时间:2023-07-18 16:36:01
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇欧姆定律含义范例。如需获取更多原创内容,可随时联系我们的客服老师。
如图所示,电源电压U保持不变,闭合开关,调节滑动变阻器的滑片P在某两点之间来回滑动,电流表的示数变化范围是0.5A~1A,电压表的示数变化范围是2V~7V。
求:(1)电源电压U
(2)定值电阻R
二、试题分析
令滑片P在滑动变阻器上从左向右由1向2点滑动,由题目分析知:滑动变阻器接入电路的电阻变大,电流表示数变小,电压表示数变大,故电流表示数从1A变化到0.5A,电压表示数从2V变化到7V,定值电阻R两端的电压从U-2V变化到U-7V,滑动变阻器接入电路的电阻值分别是__________,__________ 。
三、参考解答
解法一:由题意知,当滑片处于1和2两点时,定值电阻R两端的电压分别为U-2V和U-7V,通过的电流分别为1A和0.5A,对于定值电阻R利用欧姆定律,可以两次列式
解之得:U=12V R=10Ω
评析:本解法使用的物理知识是欧姆定律的数学表达
,使用该公式时,I、U、R三个物理量必须对应于同一用电器或同一段电路,对于整个电路利用欧姆定律也可以列式:
解法二:由题意知,当滑片处于1和2两点时,定值电阻R两端的电压和电流均发生改变,由于R的阻值不变,根据欧姆定律的含义,当电阻不变时,通过的电流与加在两端的电压成正比,可以列式:
解之得:U=12V
再由题意易求得:R=10Ω
评析:本解法使用的物理知识是深刻理解欧姆定律的含义之一,当电阻不变时,通过的电流与加在两端的电压成正比。
解法三:根据电阻的计算式_____ 可知,当定值电阻R两端的电压和电流均发生改变时,定值电阻R的阻值等于R两端电压变化值与电流变化值的比值,即_____,因此可以列式:
解之得:R=10Ω
再由题意易求得:U=12V
评析:本解法使用的物理知识是深刻理解电阻计算式的使用,不仅_____ ,而且_____ 。
解法四: 由题意知,当滑片处于1和2两点时,整个电路的电阻值发生了改变,导致电路中的电流发生了改变,但电源的电压不变,因此可以列式:
解之得:R=10Ω
再由题意易求得 U=12V
评析:本解法使用的物理知识表面上好像就是电源电压U=IR总,其深刻理解是欧姆定律的另一个含义,即当电压不变时,电流与电阻成反比。
解法五:根据串联电路的分压规律,各导体两端的电压之比等于导体的电阻之比,当滑片处于1和2两点时,两次使用串联电路的分压规律可以列式:_____
解之得:U=12V R=10Ω
评析:本解法使用的关键能熟练使用串联电路的分压规律。
解法六:根据串联电路各串联导体两端电压的计算公式 可以两次列式:
解之得:U=12V R=10Ω
评析:本解法使用的关键能熟练使用串联电路导体两端电压的计算公式。
四、亮点赏析
关键词:全电路;欧姆定律;实验教学;感性教学
中图分类号:G712 文献标识码:A 文章编号:1672-5727(2012)08-0098-02
欧姆定律是《电工基础》中最常用的基本定律之一,技工院校现在使用的《电工基础》教材(中国劳动社会保障出版社出版,第四版)中把欧姆定律分为部分电路欧姆定律和全电路欧姆定律两部分。对于部分电路欧姆定律,由于中学物理课本已作详细介绍,学生容易接受,但对于全电路欧姆定律,由于其涉及的概念较多且各物理量之间的关系复杂,再加上教材未附相应的实验,学生缺乏感性认识。因此,学生很难理解和接受,也是其成为教师教学中重点和难点的原因。笔者针对学生在学习过程中容易产生的困惑和疑问,借助实验来帮助学生理解,收到了较好的效果。
明确教学目标是教师组织
全电路欧姆定律教学的关键
掌握全电路欧姆定律对于学好《电工基础》这门课程来说至关重要。因为后续章节中多处电路的分析和计算要应用到这一定律。教学是一个教师与学生双向互动的过程,作为教师,要组织好全电路欧姆定律教学,必须先明确教学目标,做到心中有数,才能更好地开展教学。
知识目标:(1)理解电动势、内电阻、外电阻、内电压、外电压、端电压、内压降等物理量的物理意义;(2)掌握全电路欧姆定律的表达形式,明确在闭合电路中电动势等于内、外电压之和;(3)掌握端电压与外电阻、端电压与内电阻之间的变化规律;(4)掌握全电路欧姆定律的应用。
能力目标:(1)通过实验教学,培养学生的观察和分析能力,使学生学会运用实验探索科学规律的方法;(2)通过对端电压与外电阻、端电压与内电阻之间的变化规律的讨论,培养学生的思维能力和推理能力。
理解各物理量的物理意义是
学生掌握全电路欧姆定律的基础
全电路欧姆定律的难点在于概念较多,且各物理量之间的关系复杂。因此,首先,应让学生准确理解各物理量的含义。
全电路是指含有电源的闭合电路,如图1所示。其中,R代表负载(即用电器,为简化电路,只画一个),r代表电源的内电阻(存在于电源内部),E代表电源的电动势。整个闭合电路可分为内、外两部分,电源外部的叫外电路(图1中方框以外的部分),电源内部的叫内电路。外电路上的电阻叫外电阻,内电路上的电阻叫内电阻。当开关S闭合时,电路中就会有电流产生,I=,该式表明:在一个闭合电路中,电流强度与电源的电动势成正比,与电路中内电阻和外电阻之和成反比,这个规律称为全电路欧姆定律。
要理解这个定律,要先理解以下几个物理量的物理意义:第一个是电动势,它是指在电源内部,电源力将单位正电荷从电源负极移到正极所做的功。这个概念比较抽象,涉及知识面较广,要使学生全面、深刻地理解它是有困难的。考虑到学生的接受能力和满足后续知识的需要,需向学生讲清两个问题:一是电动势的值可用电压表测出——电动势等于电源没有接入电路时两极间的电压;二是电动势的物理意义是描述电源把其他形式的能转化为电能的本领,是由电源本身的性质决定的。第二个是电源的端电压(简称端电压),它是指电源两端的电位差(在图1中指A、B两点之间的电压,也等于负载R两端的电压)。需要注意的是,端电压与电动势是两个不同的概念,它们在数值上不一定相等。第三个是内压降,它是指当电流流过电源内部时,在内电阻上产生的电压降。全电路欧姆定律也可表示为:“在闭合电路中,电动势等于内、外电压之和。”
掌握各物理量的变化规律是
掌握全电路欧姆定律的重点
全电路欧姆定律的难点在于各物理量之间的变化规律,也是学生容易产生疑惑的地方。可以利用演示实验来验证各物理量之间的变化规律,以增加学生的感性认识,提高学生的逻辑推理能力。
第一,验证电源内电阻的存在并计算其大小。对于电源的内电阻,由于存在于电源的内部,既看不见,也摸不着,学生对此存在质疑。为此,可用图2进行实验,不但可以证明内电阻的存在,还可测出内电阻的大小。在图2中,用1节1号干电池作电源,电阻R为已知值(可根据实际情况选定)。开关闭合前,记下电压表的读数U1(此值即为干电池的电动势),开关闭合后,记下电压表的读数U2,发现U2比U1小(见表1),就是因为电源内部存在内电阻的缘故。
根据公式r=R可算出该电池的内电阻。再用不同型号的干电池(如5号干电池、7号干电池)进行重复实验,发现它们的电动势虽然相等(为了后面实验的需要,尽量选用电动势相等的电池,并保留这些电池),但内电阻不一定相同。
第二,端电压U跟外电阻R的关系。
实验电路如图3所示,用1节1号干电池作为电源,移动滑动变阻器的滑动片,观察电流表和电压表的读数变化,并将它们的读数记录到表2中。通过观察发现:当滑动片从左向右移动时(为保证实验设备安全,滑动片不要移到最右端),电流表的读数慢慢变大,电压表的读数慢慢变小;当滑动片从右向左移动时,电流表的读数慢慢变小,电压表的读数慢慢变大。由此得出结论:端电压随外电阻上升而上升,随外电阻下降而下降。根据表2中的数据可绘成曲线(如图4所示),即电源的端电压特性曲线。从曲线上可以看出:电源端电压随着电流的大小而变化,当电路接小电阻时,电流增大,端电压就下降;当电路接大电阻时电流减少,端电压就上升。
思考:如果滑动片移到最右端,电压表、电流表的读数将为多少?
