欢迎来到易发表网!

关于我们 期刊咨询 科普杂志

量子力学应用举例优选九篇

时间:2023-07-24 16:26:14

引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇量子力学应用举例范例。如需获取更多原创内容,可随时联系我们的客服老师。

量子力学应用举例

第1篇

量子力学是近代物理的两大支柱之一,它的建立是20世纪划时代的成就之一,可以毫不夸张地说没有量子力学的建立,就没有人类的现代物质文明[1]。大批优秀的物理学家对原子物理的深入研究打开了量子力学的大门,这一人类新的认知很快延伸并运用到很多物理学领域,并且,导致了很多物理分支的诞生,如:核物理、粒子物理、凝聚态物理和激光物理等[2]。量子力学在近代物理中的地位如此之重,所以成为物理专业学生最重要的课程之一。但在实际教学过程中,学生普遍感到量子力学太过抽象、难以掌握。如何改革教学内容,将量子力学的基本观点由浅入深,使学生易于理解;如何改革教学手段,培养学生兴趣,使学生由被动学习变为主动学习。这是量子力学教学中遇到的主要问题。作者从几年的教学中摸索到一些经验,供大家参考。

一、教学内容和方法的改革

传统的本科量子力学教学一般包括了三大部分:第一部分是关于粒子的波粒二象性,正是因为微观粒子同时具有波动性和粒子性,才造成了一些牛顿力学无法解释的新现象,例如测不准关系、量子隧道效应等等;第二部分是介绍量子力学的基本原理,这部分是量子力学的核心内容,如波函数的统计解释、态叠加原理、电子自旋等;第三部分是量子力学的一些应用,如定态薛定谔方程的求解,微扰方法。以上三个部分相互联系构成了量子力学的整体框架[3]。随着量子力学的进一步发展,产生了很多新的现象和成果。例如量子通讯、量子计算机等等。许多学生对量子力学的兴趣就是从这些点点滴滴的新成果中得到的。如果我们仍按传统的内容授课,学生学完了这门课程发现感兴趣的那点东西完全没有接触到,就会对所学的量子力学感到怀疑,而且极大地挫伤了学习自然科学的兴趣。所以作者建议在教学过程中适当添加一些量子力学的新成果和新现象,来激发学生的学习兴趣[4]。在教学方法上也应该按照量子力学的特点有所改革。由于量子力学的许多观点和经典力学完全不同,如果我们还是按照经典力学的方法来讲,就会引起学生思维上的混乱,所以建议从一开始就建立全新的量子观点。例如轨道是一经典概念,在讲授玻尔的氢原子模型时仍然采用了轨道的概念,但在讲到后面又说轨道的概念是不对的,这样学生就会怀疑老师讲错误的内容教给了他们,形成逻辑上的混乱。我们应该从一开始就建立量子的观点,淡化轨道的概念,这样学生更容易接受。

二、重视绪论课的教学

兴趣是最好的老师。作为量子力学课程的第一节课,绪论课的讲授效果对学生学习量子力学的兴趣影响很大,所以绪论课直接影响到学生对学习量子力学这门课程的态度。当然很多学生非常重视这门课程,但学这门课的主要目的是为将来参加研究生入学考试,仅仅只是在行动上重视,而没有从思想上重视起来。如何使这部分学生从被动的学习量子力学变为主动地学习,这就要从第一节课开始培养。在上绪论课时作者主要通过以下几点来抓住学生的兴趣。首先列举早期与量子力学相关的诺贝尔物理学奖。诺贝尔奖得主历来都是万众瞩目的人物,学生当然也会有所关心,而且这些诺贝尔奖获得者的主要工作在量子力学这门课程中都会一一介绍,这样一方面通过举例子的方法强调了量子力学在自然科学中的重要地位,另一方面为学生探索什么样的工作才可以拿到诺贝尔奖留下悬念。抓住学生兴趣的第二个主要方法是列举一些量子力学中奇特的现象,激发学生探索奥秘的动力,例如波粒二象性带来的“穿墙术”、量子通讯、如何测量太阳表面温度等等,这些都很能激发学生学习量子力学的兴趣。综上所述,绪论课的教学在整个教学过程中至关重要,是引导学生打开量子力学广阔天地的一把钥匙。

