时间:2023-07-06 16:19:29
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇土木工程的特性范例。如需获取更多原创内容,可随时联系我们的客服老师。
在实际施工过程中,土木工程受诸多因素影响其抗震能力有较大的波动性,掌握土木工程抗震技术的前提是明确土木工程影响抗震能力的因素,笔者对影响因素做了以下总结:第一,地基影响因素。地基是建筑物整体质量的基础保障,是后期各项施工顺利开展的依据,如果土木工程地基选址不合理,在实际施工过程中建设工程的抗震能力将受到严重削弱;第二,土木工程的结构及原材料对土木工程抗震能力有直接影响,施工过程中如果土木工程结构设置不合理或者使用的原材料质量存在问题,土木工程的整体质量将受到严重影响,其抗震强度必将受到严重削弱;第三,建筑项目的高度对土木工程抗震能力有直接影响。伴随着经济的发展,城市高层建筑数量越来越多,国家对高层建筑的安全指标、材料特性以及力学模型等提出了更高要求,以上因素如果不符合施工要求遇到地震危害后将产生严重的后果;第四,抗震预防影响因素。在实际施工过程中各建设项目必须针对建筑物抗震性能编制合适的预防措施,为提高土木工程使用寿命提供技术保障。
2土木工程结构中的抗震技术发展
2.1合理选择地基场地
合理选择地基场地是促进我国土木工程抗震技术发展的基础保障。在实际施工过程中,设计人员应该结合实际施工状况选择合理的施工场地,施工人员必须深入施工现场,了解土木工程所在地的地质状况,明确该地段的地震活跃状况,结合当地实际地震发生情况对可能出现地震区域进行分析,研究人员还应该准确地评定该区域一旦发生地震后地震的等级以及毁坏程度等。选址过程中,应该尽量少选择不利于施工的场地,如果建设项目中必然存在施工困难的区域,施工人员应该对该区域的地质加工加固,经过筛选后的地基应该处在密度较高或者岩石较多的基土位置,从根本上提高建筑物的抗震能力。
2.2关注建筑结构的规则特性
实际施工中,为提高土木工程的抗震能力,施工人员还应该更高度关注建筑结构的规则特性。土木工程结构设计人员应该尽量选择最简单的抗侧力结构,与此同时确保结构的规律特性,在实际施工过程中,在合理分布建筑物承载能力的同时,还能提高建筑物的稳定性和牢固性。如果土木工程的结构不规则,施工时钢心和建筑物结构会出现严重的交错现象,一旦发生地震建筑物架构将出现严重偏离,整体强度降低后土木工程的稳定性也随之降低。因此,设计人员应该关注建筑结构的规则特性,减少因建筑结构不规则引发的地震灾害。
2.3合理选择建筑结构原材料
合理选择建筑结构原材料是提高建筑物整体质量的基础保障。钢筋材料在土木工程施工中使用范围非常广,钢筋材料的质量直接决定建筑物的整体抗震能力。因此,施工人员应该结合建筑施工的实际状况,选择合适的材料,在考虑钢筋韧性的同时还应该充分考虑钢筋的受力方向与竖直方向。在选取土木工程施工中使用其他材料时,施工人员在考虑材料抗震性能的同时还应该注重成本控制,从根本上为土木工程的发展提供动力。
2.4合理设计隔震及消能减震项目
地震常发带对土木工程的抗震能力要求非常高,土木工程不仅要具备基本的抗震能力还应该具有隔震和消能减震的作用。因此,土木工程研究人员应该在选址期间确保地基的密实性和稳定性,从根本上降低地震对建筑物整体质量的影响。另外,研究人员还应该结合建筑物自身存在差异,明确各建筑物的隔震系数,选择合适的隔震支座,提高建筑物的抗震性能。最后,研究人员还应该设计合适的隔震和抗震构建,明确建筑用材的延性,减小地震对建筑物的破坏。
2.5加固设计
第一,如果土木工程的结构设计存在问题,设计人员应该及时增加构建的数量,以增强土木工程整体强度为依据,提高建筑物的整体抗震性能。第二,设计人员应该通过增强建筑物承载性的方法提高土木工程的抗震能力,在扩大建筑物原截面的同时,增加构建提高建筑物的稳固性。第三,如果建筑物的整体结构不符合土木工程抗震标准,设计人员应该及时调整建筑物整体结构,在分散地震力的过程中减少地震对建筑带来的损坏。
3结束语
关键词:土木工程结构;损伤识别;损伤诊断
由于近些年来,相关的国内外学者借助于模型试验、理论分析以及数值模拟等方法,进而针对土木工程结构的相关性能进行了细致的分析与探讨,也取得了有价值的科研成果以及一定程度的研究进展。除此之外,针对土木工程自身的结构特性,进而准确的评价受到损伤结构的可靠性以及损伤特性,由此一来,能够很好的对土木工程结构的损伤情况与修缮情况做出正确的判断,与此同时,这些问题也是现阶段土木工程结构即将面临的重要课题。当前,针对土木工程结构损伤诊断方面的诸多亟待解决的难题,本文提出了几种有效的解决办法,与此同时,这几种解决方法的应用越来越广泛。总之,针对受损土木工程结构做出正确的诊断以及识别,是解决此类问题的重点。与此同时,针对可能出现的损伤特性进行深入研究以及分析,并将其受损结构进行安全度评估,已经逐渐成为土木工程结构探讨的一个全新的领域。
1国内外损伤识别与诊断方法现状
现阶段,土木工程结构损伤识别在机械领域的应用极为广泛。人们很早就开始针对齿轮以及连杆等一系列零件组成的大型机械进行结构的故障诊断。直到上世纪中叶,结构无损检测技术得到不断的发展。上世纪末开始,人工智能、信息技术以及计算机技术等学科的知识,逐渐被应用在结构损伤检测与诊断领域。随着一系列的技术不断的创新与应用,使得土木工程结构损伤诊断分析变的简便与准确。目前,针对土木工程结构来说,在建筑物建成初期的出现损伤频率相对不高,且其危害程度远不如机械工程,与此同时,能够在一定程度上允许带损伤工作,因此,相比之下,土木工程的结构损伤检测技术不够成熟,很大一部分技术处于结构可靠性评估阶段。众所周知,上世纪初期是土木工程结构损伤检测探索阶段,其工作重点是针对结构缺陷的修理方法以及分析的探讨。到了上世纪中期就是结构损伤检测诊断的发展阶段,其工作重点是针对相应的结构检测方法的探讨,与此同时,出现了物理检测、无损检测以及有损检测等检测方法。上世纪后期以来,土木工程结构的损伤检测诊断技术趋于成熟,并相应的制定了标准与规范,与此同时,强调了综合评价,以至于土木工程结构的损伤识别与诊断工作,逐渐朝着智能化的方向发展。众所周知,现阶段我国的土木工程结构损伤识别与诊断仍处于起步阶段,发展时间较短,只是随着抗风研究以及结构抗震的不断发展,才不断基于安全鉴定以及可靠性评估进行土木工程结构损伤检测诊断领域的分析。现阶段,经过国内外许多相关学者逐渐借助于可行的方法,继而针对土木工程结构损伤进行诊断以及识别。众所周知,最近几十年以来,国内外已经逐渐在结构损伤识别与诊断技术领域开展了严密的分析。像Kunihiko等借助于有限元计算模型产生的样本训练BP神经网络模型,从而明确的识别已知相应的条件下结构的损伤程度以及状态;Mannan等深入研究了用实测结构频响函数来诊断损伤。Yu等借助于动力反应研究的相关方法,并进一步借助于摄动理论的特征值来检测结构的损伤。Chen等借助于人工免疫模式识别结构损伤,并针对损伤的厉害程度进行相应的分类。Xie将SVM用于复合结构的损伤识别中,分析结果显示支持向量机方法具有较高的识别精度。Leonardo等借助于变分方法评估大型空间结构的损伤。Curadelli等借助于对结构进行损伤识别,对结构阻尼的测试。
2结构损伤识别与诊断方法
通常情况下,结构损伤识别与诊断工作大致分为以下几个阶段:预测结构的剩余使用寿命;确定结构损伤的程度;确定结构损伤的位置;确定结构是否存在损伤。一般的,借助于结构损伤识别与诊断方法运用数据处理技术以及测试技术进行整体检测。其在很大程度上是基于结构的损伤以及整体失稳的发生都会导致结构动力性能的变化,并借助于固有频率降低以及诊断结构刚度减小等,从而进一步准确的判断结构损伤的实际状况。