第三,端电压与内电阻r的关系。
根据公式U=E-Ir分析可知:当电流I 不变时,内阻下降,端电压就上升;内阻上升,端电压就下降。实验电路同图3,只需将电路中的电源用前面已测过内阻值的不同型号的电池代替即可,观察电流表、电压表的读数,上述结论即可得到验证。
应用规律,解决实际问题
首先向学生提出问题:你是否注意到,电灯在深夜要比晚上七八点钟亮一些?这个现象的原因何在?在回答这个问题之前,可先通过实验验证这一现象的存在,如图5所示。图中5个灯泡完全相同,先将开关全合上,使灯泡发光,再逐个断开开关,发现灯泡逐渐变亮,原因分析:随着开关的断开,外电阻增大,导致干路电流减小,使得内压降下降,从而端电压增大,即灯泡两端的实际电压增大,故灯泡变亮了。上述问题也得到了解决。
在教学过程中,如果尽可能地增加一些实验,通过生活中的实验记录其数据并指导学生得出规律,提高感性认识,不但可以提高学生的学习兴趣,也会提高教学效果。
参考文献:
[1]李书堂.电工基础(第4版)[M].北京:中国劳动社会保障出版社,2001.
[2]毕淑娥.电工与电子技术基础(第2版)[M].哈尔滨:哈尔滨工业大学出版社,2004.
[3]王兆良.关于“全电路欧姆定律”的教学[J].福建轻纺,2007(2).
关键词:电动势;电压;电流;电阻;功率
中图分类号:G633.7 文献标识码:A 文章编号:1003-6148(2016)12-0060-3
1 P于闭合电路欧姆定律
1.定律内容:在外电路为纯电阻的闭合电路中,电流的大小跟电源的电动势成正比,跟内、外电阻之和成反比。
2.定律的得出:仔细分析人教版和教科版教材,他们给出定律的过程是相同的。在电源外部,电流由电源正极流向负极,在外电路上有电势降落,习惯上称为路端电压或外电压U,在内电路上也有电势降落,称为内电压U';在电源内部,由负极到正极电势升高,升高的数值等于电源的电动势。理论和实践证明电源内部电势升高的数值等于电路中电势降低的数值,即电源电动势E等于外电压U和内电压U'之和,即E=U+ U'=U+Ir。若外电路为纯电阻,则U=IR,所以E=IR+Ir,I=
从教学实际看,上述给出定律的方法很多同学并不能理解,只能生硬的接受,这给学生对定律的理解和运用带来困难。在教学中笔者尝试从能量角度推导定律,效果较好,过程如下:从能量转化观点看,闭合电路中同时进行着两种形式的能量转化:一种是把其他形式的能转化为电能,另一种是把电能转化为其他形式的能。
设一个正电荷q,从正极出发,经外电路和内电路回转一周,其能量的转化情况如下:
在外电路中,设外电路的路端电压为U,那么正电荷由正极经外电路移送到负极的过程中,电场力推动电荷所做的功W=qU,于是必有qU的电能转化为其他形式的能量(如化学能、机械能等)。在内电路中,设内电压为U',那么正电荷由负极移送到正极的过程中,电场力所做的功W=qU',于是必有qU'的电能转化为内能。若电源电动势为E,在电源内部依靠非静电力把电量为q的正电荷从负极移送到正极的过程中,非静电力做的功W=qE,于是有qE的其他形式的能(化学能、机械能等)转化为电能。
因此,根据能量转化和守恒定律,在闭合电路中,由于电场力移送电荷做功,使电能转化为其他形式的能(qU+qU'),应等于在内电路上由于非静电力移送电荷做功,使其他形式的能转化成电能(qE),因而qE=qU+qU',即E=U+U'。若外电路为纯电阻R,内电路的电阻为r,闭合电路中的电流强度为I,则U=IR,U'=Ir,代入上式即得I=
E/(R+r)。
3.定律的理解:不论外电路是否为纯电阻,E=U+ U'=U+Ir总是成立的,只有当外电路为纯电阻时,才能成立。闭合电路欧姆定律的适用条件跟部分电路欧姆定律一样,都是只适用于金属导电和电解液导电。
2 不同的物理量间的图像关系以及对图像的理解(以外电路为纯电阻为例)
图像1 电路中的总电流与外电阻的关系即I-R图像
图像2 外电压与外电阻的关系即U-R图像
由闭合电路欧姆定律可得:
分析可得:R增大,U增大;R减小,U减小,但不成线性关系。R0,U0; R∞,UE。故U-R图像如图2所示。当外电路短路(R=0),外电压为0;当外电路开路R∞,外电压等于电动势E,即若题目中告诉某一电源的开路电压,则间接告诉了电动势E的值。
图像3 外电压与总电流的关系即U-I图像
由闭合电路欧姆定律可得:U=E-U'=E-Ir。
分析可得:由于E、r为定值,故U与I成线性关系,斜率为负,故图像应如图3所示。当I=0,U=E,即图像的纵截距表示电动势;当 此时外电路短路,此电流即为短路电流,即横截距表示短路电流。斜率k=-r,即斜率的绝对值表示内电阻。
由上述分析可知,若给出了U-I图像,则由图像就可以知道电源电动势E和内阻r这两个重要的参量。若将不同电源的U-I图像画在同一个图中,如图4所示,则可以比较不同电源的电动势和内阻的大小。由图4可知E1=E2、r1
图像4 电源的输出功率与外电阻的关系,即P-R图像
图像5 电路中的功率与总电流的关系,即P-I图像
与闭合电路相关的功率有3个:电源的总功率、电源内部的热功率、电源的输出功率。
由P=IE可知P与I成正比,图像应为过原点的一条倾斜的直线。
由P=I2r可知图像应为顶点过原点的关于纵轴对称的开口向上的抛物线的一半。
由P=P-P=IE-I2r可知图像应为过原点的开口向下的抛物线的一部分。
若将3个功率与电流的关系图像画在同一图像中,则分别对应着图6中的图线1、2、3。
利用图线1可求电动势E,利用图线2可求内阻r,需要特别注意的是:此图像中3条图线不能随意画。“1”“2”交点说明此时P=P,即P=0,外电路短路,电流最大,此状态下图线“3”与横轴交点值一定是“1”“2”交点对应的横坐标值,否则就是错误的。“2”“3”交点的含义为P=P,此状态下R=r,则“2”“3”交点对应的横坐标一定为 ,若不是则错误。还必须注意的是“2”“3”的交点一定是“3”的最高点,因为R=r时,P最大,若不是这样则此图画错了。
案例 在图7(a)所示电路中,R0是阻值为5 Ω的定值电阻,R1是一滑动变阻器,在其滑片从最右端滑至最左端的过程中,测得电源的路端电压U随电流I的变化图线如图7(b)所示,其中图线上的A、B两点是滑片在变阻器的两个不同端点时分别得到的,讨论以下问题:
问题1 滑片从最右端滑至最左端的过程中,电流表示数如何变化?
分析:滑片从最右端滑至最左端的过程中,由电路结构可知外电阻R变小,由I-R图像可知电流表示数变大。
问题2 滑片从最右端滑至最左端的过程中,电压表示数如何变化?
分析:滑片淖钣叶嘶至最左端的过程中,由电路结构可知外电阻R变小,电压表测量的是外电压,由U-R图像可知电压表示数变小。
问题3 电源电动势和内阻各为多大?
分析:图7(b)给出的是外电压与电流的关系,由图可求得斜率绝对值为20,将图线延长与纵轴相交,可得纵截距为20,由U-I图像的物理含义可知电源电动势E=20 V,内阻r=20 Ω。
问题4 滑片从最右端滑至最左端的过程中,电源的输出功率如何变化?最大输出功率为多少?
分析:由题目所给条件可求得R1的最大阻值为75 Ω,滑片从最右端滑至最左端的过程中,外电阻的变化范围为80 Ω~5 Ω,由P-R图像可知P先变大再变小。调节过程中可以满足R=r,则当R1的有效阻值为15 Ω时,电源输出功率达最大 ,即为5 W。
问题5 若在上述条件下,仅将R0的阻值改为30 Ω,滑片从最右端滑至最左端的过程中,电源的输出功率如何变化?电源的最大输出功率为多少?
