时间:2023-07-14 16:32:55
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇量化投资方法范例。如需获取更多原创内容,可随时联系我们的客服老师。
折现率是指将未来预期收益折算成现值的比率。投资决策中,折现率是计算投资净现值的重要因素之一,因此,合理确定折现率值对于正确进行投资决策具有重要意义。本文在分析折现率影响因素的基础上,进一步分析了折现率值的量化方法以及换算方法,以期对折现率的确定以及据此进行正确的投资决策有一定借鉴作用。
二、影响折现率确定的因素
(一)资金的时间价值
资金的时间价值亦称货币的时间价值,是指在社会生产和再生产的过程中,货币经过一定时间的投资和再投资后所增加的价值,也就是现在货币的价值大于将来同样数值货币的价值。资金时间价值是由资金的使用价值所决定的,是在资金的运动中产生的。资金具有时间价值的原因主要有以下几个方面:1.资金的投资功能。资金具有投资功能,资金运作恰当,就可能产生超出本金的收益。2.资金的预防。提前持有现金,就可以应付紧急情况的现金需要。3.资金消费的时间偏好。人们在消费时总是抱着赶早不赶晚的态度,认为现期消费产生的效用要大于对同样商品的未来消费产生的效用。因此,即使相同的价格在现在和将来都能买到相同的商品,对人们来讲,效用是不同的,因而其价值也不相同。正是因为资金本身具有的功能和人们对资金的消费偏好,使得货币具有了时间价值。日常经济活动中它的度量有绝对指标和相对指标,绝对指标是货币所产生的增值额;相对指标是指单位时间内货币增值额与原始投资额之比。由于货币投资于不同的项目所增加的价值是不同的,所以习惯上人们统一将资金的时间价值定量为在没有风险和没有通货膨胀条件下的社会平均资金利润率。但这一指标很难计算,因为政府债券几乎没有风险,因而如果通货膨胀率也很低的话,可以用政府债券利率来度量资金的时间价值。但如果通货膨胀率很高的话,就应考虑以利息剔除通货膨胀因素以后的收益率作为资金的时间价值。资金的时间价值决定着折现率的最低值,一般来讲,折现率不应低于资金的时间价值。在实际经济活动中,人们经常把资金的时间价值等同于折现率。事实上,资金的时间价值只是折现率的一个影响因素,除此之外还有资金的空间价值,资金的风险报酬率、资金的通货膨胀率和资金的资本成本。如果以资金的时间价值代替折现率来进行投资决策,就可能对投资者产生误导。
(二)资金的空间价值
资金的空间价值是指资金投资于不同的空间及领域,由于受不同空间客观环境条件的影响而引起的综合获利能力的差异。投资决策中资金时空二维价值的计算一是资金价格对时间的积累,即资金的时间价值;二是把资金的运动、投向及所处的空间因素考虑在内,体现资金的空间价值。资金的空间价值也是确定折现率必须考虑的因素,即资金投资于不同领域,所确定的折现率也应不同。
(三)风险报酬率水平
马科威茨根据对风险的厌恶程度把投资者分为三类,即风险厌恶者(Risk Averter)、风险中性者(Risk neutral)和风险追求者(Risk Seeker)。风险厌恶者不是不肯承担风险,而是会对其所承担的风险提出一定的报酬补偿要求。即使一个投资项目风险较高,但如果收益高到他所要求的报酬补偿时,他也会选择这个风险较高的项目。即使是风险厌恶者,对风险的厌恶程度也有差别。相对激进的投资者会为其所承担的风险提出较低的报酬补偿要求,而保守的投资者对同样的风险会提出较高的补偿要求。通常来讲,所冒风险越大,投资者要求的报酬率也越高。我们把由于冒风险进行投资而获得的补偿叫做风险报酬。风险报酬与投资额的比率称作风险报酬率。根据资本资产定价模型,在不考虑通货膨胀因素的情况下:
期望投资报酬率=无风险资产的收益率+风险报酬率
风险报酬率=风险价值系数×风险程度=b×V
风险价值系数通常用字母b来表示,又称作风险报酬斜率。它通常表达的是全体投资者的风险回避态度。如果更具体些,用它代表某个企业或个人的风险回避态度,那么得到的就是这个企业或个人对某个投资项目的风险价值系数。风险程度用字母V来表示,它代表报酬率偏离程度,可用下列公式计算得出:
V=σ/E(R)
其中,E(R)代表期望报酬率,σ代表不同情况下报酬率的标准离差,可通过下式计算求得:
其中,P代表出现各种情况的概率,R代表各种情况下的收益水平。
就整个市场而言,由于投资者众多,不仅他们所选择项目的风险程度不同,而且投资者各自的风险厌恶程度也不同。在这种情况下,即使未来的现金流量估计完全相同,其内在价值也会出现差异。
(四)通货膨胀率
通货膨胀率也是确定折现率应该考虑的因素之一。因为通货膨胀率是经常变化的,而且较难预测,因此在进行投资决策时,人们经常假设通货膨胀率为零。但通货膨胀率是现实经济生活不能回避的要素,也是我们确定折现率时必须考虑的因素,特别是在通货膨胀率水平较高的情况下,确定折现率应该把通货膨胀因素考虑进去。因此,考虑膨胀率的资本资产定价模型就应为:
期望投资报酬率=无风险资产的收益率+风险报酬率+通货膨胀率
如果用PI1代表报告期物价水平,PI0代表基期物价水平,则通货膨胀率h就可以通过下式计算求得:
(五)期望最低投资报酬率
上文论述了影响折现率的几个因素,根据资本资产定价模型,可以把上述影响因素集中体现在期望投资报酬率这个指标上。在估计期望投资报酬率时,因为将来许多因素存在着不确定性,因而期望投资报酬率就难以唯一确定。一般而言,期望最低投资报酬率是确定投资者应否投资的决定性因素,只要投资项目的回报率高于期望最低投资报酬率,投资者就有利可图,此时项目是可接受的,否则就不能接受。因此,习惯上经常把期望最低投资报酬率作为折现率。根据资本资产定价模型:
