。燃烧器处发生高温腐蚀的机率增大;空预器处可能发生低温腐蚀;烟道及烟囱处可能出现酸腐蚀泄漏。

(2)锅炉受热面换热系数降低,燃烧耗煤总量增加。烟气量增大,烟气流速和排烟温度升高,脱硫系统阻力急剧增加,增压风机面临失速和损坏风险。

(3)高硫煤掺烧过多,烟气中入口SO2浓度增大,需消耗大量石灰石进行脱硫。制浆能力和脱水能力不足时,容易造成旁路挡板开启和吸收塔内部浆液“中毒”现象。

(4)掺烧高硫煤后,硫酸露点温度降低,对GGH及金属部分的腐蚀加剧,系统泄漏点增多。

2.3 燃烧高硫煤的安全论证

高硫煤与低硫煤按照一定比例进行均匀混配,确保入炉煤硫份的加权平均值在设计规定范围内,保证系统安全稳定运行。

2.3.1 含硫量0.5%与1.4%的混配方案

选择锅炉的D、E仓进行混配,神混煤与高硫煤按照1:1的比例参烧。其混配后硫份加权平均值为0.65%,小于设计标准值0.7%。所以脱硫系统能承受,在安全范围内。如果锅炉与脱硫系统均不能承受,则撤销D仓高硫煤,保留E仓混配。

2.3.2 含硫量0.5%与1.0%的混配方案

选择锅炉C、D、E仓进行混配,神混煤与高硫煤按照1:1的比例混配。其混配后硫份加权平均值为0.62%,在安全范围内。

2.4 燃烧高硫煤的应急措施

如果混配不均或煤种持续燃烧高硫煤,脱硫效率下降、出口SO2排放浓度超标等异常现象。应对措施如下:

(1)参数出现异常或偏离运行正常值时,经分析判断为煤种因素引起,立即更换煤种,减轻脱硫系统恶化趋势,8小时内调整完成。

(2)当脱硫反应迟缓时,辅助投入脱硫添加剂,提高石灰石的消融性,增强脱硫反应过程。

(3)长时间燃用高硫煤后,必须定期降低PH值,保持吸收塔内部的石膏饱和度在140-150%之间。

(4)如吸收塔内部密度过高,脱水系统或废水系统不能及时外排,可利用事故浆液箱短期进行存放及倒换。

(5)石灰石耗量急剧增大时,如制浆能力不足,可采用联络管道向其它机组借浆,维持系统正常供浆。制浆能力是制约高硫煤燃用的一大因素。

3 燃用高硫煤的调整

3.1 调整方法

(1)增大液气比,(2)增大钙硫比,(3)增大反应剂的比表面积,(4)延长脱硫反应时间,(5)使用脱硫添加剂。

3.2 提高液气比,有如下方法

(1)将二运一备的烟气冷却泵运行方式改为采用三台烟气冷却泵同时运行。但需要核实浆液母管、支管及法兰的承压能力。

(2)保持石膏浆液足够的压力与流速,减少浆液支管及喷嘴的低速结垢。

(3)定期清理烟气冷却泵的入口滤网,减少石膏浆液的堵塞程度,最大量输送石膏浆液。

(4)提高吸收塔液位,烟气与石膏浆液充分接触反应。

(5)锅炉采用低氧量运行(2.4%左右),降低锅炉烟气量。

3.3 提高钙硫比,有如下方法

(1)增加石灰石给浆量,提高PH值。

(2)燃用低硫煤,降低入口SO2浓度。

(3)提升石灰石原料品质,CaO含量大于50%以上,减少SiO2和杂质含量。

(4)提高吸收塔液位。

3.4 提高反应剂比表面积,有如下方法

(1)增加制浆系统球磨机内循环倍率,石灰石变细。

(2)低PH值运行,提升石灰石的消融性,减少CaCO3被包裹

(3)维持适当的吸收塔液位。液位过高,鼓泡产生的气泡层受到压迫,小气泡过多,气液接触面分压降低,脱硫反应变慢。液位过低,气泡形成过大,接触面降低。脱硫反应下降。

3.5 延长脱硫反应时间,有如下方法

(1)提高吸收塔液位,脱硫系统阻力增大,烟气与石膏浆液反应时间延长。

(2)将烟气冷却泵的浆液支管喷嘴反向,与烟气出现逆流布置,增加与烟气SO2的接触时间。

(3)石膏浆液内循环时间延长。

3.6 使用添加剂提效

脱硫添加剂分为无机盐和有机酸两大类。功能:提高吸收剂的反应活性;提高SO2的脱除率;防止垢的产生;起缓冲液的作用。提高脱硫剂的利用率,改善化学反应与传质过程,促进CaCO3的溶解,缓冲浆液的PH值下降,促进SO2的溶解,加速SO2的化学吸收。降低水蒸汽分压,减小蒸发速率,提高脱硫剂的利用率,降低运行费用,减缓钙的结垢、堵塞速率,从而提高系统的可靠性。