分析:滑片从最右端滑至最左端的过程中,外电阻的变化范围为105 Ω~30 Ω,由P-R图像可知P一直变小。由于无法满足R=r,则电源输出功率不可能为,则当R与r最最接近即R1=0 Ω时电源输出功率最大,计算可得为4.8 W。
与闭合电路欧姆定律应用相关的题目较多,题型多种多样,解决这类题目的关键是要搞清电路结构,搞清电表的测量对象,分清已知量与未知量,再运用相应规律求解则可。当然,这也不是一蹴而就的,只有多做、多练、多思考才能达到较好的效果。在解答闭合电路问题时,部分电路欧姆定律和全电路欧姆定律经常交替使用,这就要求我们认清研究对象是全电路还是某一段电路,是这一段电路还是另一段电路,以便选用对应的欧姆定律,并且要注意每一组物理量(I、U或I、E、R、r)的对应关系是对同一研究对象的,不可“张冠李戴”。
参考文献:
1 知识目标
1.1 知道电动势的定义.
1.2 理解闭合电路欧姆定律的公式,理解各物理量及公式的物理意义,并能熟练地用来解决有关的电路问题。
1.3 知道电源的电动势等于电源没有接入电路时两极间的电压,电源的电动势等于内、外电路上电势降落之和。
1.4 理解路端电压与电流(或外电阻)的关系,知道这种关系的公式表达和图线表达,并能用来分析、计算有关问题。
1.5 理解闭合电路的功率表达式。
1.6 理解闭合电路中能量转化的情况。
2 能力目标
2.1 培养学生分析解决问题能力,会用闭合电路欧姆定律分析外电压随外电阻变化的规律。
2.2 理解路端电压与电流(或外电阻)的关系,知道这种关系的公式表达和图线表达,并能用来分析、计算有关问题。
2.3 通过用公式、图像分析外电压随外电阻改变规律,培养学生用多种方式分析问题能力。
3 情感目标
3.1 通过外电阻改变引起电流、电压的变化,树立学生普遍联系观点。
3.2 通过分析外电压变化原因,了解内因与外因关系。
3.3 通过对闭合电路的分析计算,培养学生能量守恒思想。
3.4 知道用能量的观点说明电动势的意义。
教学建议
1 电源电动势的概念在高中是个难点,是掌握闭合电路欧姆定律的关键和基础,在处理电动势的概念时,可以根据教材,采用不同的讲法.从理论上分析电源中非静电力做功从电源的负极将正电荷运送到正极,克服电场力做功,非静电力搬运电荷在两极之间产生电势差的大小,反映了电源做功的本领,由此引出电动势的概念;也可以按本书采取讨论闭合电路中电势升降的方法,给出电动势等于内、外电路上电势降落之和的结论.教学中不要求论证这个结论.教材中给出一个比喻(儿童滑梯),帮助学生接受这个结论。
需要强调的是电源的电动势反映的电源做功的能力,它与外电路无关,是由电源本生的特性决定的。 电动势是标量,没有方向,这要给学生说明,如果学生程度较好,可以向学生说明,做为电源,由正负极之分,在电源内部,电流从负极流向正极,为了说明问题方便,也给电动势一个方向,人们规定电源电动势的方向为内电路的电流方向,即从负极指向正极。
2 路端电压与电流(或外电阻)的关系,是一个难点.希望作好演示实验,使学生有明确的感性认识,然后用公式加以解释.路端电压与电流的关系图线,可以直观地表示出路端电压与电流的关系,务必使学生熟悉这个图线。
学生应该知道,断路时的路端电压等于电源的电动势.因此,用电压表测出断路时的路端电压就可以得到电源的电动势.在考虑电压表的内阻时,希望通过第五节的“思考与讨论”,让学生自己解决这个问题。
3 最后讲述闭合电路中的功率,得出公式 , .要从能量转化的观点说明,公式左方的 表示单位时间内电源提供的电能.理解了这一点,就容易理解上式的意义:电源提供的电能,一部分消耗在内阻上,其余部分输出到外电路中。
教学设计方案
闭合电路的欧姆定律
1 教育目标
1.1 知识教学点
1.1.1 初步了解电动势的物理意义。
1.1.2 了解电动势与内外电压的关系。
1.1.3 理解闭合电路欧姆定律及其公式,并能熟练地用来解决有关的电路问题。
1.1.4 理解路端电压与电流(或外电阻)的关系,知道这种关系的公式表达和图线表达,并能用来分析、计算有关问题。
1.1.5 理解闭合电路的功率表达式,理解闭合电路中能量的转化。
1.2 能力训练点
通过用公式、图像分析外电压随外电阻变化而变化的规律,培养学生用多种方法分析问题的能力。
1.3 德育渗透点[来源:高考资源网]
1.3.1 通过外电阻的改变而引起I、U变化的深入分析,树立事物之间存在普遍的相互联系的观点。
1.3.2 通过对闭合电路的分析计算,培养学生能量守恒的思想。
2 重点、难点、疑点及解决办法
2.1 重点
①正确理解电动势的物理意义。[来源:高考资源网]
②对闭合电路欧姆定律的理解和应用。
2.2 难点
路端电压、电流随外电阻变化规律。
2.3 疑点
路端电压变化的原因(内因、外因)。
2.4 解决办法
制作多媒体课件,采用类比分析、动态画面、图像等帮助同学增强感性认识,逐步了解电动势的含义,推导闭合电路欧姆定律公式,分析各项的意义,使学生有初步整体感知,精选运用闭合电路欧姆定律分析路端电压随外电阻改变而改变的规律的典型例题,结合图像分析突破难点。
3 教学过程设计
引入新课:
教师:同学们都知道,电荷的定向移动形成电流.那么,导体中形成电流的条件是什么呢?(学生答:导体两端有电势差)
演示:将小灯泡接在充满电的电容器两端,会看到什么现象?(小灯泡闪亮一下就熄灭.)为什么会出现这种现象呢?
分析:当电容器充完电后,其上下两极板分别带上正负电荷,如图1所示,两板间形成电势差.当用导线把小灯泡和电容器两极板连通后,电子就在电场力的作用下通过导线产生定向移动而形成电流,但这是一瞬间的电流.因为两极板上正负电荷逐渐中和而减少,两极板间电势差也逐渐减少为零,所以电流减小为零,因此只有电场力的作用是不能形成持续电流的。
教师:为了形成持续的电源,必须有一种本质上完全不同于静电性的力,能够不断地分离正负电荷来补充两极板上减少的电荷.这才能使两极板保持恒定的电势差,从而在导线中维持恒定的电流,能够提供这种非静电力的装置叫电源.电源在维持恒定电流时,电源中的非静电力将不断做功,从而把已经流到低电势处的正电荷不断地送回到高电势处.使它的电势能增加。
4 课时安排[来源:高考资源网][来源:高考资源网]
1课时
5 教具学具准备
不同型号的干电池若干、小灯泡(3.8V)、电容器一个、纽扣电池若干、手摇发电机一台、可调高内阻蓄电池一个、电路示教板一块、示教电压表(0~2.5V)两台、10Ω定值电阻一个、滑线变阻器(0~50Ω)一只、开关、导线若干。
6 学生活动设计
学生观察、动手测电源电动势,并边观察边思考,逐步推导闭合电路欧姆定律,在教师的启发下逐渐理解公式含义,引导学生用公式法和图像法去分析同一问题。
7 教学过程
教师:同学们都知道,电荷的定向移动形成电流。那么,导体中形成电流的条件是什么呢?(学生答:导体两端有电势差。)
演示:将小灯泡接在充电后的电容器两端,会看到什么现象?(小灯泡闪亮一下就熄灭。)为什么会出现这种现象呢?
分析:当电容器充完电后,其上下两极板分别带上正负电荷,如图1所示,两板间形成电势差。当用导线把小灯泡和电容器两极板连通后,电子就在电场力作用下沿导线定向移动形成电流,但这是一瞬间的电流。因为两极板上正负电荷逐渐中和而减少,两极板间电势差也逐渐减小为零,所以电流减小为零,因此要得到持续的电流,就必须有持续的电势差。
教师:能够产生持续电势差的装置就是电源。那么,如何描述电源的特性?电源接入电路,组成闭合电路,闭合电路中的电流有什么规律呢?这节课我们就来学习闭合电路欧姆定律。
8 板书设计
8.1 电源电动势:等于电源没有接入电路时两极间的电压。
8.2 闭合电路欧姆定律。
闭合电路中的电流跟电源的电动势成正比,跟内、外电路的电阻之和成反比。
8.3 路端电压跟负载的关系。
路端电压随外电阻增大而增大。
1 与牛顿运动定律相关的图象问题
1.1 图象用于规律探究
探究“加速度与力、质量的关系”,最后的数据处理和规律的得到就是借助于图象进行分析的,尤其是“加速度与质量的关系”,学生很难直接从数据上看出两者成反比关系,不过当作出如图1所示的a-m函数图象时,学生从经验出发很容易猜测其是双曲线,继而猜测是反比,是不是呢?再进一步变化坐标,作出如图2所示的a-1[]m图象,得到一条过原点的直线,归纳出结论:得到当合力一定时,加速度与质量成反比的结论.