期望最低投资报酬率(EMR)=无风险资产的最低收益率+最低风险报酬率+预计通货膨胀率的最低值
无风险资产的最低收益率通常是由资金的时间价值和空间价值所决定的。因此从这个公式可以看出,期望最低投资报酬率受资金时空价值、风险报酬率、通货膨胀率的影响,它是这些因素的集中体现。
(六)资金的资本成本
资金的资本成本也是确定折现率应考虑的因素。项目的预期投资报酬率至少应大于资金取得时的成本,否则投资就没有意义。这里的资金成本通常是指加权平均资本成本,即企业各类收益索偿权持有人要求报酬率的加权平均数。对于自有资金,通常以机会成本作为这部分资金的成本。折现率取值范围应高于资金的资本成本。加权平均资本成本的公式如下:
Kw =∑wiki
其中,Kw表示加权平均资本成本, wi代表各种资金在资金总额中所占的比重, ki代表个别资金成本。
三、折现率值的量化方法
根据上述分析可以看到,折现率并不是一个固定的值,不同企业、不同时期,根据不同的收益能力和不同的资本成本,所确定的折现率也应不同。从折现率本身来说,它是一种特定条件下的收益率,说明资产的获利水平。资金的时空价值、投资者的期望风险报酬率、通货膨胀率水平都将综合地反映在期望最低投资报酬指标上,因此在进行投资决策时经常把期望最低投资报酬率作为折现率。此外,由于企业进行投资的目的是为了获取投资报酬,因而收益水平应大于企业的资金成本,因此,加权平均资金成本也经常作为确定折现率的指标之一。那么这两个指标哪个更合理一些呢?笔者认为,这两者是通过不同计算途径得出的,企业投资的收益率应高于二者,所以选择两者中较大的一个作为折现率,也就是折现率要以影响企业收益和资金成本的较大值确定,即:
DR=max[EMR,Kw]
四、折现率的换算
折现率是建立在复利基础上的一个比率,所以折现率本质上是年复利利率。如果给出的比率是单利而不是复利,或者虽然是复利,但不是一年复利一次,而是一年复利几次或几年复利一次,则给出的利率叫名义利率。而折现率是实际利率,即一年复利一次所采用的利率,因此我们可以通过下列公式将名义利率换算为折现率。
(一)单利比率换算为折现率
假设实际利率为i,这里表示的是折现率,按单利计算的名义利率为r,n为年数,则折现率可通过下式计算求得:(1+i)n=1+r×n。
(二)一年复利几次的比率换算为折现率
当一年复利m次时,则通过公式(1+i)n= (1+r/m)mn来计算折现率i。
(三)几年复利一次的比率换算为折现率
当m年复利一次时,则通过公式(1+i)n= (1+r×m)n/m来计算折现率i。
上述各式中,r、n、m都是已知的,只有i是未知的,所以把已知的各个因素代进去,就可以求出折现率。
五、结束语
实行建设工程招投标制度是我国社会主义市场经济发展的一种竞争形式,也是市场经济发展的必然要求,而资格预审工作正是为开展招投标工作把好重要的第一关。资格预审程序就是为了在招标投标过程中使资格条件不适合承担或者履行合同的投标人退出招标过程。这道程序体现了择优原则,达到了社会资源的优化配置作用,进而促进社会生产力的发展。
我国现行的招投标资格预审主要是种定性的考察、筛选做出投标人优劣的判断。如何根据对投标人提供的资格预审文件,从定性研究转化为一种定量的分析,对招标人和投标人都是有好处的。它既可以避免以往对投标人的资格预审不合理,又可以使招投标资格预审更具科学合理性和公正性。如果要用科学合理的定量分析投标人优劣的情况,就必须设计与之相配套的科学的评价方法。
基于上述考虑,本文所阐述的量化评价法就是为招标人进行招投标资格预审所设计的,尤其是对于一般性技术要求不高、结构不复杂的建设工程项目,采用量化评价法进行招投标资格预审就比传统的定性评价显得更加科学、简单、快捷。
二、量化评价法
没有量化的资格预审方法是不能称其为标准的。笔者结合我国大多数招标人在工程项目招标的成功经验,提出采用量化评价法确定通过资格预审的投标人的评价方法。量化评价法的招投标资格预审方法适用于技术难度不高、工艺较简单的工程项目招投标的资格预审。招标人根据工程自身实际需要,对投标人的各项信息根据预先设量化好的分值,得出投标人资格预审文件分值的排序。
量化评价法的评分项目共四项,总分100分,四项得分相加即为投标人资格预审的总得分,若投标人总分相同,则同时入围参与投标过程的竟标过程。对于各投标单位的参与资格预审的评分细则现以评分表形式列出,如表1所示。
采用量化评价法由招标人预先制定供投标人使用的资格预审文件,并在资格预审书中告知,对投标人某些相关信息进行量化的评分,并最终根据资格预审的得分排名择优合格的投标人。
运用量化评价法科学的引导投标企业健康的发展,对于招标人也可以在经过长期积累后形成自己的投标企业资格预审合格库。对于那些被招标人认可的投标企业和项目经理免于进行重复审查。投标人参与投标过程中,若投标人已进入招标人的资格预审合格库中,则可直接参与投标过程。若投标人有违反或其他不良行为,则招标人可立即将其从资格中直接删除。
此外,运用量化评价法对投标人参与资格预审时的假借资质、人员、资料弄虚作假等行为,招标人可通过下述方式处理:
第一,要求投标人提供参与招标阶段的保函,同时递交资格预审保证金,以便对投标人在招标阶段的不良行为做出经济处罚。而通过递交资格预审保证金,也可以削弱乱借资质的行为,招标人只需对资格预审保证金的汇款方限定为投标人即可。