2.1局部检测技术
通常情况下,局部检测技术主要包括射线法、声发射法、目测法、回弹法、脉冲回波法以及发射光谱法等。一般的,上述的这些技术能够用来准确的检查相应部件的裂缝位置。与此同时,在整个结构检测的过程中,通常借助于以下几种技术,并结合使用来共同识别结构的损伤状态。总之,其检测方法通常情况下有以下几种:射线检测技术,即利用射线对结构损伤情况进行相应的检测,从而识别结构缺陷的位置以及形状,进而可以准确的判断出结构损伤的实际情况;超声波检测技术,借助于脉冲波自身通过不同种类的介质能够产生反射的特性,与此同时,参照波在不同的介质材料中,相应的衰减程度不尽相同,由此能够针对材料中的不同种类的缺陷进行识别;声发射法,即用发射器将发射的弹性波信号转换为电信号,并把电信号经过处理之后得到相应的特征参数,由此一来,能够在一定程度上推测结构材料缺陷的位置。
2.2整体检测技术
2.2.1动力特性识别法
众所周知,大纲结构发生损伤之后,其刚度以及质量等参数会在一定程度上发生改变,进而极大的影响其自身的动力特性发生相应的变化。与此同时,动力自身特性的改变能够在一定程度上当作结构损伤发生的标志,并以此标志识别结构的损伤,并准确的诊断结构的损伤程度。
2.2.2模型修正与系统识别技术
现阶段,系统识别法以及模型修正法是借助于模型构造优化约束条件以及动力测试方法,并且在一定程度上修正结构的阻尼、刚度以及质量等特性,以至于其测试获得的结构响应基本等于最大响应,并逐渐将修正后的基线模型矩阵以及模型矩阵进行比较,以此完成针对结构损伤的识别与诊断。与此同时,该方法在处理子结构模型以及划分结构单元上具有诸多优点,但因为测试参数不敏感、测量噪声强与模型误差大等因素,也使的该方法在结构损伤诊断过程中受到了一定的约束。除此之外,现阶段模态试验测得的模态信息还不够成熟和完备,因此,在很大程度上引起了特征方程求解中的不是很稳定。
2.2.3神经网络技术
目前,人工神经网络技术主要是借助于模拟人体神经机理,进而进行分析与研究客观事物的方法。人工神经网络技术兼具自我学习功能以及计算机并行计算能力,与此同时,该技术还具有强大的容错性,并且善于扩散、综合以及联想,借助于神经网络算法的墨水识别能够很好的解决模式损失以及高噪声等问题,使其已经成为了一项土木工程结构损伤识别与诊断的有效工具。人工神经网络技术的原理是借助于研究结构在各种不同状态下的相应反应,从而相应的提取出结构的特征值,进而以神经网络输入向量当作结构损伤敏感的参数,再相应的输出结构的不同损伤状态,并逐渐有序的建立起输出损伤状态以及输入参数之间的特征关系,与此同时,训练后的神经网络有着模式分类能力,能够在一定程度上反映出结构损伤的模式。除此之外,人工神经网络技术的自身特性决定其具备强非线性的映射能力,从而极大的适合于非线性模式分类以及识别,人工神经网络技术和模型修正法相比,前者的适用范围更加广泛。
2.2.4遗传算法技术
上世纪中期,提出了遗传算法技术,该方法在一定程度上是参照达尔文进化论中优胜劣汰,适者生存的原则,从而找寻其中的最优者,与此同时,能够用此方法进一步得到满足要求的最优解。通常情况下,遗传算法不需要借助于连续性的信息,一般的,只需要计算各目标解,并借助于共同搜索多个线索的方式,从而对目标解进行优化,总之,遗传方法适用性强,且操作简单。因此,能够在信息量相对较少的情况下,从而借助于遗传算法来判定结构损伤程度以及位置,就算是结构的模态信息偶尔丢失了,借助于遗传算法也会发挥其损伤诊断以及识别能力,进而不会对结果产生影响。
结束语
关键词:自然灾害 严重性 重要性 土木工程 防灾减灾
多年以来,人类面对频繁发生的自然灾害始终无能为力,受到地震、洪水、干旱、泥石流等自然灾害的影响,人类社会的生产和生活活动都受到了不同程度的影响;与此同时,交通事故、火灾、爆炸等人为灾害也同样威胁着人们的生命和财产安全,对于国民经济的发展也产生了一定的影响。灾害的破坏力是我们无法控制的,但是很多灾害的发生却是可以通过一定的技术手段来预测,如果能够对灾害的发生有一定的预见,做好相应的防灾减灾工作,便能够极大的降低灾害带来的损失,这就需要我们不断的探索和实践。目前,防灾减灾已经被列为土工程学科中的二级学科,这也说明了土木工程在防灾减灾工作中的重要性。
一、灾害的涵义
1.灾害的定义
灾害指的是为人类社会的生存和生产带来破坏性影响的行为或者是事物,而根据国际卫生组织的相关规定,将灾害定义为:“任何能引起设施破坏、经济严重受损、人员伤亡、健康状况恶化的事件,如其规模已超出事件发生社区的承受能力而不得不向社区外部寻求专门扶助时,应可称其为灾害。”从某种意义上说,灾害不仅包括自然灾害,同时也包括人为产生的破坏性影响,灾害最显著的两个特征就是破坏造成的损失是巨大的,而且其已经超过的社区的承受能力。
2.灾害的分类
灾害按形成原因可以分为自然灾害、人为灾害两类。其中,自然灾害有地貌灾害(滑坡、水土流失、泥石流、山崩、沙漠化)、地质灾害(海啸、地震、地下毒气、火山爆发)、气象灾害(洪涝、暴雨、冰雹、龙卷风、热带气旋、雷电、冻害、高温、干旱)、天文灾害(太阳活动异常、宇宙射线异常、天体撞击)、生物灾害(病虫害、有害动物)等。人为因素引起的灾害有工程灾害(有害物质失控、爆炸、工程塌方)、生态灾害(环境污染、人口过剩、资源衰竭)、社会生活灾害(战争、火灾、暴力、社会动乱、恐怖活动、交通意外)等。
3.灾害的发展
在人类社会多年的发展历程中,灾害无时无刻不在威胁和影响着人们的生命和财产安全,往往一次巨大的灾害就会导致成千上万的人受到影响。同时,灾害自身所具有的突发性使得人们在没有任何准确的情况下遭受巨大的损失,如汶川地震的发生,带来巨大经济损失的同时,也造成了大量的人员伤亡,这对于国家和经济的发展都产生了严重的影响。而从全国范围来说,我国是世界上自然灾害较多的国家之一,每年由于自然灾害造成的损失约占国民生产总值的30%左右。可见,灾害对于人类社会带来的影响无疑是直接的和巨大的。与此同时,由于人为引起的灾害也在不断的增加,火灾、交通事故、工程塔防的频繁发生,也为国民经济的发展产生了巨大的阻碍作用。
二、土木工程在防灾减灾中的重要性
1.土木工程的特性
土木工程本身具有较多的特性,这也决定了其在人类社会的发展过程中所发挥的重要作用,可以从以下几个方面来分析:
第一,防护性。土木工程对人类的防护作用自远古时代开始已经延续至今。最早的土木工程建筑的出发点是为了抵御自然灾害,简单的遮风挡雨、躲避野兽。而随着人类生活环境的日渐复杂,土木工程逐渐用于各个领域中,如军事防护等等,被赋予了越来越多的复杂功能。现代土木工程技术的发展使得土木工程的防护性日渐增强,在很多高科技领域中都发挥了重要的作用,如核反应需要重混凝土为主体的反应堆来保证其安全性。
第二,超前性。防护作用的体现在于其在灾害发生之前的保护作用,人们必须要事先做好相应的防护措施才能抵御风雨和野兽的侵袭,必须要事先挖好人防工程才能抵御敌方的炮火,所以说,土木工程所具有的超前性也是发挥其特性的重要体现。从古代的万里长城,到如今的人防工事,无疑不是在对灾害的预计基础上所采取的防护措施。因此,土木工程在各行各业中所发挥的作用也日渐重要,正是由于其本身所具有的超前性,使得其防护作用能够获得充分发挥。
第三,基础性。土木工程建设的部分通常情况下都是基础工程,无论是道路、桥梁,还是房屋建筑,其所涉及到的无一不是基础性的工程,同时土木工程的基础性也表现在其建设周期长、资金投入大等特点,正是这些特点也决定了其具有很长的服役周期,很多公元前的土木建筑在现代社会中仍然发挥着重要的作用,如隋朝的大运河,至今仍然在通航。