1.2 提取图象信息解运动学问题
从图象中找出解题信息,把图象与物理图景相联系,应用牛顿运动定律及其相关知识解答.
1.3 借助于v-t图象切线斜率的变化比较加速度
x-t图象切线的斜率表示瞬时速度,同样可以推理得v-t图象切线的斜率能表示加速度a,切线斜率的变化可以反映加速度大小的改变.
例2 木块A、B质量相同,现用一轻弹簧将两者连接置于光滑的水平面上,开始时弹簧长度为原长,如图4所示,现给A施加一水平恒力F,弹簧第一次被压缩至最短的过程中,有一个时刻A、B速度相同,试分析此时A、B的加速度谁比较大?
解析 在弹簧压缩过程中,隔离A、B进行受力分析,对A有:F-kx=maA,弹簧形变量变大,A做加速度减小的加速运动;对B有:kx=maB,B做加速度增大的加速运动.接着定性画出A、B运动的v-t图象如图5所示,交点为C表示两者速度相同,直观地呈现该处B切线的斜率大于A的斜率,即aB>aA.[HJ1.5mm]
2 电路中的图象问题
2.1 U-I图象问题
导体的伏安特性曲线能直观的体现导体电流随所加电压的变化关系.线性元件对应的伏安特性曲线是斜直线,直线的斜率k=I/U,物理意义是电阻的倒数.对于非线性元件来说,伏安特性曲线是曲线,任意一点对应坐标的比值k=I/U,物理意义也是电阻的倒数.计算阻值时两者有很大的区别.但任意一点对应坐标的乘积P=UI的物理意义是元件的实际功率,这个结论对两种元件都适用.
电源的路端电压与干路电流的关系图象也是考查的重点.根据闭合电路欧姆定律的变形式:E=U+Ir,可得出路端电压与电流的关系式为:U=E-Ir.作出此图象可以得出是一个一次函数的图象.斜率物理意义k=-r,纵截距的物理意义b=E.
[TP9GW879.TIF,Y#]
例3 小灯泡通电后其电流I随所加电压U变化的图线如图6所示,P为图线上一点,PN为图线的切线,PQ为U轴的垂线,PM为I轴的垂线,则下列说法中正确的是
A.随着所加电压的增大,小灯泡的电阻增大
B.对应P点,小灯泡的电阻为R=U1[]I2
C.对应P点,小灯泡的电阻为R=U1[]I2-I1
D.对应P点,小灯泡的功率为图中矩形PQOM所围的面积
解析 坐标的比值等于电阻的倒数,所以A选项正确,B选项正确.因为是非线性元件,欧姆定律不再适用,所以不能用切线的斜率等于电阻,C选项错误.坐标的乘积代表实际功率D正确.
点评 本题即为伏安特性曲线的数形结合考查,根据R=U1[]I2,得出图象上点的坐标比值为电阻倒数,根据P=UI得出图象上点的坐标的乘积为实际功率.
2.2 闭合电路中的常见的功率的图象问题
闭合电路中经常遇到的三个功率:电源总功率P=EI,电源的输出功率P=EI-I2r,电源的内热功率:P=I2r.
例4 某同学将一直流电源的总功率PE、输出功率PR和电源内部的发热功率Pr随电流I变化的图线画在了同一坐标上,[TP9GW880.TIF,Y#]如图7中的a、b、c所示,根据图线可知
A.反映Pr变化的图线是c
B.电源电动势为8 V
C.电源内阻为2 Ω
D.当电流为0.5 A时,外电路的 [LL]电阻为6 Ω
解析 a为P总-I关系图象,根据P=EI,可得E=4 V,b为P出-I关系图象根据P=EI-I2r,可得r=2 Ω;c为Pr-I关系图象.再根据闭合电路欧姆定律可得R=6 Ω,正确答案:A、C、D.
点评 根据图象和表达式的数形结合,待定系数法可以求出电源的电动势和内阻结合闭合电路欧姆定律求出外电阻的大小.
2.3 电源电动势和内阻测定的常见图象问题
测量电源电动势和内阻的常见方法有三种:U-I法,I-R法,U-R法,三种方法都是围绕闭合电路欧姆定律的表达式来的.在研究图象问题上却是有所不同,斜率和截距的物理意义大不一样,需要我们数形结合明确各自的含义.
关键词:H参数;小信号模型;欧姆定律;等效变换;输出电阻
中图分类号:TN72 文献标识码:A 文章编号:1672-3791(2016)04(b)-0000-00
引言
模拟电子技术不仅是电类各专业的一门技术基础学科,也是生物医学工程、医学影像技术等医学相关专业的基础学科,它主要研究各种半导体器件的性能、电路及应用。而晶体三极管构成的基本放大电路,又是模拟电子技术最基本的、最重要的内容,因此,BJT的H参数及小信号模型的建立和简化,是掌握分析放大电路的基础。在实际的工程应用中,晶体三极管的单极放大倍数有限,大规模集成电路的发展,提高了电路的放大倍数,实现了将微弱的电信号进行放大的作用,那么在设计集成电路时,对多级放大电路各个参数的求解将显得尤为重要,特别是放大电路的输出电阻求解,而欧姆定律法求解输出电阻过于复杂,因此该文提出用等效变换法求解放大电路的输出电阻。
1 BJT的H参数及小信号模型
由于三极管是非线性器件,使得放大电路的分析非常困难。建立小信号模型,就是将非线性器件做线性化处理,从而简化放大电路的分析和设计。当放大电路的输入信号电压很小时,把三极管小范围内的特性曲线近似地用直线来代替,从而把三极管这个非线性器件所组成的电路当作线性电路来处理。
低频小信号模型[1]如图1所示,它是用H参数来描述的,在交流通路中,把一个晶体管看成一个两端口网络,输入一个端口,输出一个端口。
图(a)是将BJT封装起来,测试它的两个特性,输入特性和输出特性。图(c)是输入特性曲线,其中 不同,输入特性曲线是有一些变化的,即要 保持不变,增大 时也要增大 。从图(d)的输出特性曲线中,当 变化时, 是在一个特定的 上变化的,就在 一定时,分析 与 这个函数的变化,从这两组特性上,如果仅从数学的角度去描述它,那么BE之间的电压,是 和 的函数;而输出回路的 ,也是 和 的函数。
从数学角度进行建模,即BE之间的电压,是 和 的函数;而输出回路的 ,也是 和 的函数进行分析,输入和输出回路的自变量是两个相同的自变量, 和 ,但是两个回路的函数不一样,在输入回路里面,函数是BE之间的动态电压 ;在输出回路里面,函数是 电流,即 ,下面的分析都是从这两个函数关系进行变化的。
小信号模型研究的不是某一条特性,而是在有变化量时的特性,即在Q点有变化时的模型。采用对函数求全微分的方法,,在低频小信号作用下,函数和自变量之间的关系就是全微分:
这里有几个特定的关系,CE间的电压 是一定的,分析 和BE之间的关系 ; 是一定的,那么分析 和 之间的关系; 是一定的,分析 和 之间的关系; 是一定的,分析 和 之间的关系。因此定义4个参数,其中 和 表示的是一个动态的量,一个 量,或者是一个交流小信号量。可以简化如下:
上述公式中,将晶体管看成一个黑盒子,向黑盒子里面看,从输入端看到一个 ,这个 碰到的首先是一个电阻,然后还看到一个受控源,是CE间的电压 控制BE之间的电压。从输出回路看进去,可以看到一个受控电流源,是 控制的 ;还有一项是与受控电流源并联的另外一路电流,它是 这个动态电阻在此处产生的电流,可以得到一个图1(b)中的模型,这个模型完全是由这个公式建立起来的。这个数学模型,首先是选择合适的自变量和函数,研究的低频小信号情况,用变量进行替换,按照最后得到的式子,建立数学模型。
研究这4个H参数的物理意义的目的是这个电路仍然复杂,再通过近似法,将该数学模型简化的更合理一些,忽略掉一些参数,具体如图2所示。
描述的是 不变的情况下, 的变化量与 的变化量之比。晶体管在静态工作点Q下, 取一个 和一个 ,即一个变化的电压比上一个变化的电流,得出的是一个动态电阻,我们将Q点下取的变化量得到的电阻叫做 ,指的是BE之间的动态电阻。所以 的物理意义就是BE之间的动态电阻。