第二,对于项目负责人所从事企业的认定可通过多方面适当的途径来获得。实际中有些项目负责人同时从事于不同的企业也是事实存在的,因此,招标人可要求投标人提供拟参与该项目的项目负责人及项目机构人员的社会保险资料,利用我国劳动法规定的“用人单位必须与劳动者签订劳动用工合同”,“必须为企业员工缴纳各类规定社会保险”等条款,为规范“借资”、“挂壳”等投机行为提供有力的辨别方式。
第三,完善对于投标人递交资格预审资料中关于企业或者项目负责人从事过以往工程的业绩材料及相关资质证书的核查。建设行政主管部门应做好备案的工作,确保招标人进行项目招标时可以顺利判断投标人对本工程所提供资料的真实性、准确性,杜绝一个项目机构同时服务于若干不同招标人。对于证件造假弄虚作假,行政主管部门应建立电子信息IC卡制度,并录入数据库黑名单。
三、量化评价法应用于实际的案例分析
某项目招标公告简要信息如下:
1.招标人单位名称公开招标的XX工程(项目名称)已经由该市发展和改革委员会批准建设。工程所需资金来源现已落实。现邀请合格的投标人参加本工程的资格预审。
2.工程概况:
(1)工程规模:XXX城市快速路工程,本道路规划为城市A级道路,道路总长约2000米,规划路宽50米,该工程主要包括道路、桥梁及道路以下综合管线等工程。工程总投资约4000万元。
(2)计划开、竣工时间:XXXX年X月至XXXX年X月。
3.本招标工程不分标段,每位申请人可申请参与该工程的资格预审。
4.申请人应当具备的主要资格条件
(1)申请人资质类别和等级:主项市政公用工程施工总承包贰级及贰级以上资质。
(2)拟选派项目经理的资质等级:市政公用工程贰级以上资质。
(3)企业业绩:有过同类道路工程施工业绩。
(4)项目经理业绩:有过同类道路工程施工业绩。
配合本工程招标公告的资格预审文件要求投标人提供该企业上一年度财务报表、该企业准备投入本项目管理人员的名单附职称证明,并要求投标人提供本企业获IS09000证书或提供本企业获地市级工商管理局重合同守信誉证书或本企业在银行获得的资信等级证书(以上证书非必须提供)。招标人在资格预审文件中规定了对投标人采用资格预审量化评价法择优选择排名前60%的投标人为合格投标人。投标人的各项信息得分以表1为评分标准。
最终参与本工程有9名投标人参与本工程的资格预审,经汇总将9名投标人情况表如表2所示。
根据资格预审文件预先告知的本工程量化评价的评分标准,得出的9名投标人得分及排名情况如表3所示。
刚开始的时候,西蒙斯的投资方法和许多人类似:通过对宏观基本面的分析来判断外汇和商品的价格走势,然后进行相应的买卖。但是投资开始还没过两年,西蒙斯就决定完全离开校园,全职进行投资活动。1978年,他离开石溪大学,成了专业投资人。他成立了一个叫林姆若伊的基金,专门从事各种投资,其中主要是外汇交易,但是也包括投资各种小公司的现在统称创投基金的投资活动。10年间,林姆若伊基金的投资回报是25倍,相当于每年增长38%左右,这和后来西蒙斯管理的大奖章基金的回报差不多。那时候西蒙斯还是花很多时间来关注宏观经济事件,比如美联储什么时候加息啦、加息之后美国债券的长期利率和短期利率都分别会有什么变化啦之类的东西。他当年的投资方法是判断型的,直到10年以后的1988年,大奖章基金鸣锣开张,西蒙斯的投资方法才完全转型,从判断型转到量化型。
这里我们要岔开话题,说说投资方法都有哪些类型。其实分起来也很容易,按照投资决策的方式,可以分成判断型和量化型两类。判断型投资者根据各种信息以及个人过去的经验来确定买卖什么、买卖多少、什么价位执行、交易如何退场(止损、止盈)等,这里面最有代表性的人物正是西蒙斯在纽约的邻居索罗斯。股神巴菲特也应该算是判断型的投资者。
投资行业一般把量化型的投资称做“黑箱”。简单来说,量化投资者不依靠大脑的判断,而是靠数学公式来投资。比如:量化投资者把最新的市场及其他相关信息输入到他的秘密公式里,公式得出的结果说买中石化,量化投资者就出去买中石化。过了一段时间,一天或者个把月,也可能是几秒之后,量化投资者又把最新的信息输入他的秘密公式,公式的结果说卖中石化,量化投资者就卖了。量化投资者和判断型投资者的最主要的区别在于,不用判断,而是完全依照公式。公式的好处是它的一致性:同样的信息输入同样的公式,得出的结果是一样的,跟输入的人是谁没有关系。西蒙斯正是量化型投资者的代表。量化型的投资方法还很年轻,它的发展壮大也不过是最近30年的事情。
投资方法还可以根据投资决策所凭借的信息类别来分,分成基本面型和技术型两类。基本面型的投资方法按照宏观经济或者公司盈利的各类指标来进行投资决策,而技术型的投资方法则一般是按照过去的价格走势来判断的。也有许多投资方法既不靠基本面,也不靠过去的价格走势,为了定义的严谨,我们把任何使用非宏观经济指标和公司营运指标来分析投资的方法都归入技术型投资之中。
据2007年的统计,全球70%的钱都是凭借基本面型的投资方法来操作的,30年之前,这个比率应该超过90%。技术型、量化型的投资虽说可以溯源到20世纪初,但是它们的发展和壮大是近30多年的事情,尤其是使用数学工具和电脑的量化投资方法。在金融危机的影响之下,很多投资行业受到影响,但是量化投资(包括指数投资)仍然是基金管理里面增长最快的一个部类。