第四,普遍性。土木工程的普遍性体现在其不是单一的在某个行业中发挥作用,而是在各行各业中都发挥着巨大的作用,每个行业离开土木工程都无法顺利的运转。而从土木工程自身的发展来说,其需要不断的提高和进步,才能适应不同行业的应用需求,促进其作用更好的发挥。
第五,持久性。人类社会的发展经历一个漫长而持久的过程,而土木工程在人类社会的发展过程中也是恒久的,对于自然灾害我们无法完全消灭,但是可以通过修葺防护措施来预防和降低灾害的破坏,所以在这个过程中,土木工程所承担的任务也仍然持续,也可以说,土木工程的持久性与人类社会的发展是相互依存的。
2.土木工程在防灾减灾中的作用
土木工程自身所拥有的多个特性决定了其在防灾减灾工作中的重要性,无论在任何一种灾害面前,土木工程都承担着其重要的作用。我们可以通过防震结构的设计来降低地震灾害的破坏力,通过防洪工程来阻挡龙涝灾害,利用渠道水库的作用来缓解自然干旱等,正因为土木工程所具有的特性,才能使其在各个行业中都能发挥重要的作用。近些年来,随着科学技术的不断发展,我国土木工程的建设方面也不断取得新的进展,在工程建筑结构的设计与优化方面更加适应其防护作用的发挥,同时在防震减震、提高建筑稳定性等方面都有了技术性的突破。在桥梁等交通工程中,也充分利用防震支架灯,通过分离作用来降低灾害的作用,保证各项生产活动的有序进行。总的来说,土木工程的特性决定了其在防灾减灾工作中的重要地位,我们应当不断提高土木工程的建设技术,从而促进其作用更好的发挥。
结束语:
自然界的灾害是人类无法控制的,但是我们可以通过必要的防护措施来降低灾害带来的损失。土木工程结构是现代建筑领域中一种常见的结构,其在防灾减灾工作中发挥着重要的作用,而随着建筑工程事业的不断发展,更加需要对土木工程进行科学和合理的运用,未雨绸缪,做好灾害的预防工作,将灾害发生的损失降到最低,以此保障人民群众的生命和财产阿全,促进国民经济健康发展。
参考文献:
[1]刘辉.土木工程结构抗震性能原理分析与结构减震技术[J].建筑与文化,2012(02)
[2]崔京浩.灾害的严重性及土木工程在防灾减灾中的重要性[J].工程力学,2006(02)
[3]刘恒俊,王昆.土木工程防灾减灾数字信息系统探讨[J].中华建设,2009(08)
关键字:纤维增强塑料筋;土木工程;新型材料;工程应用
中图分类号:TU198文献标识码: A
引言:
目前土木工程中普遍存在着一个问题,即是传统的钢筋混泥土结构中,由于钢筋锈蚀而引起结构破坏。这一现象并不少见,根据统计由于钢筋锈蚀而引起的钢筋混泥土结构破坏,在钢筋混泥土结构破坏的原因中占到百分之五十五的高比例。每年用于修复这一损坏,需要耗费大量的人力和物力,且容易产生安全隐患。因此,纤维增强塑料这一新型复合材料的出现引发了业内人士的广泛关注。
一、纤维增强塑料的简介
纤维增强塑料又简称为EPR,由聚乙烯树脂或者其他具有类似作用的树脂作为基地材料,将多股连续的纤维胶合起来,再经由特殊的模具进过一系列操作使之成型。这种新型复合材料在土木工程中代替钢筋而使用,与钢筋相比其最大的优势就是不会锈蚀。除了良好的抗腐蚀性之外,纤维增强塑料还具有强度高、模量高、耐久性高、密度低以及良好的抗疲劳性等特点。
目前在土木工程中主要使用的是碳素纤维增强塑料、玻璃纤维增强塑料及芳纶纤维增强塑料。但是纤维增强塑料最早并不是应用于土木工程行业中的,直到八十年代的时候纤维增强塑料才从航天领域发展到土木工程领域,并得到广泛的应用。纤维增强塑料筋只是纤维增强塑料棒材中的一项,其他的还有片材、棒材、型材等。
二、纤维增强塑料的优势
1、减轻结构自重
纤维增强塑料筋由于其制作材料和制作工艺的原因,密度很小,仅为钢筋的七分之一至五分之一左右。且纤维增强塑料筋的强度也高于钢筋,约为钢筋的十至十五倍。因此在强度与刚度要求同样的情况下,使用纤维增强塑料筋的结构比之钢筋结构质量要轻的多。因此,使用纤维增强塑料筋的土木工程项目施工时不仅可以大幅度的减轻结构自身的重量,还可以减轻施工的荷载,节约施工成本。这一优势在使用纤维增强塑料筋建造悬索桥以及大跨度的斜拉桥时十分突出,不仅可以加强桥的稳固性,对于地震灾害给桥梁带来的影响也可以减轻。
2、耐腐性好
传统的钢筋混泥土结构建筑有一个致命的缺点,那就是钢筋的锈蚀给建筑所带来的安全隐患。检查与修补有钢筋被锈蚀的建筑需要耗费大量的人力与物力,还会给人民的生命财产安全带来隐患。而纤维增强塑料筋的耐腐蚀性能比之钢筋要好很多,其对于大气、水、一般浓度的酸、碱、盐及油类和溶剂都有着很好的抵抗力。正是由于纤维增强塑料筋的这一特性,在土木工程中纤维增强塑料正在逐步取代这钢材、木材等不耐腐蚀的材料。这样不仅可以增强结构的稳定性,还能延长建筑的使用寿命,减少对于建筑的检测和维修费用。
3、可设计性强
纤维增强塑料根据原材料的不同,其物理特性也有着一定的差异。因此在土木工程使用纤维增强塑料时,可以根据工程的实际需要来设计纤维增强塑料。采用不同的原材料可以满足实际土木工程施工中不同需求所要求的特性,可以通过改变材料的配比来突出纤维增强塑料的强度、耐腐性、耐高温性等。这种灵活的特性可以满足土木工程对于材料的不同需求,方便又快捷。
三、纤维增强塑料的应用
1、应用与海洋结构
由于海洋中的环境比较复杂,不仅有海水以及海水中所含电解质对于材料的腐蚀,还有海水的压力对于材料的考验。传统的钢筋材料往往在海洋结构中损耗较大,稳定性也较差。而纤维增强材料的耐腐蚀性以及高强度很好的弥补了钢筋的这一不足,因此在海洋结构以及对与电磁波有着特殊要求的结构中纤维增强筋有着优秀的表现。
2、应用与桥梁建造
纤维增强塑料筋具有很强的灵活性,可以根据土木工程的不同需求改变材料的配比来突出其中一项特性。因此,可以通过对纤维增强塑料筋施加预应力的方式来提高纤维增强塑料筋的强度。这种拥有高强度的纤维增强塑料筋可以应用与桥梁的建造中,制成桥梁的拉索或者是悬索。这样不但能够增强桥梁的跨越能力,还能提高桥梁的稳定性。
3、其他应用
纤维增强塑料的可塑性很强,除了可以制成纤维塑料筋之外,还可以制成纤维增强塑料布、板以及网格等。虽然形式不同,但是应用原理都是纤维增强塑料的耐腐蚀性、高强度以及密度小等优势。其中以纤维增强塑料筋混泥土应用的最为广泛。在土木工程中运用纤维增强塑料不仅可以增强工程的稳定性,还能节约建造所需的人力物力等。所以纤维增强塑料的应用随着其技术的成熟将越来越广泛。
总结:纤维增强塑料因其各种优势,现已成为土木工程中新兴的结构材料,其优良的性能使的纤维增强塑料的应用前景十分广阔。但是由于纤维增强塑料是一种新兴的材料,在实际运用中缺乏足够的实践经验。土木工程相关工作者还需要进一步探索这种材料,并将理论和实践相结合。尽量降低材料的造价,使其能够得到更广泛的应用。
参考文献:
[1] 陈德伍.FRP筋的性能及其在土木工程中的应用[J]. 山西建筑. 2009(06)
关键词:土木工程;结构;地基;加固
我国经济的快速发展,为我国房地产行业的大规模发展奠定了物质基础,与此相伴的建筑行业也得以快速发展,建筑行业中的土木工程建设项目是建筑行业的一个重要组成部门,其结构的牢固以及建筑地基的加固是土木工程建设质量的重要保证.土木工程的建设和广大人民群众的日常生活和工作有着密切的关系,它不但关系着人们的生命安全、财物安全,还和人们物质生活、精神生活的质量有着巨大的关系,在社会正常发展过程中的意义重大、深远.所以笔者在本文对土木工程建设中的结构和地基加固技术的应用进行简略的分析,为我国建筑行业的稳定发展提供理论上的保障.