描述的是 不变的情况下, 的变化量与 的变化量之比。从图(b)中可以看出, 在静态工作点 处,由于 变化,曲线向左或者向右移动,产生 。它的物理意义是,输出回路CE之间的电压对BE之间的影响,是反馈量,即输出通过一定的方式影响到输入就叫做反馈。对于管子自身CE之间的电压就对BE之间的电压有影响,所以我们称 为内反馈系数。
描述的是在一定 的条件下, 和 变化量之比,就是电流放大系数 。晶体管就是通过它的电流放大来进行能量控制的。
是在一个 下,研究 在Q点附近产生的变化对此时 变化的影响。这个描述的是该曲线上翘的程度,即在 情况下,与横轴平行的程度。对于晶体管,这个参数描述的其实是 这个电导,对于 本身来说,在一般的静态管中,在 变化值大的情况下, 的变化值小,因此这个电阻 值很大。在实验室里我们去测量,几乎看不出来,这个曲线和横轴不平行,如果曲线与横轴平行,表示 趋近于 ,它上翘的程度几乎看不出来。
在输入回路中, 不可以忽略; 可以忽略。在输出回路中, 不能忽略; 趋近于 ,可以将 忽略。根据上面的分析建立一个非常简单的模型,如图3所示。
2 欧姆定律和等效变换求解输出电阻法比较
晶体管有三个极:基极、发射极和集电极,首先来分析共集电极放大电路:
方法一:用欧姆定律[2]求解输出电阻
在交流等效电路的输出端加上一个电压vt,令信号源vs=0,保留该信号源的电阻Rsi。加上一个电压vt,必定产生一个电流it,用电压比上电流就是输出电阻。
则输出电阻:
方法二:用等效变换[3]求解输出电阻
从输出电阻向左看,看到电阻Re和左侧电阻并联。流入节点e的电流是大电流ie,由于受控电流源内阻无穷大,此处可以相当于断开,那么流出节点e的电流是小电流ib,因此,节点e左侧的电阻相当于电阻 减小了 倍,即等效为 ,那么输出电阻可以直接写成 。
总结,如果看到的是小电流,实际上是大电流,这个电阻等效变换是要增大(1+β)倍;如果看到的是大电流,实际上是小电流,这个电阻等效变换是要减小(1+β)到多少倍。这就是等效变换的一个规则。
用等效变换的方法对共集-共集放大电路的动态分析,求解其输出电阻。
3 结束语
通过详细的分析介绍小信号模型的建模与简化,可以更好的理解其中每个参数的含义。模拟电子技术讲求的方法就是估算,在以后的实际的工程应用中,采用等效变换求解输出电阻法,相较于欧姆定律,能够快速的估算出放大电路的参数,减小计算量。
参考文献:
[1]康华光.模拟电子技术基础(第六版)[M].高等教育出版社,2014.
一、初中学生物理学习中的问题原因
在日常生活中,不断有家长反映:自己的孩子在小学成绩一直都很不错,可到了初中,特别是到了初二开始学习物理后,成绩一下子就滑了下来,总觉得物理难以学懂。我们在教学过程中也发现,有一些学生吃力地学习了一段时间后,仍不见显著进步,就干脆放弃了学习物理。更让我们感到担忧的是,在中考冲刺时,有些学生会因为在物理课程上丧失信心,影响到了其他课程的学习,甚至就放弃了学习备考。也就是说,因为物理学习中存在的问题,不仅仅是只影响到学生的物理学习,甚至影响到了学生的学习态度。学生在学习中遇到了困难没有得到有效的解决,使得学生学习过程中存在的问题日积月累,一点一点被放大,学生仅有的一点学习热情被一点一点消磨,使得学生把对学习兴趣转移到其他上面,甚至完全放弃了学习。这样也就不难理解学生们在中考时,连最基础最简单的题目也不会做了。作为教育工作者,这样的现象不仅让我反思:初中物理真的有那么难学吗?为什么到了初二因为物理学习的问题会对学生产生这么大的影响呢?怎样才能学好初中物理呢?笔者影响学生物理学习的原因是很多的,可以从学生的生理和心理的角度、物理知识结构的角度、教师的教学过程的角度、学生的学习教程的角度等多个方面来进行分析。本文主要是从学生学习过程的角度来分析学生在物理学习过程中存在的问题。
二、从实际生活中获得的感性材料不足
初中的物理规律多数是从事实中分析、归纳总结出来的。初中学生抽象思维能力不强,感性不足。如果没有足够的能够把有关现象与现象之间的联系鲜明的展示出来的实验或学生日常生活中所熟悉的、曾亲身感受过的事例作基础,势必造成学生学习上的困难。例如,在学习牛顿第一定律时,学生能够从简单的实验分析、归纳总结出来,可以说是一个质的飞跃。但许多学生对牛顿第一定律的文字表述比较陌生,常不能很好的理解定律的含义,这是由于抽象思维不强、感性材料不足而造成的。
三、相关的准备知识欠缺
物理作为一门独立的学科,它肯定有着严密的逻辑体系。掌握物理规律,往往需将以前学的知识作为基础,方能取得良好的学习效果。否则将会给物理规律的学习带来困难。例如,在学“欧姆定律”时,就要联系和综合运用前面的知识作为基础。如电路、电流、电压、电阻等,如果学生在其中某一环节上准备不足,没有很好的理解和掌握,将会使这一规律的学习遇到困难。
四、抽象逻辑思维能力不强
在物理规律的研究和运用中,有时要进行严格的逻辑推理和运用科学的想象等抽象思维活动。初中学生还缺乏逻辑思维能力、没有形成逻辑思维的习惯。其原因是它们心理发展正处于思维发展的转折期,开始由经验型的形象思维向理论型的抽象思维转化,而这个转化在初中阶段一般来说还不能完成。在学习物理规律时不能顺利的度过而感到困难。往往是因为从经验出发,想当然的看待问题,用事物的现象代替本质,用外部联系代替内在联系,在解释物理现象时“就事论事”,不习惯于运用物理概念和规律进行分析、说理和表述。
五、生活中的错误观念的干扰
学生在日常生活中积累了一定的生活经验,对一些问题形成了某些观念,在这些观念中,有的虽比较正确,但往往有一定的表面性和片面性。这些“先入为主”的错误观念对学生正确地理解物理规律往往起着严重的干扰作用。例如,学生有“运动的物体才有惯性”,“物体运动得快,惯性越大”等这类错误观念,这就给学生在学习惯性时带来了很大的困难。
六、思维定势带来的负迁移
迁移原理是教学中的一条重要原理,正向迁移有利于学生在原有的基础上掌握新知识。但思维定势所起的负迁移却干扰着学生对物理规律的理解的掌握,给物理的教学带来困难。负迁移是指已有知识对新知识的学习产生的消极影响。例如,有的学生总是认为浸在液体中的物体所受的浮力随着深度的增大而增大,理由是由于液体内部的压强是随着深度的增加而增大。产生这一错误的原因是把以前学过的液体内部压强公式P=ρgh与浮力公式F=ρgv混淆在一起,没有弄清两个公式的区别,这是负迁移造成的这种结果。
在中学物理知识的结构中有一些占主干地位的基本规律,这些重点规律教学的成败,对于学生能否学好物理知识、能否运用物理知识解决实际问题,具有关键作用。只要我们能认清学生在学习物理规律中常见的问题,对症下药,引导学生掌握物理规律也不会成为一件难事。
七、解决问题的对策
1.创设便于发现问题、探索规律的物理情境。教师要带领学生学习物理规律,首先在教学开始阶段,要创设便于发现问题的物理环境。初中阶段,主要是通过观察和实验发现问题,也可以从分析学生生活中熟知的典型事例中发现问题,有时也可以从对学生已有知识的展开中发现问题。创设的物理情境要有利于引导学生探索规律。创设的物理情境还应有助于激发学生的兴趣和求知欲。例如,在探究滑动摩擦力与哪些因素有关后我教学生讨论拔河比赛中要取胜应注意那些问题。学生们踊跃发言,讨论得出用力握紧绳子是增大压力来增大摩擦,穿有钉的鞋子是增大接触面的粗糙程度来增大摩擦等。从而更好地掌握了这条规律。
一、滑动变阻器滑片移动引起电路变化
由滑动变阻器滑片的移动引起电路中的总电阻发生改变,进而引起电路中电流的变化或电压的重新分配。在分析电路中各物理量变化时,若题目不加以说明,可以认为电源电压不变,定值电阻阻值不变,导线电阻为零。
1.并联电路中的滑动变阻器