综合上面两组分类方法,投资方法可以细分为基本面判断法、基本面量化法、技术判断法和技术量化法。索罗斯和巴菲特都应该属于基本面判断法,从目前了解的信息来判断西蒙斯属于技术量化法。技术判断法的追随者很多,它有另外一个名字:技术分析法,或者图线法。人们对技术分析这个行当的态度其实也类似于对金庸小说的态度:有人说好得不得了,有人则不屑一顾,认为这和占星术没什么不同。其实这类投资方法和西蒙斯的大奖章基金有很多相似之处,西蒙斯的林姆若伊基金在1978~1988年之间的投资方法很大程度上都可以归于技术判断方法,后来的大奖章基金也可以说继续走技术型投资的道路。
量化投资优势诱人
对年轻的A股市场来说,量化投资还是一个新概念。而在国外,定量投资已经走过了近40年的道路,其中的标杆人物正是著名的詹姆斯・西蒙斯(James Simons)。
量化投资的神秘故事
文艺复兴科技公司(Renaissance Technologies)的詹姆斯・西蒙斯(James Simons)是华尔街最成功的对冲基金经理之一。他所管理的大奖章基金对冲基金,从1989年到2006年的17年间,平均年收益率达到了38.5%,而股神巴菲特过去20年的平均年回报率为20%。其20年来年均35%的傲人业绩大幅超过了巴菲特。
然而,颇具神秘色彩的西蒙斯对其投资方法刻意保密。迄今为止人们只知道,他的大奖章基金的赚钱方法是:针对不同市场设计数量化的投资管理模型,并在全球各种市场上进行短线交易。而为了让这些“模型”始终处于绝密状态,西蒙斯甚至不惜代价对那些离职创业的员工强硬地提讼。但实际上,数量化投资的背后并不是神秘而不可知的。数量化投资本身有一套规范而透明的做法,并采用科学、公正而理性的方法对市场进行研究并制定适应市场状况的投资模型和投资策略,并不断进行调整和优化。
其实,数量化投资不是黑盒子,也不是神秘主义,更不是一个战无不胜的秘笈。数量化投资不是靠一个投资模型就能一劳永逸地去赚钱,而且也不是使用一个模型就能解决一切问题,更不是一个模型就能胜任任何市场状况。数量化投资模型只是一种工具,数量化投资的成功与否在于使用这种数量化工具的投资者是否真正掌握了数量化投资。同时,数量化投资模型都必须经历不断的跟踪检验、优化、实证等等过程。数量化投资是一个不断改进的过程,数量化投资中最重要的就是投资者的投资思想,包括对投资的理解、理念、经验,所以模型都是建立在这些投资思想上的。量化只是一种方式和工具,正是采用这种工具和方法来获取经验或者检验经验。
有效规避传统投资短板
人脑在思考问题的时候所能考虑到的因素总是有限的,那么决策的广度肯定是不足的。从选股上来看也有这种问题,每个分析师所能跟踪的股票数量也有限制,不可能看太多的股票,这是传统投资的短板。当然,传统的主动投资方法在决策深度上是有优势的,因为可以把基本面研究做得很深入,从而弥补决策广度的不足,这也是决定成败的关键。信息多,信息快,这是当今资本市场的一大特点。市场中信息的传递速度非常快,而且众多分析师对基本面数据进行不断的挖掘,虽然对个股有深入的分析,但是仍然越来越难以弥补决策广度的不足。
另外,或许有的投资者对市场的预测能力非常不错,从理论上说可以获得很好的超额收益(特别是很多事后看来确实预测准确的情况),但现实中收益常常被投资者主观认知上的情绪化波动侵蚀掉。比如说,大多数投资者可能有自己的判断,但是市场短期的表现可能与其判断相左。这个时候,投资者可能会受市场表现的影响而很容易怀疑自己的判断,此时大多数投资者宁愿相信羊群效应―追涨杀跌。
因此,传统定性投资的短板大致在于我们思考的范围总是有限的、较难以处理信息量多而快的问题、难以避免自身的投资情绪等等,这些都将最终影响到投资者的投资收益状况。然而,科学、公正、客观而理性的数量化投资策略却可以规避这些传统主动型投资策略的短板。
量化技术的五大优势
数量化投资与传统的定性投资方法相比,相同点是,二者都致力于建立战胜市场、产生超额收益的投资组合;不同点是,传统的定性投资方法侧重对上市公司的调研、基金经理个人的经验及其对市场的主观判断,而量化投资管理则更加强调数据的分析和应用,以先进的数学统计技术和模型替代人为主观判断。所以,与传统的定性分析方法相比,数量化投资方法能更为理性、客观地分析和筛选股票,避免投资的盲目性和偶然性,以及主观认识的局限性,它能更有效地控制非系统性风险及一些人为因素导致的风险。定量投资管理将定性思想与定量规律进行量化应用,具有如下五大方面的优势:
纪律性:严格执行数量化投资模型所给出的投资建议,而不是随着投资者情绪的变化而随意更改。纪律性的好处很多,可以克服人性的弱点,如贪婪、恐惧、侥幸心理;也可以克服认知偏差,行为金融理论在这方面有许多论述;纪律化的另外一个好处是可以跟踪和修正。定量投资作为一种定性思想的理性应用,客观地在组合中去体现这样的组合思想。一个好的投资方法应该是一个“透明的盒子”,而不是“黑盒子”。每一个决策都是有理有据的,无论是股票的选择,行业选择,还是大类资产的配置等等,都是有数据支持、模型支持及实证检验的。
系统性:数量化投资的系统性特征主要包括多层次的量化模型、多角度的观察及海量数据的观察等等。多层次模型主要包括大类资产配置模型、行业选择模型、精选个股模型等等。多角度观察主要包括对宏观周期、市场结构、估值、成长、盈利质量、分析师盈利预测、市场情绪等多个角度的分析。定量投资的系统性还有一方面就是数据多,即要对海量数据进行处理。人脑处理信息的能力是有限的,当一个资本市场只有100只股票,这对定性投资基金经理来说是有优势的,他可以深刻分析这100家公司,这可以表现出定性基金经理深度研究的优势。但在一个很大的资本市场,比如有成千上万只股票的时候,强大的定量投资的信息处理能力能反映它的优势,能捕捉更多的投资机会,拓展更大的投资机会。