1土木建设工程中地基的硬度状况
在土木工程建设中,施工地段的地基硬度的强弱程度决定了土木工程建设的质量好坏.土质不好的软性地基无法满足建筑的需要,特别是在城市超多层楼面的建设中,如果地基过于软弱,则其对房屋的支撑力非常弱小,容易出现下陷或塌方等一些意料之处的事故.当土层中的土质条件不好时,对地基的构成和加固会形成很多不稳定的因素,从而造成更多的安全隐患.软土最大的特性就是粘性非常大,那么压实软土时的可能性非常小,如果加以超强的压力,地面极有可能下陷,对地面上的建筑就会形成很多不必要的伤害,包括人员的伤亡.带有砂性土质的软土,其粘性相对来说较弱些,通过物理作用或者借助化学作用改良土质的特性,可以促进地基的加固性.但是在采取振动压实的方法对土质进行改造时,不能采用“大动作”,否则就会降低土质的强度.软土地的厚度决定了其层次性.对于浅层次性的软土只需要进行表层的处理,把地基中表层的软土全部取出来,填入另一种性质的土质,有利于地基的加固.如果地基中的软土较厚,采用此简单的“换血”方法根本起不着丝毫作用,则要采取其它的方法才能加固地基,在后文会加以详细的阐述.总而言之,对于软土地基进行处理时,要把握好软土地基的层次性,分别对待,设定不同的方案,采取不同的方法加以处理,从而增强软土地基的稳定性,提高软土地基的使用效果.在土木工程建设过程中,有时也会遇到土质较硬的土壤,也就是岩体.岩体通常分为易溶性岩体、膨胀性岩体、崩解性岩体以及盐渍性岩体.对岩体的处理不当,也会形成造成土木工程建设中土体不稳定的问题,所以土木工程施工阶段时,要对岩体的密度、毛体积密度、孔隙率、吸水的状况、抗冻性以及固体性进行分析,了解其性能之后,才能有序地安排土木工程的建设进度,以免延误土木工程的进程.
2地基加固技术在土木工程建设中的作用
因为地基具有不同的强度和硬度,所以对其采取一些人工措施具有必要性,以此来改变地基的物理特性,适应土木工程建设需要,从而保证土木工程建设的质量.在改变地基物理性质的所有人工措施中,地基加固措施是最常用、最有效的措施.只有改变了地基的物理性质,使之越来越牢固,才能确保土木工程建设的基础,土木工程在建设时才可以“高枕无忧”,不会导致一些不可设想的后患;才能确保进展如期进行的同时还能保证土木工程的建设质量.
3土木工程建设时地基加固技术的特点
在使用地基加固技术时,通常存在着下列特点:复杂性、关联性以及困难性.
3.1地基加固的复杂性
我国地域广大,南北地质存在着巨大的差异性.地质以及土壤的差异性给地基的加固增加了复杂性.我国东北地区的土壤以黑土为主、华北地区以黄土为主、华南地区多盐渍地和水洼地、西南地区以冻土为主,这些土质除了有自身的特性之后,还会受到多种外界因素———地震、洪水、泥石流的影响.这些不可预测的外界因素给地基的加固增加了很多难度,所以,在土木工程建设的整个过程中必须严格把好每一道工序的质量关,才能避免天气等复杂外界因素所造成的损失.
3.2地基加固的关联性
千里之堤,毁于蚁穴.土木工程建设的过程中,必须要注意每一个细小的操作步骤,否则就会影响到其它环节的操作过程,最终导致土木工程不能按时、按量以及高质量地完成.土木工程的建设就像多米骨诺牌一样,具有很大的关联性,只要在其中任何一个环节中出了些许小差错,则就会在整个土木工程建设中引起一系列的连锁反应,牵一发而动全身.这就要求土木工程每个环节的施工人员都必须把自己的事情务必做得完美,不能留下丝毫瑕疵,并且要考虑好如何为下一操作程序的施工人员作好各种铺垫,使每个关联点能够有序地结合和联系起来,形成一个有序的地基加固体系,从而高质量地完成整个地基加固任务.
3.3地基加固的基础性
万层大楼平地起,如果没有牢固的基石,则万层大楼就像“随风飘浮”的云层一样,随时会“云崩瓦解”.这个形象的比喻道出了地基加固的基础性,地基加固是所有土木工程建设中的重要基础,它不像土木工程建设其它环节一样,出了点小错误,可以随时加以改正.可是地基加固工程一旦完工之后,不可能把上面已初具规模的建筑体重来.由此可见,地基加固的基础性决定了地基加固的基本功必须要做扎实,才能减少无用功,才能减少地基加固的复杂性,才能降低地基加固时的难度,从而保证地基的质量和整个土木工程建设的质量.
4土木工程建设时地基加固的原因
在土木工程建设中,牢固的地基可以使土木建筑物的质量更加上乘,经久耐用.在质量差的地基上建筑土木工程,经过一段时间之后,建筑体的墙面因为无法承受上面所施加的压力可能会出现开裂,甚至会出现墙体倾斜或者是建筑物倒塌的情况.土木工程建设时需要加固地基的原因主要有:
4.1地下地表构造的未可知性
在土木工程建设中,难于掌握和控制的不是地面上的建筑体,而是地底下的根基工程.因为在地下地表构造中存在着很多不可预见的突况,在施工过程中存在的问题也难于及时发现,工程完成之后,验收的过程中也不容易检查出来,在使用一段时间之后,其安全隐患性才逐渐暴露在住户的面前,并将产生一系列的事故,造成灾难性的后果.
4.2建筑物材料的老化性
现代化的土木工程建设不像传统的建筑物,采用纯木建筑而成,而是和钢筋混凝土等材料混合使用,多种材料的混合使用,会加剧建筑材料的老化,必然会降低建筑物的使用寿命.所以,在土木工程建设之初,未雨绸缪,把地基进行加固处理,除了提高土木工程建设的质量之外,从另一角度来说,还可以增长这些建筑物的寿命.
4.3建筑物的本身存在着质量的问题
土木工程建设的不同施工单位在建筑时,由于技术力量、建筑材料等各种因素的影响,工程完工之后极有可能会出现或大或小的质量问题.所以为了避免土木工程的建设造成不必要的后果,就有必要在地基加固上下功夫,确保土木工程建设的质量.
5土木工程建设中地基加固技术的使用
土木工程建设中,地基加固工作的内容牵涉面非常广泛,地质地貌的选择、施工环境的创造、地基加固技术的使用以及地基加固材料的使用等都必须根据地基加固的质量要求作出合理的控制.从而有效地控制地基加固的整个进程,保证地基加固建设工程能够符合地基的要求.目前所使用的地基加固技术主要有:换填法、排水固结法、挤压法、化学固法以及加筋法等.
5.1换填法
这种方法在地基加固中使用的频率最多.当建筑地段的自然地质无法满足当前土木工程建设需要时,例如前文所说的粘性太强的地基,无法给它施加压力,使之更加坚实,适用于土木工程建设的需要,为此只有对此采取换填法.换填法包括换土垫层法、振冲置换法、强夯置换法、碎石桩法、石灰桩法以及EPS轻填法.例如使用换土垫层方法时,把所要置换的软土层全部挖出来,向内填充一些质地较硬的土石,与下卧层的土质形成双层地基,确保土木工程建设的质量.
5.2排水固结法
排水固结法通常由加载预压法和超载预压法组成.加载预压法适用于软土、粉土等土质中.超载预压法适用于粘性土和粉土中.这两种方法的原理基本上相同,给地基施加一定的压力,地基承受相应的压力下,密度越来越大,地基固结起来,其强度逐渐提高,为了加快地基固结的速度,满足地基上部建筑的要求,可以设置排水装置.加载预压法和超载预压法的区别在于:加载预压法和上部建筑的压力相当,而超载预压法远远超过上部建筑物的承载量.相比而言,超载预压法的效果更佳,能够有效地降低地基的次固结沉降.
5.3挤压法
该种方法通常也叫做振密挤密法,包括强夯法、振冲密实法、挤密碎石桩法以及土、灰桩法.适用于松散碎石土、砂土,低饱和度的粉土和粘性土以及地下水位以及的湿陷性黄土、杂填土、素填土等地基.强夯法是传统土木工程建设中最常用的方法,对一个重量超大的夯锤施加外力,在重力和外力的双重作用下,从很高的地方落下来,对地基产生强大的冲击力和振动力,增强地基的固结性,其密实度增加了,可以承受上部建筑物更大的压力,有效地降低地基的次固结沉降.振冲密实法是指通过振冲器的强力振动,使灌入地基的饱和材料发生变化,材料中的各个成分重新排列结合,紧密度越来越高,物质成分之间的孔隙率得以降低,地基对上部建筑物的承受能力越来越强,从而达到防止上部建筑物沉降的目的.