图1例1.(2012・玉林)如图1所示的电路,电源电压为3V且保持不变,滑动变阻器R1标有“1A10Ω”的字样。当滑动变阻器的滑片P在最右端时闭合开关S,通过灯泡L的电流为0.5A,移动滑动变阻器的滑片P,在电路安全工作的情况下,下列说法正确的是()
A.向左移动滑动变阻器的滑片P时灯泡变亮
B.滑片P在最右端时通过干路中的电流是0.9A
C.R1消耗的电功率范围是1.5~3W
D.电路消耗的总功率范围是2.4~4.5W
解析:从电路图可以看出,滑动变阻器与灯泡并联。由于并联电路中各个支路相互独立,互不影响,且电源电压不变,所以在电路安全工作的情况下,无论怎样移动滑动变阻器的滑片P,都不影响灯泡的工作情况,因此选项A错误。滑动变阻器R1标有“1A10Ω”的含义是:滑动变阻器允许通过的最大电流是1A,它的最大阻值为10Ω。当滑片P在最右端时,滑动变阻器阻值最大为10Ω,由电源电压为3V,根据欧姆定律I=U1R可计算通过它的电流为0.3A。再根据并联电路的电流等于各支路电流之和,可计算出通过干路中的电流是0.8A,因此选项B错误。因为滑动变阻器允许通过的最大电流是1A,它两端的电压为3V,根据P=UI计算R1消耗的最大电功率为3W。根据P=U21R可知,在R1两端电压不变时,电阻越大,它消耗的电功率越小。所以R1消耗的最小电功率为P=U21R=(3V)2110Ω=0.9W,所以R1消耗的电功率范围是0.9~3W,选项C错误。灯泡消耗的功率P=UI=3V×0.5A=1.5W,电路消耗的总功率等于R1与灯泡消耗的功率之和。电路消耗的最小总功率为0.9W+1.5W=2.4W,消耗的最大总功率为3W+1.5W=4.5W,因此D正确。
答案:D
点拨:并联电路中的滑动变阻器变化电路分析:由于电源电压不变,且并联电路中各个支路相互独立,互不影响,所以含定值电阻的支路其物理量都不变,含滑动变阻器的支路电压不变,其他物理量可以按以下思路分析:若滑动变阻器阻值变大(或变小),则支路电阻变大(或变小),根据欧姆定律,该支路电流变小(或变大),所以干路总电流变小(或变大)。
图22.串联电路中的滑动变阻器
例2.(2012・福州)如图2所示电路,灯L标有“3V0.9W”,滑动变阻器R上标有“50Ω1A”的字样,电压表量程为0~3V,则灯L正常工作时的电流为A。若电源电压为4.5V,为了保证电路中各元件安全工作,滑动变阻器允许接入电路的阻值范围是。
解析:灯L标有“3V0.9W”的含义是灯泡的额定电压为3V,额定功率为0.9W,根据公式I=P1U可求灯L正常工作时的电流为0.3A,利用R=U1I进一步能求出灯泡电阻为10Ω。要保证电路中各元件安全工作,综合考虑就是电路中的电流不能超过灯L正常工作时的电流0.3A,滑动变阻器R两端的电压不能超过电压表量程3V。因为L与R串联,当滑动变阻器连入电路的阻值最小时,电路中电流最大为0.3A,此时灯泡两端电压为3V。R的最小阻值可以这样计算:R小=U1I=4.5V-3V10.3A=5Ω。当电压表示数为3V时,滑动变阻器连入电路的阻值最大,此时通过灯泡的电流为I=4.5V-3V110Ω=0.15A,R的最大阻值为R大=3V10.15A=20Ω。
答案:0.35~20Ω
点拨:串联电路中的滑动变阻器变化电路分析:由于电源电压不变,按以下思路分析:若滑动变阻器阻值变大(或变小),则总电阻变大(或变小),根据欧姆定律,电路中的电流变小(或变大),定值电阻两端电压变小(或变大),根据串联电路的电压特点,得出滑动变阻器两端电压变大(或变小)。
二、开关通断引起电路变化
开关的开、闭能改变电路的结构,使电路处于不同的连接状态:可能串联,可能并联,甚至可以有部分电路被短路,这使得电路有许多变化。解题过程中,应首先弄清开关在断开、闭合时电路中各电阻的连接情况,其次画出开关不同状态时的电路等效电路图,然后根据串、并联电路的特点进行相关的计算。
1.开关转换串并联电路
图3例3.(2012・昆明)如图3所示,电源电压恒定,R1=30Ω,R2=60Ω,当开关S3闭合,S1、S2都断开时,电流表的示数为0.1A。(1)求电源电压;(2)当开关S3断开,S1、S2都闭合时,求电流表的示数、电路消耗的总功率和通电一分钟电流对R1所做的功。
解析:试题的开关较多,而且开关的开闭情况复杂,要判断每一情况下电路的连接情况,不妨考虑“擦除法”。
(1)当开关S3闭合,S1、S2都断开时,可以先把S1、S2擦除,得到图4(a)。容易看出R1、R2串联,根据电流表示数及串联电路特点和欧姆定律,很容易计算电源电压电源。电压U=IR=0.1A×(30Ω+60Ω)=9V。
图4(2)当开关S3断开,S1、S2都闭合时,电路的连接情况如图4(b)。此时R1、R2并联,电流表测量的是干路电流,电流表示数I′=I1+I2=U1R1+U1R2=9V130Ω+9V160Ω=0.45A。电路消耗的总功率P=UI=9V×0.45A=4.05W,电流对R1所做的功W=U21R1t=(9V)2130Ω×60s=162J。
答案:(1)9V(2)0.45A4.05W162J
点拨:解决电学问题的关键,首先是要能够准确地辨别电路是串联电路还是并联电路,能够把比较复杂的电路图准确地简化为等效的串、并联电路。其次要会运用串、并联电路的特点及电学的基本规律正确解题。
2.开关造成用电器短路
图5例4.(2012・宿迁)某电饭锅内有R0=44Ω、R=2156Ω的两根电热丝,将它接入电路,如图5。当S分别置于“1”挡和“2”挡时,挡是保温状态;当S接“2”挡时,电路中的电流大小是A,通电100s电路产生的热量是J。
解析:从电路图看出,当S置于“1”挡时,R0和R串联。当S置于“2”挡时,R被短路无电流通过,电路中只有R0。根据P=U21R可知,在电源电压不变的情况下,电路中的电阻越大,电功率越小,单位时间内产生的热量越少,所以“1”挡是保温电路。当S接“2”挡时,电路中的电流可以利用欧姆定律计算,I=U1R0=220V144Ω=5A。电路产生的热量可利用电热公式计算,Q=I2Rt=(5A)2×44Ω×100s=1.1×105J。
答案:151.1×105
点拨:用电器与开关并联时,当开关闭合,用电器就会被短路,使用电器中无电流通过,分析电路时可以把这个用电器直接拆除。
三、电表变化引起电路变化
电路中含有电流表和电压表以后,电路变得更为复杂。解决这类问题的关键是正确认识电表的双重作用。一是指示作用,即电表能指示出电路中的电流或电路两端的电压;二是连接作用,即电路中的电流表自身电阻很小,相当于一根导线。在分析电路时可以把电流表去掉,并用导线替代电流表;电压表电阻很大,相当于断开的开关,在分析电路时可以把电压表直接拆除。注意:千万不能把去掉电压表的地方用导线连起来。
例5.(2012・沈阳)如图6所示电路,电源电压为6V,灯泡L标有“6V2W”的字样,设灯泡灯丝电阻不变。
图6(1)若表a为电流表、表b为电压表,当S闭合时,电流表的示数为1A,求电阻R的阻值。
(2)若表a、表b均为电压表,闭合开关S,求灯泡L的功率及通电4min消耗的电能。
图7解析:(1)首先简化电路。因为表a为电流表,相当于一根导线;表b为电压表,相当于断开的开关,在分析电路时可以把电压表直接拆除。处理后的电路如图7甲所示,此时灯泡L因与导线并联被短路,而无电流通过,又可以直接拆除,电路进一步简化为图7乙所示,容易看出电路中只有一个用电器R。根据电流表示数和电源电压,结合欧姆定律容易求出电阻R的阻值。
(2)表a、表b均为电压表时,可以把电压表直接拆除,得到图7丙所示,此时灯泡L与电阻器R串联。这一问中,根据灯泡铭牌数据求出其电阻是解题的关键。