三、重视物理学史的引入

随着量子力学学习的深入,学生会接触到越来越多的数学公式以及数学物理方法的内容,虽然学生会对量子力学的博大精深以及人类认知能力惊叹不已,但在学习过程中感觉越来越枯燥乏味。并且,学生学习量子力学的兴趣和信息在这个时候受到很大的考验,想要把丰硕的量子力学成果以及博大精深的内涵传达给学生,就得在适当的时候增加学生的学习兴趣。实际上,很多学生对量子力学的发展史有很浓厚的兴趣,甚至成为学生闲聊的素材,因此,在适当的时候讲述量子力学发展史可以增加学生学习量子力学的学习兴趣和热情。在讲授过程中,可以结合教学内容,融入量子力学发展史中的名人逸事和照片,如:索尔维会议上的大量有趣争论和物理学界智慧之脑的“明星照”,或用简单的方法用板书的形式推导量子力学公式。例如在讲到黑体辐射时,作者讲到普朗克仅仅用了插值的方法,就给出了一个完美的黑体辐射公式。而插值的方法普通的本科生都能熟练掌握,这一方面鼓励学生:看起来很高深的学问,其实都是由很简单的一系列知识组成,我们每个人都有可能在科学的发展过程中做出自己的贡献;另一方面教导学生,不要看不起很细微的东西,伟大的成就往往就是从这些地方开始。在讲到普朗克为了自己提出的理论感到后悔,甚至想尽一切的办法推翻自己的理论时,告诉学生科研的道路并不是一帆风顺的,坚持自己的信念有时候比学习更多的知识还要重要。在讲到德布罗意如何从一个纨绔子弟成长为诺贝尔奖获得者;在讲到薛定谔如何在不被导师重视的条件下建立了波动力学;在讲到海森堡如何为了重获玻尔的青睐,而建立了测不准关系;在讲到乌伦贝尔和古兹米特两个年轻人如何大胆“猜测”,提出了电子自旋假设,这些学生都听得津津有味。这些小故事不仅让学生从中掌握的量子力学的基本观点和发展过程,而且对培养学生的思维方法和科研品质都有很大帮助。

四、教学手段的改革

量子力学中有很多比较抽象原理、概念、推导过程和现象,这增加了学生理解的难度。而且在授课过程中有大量的公式推导过程,非常的枯燥。所以在教学过程中穿插一些多媒体的教学形式,多媒体的应用能够弥补传统教学的不足,比如:把瞬间的过程随意地延长和缩短,把复杂的难以用语言描述的过程用动画或图片的形式分解成详细的直观的步骤表达清楚[5]。相对于经典物理来说,量子力学课程的实验并不多,在讲解康普顿散射、史特恩-盖拉赫等实验时,可以运用多媒体技术,采用图形图像的形式模拟实验的全过程。用合适的教学软件对真实情景再现和模拟,让学生多册观察模拟实验的全过程。量子力学的一些东西不容易用语言表达清楚,在头脑中想象也不是简单的事情,多媒体的应用可以弥补传统教学的这块短板,形象地模拟实验,帮助学生理解和记忆。比如电子衍射的实验,我们不仅可以用语言和书本上的图片描述这个过程,还可以通过多媒体用动画的形式表现出来,让电子通过动画的形式一个一个打到屏幕上,形成一个一个单独的点来显示出电子的粒子性;在快进的形式描述足够长时间之后的情况,也就是得出电子的衍射图样,从而给出电子波动性的结论和波函数的统计解释,经过这样的教学形式,相信学生能够更加深刻地理解微观粒子的波粒二象性[6]。但在具体授课过程中不能完全地依赖于多媒体教学,例如在公式的推导过程中,传统的板书就非常接近人本身的思维模式,容易让学生掌握,如果用多媒体一带而过,往往效果非常的不好。所以教学过程中应该传统教学和多媒体教学并重,对于一些现象的东西多媒体表现更为出色;而一些理论方面的东西传统的板书更为有利,两者相互结合可以大大提高教学效率,增强课堂教学效果和调动学生的学习积极性[7]。

五、加强教学过程的管理

第2篇

作为量子实验卫星先导专项首席科学家,潘建伟院士和他的团队在量子通信的研究道路上遭遇过怎样不为人知的挫折?在欧美众多实力强劲的国家中,潘建ネ哦游何选择奥地利作为量子通信项目的合作伙伴?作为量子通信领域的技术强国,中国正从经典信息技术的跟随者,转变成未来信息技术的并跑者乃至领跑者,而在此过程中,我国量子通信技术在发展过程中又有着怎样里程碑式的事件?