及时性:及时快速地跟踪市场变化,不断发现能够提供超额收益的新的统计模型,寻找新的交易机会。
准确性:准确客观评价交易机会,克服主观情绪偏差,妥善运用套利的思想。定量投资正是在找估值洼地,通过全面、系统性的扫描捕捉错误定价、错误估值带来的机会。定性投资经理大部分时间在琢磨哪一个企业是伟大的企业,那个股票是可以翻倍的股票;与定性投资经理不同,定量基金经理将大部分精力花在分析哪里是估值洼地,哪一个品种被低估了,买入低估的,卖出高估的。
西蒙斯于1988年关闭了他已有10年交易历史的林姆若伊基金,开始了众所周知的大奖章基金的运作。大奖章基金机林姆伊基金有两个明显的不同。
第一个不同:大奖章的投资范围不再包括创投基金。虽说西蒙斯的第一桶金源于投资小公司,而且他一生都对直接投资各种小公司有着浓厚的兴趣,但是大奖章基金投资的产品按照他本人的话来说必须符合三个条件:“必须在公众市场上交易;必须有足够的流动性;必须适合用数学模型来交易。”公众市场上交易的工具包括股票、债券、商品、外汇等。足够的流动性电就是说这种工具的交易量比较大,所以小公司的股票、创业板的股票可能就不包括在内。
第三个条件可能有些令人费解:什么样的金融产品适合用数学模型来交易,什么不适合呢?一般来说,数学模型交易需要对历史数据进行大量的研究,从中寻找规律,所以这个条件的意思是要求有比较多、比较准确的历史价格、交易量等的数据,以便进行数据分析,然后寻找最合适的交易模型来进行量化投资。
第二个不同:大奖章基金的投资方法是纯粹的量化型,以技术型数据为主,而林姆若伊的投资方法则是以基本面数据和判断法为主。为什么要从过去10年中很成功的基本面判断法转型呢?西蒙斯这样说:“首先,数学模型降低你的投资风险。其次,数学模型降低你每天所要承受的各种心理压力。”后面一点是很重要的,因为判断型的投资完全依赖大脑根据最新的信息做出最新的判断,所以,如果想要不贻误战机,大脑必须随时随地的保持高度警觉的状态,因为新的信息在不断出现,投资的仓位需要不断地调整。
对于判断型的投资方法,西蒙斯说: “有时候你像个英雄,因为你投资赚了钱。有时候你像个狗熊,因为赔了。不管怎么说,在大部分时候,投资的得失都是由运气决定的。”数学模型相对于用人脑来判断的投资方法而言投资风险比较低这种说法并没有定论,有的人认为数学模型完全依照过去的数据建立,不能对千变万化的市场做出及时的判断和采取相应措施,相当于开车只看后视镜,所以风险比较大;也有的人认为数学模型其实也是由人的大脑设计、选定的,但是一旦选定,模型没有感情,没有人们在认知、心理上的弱点,尤其是该斩仓的时候会自动斩仓,不会拖泥带水,所以风险比较小。
虽说西蒙斯是个态度严谨的大数学家,虽说他的投资完全是靠数学模型,虽说他的大奖章基金在过去20年间的表现几乎无人能望其项背,但“运气”依旧是西蒙斯在谈起投资的时候最经常提及的一个词。这当然一方面表现出他的谦逊,另一方面也反映了西蒙斯如何将投资的成败精确地转化或数学的概率来处理。如果投资的结果完全是靠运气,那么成败各有一半的概率,这不是西蒙斯要做的买卖。他要将概率提高到50%以上。也许从每笔投资来看,成功的概率略微超过50%并不是很出彩,但是很多笔加起来,投资所靠的“运气”就可能被变成风险有限的高额投资回报。
外面这么热闹,金融业内对此却颇显冷漠。某金融工程师在接受媒体采访时表示,平时不怎么关注迪马克,:“技术分析只是决策中的一个方面,做投资时,会辅助使用一些技术指标,但不会像迪马克那样精细化,而会看一些市场底部或顶部的特征,包括成交量、形态等。”
事实上,迪马克的指标并非横空出世,两年之前,就有券商提出了TD的中国改进版,行内简称TD模型。最开始这家券商还热热闹闹地经常报信号,然后就不怎么跟了。至于其他技术模型,也没有一个能得到长久关注的。笔者在同业交流时常抛出技术分析的话题,很多人常常只是笑笑,“技术这事嘛,仁者见仁……”。
虽然近几年里,技术分析在业内并非主流,但在早些年,技术分析的市场要大的多。90年代做股票,连公募界也多谈的是均线和趋势。那时候,市场规模小,波动大;公司少,可选的蓝筹股不多;散户多,投资追涨杀跌的多。发展到如今,至少在机构,看基本面的多,看技术分析的少,这也是市场自身的一种适应与变化吧。
到底谁对谁错,该看基本面还是技术分析?这不是本文可以得到的结论。事实上,基本面投资和技术面投资的实质没有区别。所有的投资,都是从历史规律中学习和总结经验。基本面看的是公司的财务、管理、发展等的规律,技术面看的是股票价格的规律。有效市场假说认为,证券价格已充分地反映了投资者可以获得的信息,包括基本面信息。所以光看价格也不能说它不科学,这只是某种尚有争议的科学假说而已。
对于量化投资者而言,重要的是对各类投资方法保持一种开放的心态。金融工程师们不必耻于谈技术。而对于那些流传在民间的各位技术大师,不可全信,也不可否定,有甄别的学习才是一种科学的态度。而对于散户,也不必过于盲从所谓的技术大师。现在出了个迪马克,以后就跟着他的观点走,他说牛我就买,他说熊我就卖?这不是一种明智的投资方法。