答案:(1)当a为电流表、b为电压表时L被短路,只有R连入电路
R=U1I=6V11A=6Ω
(2)当a、b均为电压表时,L与R串联
RL=U2额1P额=(6V)212W=18Ω
I=U1R总=U1RL+R=6V118Ω+6Ω=0.25A
P=I2RL=(0.25A)2×18Ω=1.125W
W=Pt=1.125W×240s=270J
点拨:用电器的铭牌上提供的数据主要有额定电压和额定功率,这两个量在计算中非常重要。(1)正常工作时的电流:I额=P额1U额;(2)电路中,我们一般认为用电器在不同电压下工作时的电阻不变,因此电阻是计算中的“桥梁”,非常有用。用电器的电阻能通过额定电压和额定功率计算出来:由P额=U2额1R得R=U2额1P额。(3)如果知道实际电压,可以利用比例求出实际功率:P实1P额=U2实1U2额。
四、传感器引起电路变化
传感器是指这样一类元件:它能够感受诸如力、温度、光、声、化学成分等非电学量,并能把它们按一定规律转换为电压、电流等电学量,或转换为电路的通断。即传感器能将被测信号量的微小变化转换成电信号的变化。
例6.(2012・德州)为防止酒驾事故的出现,酒精测试仪被广泛应用。有一种由酒精气体传感器制成的呼气酒精测试仪,当接触到的酒精气体浓度增加时,其电阻值降低,如图8甲所示。当酒精气体的浓度为0时,R1的电阻为60Ω。在图8乙所示的工作电路中,电源电压恒为8V,定值电阻R2=20Ω。求:
(1)当被检测者的酒精气体的浓度为0时,电压的示数是多少;
(2)现在国际公认的酒驾标准是0.2mg/ml≤酒精气体浓度≤0.8mg/ml,当电流表的示数为0.2A时,试通过计算判断被检测者是否酒驾。
图8解析:(1)由题目中的已知条件,当被检测者的酒精气体的浓度为0时,R1的电阻为60Ω。电路图中两电阻串联,电压表测量的是R1的电压。根据串联电路中电压的分配规律或欧姆定律容易求出电压表示数。
(2)当电流表的示数为0.2A时,根据欧姆定律容易求出串联电路的总电阻,进一步算出R1的电阻,结合甲图可判断对应的酒精气体浓度,进而判断被检测者是否酒驾。
答案:(1)当被检测者的酒精气体的浓度为0时,R1的电阻为60Ω。
I=U1R=8V160Ω+20Ω=0.1A
U1=IR1=0.1A×60Ω=6V
(2)当电流表的示数为0.2A时
R1=U1I-R2=8V10.2A-20Ω=20Ω
由图8甲可知,被检测者的酒精气体浓度为0.3mg/ml。
0.2mg/ml
一、部分电路知识是基础
1.电流:自由电荷的定向移动形成电流。I也流是标量,但有方向,我们规定正电荷的定向移动方向是电流的方向。电流的定义式为单位为A。
2.电压:当在导体两端加上一定电压后,在导体中将产生一定的电场,自由电荷在静电力的作用下做定向移动,形成电流。
3.电阻:电流通过导体时受到导体的阻碍作用。电阻的定义式为R,决定式,单位为Ω
4.部分电路欧姆定律:导体中的电流跟导体两端的电压成正比,跟导体的电阻成反比。其表达式为I=,适用范围有金属导电和电解液导电(对气体不适用)和纯电阻电路。
5.电路:在串联电路中有,并联电路中有
例1 根据经典理论,金属导体中电流的微观表达式为I=nvSe,其中n为金属导体中单位体积内的自由电子数,v为导体中自由电子沿导体定向移动的速率,S为导体的横截面积,e为自由电子的电荷量。如图1所示,两段长度和材料完全相同、各自粗细均匀的金属导线ab、bc,圆形横截面的半径之比为rab:rbc=l:4,串联后加上电压,则()。
A.两导体内的自由电子定向移动的速率之比为vab:vbc=l:4
B.两导体内的自由电子定向移动的速率之比为vab:vbc=4:1
C.两导体上的电压之比为Uab:Ubc=4:1
D.两导体上的电压之比为Uab:Ubc=16:1
解析:两段导体串联,根据串联电路的特点可知,电流处处相等,即Iab=Ibc再由金属导体中电流的微观表达式I=nvSe,得,选项A、B错误。根据欧姆定律,得U=IR,所以。又有,得,选项c错误,D正确。答案为D。
点评:导体两端加电压后,在导体中会形成电场,自由电荷在静电力作用下做定向移动而形成电流,金属导体中电流的微观表达式I=nvSe就是由导体中电流推导而出的。串联在电路中的每段导体分得的电压跟电阻成正比。
例2 对于电阻的概念和电阻定律,下列说法正确的是()。
A.由可知,导体的电阻与导体两端的电压成正比,与流过导体的电流成反比
B.由可知,导体的电阻与导体的长度成正比,与导体的横截面积成反比
c.由可知,导体的电阻率与导体的横截面积成正比,与导体的长度成反比
D.导体的电阻率只由材料的种类决定,与温度无关
解析:电阻是由导体本身决定的,跟电流、电压无关,所以选项A错误,B正确。电阻率主要决定于导体的材料,还跟温度有关,所以选项C、D错误。答案为B。
点评:电阻是用比值法定义的,即电阻等于电压与电流的比值。而电阻的大小是由决定的,其中p为电阻率,主要决定于导体的材料,还与温度有关。
二、闭合电路分析是综合
1.电源:电源是通过非静电力做功把其他形式的能转化为电能的装置。(l)电动势是非静电力搬运电荷所做的功与搬运的电荷量的比值,即,单位为V1(2)电源内部也是由导体组成的,也有电阻,叫做内电阻,是反应电源性能的一个重要参数。
2.闭合电路:(1)闭合电路欧姆定律是指闭合电路中的电流与电源的电动势成正比,与内、外电阻之和成反比,其表达式为,只适用于纯电阻电路;(2)路端电压与电流的关系为U=E-Ir,此式适用于一切电路;(3)路端电压与外电阻的关系为U=,此式只适用于纯电阻电路。当外电路断开时,有1=0,U=E;当外电路短路时,有。
例3 一节干电池的电动势为1.5V,一节铅蓄电池的电动势为2V。所以()。
A.干电池在1s内将1.5J的化学能转变为电能
B.蓄电池将化学能转变为电能的本领比干电池的要大
C.无论接不接人外电路,一节干电池两极间的电压都为2V
D. g节蓄电池每通过IC电荷量,电源把2J的化学能转变为电能
解析:电动势的物理含义是电源搬运IC的电荷量做功(把其他形式的能转化为电能)的大小,显然,选项A错误,B、D正确。当电源接人外电路时,两端电压随外电阻的变化而变化,选项C错误。答案为BD。
点评:电动势是比较难理解的物理量,它是非静电力做功与电荷量的比值,而不是非静电力做功与时间的比值。当外电路接通时,随外电路电阻的变化,电流、路端电压也随之改变。
例4 如图2所示,在A、B两点间接有电动势E=4V,内电阻r=lΩ的直流电源,电阻R1、R2、R3的阻值均为4Ω,电容器的电容C=30μF,电流表的内阻不计,求:
(l)电流表的读数;
(2)电容器所带的电荷量;
(3)断开电源后.通过电阻R2的电荷量。
解析:当开关S闭合后,因为电容器的电阻无穷大,可以以去掉,而电阻R1、R2被电流表短路,所以外电路可以简化为电流表和电阻R3串联。
(1)根据欧姆定律可得,电流表的读数I=
(2)电容器接在电源两端,其电压为路端电压,即U=IR3=3.2V,因此电容器带电荷量Q=UC=
(3)断开开关S后,电容器相当于电源,因为电流表内阻不计,外电路是电阻R1、R2并联后与R3巾联,所以通过电阻R1和R2的电荷量之比为又有,解得
点评:电容器中间有电介质,电流不能通过其中,在电路中表现为断路,而理想电流表的内阻为零,在电路中表现为短路,在电路分析时要充分利用这些特点。
三、动态电路分析是热点