为获取这些问题的答案,我们邀请到了中国科学院院士、中国科学技术大学常务副校长潘建伟,并对其进行了专题访问。

尖端科技背后的故事

潘建伟介绍,在量子通信技术的研发过程中,单个光量子的制备和探测是主要的两个技术难题。首先是制备单个光量子的技术难题。潘建伟举了一个非常形象的例子来解释这一关键技术的难度:一个十五瓦左右的普通灯泡每秒钟辐射出的光量子个数可以达到百亿亿个,要想实现单个光量子的制备就如同在瞬间发射出来的百亿亿个光量子中捕捉到其中的一个,技术难度可想而知。另一个难题是单光子的探测。单个光子是光能量的最小单元,能量非常微弱,需要发展出非常精密和高效的单光子探测技术。具备了单个光量子的制备和探测的能力后,我们就可以实现安全的量子通信了。

量子信息的应用除了实现无条件安全的通信外,还可以带来计算能力的飞跃,这就需要把一个个的单量子纠缠起来。量子计算机的能力是随着纠缠粒子数目呈指数增长的,例如,有100个粒子的纠缠,每个粒子可以处于“0”和“1”的相干叠加,100个纠缠的粒子就可以同时处于2100个状态的叠加,这就相当于同时对2100个数进行操纵,计算能力大幅提升。把一个个粒子纠缠起来需要对它们之间的相互作用进行精确的控制,同时还要保证克服环境的干扰。潘建伟团队通过一种名为“光晶格”的实验装置成功攻克了这一技术难题,而“光晶格”捕捉单个原子的技术原理就如同把鸡蛋逐个放入蛋槽的过程,每个光晶格中只能容纳一个原子,再通过人为控制这些原子的相互作用,使得它们纠缠起来。虽然现在的技术水平已经发展到可以操纵数百个原子,但要实现数百个原子之间的量子纠缠态还有很长的路要走。潘建伟解释说,如果将几百个原子纠缠在一起,就能够演示量子计算机的基本功能了。

奥地利―梦开始的地方

据了解,此次“墨子号”量子通信卫星包含了国际合作任务,并选择了奥地利作为首个国际合作伙伴。为何偏偏选择奥地利?这还要从潘建伟的求学经历说起。

潘建伟在中国科学技术大学学习期间,第一次领略到量子世界的奇妙。但随着对量子研究的深入,他越发意识到量子理论中的各种奇特现象需要更加尖端的实验技术和条件才能够得到验证,而当时国内在这方面还相对落后。于是,在1996年潘建伟来到奥地利因斯布鲁克大学,师从奥地利物理学家Anton Zeilinger攻读博士学位。那时Anton Zeilinger教授已经建立了量子实验室,并且是量子物理学领域的国际权威。在奥地利,潘建伟和同事们完成了国际上首次实现光子的量子隐形传态的实验,这被认为是量子信息实验领域的开端。此后几年,潘建伟和同事们又先后实现了一系列量子信息领域的先驱性实验,这些宝贵的经历为以后潘建伟在量子通信领域的突破性贡献奠定了坚实的基础。潘建伟对奥地利的特殊感情还不止于此。潘建伟在奥地利求学期间,一直得到了奥地利外交部和学术交流机构的资助。博士毕业后,潘建伟又继续在维也纳大学实验物理所从事博士后研究,而维也纳大学正是薛定谔等量子力学的奠基人工作过的地方,无疑是量子力学的“圣地”之一。

所以,当昔日的老师主动提出加入我国的量子卫星计划时,奥地利便顺理成章地成了中国量子科学实验卫星项目的第一个国际合作伙伴。潘建伟提到,量子科学实验卫星会向全世界开放,在奥地利之后,德国、意大利、加拿大等国的团队也主动请求加入。

追寻量子通信发展的轨迹

潘建伟在接受采访时谈到,作为量子通信领域的技术强国,中国正从经典信息技术的跟随者,转变成未来信息技术的并跑者乃至领跑者。回顾中国量子通信领域的发展历程,取得的优异成绩离不开先辈科学家们孜孜不倦的奋斗与拼搏。