3.7 其余调整措施

(1)制浆系统、脱水系统和废水处理系统保持正常连续运行

(2)加大氧化风量,提高强制氧化效果。

(3)电除尘20台整流变全投入,降低脱硫系统入口粉尘浓度。

4 燃用高硫煤的费用分析

4.1 某电厂脱硫添加剂费用分析

某电厂有4台600MW机组,第一次单台机组一次性加入1吨添加剂,费用3万元;以后每天加入一袋(约80kg),费用2400元,即单台机组每月(30天计算)加入添加剂2.4吨,费用7.2万元,全厂全年总费用为360万元左右。

得到的经济效益是:部分时段能停运一台浆液循环泵,节约的电量还是非常可观。

4.2 本厂脱硫添加剂费用分析

2009-2011年期间,总共购买二次脱硫添加剂,第一次购买8吨脱硫添加剂进行试验,总费用24万元。第二次购买8吨,主要是在掺烧高硫煤情况下添加,提升脱硫效率。试验过程及结论如下:

(1)在吸收塔地坑中加入1.2吨添加剂,PH值上调至5.2,添加过程中,脱硫效率逐渐从94%上升,最高达到97.65%。

(2)脱硫添加剂对“提效”作用。它是一种催化剂,能提高传质速率,增强石灰石浆液与SO2的反应能力,但不能取代石灰石。

(3)脱硫添加剂在PH值较高时,效果明显。建议:吸收塔低密度时,尽量不使用脱硫添加剂,依靠系统本身自平衡能力,保持脱硫系统稳定运行。当入口SO2浓度超过设计标准时,少量投入添加剂,需维持投入产出比的关系。

4.3 其它费用分析

(1)掺烧高硫煤后,系统产生的酸腐蚀加重,对烟道和金属附件造成严重的腐蚀。更换和维修费用大大增加。据初步统计5台机组治理腐蚀泄漏的费用每年在200万元以上。如在烟道内部全部铺设钛合金板,估计费用300万元左右。

(2)制浆系统连续运行,使得球磨机钢球耗量和球磨机油耗量增大。据不完全统计每年将增加50-80万元的费用。

(3)掺烧高硫煤后,吸收塔浆液碱性环境提高,设备结垢、堵塞加剧。系统阻力导致电耗增高。当脱硫电耗上涨0.01%,每年损失电费86万元左右。

5 燃用高硫煤的结论

(1)按照市场经济规律,购买同质低价的高硫煤进行掺烧,需进行系统风险评估和成本利润测算。

(2)锅炉风险评估:受热面的高、低温腐蚀。脱硫风险评估:环保减排总量超标和设备承载能力不足。燃料风险评估:燃料输、配送能力及调度计划不足。

(3)脱硫添加剂属于辅助调节手段,治标不治本。不能依靠脱硫添加剂短期的功效,而长期燃用高硫煤,以免引起次生事故。

(4)燃用高硫煤时,当脱硫参数发生异常,必须暂停高硫煤,待系统恢复平稳后,逐步增加高硫煤量。

(5)燃用高硫煤时,必须严格按照掺烧比例进行混配,如混配不均,将导致脱硫效率低下,脱硫出口超标的现象。

(6)燃用高硫煤时,必须定期对化学在线测量仪表进行标定和校验,防止仪表出现零点漂移现象,误导运行调节。

(7)掺烧高硫煤的条件是:电除尘、制浆、脱水、氧化风及废水系统均能正常运行,缺一不可。

(8)根据本厂5台机组特性和现场实际情况,给出掺烧高硫煤的建议:1)1、2号机组因GGH存在,掺烧高硫煤不超过0.7%的硫份,即入口SO2浓度严格控制在设计标准范围内(1756mg/Nm3)。防止系统堵塞、结垢加剧,引发增压风机失速和旁路挡板开启的环保风险。2)3、4号机组无GGH,且吸收塔直径大于1、2号机组,系统富裕量可承受0.8-0.85%的高硫煤,即入口SO2浓度可达到1900-2000mg/Nm3。但前提条件是电除尘运行正常,鼓泡管无堵塞,氧化风及脱水、制浆和废水等系统运行。3)5号机组有脱硝装置,脱硝催化剂能将部分SO2转换为SO3,且氨液能吸收部分SO2,可燃用0.9%的高硫煤,即入口SO2浓度可提高至2000-2100mg/Nm3。

相关文章
相关期刊