1.基本规律:(l)当外电路中任何一个电阻增大(或减小)而其他电阻不变时,电路的总电阻一定增大(或减小);(2)若开关的通、断使串联的用电器增多时,电路中的总电阻增大,若开关的通、断使并联的支路增多时,电路的总电阻减小;(3)在如图3所示的分压电路中,滑动变阻器可视为由两段电阻构成,其中一段R并与用电器并联,另一段R串与并联部分串联,A、B两端的总电阻与R串的变化趋势一致。
2.分析思路:
例5 在如图4所示的电路中,Rc为定值电阻,闭合开关S。当滑动变阻器R的滑片P向右移动时,下列判断正确的是()。
A.电压表V1、电流表A的读数都增大
B.电压表V1与电流表A读数的比值保持不变
C.电压表V2与电流表A读数的比值保持不变
D.电压表V2、电流表A读数变化量的比值保持不变
解析:当滑动变阻器R的滑片P向右移动时,接人电路的阻值变大,总电阻变大,回路中的总电流减小,电流表A的读数减小,选项A错误。巾欧姆定律得。显然,选项B错误,c正确。而选项D正确。答案为CD。
点评:根据动态电路分析的一般思路,灵活运用部分电路欧姆定律和全电路欧姆定律即可顺利求解本题。
例6 在输液时,药液有时会从针口流出体外,为了及时发现,设计了一种报警装置,电路如图5所示。M是贴在针口处的传感器,接触到药液时其电阻Rm发生变化,导致S两端电压U增大,装置发出警报,此时()。
A.Rm变太,且R越大,U增大越明显
B.RM变大,且R越小,U增大越明显
C.RM变小,且R越大,U增大越明显
D.Rm变小,且R越小,U增大越明湿
解析:根据题述可知,传感器接触到药液时其电阻Rm发生变化,导致S两端电压U增大,因此Rm变小。又因为R与Rm并联,所以R越大,U增大越明显。答案为C。
点评:通常情况下对动态电路进行分析是通过电阻的变化确定电压的变化,而该题是利用电压的变化来确定电阻的变化。
四、功和功率的计算是难点
1.纯电阻电路的电功和电热:电流通过纯电阻电路时,它所消耗的电能全部转化为内能,电功等于电热,电功率等于热功率。数学表达式为w=Q=Pt
2.非纯电阻电路的电功和电热:当电路中含有电动机、电解槽等时,该电路为非纯电阻电路。在非纯电阻电路中,消耗的电能除转化成内能外,还转化成机械能、化学能等。在非纯电阻电路中,电功大于电热,即;电功率大于热功率,即在计算电功和电功率时只能用定义式W=UIt和P=UI,在计算电热和热功率时只能用定义式Q=
3.电路中的功率与效率:电源的总功率P=EI,电源的输出功率P=UI,电源的内耗功率电源的效率
4.电源的最大输出功率:对于纯电阻电路有P=,当外电路电阻等于内电路电阻(R=r)时,电源的输出功率最大,且,此时电源的效率η=50%。
例7 如图6所示,电源电动势E=6V,内阻r=2Ω,定值电阻R1=R2=12Ω,电动机M的内阻R3=2Ω。当开关S闭合电动机转动稳定后,电压表的读数U1=4V。若电动机除内阻外其他损耗不计,求:
(1)电路的路端电压U2;
(2)电动机输出的机械功率P;
(3)电源的效率η。
解析:(1)设干路电流为I,对全电路,有E=成立。设通过R1和电动机的电流为I1,通过R2的电流为I2,对R3、R2,欧姆定律适用,有I1=。由并联电路的特点得即,解得
(2)电动机的输入功率,转化为机械功率P和通过其内阻生热的功率。根据能量守恒定律得。代人数据得
(3)电源的效率83.3%。
点评:对于含有电动机、电解槽等非纯电阻的电路,在分析和讨论时务必注意欧姆定律是不适用的。
五、图像问题讨论是提升
1.在恒定电流问题中,为了更加直观地反映某元件的电压和电流的关系,我们常常选用伏安(U-I)特性曲线来描绘。它们主要有两种:一是电阻元件对应的伏安特性曲线,简称“电阻线”,如图7甲所示,其对应的电阻R的大小等于tanα;另一种是电源元件对应的伏安特性曲线,简称“电源线”,如图7乙所示,其对应的电源内阻r的大小等于tanα,电动势E为直线在U轴上的截距。
2.在纯电阻电路中,我们常用功率与外电阻的图像来反映它们之间的变化规律,如图8所示,电源的总功率,电源的输出功率,电源的内耗功率
例8 某种材料的导体的U-I图像如图9所示,图像上A点和坐标原点连线与横轴成a角,A点的切线与横轴成β角。关于导体的下列说法中正确的是()。
A.在A点,导体的电阻大小等于tanα
B.在A点,导体的电阻大小等于tanβ
C.导体的电阻随电压U的增大而增大
D.导体的电功率随电压U的增大而增大
解析:由欧姆定律得,由图得在A点有,故导体的电阻随电压U的增大而增大,在A点,导体电阻的大小等于tana,选项A、C正确,B错误。由图可知随着电压的增大,电流也增大,所以导体的电功率增大,选项D正确。答案为ACD。
点评:根据部分电路欧姆定律可以确定U-I图像的几何意义。在解决恒定电流的某些问题时,巧妙地应用电阻线、电源线进行分析,不仅可以避免运用数学知识列式进行复杂的运算,而且可以获得直观形象、一目了然的效果。
侧9 电池甲和乙的电动势分别为E1和E2,内阻分别为r1和r2。若用甲、乙两电池分别向某个电阻R供电,则在这个电阻上所消耗的电功率相同。若用甲、乙两电池分别向某个电阻R'供电,则在R'上消耗的电功率分别为P1和P2。已知E>E2,R'>R,则()。
解析:依题意作出电池甲和乙(E1>E2)及电阻R的伏安特性曲线。因为两电池分别接R时,R消耗的电功率相等,所以这三条线必相交于一点,如图l0所示。由图可知a1>a2,所以,r1>r2。作R'的伏安特性曲线,因为R'>R,所以R'的伏安特性曲线应在R的上方。由图可知,当甲电池接R'时,;当乙电池接R'时。因为,所以。答案为AC。
点评:在U-I直角坐标系中作出电源的伏安特性曲线,再在此坐标系中作出电阻R的伏安特性曲线,则两条线的交点就表示了该闭合电路所工作的状态。此交点的纵、横坐标的比值表示外电阻R1纵、横坐标的乘积即为外电阻所消耗的功率。
跟踪训练
l.一个T形电路如图11所示,其中电阻。另有一测试电源,电压为lOOV,则()。
A.当c、d端短路时,a、b之间的等效电阻是40Ω
B.当a、b端短路时,c、d之间的等效电阻是40Ω
C,当a、b两端接通测试电源时,c、d两端的电压为80V
D.当c、d两端接通测试电源时,a、b两端的电压为80V
2.将一电动势为E、内阻为r的电池与外电路连接,构成一个闭合电路。用R表示外电路的电阻,I表示电路中的电流,U表示路端电压,则下列说法正确的是()。
A.由U=IR可知,外电压随I的增大而增大
B.由U=Ir可知,路端电压随I的增大而增大
C.由U=E-Ir可知,电源的输出电压随电流I的增大而减小
D.由可知,回路中电流随外电阻R的增大而减小
3.在如图12所示的闪光灯电路中,电源的电动势为E,电容器的电容为C。当闪光灯两端电压达到击穿电压U时,闪光灯中才有电流通过并发光,当闪光灯正常工作时,会周期性短暂闪光,则可以判定()。
A.电源的电动势E一定小于击穿电压U
B.电容器所带的最大电荷量一定为CF
C.闪光灯闪光时,电容器所带的电荷量一定增大
D.在一个闪光周期内,通过电阻R的电荷量与通过闪光灯的电荷量一定相等
4.如图13所示,电源的电动势E=12V,内阻r=3Ω,Ro=1Ω,直流电动机的内阻Ro'=1Ω。当调节滑动变阻器R1时可使甲电路的输出功率最大,当调节滑动变阻器R2时可使乙电路的输出功率与甲电路相同也最大,且此时电动机刚好正常工作(额定输出功率Po=2W),则使电路输出功率最大的R1和R2的值分别为()。
A.2Ω,2Ω
B.2Ω,1.5Ω
C.1.5Ω,1.5Ω
D.1.5Ω,2Ω
5.如图14所示,直线①表示某电源的路端电压与电流的关系图像,曲线②表示该电源的输出功率与电流的关系图像,则下列说法中正确的是()。
A.电源的电动势为50V
B.电源的内阻为
C.电流为2.5A时,外电路的电阻为15Ω