潘建伟表示,我国在量子通信领域的研究起步较早,在上世纪90年代初就有郭光灿院士、张永德教授等老一辈科学家密切关注该领域的发展,并且中国科学技术大学已经发表了一些该领域的文章。潘建伟强调说,中国量子通信领域能够发展到今天这一步,与当时中科院与时俱进的敏锐眼光密切相关。他举例说,在他2001年回国组建实验室时,一切都是从零开始。当时,他向中科院申请了200万元的经费,而中科院基础局却拨了400万元。在中科院的重视和支持下,实验室的发展速度非常快,很快就有了一批由中国人完成的量子信息领域的重要成果。之后,中科院的支持力度又进一步加大,同时,国内其他团队也发展起来了。在2005年,国家的重大研究计划也开始注意到了量子调控,在中科院物理所的于渌院士、南京大学的闵乃本院士等科学家的建议下,量子调控成为国家重大研究计划的内容,到目前这一计划已经执行了十余年。正是由于国家的重点扶持,我国的量子通信技术才得以快速发展。近年来,中科院启动量子卫星项目,国家发改委启动“京沪干线”项目,为量子通信技术实现跨越式的发展注入了长足的动力。但同时潘建伟也表示,欧美等国家也相继启动了包括量子通信在内的量子专项计划,政府也给予了大力支持,所以我国在未来能否持续抢占量子通信领域的领跑地位,还需要不断创新、不断前进。

第3篇

近年来生命科学的飞速发展过程中最显著的特点就是其研究空间的扩大化,它不仅在宏观方面研究各个生物体内的器官以及组织结构联系;自然界个体与群体、群体之间及其与外在环境间的内在联系;生态系统及其内部物质循环、能量交换。同时由于生物体存在物质层次性,各个生物大分子中又包含着碳、氢、氧等各种各样的原子,甚至原子内又存在电子、质子和中子等物质。因此分子生物学研究应运而生,现代生物科学日趋向微观世界进军,并出现了一门新的电子生物学学科。由此可知,随着生物科学理论与其相关实验的多方面结合,诸多生命物质疑团将在微观分子研究中得到合理解释,人类对生命的认识将进一步深化,其控制和改造生物的能力也将显著提高。

2多学科相互渗透

生物科学的另一个特点在于其与数学、力学、化学、物理学、天文学、地质学以及工程技术等多学科之间的联系日益密切,彼此之间相互渗透,互为一体,这种渗透与反渗透作用便推动了现代生命科学的重大发展。举例来说,力学、化学以及物理学对生物科学的渗透作用产生的结果便是在此基础上形成了一系列有重大影响作用的边缘学科,例如生物力学、生物化学以及生物物理学,由此开创了现代生命科学的研究新方向。同时生物科学对力学、化学以及物理学的反渗透作用产生的结果便是新形成类似化学仿生学以及物理仿生学等新兴学科。随着信息时代的到来,量子力学、信息论以及控制论等新兴学科有了飞速的发展,再其强大的影响力下电子生物学、生物信息论以及生物控制论等边缘学科也得到了更多学者的关注与研究。现代生命科学与多领域、多学科之间相互渗透的新特点促使人们学习更多的知识来充实自己,不断汲取多方面知识扩大视野显得尤为重要,那种只局限于研究自己专业领域的科技人才将逐渐被社会所淘汰,隔行如隔山的状况将不再适应于社会发展。

3实验手段更先进

随着人们探索空间与认识领域的不断深化,理论研究与实际应用也结合的越来越紧密,实验手段日趋先进与现代化,这是生物科学现代化发展的又一个重要特点,更是其不断进步的必要条件与重要标志。换句话说,生命科学只有依赖于实验技术与手段的不断更新才能有飞速的突破与长远的进步,科学实验的技术水平与方法手段决定着生命科学的发展高度。假如现代生命科学缺乏先进的现代化实验仪器,那么其发展进程将受到停滞,甚至一事无成。由此看来,不断汲取新方法,创新新技术,完成生物科学实验手段的现代化任务显得尤为重要。在生命科学领域,尤其是应用化学、应用物理学方面的新技术、新方法创新,不仅方便人们从细胞水平上进行生物规律的探究,更有利于推动人们从分子水平上对生命物质的微观结构以及运动规律研究分析,这不仅是现代自然科学领域对生物的新认识,更是人类社会的历史性进步。