投资方法应该是一套科学的体系。评价投资方法要考察足够多的样本,测试足够多的环境,对于那些几次成功就拿来忽悠的某些指标或模型,风险太大。而单论技术择时,如果仅仅是对上证指数,由于时间不够长,种类也单一,样本数是偏少的,很难做出成功的模型。这也是量化投资很少做大盘择时的原因。
回到迪马克的观点。“沪指未来六个月将继续反弹至2900点(迪马克在去年12月初预测大盘将反弹48%至2900)”?我不认为有足够大的可能性。至少在我个人自认为科学的逻辑体系下,迪马克预测准确的可能性只有25%。具体而言,对于一个行权价高出现价(2328点)500多点的美式看涨期权来说,在年化40%波动率的假设下,半年内行权的概率仅为25%。
市场调整皆因政策干扰
回顾2010年以来绵绵无期的调整,汪晖认为,持续不断的调整,既不是经济问题,也不是业绩问题,而是政策问题。“宏观政策全面收紧,是本轮市场调整的根本原因。现在看来,政策的影响还将持续,比如宏观刺激政策的退出,货币政策的进一步收紧等,下半年对市场影响最大的因素仍然是政策。”
展望下半年的投资机遇,汪晖坦言2010年可能表现为没有系统性、趋势性牛市机会,但深陷熊市的风险也不大。在股票投资中,汪晖建议抓住业绩驱动的结构性行情和政策主导的产业结构转型这两条主线,并用量化工具约束自己更好地实现投资逻辑。汪晖指出,盛极而衰,否极泰来是股票市场波动的真谛。若从一个较长的时间周期来看,当前市场已经明显处于低风险区域,要重视即将到来的投资机会。
新基金或存投资机会
“现在是新基金发行的好时机。从历史经验看来,市场低迷时发行的新基金可能往往能给投资者带来意外收获。”汪晖表示。
面对当前市场大幅震荡,新基金首募规模日渐下滑的现象,汪晖有着自己独到的见解。“2010年的市场情况与2004年、2008年的情况非常类似,都是一个否极泰来、机遇重现的时期。市场低迷期发行的基金具有低成本介入机会,中长期表现可能更优。而且通常新基金有半年建仓期,比较容易把握市场机会。”
从历史数据看,众多在股指下行通道中成立的新基金,有着不俗的业绩表现。以汪晖管理的华泰柏瑞价值增长为例,该基金成立于市场极度低迷的2008年7月16日,到2010年一季度末,超越业绩比较基准约40%;晨星数据显示,截至2010年5月11日,该基金成立以来的净值增长率为43.7%。
量化投资方兴未艾
资料显示,2009年以来,一股量化基金的热潮在国内悄然掀起,中海、长盛、光大保德信和富国基金先后推出了自己的量化产品。在当前品种繁多的资本市场中,普通投资者要从浩瀚复杂的数据背后选出适合自己风格的股票变得非常困难。为了更好地帮助投资者把握A股中的结构性机会,华泰柏瑞也发行了首只量化产品。汪晖介绍道,与以往量化基金不同的是,华泰柏瑞量化先行基金更具本土化,其量化模型是以中国市场为基础,以基金经理长期投研经验为依据,采用国外成熟的数量化投资方法,在行业配置的前提下,原创了华泰柏瑞单因素多因子量化选股模型。
[关键词]量化投资;Alpha策略;意义;方法
[DOI]10.13939/ki.zgsc.2015.25.083
Alpha策略最初的理论基础是套期保值,是由美国经济学家H.working提出的,随后股指期货的面市,量化研究便激发了人们浓厚的兴趣。传统的资产管理者理念的哲学基础大部分为追求收益风险平衡,然而平均市场收益与超额收益又很难达到绝对的均衡,因此将超额收益也即Alpha分离出来,建立起基于Alpha策略的量化投资,有助于指导投资实践。
1 Alpha策略在量化投资中的应用意义
量化投资指的是以现代计算机技术为依托,通过建立科学的数学模型,在充分掌握投资环境的基础上践行投资策略,达到预期的投资效果。采用量化投资方式的优点包括其具有相当严格的纪律性、系统性,并且对投资分析更加准确与及时,同时还具有分散化的特点,这使得策略的实施过程更加的机动灵活。量化投资过程使用的具体策略通常有量化选股、量化择时、统计套利、高频交易等,每一种策略在应用过程各有千秋,而Alpha策略属于量化选股的范畴。传统的定性投资也是投资人基于一种投资理念或者投资策略来完成整个投资活动的,最终的目的是要获得市场的占有率,并从中取得丰厚的利润。从这个角度来衡量,量化投资与传统投资的本质并无多大差别。唯一不同的是量化投资对信息处理方式上和传统定性投资有着很大的差异性,它是基于现代信息技术、统计学和现代金融工程理论的基础上完成对各类数据信息的高效处理,在对信息处理的速度、广度上是传统定性投资无法比拟的。在对投资风险的控制方面也具有很大的优势,是国际投资界兴起的新型投资理念和应用方法,也在日益成为机构投资者和个人投资者共同选用的有效投资方案。现阶段量化投资的技术支撑和理论建设的基础包括人工智能技术、数据挖掘、支持向量机、分形理论等,这些现代信息处理与数据统计方式为量化投资的可操作性提供了坚实的基础。
Alpha策略在量化投资中的使用优点主要是对投资指数所具有的价值分析与评定。它不是依赖于对大盘的走向变化或者不同股票组合策略趋势的分析,对投资价值的科学分析与合理评估更能吸引投资者的目光。Alpha策略重视对冲系统风险所获得的绝对收益,在股票投资市场上是一种中性的投资方式,具体的程序有选择资产、对资产的优化组合、建立具体组合方式、定期进行调整。为了促进该策略在投资市场中获得良好的收益,就必须先要重视优秀的选股策略,其次是重视期货对冲平均市场收益的时候所产生的风险控制问题。对冲系统风险时,若是能够及时地对投资组合与相关的股指期货的平均市场收益指进行精准地判定和预测,那么将会对整个投资行为产生积极的影响。