5.4化学固法
此种方法包括深层搅拌法和灌浆法.深层搅拌法适用于有机物较高的泥炭土或淤泥土,灌浆法适用于类软弱土或岩体土地基.深层搅拌法是一种常用的方法,把水泥、石灰等建筑材料进行搅拌之后,灌入到原地基结构当中去,与其组合成牢固的复合地基,增加地基对上部建筑物的承受力,可以有效地防止上部建筑的墙体开裂、倾斜、断裂等现象的产生.因为有些岩石地基的内部是空洞的,所以必须采用灌浆法填充,灌浆的方法有渗入灌浆法、高压灌浆法等,所用的材料不仅仅是水泥和石灰,通常还会使用其它配料.
5.5加筋法
加筋法由加筋土法、锚固法以及竖向加固体复合地基法组成.加筋土法适用于浅层软弱地基,竖向加固体复合地基法适用于深层的软弱地基,而锚固法主要是对上部建筑的边波进行加固.使用加筋土法时,必须在土体中加入能够起抗位作用的钢筋等材料,减少、抵抗或缓冲上部建筑物所施加的压力.使用锚固法时,必须使用土钉等减压材料,缓冲或减少水平方向的作用力.使用竖向加固体复合地基法时,一定要使用桩柱,在桩柱内添加各种混凝土材料,形成复合地基,提高地基的抗压力,有效地降低地基的次固结沉降.
参考文献:
〔1〕张丽.土木工程设计中结构与地基加固技术的应用研究[J].江西建材,2016(04):56-57.
〔2〕汪伟明.土木工程中结构与地基加固技术分析[J].黑龙江科技信息,2016(06):25-27.
关键词:土木工程 土木工程材料 课程标准
中图分类号:G642 文献标识码:A 文章编号:1672-3791(2017)02(b)-0082-02
课程标准是规定某一学科的课程性质、课程目标、内容目标、实施建议的教学指导性文件[1-3]。课程标准与教学大纲相比,在课程的基本理念、课程目标、课程实施建议等几部分阐述的详细、明确,特别是提出了面向全体学生的学习基本要求。土木工程材料课程是土木工程专业的一门专业基础课程,其教学目的是使学生掌握有关土木工程材料的性质,应用的基本知识以及必要的基础理论,了解工程材料性质和材料结构的关系,以及改善性能的途径,并获得主要土木工程材料的试验方法的基本技能训练。通过该课程的学习,为将来从事专业技术工作时,能够针对不同工程,合理地选择和使用材料打下理论基础,并能与后续课程密切配合,了解材料与设计参数及施工措施的相互关系。《土木工程材料》课程标准的制订显得尤为重要。
1 土木工程材料课程设计的理念及思路
该课程主要是为了使未来的建设工程师了解和掌握工程中常用材料的基本性能与应用方法,因此,在教学中应始终贯彻工程应用和创新两种理念,加强土木工程材料在工程实际中的应用及重视感性认识, 通过实验和情景式教学提高学生实践能力,鼓励科学探索,培养创新意识。因此,土木工程材料力学课程的教学,应从工程事例出发,回归于工程应用,以项目的形式组织教学,加强演示实验,采用启发式教学,加强学生创新意识的培养。
2 土木工程材料课程目标
《土木工程材料》课程的知识目标是让学生充分了解材料的组成以及结构对材料性质的影响,了解外界因素对材料性质的影响,了解各主要性质间的相互关系,初步学会主要建筑材料的试验方法并掌握材料的组成、性质及技术要求等。通过学习使学生会利用理论知识知道改善材料性质的措施,熟悉有关国家标准或行业标准,根据工程要求能够合理地选用材料。
3 土木工程材料课程内容及要求
土木工程材料课程可以以不同项目为教学组织主线[4],以不同任务作为教学模块,分为11个教学单元。
(1)土木工程材料的基本性质。主要内容包括材料的基本物理性质、材料的力学性质、材料与水有关的性质、材料的热性质、材料的耐久性。主要让学生熟悉材料的物理性质,掌握从材料物理性质分析材料的性质方法,会根据材料的结构构造对材料的性能进行分析,熟练掌握材料的力学性质及耐久性和环境协调性,材料的结构构造对其性能的影响以及了解材料的热性质。
(2)气硬性胶凝材料。主要内容包括石膏、石灰、水玻璃。主要让学生掌握胶凝材料的分类及特征,以及原材料和生产过程;了解石膏、石灰的种类及生产;了解其制备技术及制品的技术性质。掌握水玻璃的生产及特征,应用;掌握水泥的生产和水泥的组成材料,会根据胶凝材料的特征在实际生产中加以应用。
(3)水泥。主要内容包括通用硅酸盐水泥,其他品种水泥。主要让学生掌握水泥的生产和水泥的组成材料;掌握水泥水化硬化,水泥石的腐蚀与防止,水泥的技术性质;掌握水泥石防止腐蚀的措施;掌握通用硅酸盐水泥的运输、储存,通用硅酸盐水泥的特性及应用,简单了解其他品种水泥。
(4)混凝土。主要内容包括混凝土的定义与分类,普通混凝土的组成材料,混凝土拌合物和易性,混凝土的强度,混凝土的变形性能,混凝土的耐久性,混凝土质量波动与混凝土配制强度,普通混凝土配合比设计,粉煤灰混凝土,轻骨料混凝土,其他品种混凝土。主要让学生掌握混凝土组成材料的技术要求,掌握外加剂和掺合料的应用。混凝土的分类、组成材料及对组成材料的要求,混凝土常加的外加剂和掺合料的特性。通过学习混凝土拌合物的和易性及影响因素,会在实际中对混凝土的和易性进行调整;熟练掌握混凝土拌合物的和易性,了解影响和易性的主要因素;熟练掌握混凝土的强度及影响强度的主要因素;熟练掌握混凝土的配合比设计方法(初步配合比,基准配合比,实验室配合比);熟悉混凝土配制强度波动规律;了解轻骨料混凝土的性能,配合比设计及应用,熟练掌握粉煤灰混凝土及轻骨料混凝土的配合比设计及应用。
(5)建筑砂浆。主要内容包括:静矩和形心、惯性矩与惯性积、平行移轴公式主轴和主惯性矩、组合截面惯性矩的计算。主要让学生掌握建筑砂浆的组成材料及性质,砌筑砂浆的配合比设计,抹面砂浆的配制和应用。
(6)砌筑材料。主要内容包括砌筑砂浆、抹面砂浆,其它建筑砂浆。主要是让学生了解砖、砌块、砌筑石材;掌握各种墙体材料的技术性质与特性。
(7)沥青及沥青混合料。主要内容包括沥青的分类及石油沥青的基本结构组成,沥青的基本性质,沥青的技术要求与性质,沥青的掺配、改性及主要制品,沥青混合料。主要是让学生了解沥青的组成结构及石油沥青;熟练掌握石油沥青的组成、结构;熟悉石油沥青的技术性能及其标准和选用;了解改性的沥青材料及其制品。
(8)金属材料。主要内容包括建筑钢材,铝合金及制品。主要让学生理解钢材的性能及应用。熟悉钢材的分类,掌握钢材的主要技术性能,熟练掌握钢材的拉伸性能,熟悉钢材的化学成分对钢材性能的影响,掌握钢材冷加工及r效。基本了解铝合金及其制品性能。
(9)木材及制品。主要内容包括木材的分类与构造,木材的物理力学性质,木材的防腐与防火,木材的综合应用。主要让学生理解木材的性质及土木工程中常用的木材。掌握木材的主要性质,了解木材的分类与构造,了解土木工程中常用木材,了解木质材料制品和木材的防腐与防火。
(10)建筑功能材料。主要内容包括绝热材料、吸声材料。主要让学生了解绝热材料,吸声材料的概念;掌握绝热材料的特性,了解常用的绝热材料,掌握吸声材料的性质;掌握吸声材料的吸声系数,了解常用的吸声材料。
参考文献
[1] 郭培英.浅谈《化工单元操作》课程改革标准[J].内蒙古石油化工,2015(5):72-73.
[2] 任翔,石小平.基于岗位工作过程的《物流市场营销》课程标准设计[J].交通企业管理,2016,31(6):74-76.