4结束语

第4篇

(上海工程技术大学材料工程学院,中国 上海 201620)

【摘 要】《固体物理》是材料学科专业开设的一门重要基础课程。根据高等学校《固体物理》课程的特点以及材料类专业的学生对学习这门课程的需求不同,作者结合自身的教学心得和体会,分别从材料学专业《固体物理》课程教学现状、教学内容和教学方式等方面进行探讨。

关键词 固体物理;教学改革;材料学

《固体物理》作为一门基础性学科,受到了越来越多的重视[1-2]。作为连接基础理论知识与实际应用技术的桥梁,它已经成为材料类专业学生必修的一门基础课程。但传统的《固体物理学》中有很多晦涩难懂的专业术语,复杂的图形与空间变换以及繁琐的理论推导,故而学习难度较大。学生学习《固体物理》时需完成《高等数学》、《热力学与统计物理》和《量子力学》等先修课程的学习。由于材料学科特点和学生培养目标的不同,材料类专业的学生往往只学习一部分或者没有学习这些先修课程,故而材料类专业学生学习《固体物理》时凡是涉及到一些严密的理论推导过程就会感到十分难懂,造成部分学生产生厌学情绪。针对材料类专业《固体物理》教学过程中出现的教师教学难,学生畏学这一现状,本文从教学内容和教学方式等方面,对如何提高材料类专业《固体物理》的教学质量和促进学生综合能力的培养方面提出了一些新的探讨。

1 教学内容改革

《固体物理》教科书通常由两大部分组成:第一部分为基础部分。主要包括晶体结构、晶体结合、晶体的振动与热力学性质、晶体的缺陷、能带理论和金属电子论等内容;第二部分为专业化部分。主要包括半导体、超导体、非晶固体和固体磁性等内容。其中基础部分是各理工科院校讲授的核心内容。对于材料类专业的学生来说,由于缺少《量子力学》与《热力学与统计物理》方面的知识,系统学习《固体物理》有一定的困难,为了解决上述矛盾,我们在教学过程中对于《固体物理》内容主要实行以下改革措施:

(1)有选择性的讲授。对于《固体物理》各章节的内容讲述要有详有略,作到详略得当。对于重点内容要精讲,对于不太主要或者在其它课程中能学到的内容可以略讲或不讲。例如:在讲述晶体的结合这部分内容时,材料类学生在学习《材料科学基础》和《化学基础课》过程中对于晶体的结合方式等内容都进行过系统学习,因此对这部分内容可以略讲。在讲解晶体的缺陷这部分内容时,学生在《材料科学基础》课程中也学习过,对这部分内容就可以略讲或者不讲。

(2)重思想轻推导。对于有些章节的内容,不追求繁琐的数学推导,更多的突出物理思想的传达,对于某一个具体理论要重点讲述它的建立过程与物理模型。物理模型尽量简单,深入浅出,让学生学会用《固体物理学》的方法去思考和处理问题。

(3)增加学科前沿内容。合理的补充与固体物理学紧密相连的凝聚态物理学和材料学最新的学术成就与进展,鼓励学生积极参与或参观学院相关老师的科研实验,多听相关的学术报告,让学生了解最新的学术动态,培养他们对科学研究的兴趣,为部分学生将来的继续深造和终身从事科学研究事业奠定基础。

2 教学方式的创新

长期以来,我国的大部分的教师都是采用传统的教学模式,即老师一个人在讲台上讲,学生在下面听。这种模式固然有可取之处,但是对于现代大学生来说,这种教学模式未免显得有些过于单调。现代的大学生喜欢新鲜事物,喜欢主动“出击”,所以作为一名现代的大学老师,对学生应当“投其所好”,改变一下固有的思维与教学模式,使学生乐于接受所学的新知识,变被动学习为主动学习。我们采取具体做法是:

(1)启发式教学。在教学过程中,教师的主要作用在于引导和启发学生积极思考,尤其《固体物理》这类理论性较强的课程。如果学生仅仅限于在课堂上被“填鸭式”式的灌输知识而不经过严密的思考与推理,很难深刻理解和掌握所学的内容。因此,就要求教师在授课过程中,适时的启发学生去思考问题的来龙去脉,教会学生科学的思维方法,往往能达到事半功倍的效果[4]。