2 基于Alpha策略的量化投资具体策略和实践方法
通常情况下,Alpha策略所获得的实际收益并不是一成不变的,这与该策略本身的特定有关,具体表现在周期性与时变性上。
Alpha策略的时变性主要是指当时间产生变化时,超额收益也会随之而改变。需要清除的是Alpha反映的就是上市公司超越市场的预期收益,因此属于公司资产未来估值预期的范畴,所以上市公司自身所处的发展阶段和发展环境不同,那么就会给Alpha带来影响。由于时变性的特点,这就给策略的具体估计模型的设立带来了更多不可确定的因素,为此,参照对Alpha满足不同动态假设的理论基础,建立起一个可以获得不同种类估算的模型,同时假定在同一个时间范围内,超额收益和市场平均收益都保持恒定不变,这就极大地简化了计算的过程与步骤。也就是说在该段时间内,市场上股票投资组合基本面不会有太大的变化与波动,这就与实际的投资状况基本达成一致。对于投资策略的调整则要根据上市公司重大事项发生情况而定,那么估算的时间单位周期可以采用每日或者每周估算,对每一个季度的历史数据进行调整也可以作为一种调整方式,反映公司季度行情。对于具体证券而言,采用季度或者每周的调整频率则不是最为理想的,还要针对公司情况与市场行情综合调整。
Alpha的周期性特点在交替出现的正负号上最为突出,导致这一情况产生的原因主要是行业的周期性特征与套利效应共同造成的。具体而言,首先不同类型的证券分别属于不同的行业所有,当行业处于景气周期循环状态下会影响Alpha的符号与大小,同时景气程度的深与浅也会对此产生影响。其次一个股票组合产生非常大的超额收益情况下,市场中的其他机构投资者或者个人投资者就会不断地参与到该组合的投资中来,最后会导致Alpha逐渐接近于零。因此在建立不同策略的组合方面,要针对每一个季度的具体情况和波动率,进行综合性地评价与分析,并及时地做出必要的调整,以便最大限度地获得市场收益。
量化投资中的Alpha策略并不是一种单一类型的策略,不同的策略都在寻求获得超额收益的市场机会和可能性。现阶段市场上采用的Alpha策略主要有多因子选股策略、动量策略或者反转策略、波动性策略、行业轮动策略、行为偏差策略等,每一种策略在具体实施过程中都有其特征性,并且可以相互结合使用,发挥出综合预测和评价的作用。
多因子选股策略是必要和常用的选股方式,最大的优势是可以将不同种类和模块的信息进行高效化综合分析与评价后,确定一个选股最佳方案,从而对投资行为进行指导。该种选股策略的模型在建立方面比较容易,是量化投资中的常用方式。同时多因子模型对反映市场动向方面而言具有一定的稳定和可靠性,这是因为所选取的衡量因子中,总有一些可以把握住市场发展行情的特征,从而体现其本来就有的参考价值。所以在量化投资过程中,很多投资者都使用多因子模型对其投资行为进行评估,无论是机构投资者或者是个人投资者,都能够从中受益。多因子选股策略模型的建立重点在于对因子的剔除和选择上,并要合理判断如何发挥每一个因子的作用,做出综合性的评定。
动量策略的投资方式主要是根据价格动量、收益动量的预期与评定,对股票的投资进行相应的调整,尤其是针对本身具有价格动量的股票,或者分析师对股票的收益已经给予一定评级的股票,动量策略的应用效果会比较理想。在股票的持有期限内,某一只股票在或者股票投资的组合在上一段时间内的表现均佳,那么则可以判断在下一段时间内也会具有同样的理想表现,这就是动量效应的评价依据,从而对投资者的行为起到一定的影响作用。反转策略和动量策略恰好相反,是指某一只股票或者股票投资组合在上一段时间内表现很不理想,然而在下一个时期反而会有突出的表现,这也给投资者带来了一线希望,并对影响到下一步的投资策略的制定。
波动性策略也是Alpha策略的一种方式,主要是利用对市场中的各股运动和发展状态的细致观察与理智分析后,列出一些具有相当大的波动性的股票,同时这些股票的收益相关性也比较低,对此加以动态化的调整和规划,从而逐渐获得超额收益的过程。在一些多因子选股策略中也有机构投资者或者个人投资者将股票具有的波动性作为考察与评价因子之一,波动性策略经常和其他策略相结合来评价,这说明股票投资市场本身就具有一定的波动性,因此在投资过程中要慎重对待。
行业轮动策略和行为偏差策略的应用频率不似前面几种高,但也会和另外几种策略相互结合使用。行业轮动策略主要是为了充分掌握市场行业轮动机制与特征,从而可以获得高额的收益,对行业之间的投资也可以非常高效和准确地进行,对把握正确的时机有很大的优势。行为偏差策略目的是窥探到股票市场中存在的过度反应或者反应不足等现象,这些都属于股票投资市场的偏差,从而可以通过投资者对不同股票抱有的差异化评价来实现超额收益。
关键词:量化;投资;基金
数量化投资(以下简称量化投资)作为一种新兴的投资方法出现于20世纪50年代,千禧年后蓬勃发展,截至2008年,该类投资基金占美国证券市场份额的30%。
近年来,量化投资在中国渐渐引起重视,光大保德信基金、上投摩根基金、嘉实基金、中海基金、长盛基金、华商基金和富国基金等,先后推出了自己的量化基金产品。不少基金公司国内外广揽数量化投资人才,一股“量化基金”的热潮悄然掀起。