【关键词】智能材料;土木工程;力学特性
1、智能材料类型及特点
智能材料概念在20世纪80年代初被系统地提出,并于80年代末得到前所未有发展空间。随着光纤、压磁、形状记忆合金等智能材料的发展,使其在土木工程领域得到较为广泛地应用。智能材料以其具有的不同功能特点通常可分为两大类,一类为可感知外界或内部刺激强度作用的材料,称为感知材料。另一类为可响应或驱动因外界环境条件或内部状态发生变化的材料,也称为智能驱动材料。智能材料结构具有控制、传感与驱动三个要素,可利用自身感知处理信息,发出指令并执行动作,进而实现结构自我监控、诊断、检测、修复、校正与适应等各种功能。一般情况下,单一功能材料难以具有上述多种功能,这需要组元复合或组装多种材料而构成新的智能材料才能实现。
2、土木工程中智能材料的应用
2.1形状记忆合金的应用
形状记忆合金是具有形状记忆效应的一种智能合金材料,作为新型功能性材料,最主要的优点就是在激发材料的形状记忆效应过程中,材料可以产生高于700兆帕的回复应力及8%左右的回复应变,同时具有较强的能量传输储存能力。该特性的应用能够将材料置于各种结构中,实现结构的自我诊断、增韧、增强与适应控制的应用研究,而且还可以将材料研制为智能型驱动器,在结构变形、损伤、裂缝及振动等方面开展应用研究工作。相变伪弹性与相变滞后性能是形状记忆合金的另一个优点,在加卸载过程中其应力-应变曲线构成环状,表明材料在此过程中能够吸收耗散较多的能量。形状记忆合金具有高达400兆帕的相变回复力,结合该特性能够研制开展形状记忆合金被动耗能控制系统,该系统可实现相变伪弹性性能,可在土木工程结构中用于耗能抗震的被动控制。通常在结构层间或底部安置形状记忆合金被动耗能控制系统,用于实现耗能系统对结构的层间变形的感知,进而起到消耗地震能量的作用。有关研究结果显示,耗能器安装形状记忆合金结构后,耗能器可吸收约为三分之二的地震能量,并显著抑制结构的位移。
2.2压电材料的应用
传统结构中集成压电体,采用压电传感元件对结构的振动模态进行感知,利用其输出结果,采取适宜控制算法对压电体的输入进行确定,以主动控制结构振动的实现,是开展压电类智能结构应用研究的一个较为前沿的领域。很多研究人员在任意复杂激励下,采用压电陶瓷作为加速度传感器与驱动体开展基于压电层合结构的主被动阻尼及主动振动控制等相关问题的研究工作,随着近年来不断发展的压电材料与堆技术,使研究应用压电类智能结构的领域更为广泛。主要应用在土木工程结构的噪声主动控制、静变形控制能、安全评定、健康监测等众多领域都获得良好的控制效果。
2.3光导纤维的应用
光导纤维由外包层与内芯构成,是一种纤维状光通信介质材料,该材料采用先进的信息传输技术起初用于通信传输系统,由于作为信息载体的光子在速度与容量上高于电子,因此得到较为迅速的发展。光子所具有的高并行处理能力与高信息率,潜力在信息容量与处理速度得到充分发挥。光纤材料在监测、传感及信息远距离传输等方面得到应用,将光纤作为传感元件埋入传统混凝土结构中针对结构方面各项指标实现自动监测、诊断、控制、预报及评价等功能,而且将形状记忆合金等驱动元件埋入,有机结合信息处理系统与控制元件,使混凝土结构具有智能功能,进而实现混凝土结构自我诊断与修复。在土木工程结构诊断及主动控制地震响应中,光纤材料一直作为设计传感器的一种比较理想的材料,我国目前也已将其用于检测评定三峡大坝。
2.4压磁材料的应用
在外加磁场作用下,磁流变液悬浮体系的各项流变性能会产生明显的可逆变化。同时在外加场强高于临界值后,磁流变液将迅速从液态转变为固态,在显微镜下能够观察到磁流变液的分散相颗粒在磁场作用下结成沿磁场方向的链状结构。在介于固液体之间可根据磁流变液特点具有的快速、可控及可逆性质,控制流体特性实施时需要较低的能量,因此在智能结构中通常将磁流变液作为动器件的主要材料。在土木工程领域,电视塔、高层建筑、大跨度桥梁等结构中都采用该材料用于实现对地震的半主动控制。此外,磁致伸缩智能材料也在相关研究中日益的得到重要关注。磁致伸缩智能材料具有强烈的磁致伸缩效应,电磁/机械能能够进行逆转换。在智能材料领域中应用前景较为广阔,该材料可用于大功率超声器件、声纳系统、精密定位控制等多个领域。
3、智能材料的发展趋势
在土木工程领域,智能材料的发展趋势集中体现在以下三方面。一是实时监控检测结构状态,在土木结构中集成传感与驱动元件,利用其网络实时监控结构状态,以保证土木工程结构与基础设施的安全,有效降低维修成本。二是形状自适应材料与结构,该结构不仅可承载传递运动,还能检测并改变结构特性,具有较为广阔的应用前景。三是自适应控制减振抗震抗风降噪的结构,在土木工程设计中结构动力响应一直是比较重要的一个问题,尤其是针对桥梁与高层建筑等土木工程结构的抗震抗风问题,研发应用智能材料能够为其提供重要的途径,实现结构的自适应控制。尽管当前的智能材料还存在不同程度的不足之处,但随着有关研究的不断深入,智能材料的性能将得到明显改善。在众多领域中,智能材料都将发挥其潜力,体现出广阔的应用前景,开展的研究包括力学、计算机控制、材料、微电子、人工智能等多个学科技术。
4、结语
综上所述,随着智能材料的广泛应用,同时元件逐渐向小型化、多功能化及高功率化方向发展,在建筑结构中复合控制、传感、驱动系统及耦合/连接元件,建筑结构将发展成为主动式智能建筑结构,对于有效利用太阳能、抵御地震、风振等严重自然灾害影响具有重要作用, 为人们工作生活提供更为舒适安全的环境,对于提高土木工程结构建设质量具有十分重要的意义。
参考文献
[1]王社良,马怀忠,沈亚鹏等.形状记忆合金在结构抗震控制中的应用[J].西安建筑科技大学学报,2008.30
[2]王社良,苏三庆,沈亚鹏等.形状记忆合金拉索被动控制结构地震响应分析[J].西安建筑科技大学学报,2010.33
[3]胡明哲,李强,李银祥等.磁致伸缩材料的特性及应用研究[J].稀有金属材料与工程,2009.29
[4]李俊宝,张景绘,任勇生等.振动工程中智能结构的研究进展[J].力学进展,2009.29
关键词:智能材料;土木工程;光导纤维;压电材料
引言
世界范围内,第一次智能材料的研发成功始于上世纪七十年代的美国,到八十年代,复合智能材料的应用风靡全球,美国首先提出了智能材料结构的概念。智能材料的智能主要体现在,其具备感知内外部环境变化的能力,并通过分析判断来调正自身以适度符合环境。目前,随着光钎、压磁、压电和形状记忆合金等材料的发展,智能材料已经被广泛应用于土木工程的各个领域。最基本的智能材料一般被称为感知材料,其可以感知内外部刺激的材料。通过感知内外部条件变化,并做出适应环境调整的材料被称作驱动材料[1]。现在的智能材料,一般需要多种材料复合组装来实现环境变化情况下材料结构的诊断、修复、调整[2]。
1 智能材料在土木工程中的应用
1.1 光导纤维在混泥土材料的监控
光导纤维材料,是一种光通信介质,其最大优点是传输速度快、信号衰减低和并行处理能力较强,经常被用于高要求的通信传输中。光导纤维和光纤传感器在土木工程中,主要用于对混泥土固化的监控。混泥土结构最大的缺点是抗拉强度弱、内部钢筋容易被腐蚀等,在大面积浇筑过程中由于混泥土结构内部和外部温度差异而导致混泥土块体出现裂缝。这种情况下,将光纤作为传感元件埋入混泥土结构中,对结构的强度、温度、变形、裂缝、振动等可能引起混泥土结构损伤的危险因素进行检测、诊断、预报。更进一步,如果控制元件能接入信息处理系统,并引入形状记忆类金属等智能材料,形成完整的控制系统,将能实现混泥土材料的自适应功能――这正是目前智能材料结构系统在土木工程中应用的前沿课题。
1.2 压电材料
压电材料一般是指在收到压力后,材料两端会出现电压的晶体材料。压电材料在土木工程中的应用主要包括对于结构的静变形控制、噪声控制和抗震抗风等领域。传统的压电材料使用方法是通过压电传感元件对结构的震动进行感知,利用传感器输出结果,从而实现对于震动的感知和预警。在此基础上,采取合适的控制算法对压电体的输入进行控制和定量,从而实现对于结构震动的控制,这是目前压电类智能材料的研究前沿。随着研究的深入和技术的进步,压电类的智能结构土木工程中的应该越来越广泛。