(2)案例教学。选取符合知识点应用要求的、贴近生活与技术发展的、学生感兴趣的案例,师生共同分析、讨论,从而提高学生分析问题能力与知识应用能力。比如课程体系讲授到晶格常数时,引入聚苯乙烯微球人工微结构概念和半导体超晶格概念,并要求学生就相关概念进行文献分组调研,PPT制作,下次课程时间面向同学进行介绍。相比以前老师直接给学生举例的教学方式,案例教学法激发了学生的学习热情,使学生成为学习的主人、课堂的主角,课堂气氛生动活泼。

(3)实践教学。《固体物理》是一门与实践密切联系的课程,在《固体物理》教学中,强调理论与实际的联系,这样可以激发学生学习的主动性、自觉性和创造性,使学生感到所学知识的用处和价值,由此可培养学生灵活应用所学知识解决问题的实践能力。在《固体物理》的教学中,为了让学生更深刻地理解所学知识,应该适当安排《固体物理》实验。如讲授晶体结构时,可以安排学生作X射线衍射分析实验。通过亲自实验,学生不但掌握了晶体的衍射理论知识,也可使学生体会到现代分析方法在材料研究中的重要性和必要性。通过安排《固体物理》实验,不但使学生加深了对理论知识的理解,同时也大大提高了观察能力、动手能力和分析问题的能力。

3 结语

总之,在材料类专业《固体物理》教学过程中,要充分认识到材料类专业学生与物理学专业学生的不同,因材施教。此外,还要结合凝聚态物理与材料学发展的前沿和本校的科研工作,充分的利用现代化教学手段进行教学。实践证明,上述文中所提到的教学改革方法能有效提高学生的学习兴趣与综合素质。但是,《固体物理》教学改革是一个庞大而又复杂的系统工程,课程改革的进行涉及到诸多方面,这就需要我们广大教育工作者做更多地研究和探索,同时不断提高自身的能力。要造就创新人才,除改变教育观念,营造生动活泼的人文环境外,还要加强我们教师队伍建设,提高他们培养创新人才的能力。

参考文献

[1]冯端.固体物理学大辞典[M].北京:高等教育出版社,1995.

[2]黄昆,韩汝琦.固体物理学[M].北京:高等教育出版社,1997.

[3]冯端,师昌绪,刘治国.材料科学导论[M].北京:化学工业出版社,2002.

第5篇

[关键词]三本院校 固体物理 教学模式

[中图分类号]O48-42 [文献标识码]A

一、引言

固体物理学是研究固体的微观结构、运动状态、物理性质及其相互关系的一门学科[1]。从历史上看,固体物理学的研究引发了晶体管、激光器等多项重大发明,并由此催生了微电子技术、激光技术、计算机技术、光通讯技术等一系列高新技术。这些新技术把人类的历史推进到了原子时代、信息时代、空间时代[2]。因此它不仅是物理系所有专业中的一门非常重要的专业基础课,也是微电子学专业非常重要的专业主干课。

固体物理学的起点是学生已有了热力学与统计物理、量子力学的基础[1]。但是对于三本院校的学生来说,他们的专业基础相对薄弱,这样势必会增加学生的心理负担,使固体物理教学很难达到预期效果。为了讲授这门课程,让学生对固体物理知识的理解和掌握达到教学目的的要求,就成为教研室与授课教师必须经常研究和探讨的问题。笔者结合三本院校学生的实际情况,针对在固体物理课程教学实践中发现的问题浅谈一些自己的看法和见解。