正如定性投资的偶像巴菲特一样,量化投资领域的传奇人物为詹姆斯 西蒙斯。据统计,詹姆斯 西蒙斯管理的大奖章基金从1989到2006年的平均年收益率高达38.5%,净回报率超过股神巴菲特(他以连续32年保持战胜市场的纪录,过去20年平均年回报达到20%),即使在2007年次债危机爆发当年,该基金回报都高达85%,西蒙斯也因此被誉为“最赚钱基金经理”,“最聪明亿万富翁”。与巴菲特的“价值投资”不同,西蒙斯依靠数学模型和计算机管理着自己旗下的巨额基金,他称自己为“模型先生”。西蒙斯几乎从不雇用华尔街的分析师,他的文艺复兴科技公司里坐满了数学和自然科学的博士。用数学模型捕捉市场机会,由计算机做出交易决策,是这位超级投资者成功的秘诀。(上海金融学院国际金融研究院 鹿长余)
截至2009年6 月30 日,中国定量投资规模总量大约187 亿元,在全部基金管理规模中占比仅0.6%。可以说量化投资在中国目前还是一块需要开垦的处女地,可以预期的是,量化投资在中国发展前景广阔。
什么是量化投资呢?“通过信息和个人判断(using information and judgment)来管理资产为基本面投资或者传统投资,如果遵循固定规则,由计算机模型产生投资决策则可被视为数量化投资。” ――Fabozzi《Challenges In Quantitative Equity Management》
与传统投资相比,量化投资的优越性主要来自两个方面:其一,现资组合理论强调通过多元化投资组合消除非系统性风险,以实现降低风险的作用。但实际上由于人的视野和精力都相对有限,基金经理或研究员不可能进行大范围的股票甄选和高频率的验证测算,形成的投资策略得不到宽度、广度上的肯定,难免形成一孔之见。靠人力甄选得到的投资组合很难达到最优化配置,无法确保在风险管理和利润追求上的投资目标。而量化投资的视角更广,借助计算机高效、准确地处理海量信息,更广泛地寻找和验证投资机会,消除投资组合配置的局限性。其二,行为金融学认为,投资者是不理性的。任何一个投资个体的判断与决策过程都会不同程度地受到认知、情绪、意志等各种心理因素的影响。基金经理和投资研究员在一段时间跟踪某只股票之后,由于时刻关心股价的表现和基本面的变动,可能出现不同程度的情感依赖,“和股票谈起恋爱”。即使出现了下跌趋势,也可能因为过度自信、抵制心理等不理性的分析出发点而导致投资、荐股时的行为偏差。而量化投资依靠计算机配置投资组合,克服了人性弱点,使投资决策更科学、更理性。
简单的说,量化投资是快速高效、客观理性、个股与组合并重、收益与风险并重的投资方法。
量化投资的一般步骤如下:
数据化模型构建组合
1、 数据化:主要任务是把众多纷繁复杂的数据整理分类归纳成有用的数据;
2、 建立模型:给定一个策略,选择合适的模型预测收益与风险,选择最好的策略建立模型;
3、 构建组合:根据预测结果按照规则选择对象构建组合;
最后我们来看下专业金融人士对量化投资的一些看法。
嘉实基金公司的王永宏博士介绍,定量投资和传统的定性投资本质上是相同的,二者都是基于市场是非有效或弱有效的理论基础,投资经理可以通过对个股估值、成长等基本面的分析研究,建立战胜市场、产生超额收益的组合。不同的是,定性投资管理较依赖对上市公司的调研,以及基金经理个人的经验和主观判断,而定量投资管理则是“定性思想的理性应用”。定量投资的核心投资思想包括宏观周期、估值、成长、盈利质量、市场情绪变化等等。
俗话说,“条条大路通罗马”。巴菲特与西蒙斯的投资理念与成功,说明投资没有一定之规。
以巴菲特为代表的一类投资家认为,“现实世界是极为复杂的,经验与思考才是财富制胜之道”。因此,其成功的关键,不是顶级的科技,而是对市场的理解、洞悉和不随波逐流的勇气,即以“人”的因素造就财富的增值。
西蒙斯代表的一类投资家则被看作是推论公式、信任模型的数学家。他们利用搜集分析大量的数据,利用电脑来筛选投资机会,并判断买卖时机,将投资思想通过具体指标、参数的设计体现在模型中,并据此对市场进行不带任何主观情绪的跟踪分析,借助于计算机强大的数据处理能力来选择投资,以保证在控制风险的前提下实现收益最大化。
目前量化投资观念也在中国兴起,量化产品正开始萌芽。新发行的嘉实量化阿尔法基金就是量化投资产品,其试图将投资专家的锐利洞悉和数学家的严格客观进行整合,在基本面分析的基础上,提炼出产生长期超额收益的投资思想,借助计算机系统强大的信息处理能力构建定量模型及投资组合,并根据市场变化趋势及时动态调整,加上基金经理严格遵守纪律性投资法则,使该基金在融合定性投资思想精髓的同时,能够规避基金经理个人情绪对组合的影响,有效克服人性弱点,力争取得长期、持续、稳定的超额收益。
富国基金另类投资部总经理,前巴克莱(BGI)大中华主动股票投资总监李笑薇认为量化投资的核心仍是“人脑”。尽管量化投资在海外发展已有30 余年。由于种种原因,目前这一投资方式在中国尚处起步阶段,对于量化投资也存在诸如“量化就是模型决定一切”、“量化是完全由计算机选股”等较片面的认识。李笑薇表示,量化投资的核心是模型设计,“模型决定一切”的说法只能说是部分正确。当一个模型已经设计建设好之后,模型所产生的交易单的确需要严格执行,只有在特殊情况下才能对其进行修改。
但量化投资的核心是模型的设计和建设。而人脑无疑是这一过程中的关键。人对市场的理解,对模型构建的了解,对模型在市场中应用的经验,是搭建一个完美“黑匣子”的最关键。“只有模型设计和建设得好,投资业绩的把握才会增加。”李笑薇表示。
此外,不同的市场以及同一个市场的不同阶段对应的投资模型是不一样的。所以模型从开始设计到最后应用要经过不断修改,这是最难的问题。“这需要足够的对市场的理解和对模型的理解。”李笑薇解释到,定性投资人和定量投资人看待市场的角度不同。