1.3 压磁材料
压磁材料在土木工程中的应用主要包括磁流变材料和磁致伸缩材料。基于磁流变材料的原理,当磁场的强度高于临界强度时,磁流变在极短时间内从液态向固态转化。在介于固液体之间可根据磁流变液特点具有的快速、可控及可逆性质,控制流体特性实施时需要较低的能量,因此在智能结构中通常将磁流变液作为动器件的主要材料。基于这点,磁流变材料可用于高层建筑的结构中,实现对地震的半主动控制。因为潜在应用前景的广阔,使得磁致伸缩材料近年来得到很大关注。磁致伸缩材料具有强烈的磁致伸缩效应,这种材料可以在电磁和机械之间进行可逆转换,这种特性使其可以用于大功率超声器件、声纳系统、精密定位控制等很多领域。
1.4 形状记忆合金
形状记忆合金是一种具有形状记忆效应的智能材料。形状记忆合金的形状被改变后,在一定条件下能激发其形状记忆效应,这一过程中,材料产生高于700兆帕的回复应力及8%左右的回复应变,同时具有较强的能量传输储存能力。基于这一特性,形状记忆合金在土木工程中最大的用处是用于各种结构中来实现结构的自我诊断、增加材料的韧性和强度等、增强材料的适应控制。形状记忆合金还可以被研制成智能驱动器,用于对结构变形、裂缝和振动方面的控制。形状记忆合金具有较高相变回复力,结合该特性能够研制开展形状记忆合金被动耗能控制系统,该系统可实现相变伪弹性性能,可在土木工程结构中用于耗能抗震的被动控制。目前的土木工程实践中,通常在结构层间或底部等受地震作用较大的位置安置形状记忆合金被动耗能控制系统,用于实现耗能系统对结构的层间变形的感知,进而起到消耗地震能量的作用。
2 智能材料的优点局限性
土木工程中应用的智能材料具有反馈信息、自我诊断、自我修复、自适应能能力,实践也表明,智能材料在实际土木工程中的应用使得工程结构具有高强度和耐久性等特点,同时能智能化地执行指令,能较好的适应外部环境的变化。但上述的光纤、形状记忆合金、压电和压磁等材料,本质上属于高智能复合材料,其最大的局限性在于使用成本很高,造价太贵。这一缺点,使得目前对于智能材料的应用智能局限于档次较高、标准较高的建筑工程,智能材料在普通民居建筑中的应用还遥遥无期。另外,智能材料的应用需要相应的技术和配套材料设备的配合支撑,在施工中对于施工技术和工艺的要求较高。因此,但就目前看,对智能材料的应用还不可能实现全方位的广泛普及,但是,智能材料可能是未来土木工程材料的研究和发展方向。
3 结束语
综上所述,智能材料在土木工程中的应用弥补了传统建筑结构适应环境能力弱的缺点,将建筑结构需要人为检测转向建筑结构带自我检测、调整和适应功能。目前智能材料的应用还局限在少部分高要求和高标准的建筑项目,科学界对于智能材料以及相关技术和配套设备的研究,是未来智能材料能广泛应用与土木工程结构的前提和基础。
参考文献
[1]周剑霞,刘冬梅.智能材料在土木工程中的应用浅析[J].科技与企业,2014(7):216.
关键词:实际检测;土木工程结构风场;新技术的开发;进展研究
前言:随着全球建筑的不断发展,人们对建筑的要求也逐渐在提高,一个国家的土木工程建筑也可以反映出国家的经济发展水平,是一个国家综合实力的具体体现,所以,我国在大力发展经济效益的同时,对土木工程的建设也是需要重视的,应该给予最大的支持来不断发展我国土木工程建设。土木工程结构风场的实际检测是完善我国土木工程建筑的重要方式,也是新技术开发的技术保障,促进着我国建筑事业的发展。
一、土木工程结构风场的实际检测过程
1.1高层建筑结构风场的实际检测
高层建筑由于高度的优势,使其在风向负荷和风向机理方面的分析就更加容易,也确定了结构风场实际检测的理论基础,使土木工程结构风场的实际检测工作更便于进行。我国高层建筑在高度和柔性方面都具有着很多的优点,对于检测的效果也比较明显,可以根据检测得出的数据直接分析土木工程建筑抗风能力差的原因。在检测的过程中,当横向振动发生的频率增加时,气体交换的压力就要变大,土木工程建筑会产生严重的共振现象,由于对这种现象的解释还没有合理的公式理论基础,所以,横向脉动作用的土木工程结构风场检测主要是依据与检测的过程和结果来综合分析的。在土木工程结构风场检测的过程中,对于高层的建筑来说,检测人员的经验对总结检测的结果是非常重要的,因为没有明确的理论对检测的过程以及结果做出定义,就需要检测人员依据自己的检测经验来探索土木工程建筑的技术革新,以及提高土木工程建筑稳定性的措施。高层建筑风压及风向的共振是为了获得土木工程建筑在强大风力影响下的结构变化,通过对土木工程结构前后变化的分析,分析土木工程建筑抗风的能力,为提高土木工程建筑的坚固性提供了有效的数据。
1.2低层建筑结构风场的实际检测
在低层建筑结构风场的实际检测过程中,通过长期的检测经验,使得检测人员已经掌握了低层建筑结构风场检测的技术和要求,以及低层建筑结构的检测机理,了解到低层建筑结构对于防震功能的缺失,通过对风洞和风压模型的实际测量,在特定的风压下进行检测,根据检测的结果综合分析土木工程建筑的抗风能力,风洞和风压模型实际测量的检测结果是不同的,比较检测的结果实验值,找到抗风压力不同的原因,从而确定具有更高抗风效果的土木工程建筑技术。在对低层建筑结构的全尺和缩尺风洞进行实际的检测时,要对压力以及系统的抗风效率进行具体的检测,比较分析两个检测的结果,从而确定平均压力系数,分析压力系数对土木工程建筑的影响。通过我国科学家的不断实践,已经验证了低矮建筑在抗风方面的抵抗力,也逐渐对检测的手法进行着改善,所以,在低层建筑结构风场的实际检测中,完善检测系统响应,提高感应抗风系数是非常重要的改善方式,通过技术的革新来加强结构风场的实际检测效率,不断提高检测技术的基础。
1.3跨度大的桥梁建筑的结构风场实际检测
在历史的桥梁建筑中,总是会有桥梁抗风能力差,桥梁受损的现象发生,最大的原因就是对工程建筑的风场检测不具体造成的,随着科学技术的不断进步,桥梁抗风检测也逐渐在革新,已经建立了有效的理论基础。桥梁建筑的不断发展,更多跨度大的桥梁建筑被兴建的越来越多,传统的抗风检测已经不能满足大跨度桥梁的检测,技术逐渐发展为风洞技术的检测,结合风力的强度,对桥梁工程抗风能力进行检测。明确确定影响结构振动的因素,以及可能对大跨度桥梁建筑的影响,由于大跨度桥梁检测的难度非常大,要求在进行健康监控时就检测抗风的能力,实现全面的维护工作。在进行全尺测量时,要通过风速的检测来分析大跨度桥梁建设的抗风能力,从而分析出风向风速对桥梁建筑的影响。
1.4跨度大的空间结构建筑的结构风场实际检测
跨度大的空间结构在建筑上都具有立体的建筑形式,建筑的外形结构也比较复杂,但其投入的建筑资金很少,在结构风场实际检测的过程中,应结合其建筑的特点,根据空间结构的多边形以及实体轻等优点来合理的采取检测的措施。随着空间结构在建筑类型上的不断转变,使其逐渐向着跨度大的建筑类型上靠近,检测的目标也要随时做出改动,结合空间结构建筑的建筑特点,实现三维立体的检测。多变的空间结构建筑的风场分布与跨度大的桥梁建筑是不同的,结构共振的效果也不同,在检测的过程中,应该结合风压基本系数进行分析,根据实践总结的经验以及低矮建筑抗风能力差等因素,采取有效的检测方法。空间结构建筑在风压的影响下,容易产生自激振动,可以利用多通路检测风压的方法,来进行实际检测,根据气流的反映探索检测的结果。
二、新技术的开发进展研究
2.1土木工程结构风场实际检测传感器的工作状况