二、三本院校中固体物理学教学现状

在大众化教育的形势下,普通高校生源的知识结构及基本素质有了很大的变化[3],特别是三本院校的学生。三本院校的学生学习固体物理过程中存在以下问题。

1.基础薄弱:三本院校的学生基础知识较薄弱,更无热力学与统计物理、量子力学基础,使这门课程的学习变得更加难以理解和把握,导致学生兴趣不高。

2.学习质量差:以往在教学的过程中,教师比较注重知识的传授而忽视了对学生学习方法的培养,并且对三本院校的学生来说,学习方法不当,缺乏积极性,导致学习质量差。

3.教学内容抽象:现有的固体物理教学基本上以教师讲解学生听课的模式为主,教学内容较多而且抽象枯燥,提不起学生兴趣。

4.教学方法单一:传统的教学方法往往习惯于以注入式灌输知识,且过于注重理论和书本的内容,缺乏对固体物理实际应用的介绍,不利于培养学生学以致用及创新能力。

综上所述,在教学环节中探求新的教学方法,采用新的教学手段,保证和提高课堂教学质量刻不容缓。

三、三本院校有效教学的探讨

针对三本院校学生的知识基础和心理特点,培养学生对固体物理的兴趣,至关重要。

1.选择适合三本院校学生特点的教学内容: 目前的固体物理教材一般都以详细的理论分析为主,数学推导较多。对三本院校学生来说,这样的教材仍然存在部分内容过于深奥的问题,特别是与量子力学有关的内容,学生较难掌握。因此教师在授课时不应照本宣科,应将某些偏重于繁琐数学推导的问题简化。

2.引入前沿课题:采用穿插式方法引入前沿内容。可以使学生们“渗透式”地了解有关前沿进展,从而可以拓宽学生们的视野,激发学生学习固体物理的兴趣[4]。

3.让学生充分参与教学:尽量让学生直接参与到教学活动中,在思想上变被动接受为主动参与,加深对抽象概念的理解。第一,尽量把抽象的概念提取到宏观或熟知的知识点中;通过熟知的知识来提问,引出抽象的结论。如:原子结合成晶体会释放能量,可通过水凝结成冰的过程来进行提问讲解;原子结合成晶体过程中会出现吸引力和排斥力,可举例Na离子和Cl离子的结合过程进行提问讲解。第二,讲解课程的重点难点后,通过例题及习题讲解的个别互动,充分引导、挖掘学生的思维并使其他学生理解。

4.采用板书和多媒体相结合的教学模式:第一,固体物理中,许多抽象理论及晶体结构可采用动画和图示效果以多媒体的形式呈现给学生。不但能使学生在视觉上直观的感受其物理过程所发生的变化,还能进一步加深对该过程中一些物理量的理解。如晶体结构可用图形展示使学生通过视觉的感受加深空间上的理解,使抽象具体化;如点缺陷的形成、一维单原子晶格的振动、晶体的对称性等,传统的教学中只能用静态的图像去展示,学生不易理解其变化过程,利用Flas完全可以把演化过程动态的展示出来,从而调动学生学习的积极性。第二,板书具有思路清晰、逻辑性强、能给学生充分的思考时间,加深对概念理论理解的特点。固体物理中,许多的公式、理论都需尽可能地采用板书的教学模式,其加强了教师和学生互动的同时,又充分体现了教师利用板书对学生的启发和引导的过程。因此,只有将教师在课堂中的主导作用与多媒体技术的辅助作用结合起来才能获得良好的教学效果。

5.以科学史话激励的教学模式:这种教学模式就是将物理学史的内容有机地揉人固体物理教学中,将所教授内容中涉及的科学家的简介、有关此教学内容的发明、发现经历、趣闻逸事,简明扼要地介绍给学生,既能提高学生的学习兴趣,又能起到教书育人的作用。如固体物理学中X射线衍射与晶体结构时,可简明地介绍其科学史话:晶体点阵理论提出时是一种非常超前的理论,当时没有实验手段能证明它。1895年伦琴发现X射线,1899年哈加和温德观测到X射线通过几nm的缝隙后稍有扩展而估计它的波长数量极约为10-10m。1912年劳厄(Laue)产生了一个极妙的想法: 假设晶体确实是点阵结构,就可作为天然光栅使X射线发生衍射. 但这种新颖的想法却受到包括伦琴本人在内的一些人嘲笑,并与劳厄打赌,限期一月。劳厄用ZnS屡试不成,交给两个研究生。就在他们感到山穷水尽,进行最后一次实验时,抱着试试看的心理将感光底片从晶体侧面移到后面,衍射图案出现了。这不仅证明了X射线是波长极短的光波,意义更为重大的是开创了一门新学科——X射线晶体学,晶体微观结构的玄妙之门从此逐渐向人类敞开了。众里寻她千百度,蓦然回首,那人却在,灯火阑珊处,科学研究的成功往往在再坚持几步。