土木工程结构风场的实际检测主要是依靠传感器来进行的,通过传感器的接收和回复,来对土木工程建筑的抗风能力进行分析,从而实现风场实际检测的过程。随着我国现代化科学技术的不断发展,风场实际检测的传感器也在不断的更新,逐渐研制出热风、电子、三维等传感仪器,促进了风场实际检测工作的进展,也使检测的结果更加的精准。在风场实际检测的过程中,由于风压是属于轻微压力,很多的自然因素都会对其产生很大的影响,这就使得压力传感器得到了广泛的使用,压力传感器可以很敏感的检测出风向以及风速的变化,能及时的抓住风力对土木工程建筑的影响,加大检测结果的准确性。根据压力传感器的制作原理,还可以应用到很多领域的抗风检测中,在风压较大的情况下就需要使用压电式压力传感器来进行抗风的检测,压电式压力传感器具有不受外界因素影响的优点,压电系数也比较高,适用于多种建筑类型的土木工程。
2.2不断改进检测的方式方法
土木工程建筑的多样性,也为风场的实际检测带来了很多的困难,检测需要根据实际的建筑要求和特点,进行检测,需要用到的传感器也不同,所以,使我国风场的实际检测工作进展的非常缓慢。风场的实际检测是掌握检测经验以及发现土木工程建筑缺点的具体工作,只有不断改进检测的方式方法,才能更好的满足建筑的要求。通过完善检测的系统以及提高检测的技术要求来逐步提高风场的实际检测工作,完善检测系统可以及时的发现风场结构的改变以及结构共振的程度,以便于检测人员掌握有效的数据进行后期的分析,提高检测技术可以使用先进的数据处理系统以及统计系统,对检测的数据进行高效的总结和分析,只有通过不断的探索,风场的实际检测工作才能持续的提高,检测的步骤才能更加符合要求。对于抗风能力的检测基本分为两种方法,有齐墙埋管式检测方法和多通路压力检测方法,检测人员可以根据具体的需要采取合适的方法进行检测,从而不断探索改进的方案。
2.3新技术开发的具体进展
随着传感器的进一步革新,我国风场的实际检测技术也得到了具体改善,通过传感器提供的高科技技术,实现了由传感器监控的检测环境,嵌入式系统的开发,也使检测的数据实现智能化的处理,并可以实现通过无线网络的传输把数据输送到电脑的终端,从而实现数据的长期有效使用,方便检测工作总结工作的经验以及对建筑的具体分析。现代化计算机网络的发展也为风场的实际检测工作带来了很多的便利,实现了数据处理零误差的要求,也加快了处理的时间,为检测人员的分析工作提供了良好的保障,同时计算机无线网络的介入,也促进了风场实际检测工作的进展,使得数据传输的过程更加的快捷,实现了高效率的检测目标。
三、实际检测土木工程结构风场的重要作用
3.1有利于加强土木工程建筑的坚固性
在土木工程的建筑过程中,一定会存在施工要求不符合标准的现象,这样会使土木工程建筑的质量下降,通过对土木工程建筑进行结构风场的实际检测,可以及时的发现土木工程建筑存在的问题,从而制定出有效的方案来避免建筑的损坏。对数据的分析可以发现土木工程建筑的抗风能力,如果抗风能力达不到标准就说明土木工程建筑不能有效的抵抗狂风的打击,也就是土木工程建筑的牢固性没有达到标准,根据实际检测的结果,获得建筑抗风能力的数据,从而可以制定出有效的方案来加强土木工程建筑的抗风系数。我国土木工程的建筑都是施工工期长,施工环节复杂的建筑,在施工的过程中,施工人员为了提前完成施工任务,往往会疏忽对于土木工程建筑抗风质量的要求,所以,土木工程建筑施工单位一定要做好监督管理的工作,使施工人员可以了解到更加先进的加强建筑稳定性的技术,结合具体的土木工程建筑要求,使建筑达到具有抗风的能力。
3.2有利于土木工程建筑实现防震减灾的功能
近年来,我国大量兴建土木工程建筑,其最大的原因就是因为灾难的多发性,地震等灾害的来袭,使我国人民承受着巨大的打击和损失,也对我国的建筑水平提出了质疑。日本是一个岛国,发生地震灾害的可能性以及频率都要比我国大,但是日本建筑的防震效果特别好,极大的减少了灾害对人民的影响,这也促进了我国建筑不断革新的步伐。通过对土木工程建筑进行结构风场的实际检测来检测建筑的坚固程度以及是否能实现防震减灾的功能,一旦没有达到这种功能,也能采取有效的措施来弥补,是完善我国土木工程建筑水平的重要措施。建筑施工人员要以提高我国土木工程建筑水平为目标,不断学习先进的建筑知识和技术,总结建筑经验,了解我国多结构的土木工程建筑要求,从实际出发,加强保护人民利益以及生命安全的意识,明确知道土木工程建筑在灾难发生时所起的重要作用。土木工程建筑的防震功能也为我国减少了很多的经济损失,有效的减少了灾难发生时的人员伤亡。所以,土木工程建筑结构风场的实际检测工作,一定要落实到实处,检测人员要认真完成检测工作,找出土木工程建筑抗风能力差的原因,对数据进行细致的分析,协助施工团队制定修补的方案,与施工团队一起为我国土木工程建筑做出贡献,大力发展我国土木工程建筑。
3.3有利于完善我国土木工程建筑要求
土木工程建筑结构风场实际检测工作的大力开展,使我国更加注重了土木工程建筑的检测工作,严抓土木工程建筑的质量关。根据检测的结果可以分析出建筑的水平,有利于施工人员意识到建筑存在的问题,从而完善我国土木工程建筑要求,也有利于提高我国土木工程建筑的施工技术。我国土木工程建筑的水平以及质量是我国综合建筑的重要体现,施工团队不符合要求建筑的工程既影响着我国土木工程建筑的口碑,又使土木工程建筑的功能不能很好的实现,不能保障我国人民群众的利益,所以,要想从根本上提高我国土木工程建筑的水平,相关管理部门既要加大对施工队伍的管理和要求,施工人员之间也要起到监督的作用,施工领导严格规范施工工人的行为,对其施工的细节做出明确的指导,加强施工人员提高土木工程建筑水平的意识,只有相关施工人员一起努力,我国土木工程的建筑水平才能逐步提高,更好的与世界先进施工技术接轨。
结语
在土木工程兴建的今天,施工队伍在施工的过程中,要不断提高自身的施工水平,按照建筑的要求,抓好每个环节的质量,使土木工程建筑达到可以防震减灾的效果。在对土木工程建筑进行结构风场的实际检测时,检测人员要根据检测的实际建筑对象,利用传感器技术来对建筑的抗风能力进行细致全面的检测,严格按照检测的过程进行检测,得出检测数据,对数据进行合理的分析,从而找出我国土木工程建筑还存在的问题和不足。检测人员也要加大对技术的创新能力,实现更高难度的建筑检测工作。
参考文献:
[1]李秋胜,戴益民,李正农.可移动式低矮房屋风压的实测研究[C].第十三届全国结构风工程学术会议论文集.2012.
[2]项海帆,陈艾荣.特大跨度桥梁抗风研究的新进展[J].土木工程学报,2013,36(14):108-110.
[3]顾明,周印,张锋,等.用高频动态天平方法研究金茂大厦的动力风荷载和风致响应[J].建筑结构学报,2010,21(14):55-61.
[4]孙天风,周良茂.无肋双曲线型冷却塔风压分布的全尺寸测量和风洞研究[J].空气动力学学报.2011,12(14):152-155.
[5]周良茂,李培华.两个邻近全尺寸双曲冷却塔风压分布的测量气动实验与测量制[J].2012,16(13):137-144.
[6]李秋胜,等.广州中信广场台风特性与结构响应同步监测研究[C].第十二届全国结构风工程学术会议论文集.2012.
[7]李宏伟.结构健康监测的无线传感器网络系统研究及应用[D]:[学位论文].哈尔滨:哈尔滨工业大学,2012.
[8]欧进萍,周智,等.黑龙江呼兰大桥的光纤光栅智能检测技术[J].土木工程学报,2010,37(10):145-149.
[9]瞿伟廉,陈朝晖,徐幼麟.压电材料智能磨擦阻尼器对高耸钢塔结构风振反应的半主动控制[J].地震工程与工程振动,2011,45(22):494-499.
[10]徐有恒.带有局部圆弧面建筑模型风洞实验的雷诺数模拟问题[D].同济大学土木工程防灾国家重点实验室开放课题基金项目报告,2010.
[11]庞加斌,宋丽莉,林志兴,等.风的紊流特性两种分析方法的比较及其应用[J]. 同济大学学报(自然科学版),2010,34(12):127-132.
[12]李永乐,卢伟,李明水,等.风洞短试验段中基于被动技术的大气边界层模拟[J].实验流体力学,2010,21(30):282-285.
[13]楼文娟,李进晓,沈国辉,等.超高层建筑脉动风压的非高斯特性[J].浙江大学学报(工学版).2011,45(40):671-677.