四、结束语

三本院校是我国高等教育加快发展的新产物,也是我国高等教育大众化的一种制度创新,从其教育模式的特点及人才培养的目标来看,学生基础薄弱,在课程教学上应与普通本科有所不同。固体物理作为微电子学专业重要的专业基础课,针对在教学过程中存在的一些问题,,笔者以培养学生兴趣为目的从教学内容、教学方法及教学手段上探讨了教学模式。

[参考资料]

[1]曹全喜,雷天民,黄云霞,李桂芳.固体物理学基础.西安:西安电子科技大学出版社.2008:

[2]贺庆丽,杨涛,董庆彦.物理基地班固体物理课程的教学改革实践[J].高等理科教育,2003年第2期(总第48期):88

[3]姜黎霞,母小云.应用型本科院校大学物理课程教学模式探讨.北京联合大学基础部中外教育研究,2009年6月,NO.6:18

第6篇

关键词:纳米涂层;场发射;电子强关联;软凝聚态物质

2003年在国际和中国都发生了具有突发性的灾难事件,但中国的GDP仍以9.1%的高速度在增长,达到了人民币11.6万亿元,其中第二产业贡献4万多亿元。中国现今的第二产业主要领域是冶金、制造和信息,在世界的地位是大加工厂,也是大市场。在国际竞争中所以有优势是中国的劳动力廉价,这个优势我们能保持多久?我们还注意到与化工有关的产品中,我们的生产效率是国际发达国家的5%,能耗是3倍,环境的破坏是9倍。这就是我们所付出的代价。不论形势如何严峻,21世纪是中华民族振兴的机遇期,制造业绝对是一个极其重要的领域,是个急速发展变化的领域。2003年3月国际真空学会执委会在北京举行,会议上讨论了将原来的冶金专委会改名为“表面工程专委会”,当时也考虑了另一个名字“涂层专委会”,我想用涂层材料更合适,含有继承性和变革性。20世纪70年代曾经说成是塑料年代,此后塑料科技和工业迅速崛起,极大地改变了人类社会。继而是信息时代,通信网、计算机网、万维网、智能网,信息流,日新月异地改变着人类的生活和观念。我们这个时代是高速发展的时代,技术和观念都在与时俱进地改变着。

本世纪初兴起了纳米科技,促进其到来的是由于微电子小型化的发展趋势,推动科技发展进入纳米时代[1],不仅电子学将进入纳电子学领域,物理学进入介观物理领域,各类科技,包括生物医学等都在探索纳米结构与特性。涂层和表面改性越来越多地增加了纳米科技的内容,这是一种低维材料的制造和加工科技,将是制造技术的主流,将迅速地改变传统制造技术的方法、理论和观念,作为现今国际上的制造大国,世界加工厂,我们更应该注意研究制造技术的发展和未来。

1突破传统制造技术的观念

纳米科技研究的内容主要是在原子、分子尺度上构造材料和器件,测量表征其结构和特性,探索、发现新现象、新规律和应用领域。与我们熟悉传统的相比,纳米材料和器件具有显著的维数效应和尺寸效应。近几年来,在纳米材料制造方面做了大量的研究工作,在纳米粒子粉材的制造,以及材料结构和特性测量、表征上取得了显著成果[2~7]。接下来深入到纳米线、纳米管和纳米带的研究[8~14],出现了一些成功有效的制造方法,发现了一些惊人的结构和特性。在此基础上,发展了纳米复合材料的研究,展现了非常有希望的应用前景[15~17]。近来人们在纳米科技初期成果的基础上挑战某些产品的传统加工技术,比如Al组件的快速加工。

T.B.Sercombe等人报道了快速加工铝(Al)组件的新方法[18],这个方法的主要特征是用快速成型技术先形成树脂键合件,然后在氮气氛中分解其键和第二次渗入铝合金。在热处理过程中,铝与氮反应形成氮化铝骨架,在渗透过程中得到刚体结构。与传统制造工艺相比,这个过程是简单的快速的,可以制造任何复杂组件,包括聚合物、陶瓷、金属。图1是过程示意和原型样品,(a)是尼龙巾镶嵌铝粒子的SEM像,中心有结构细节的是Mg粒子,白色是Al粒子,加入少量的Mg是为还原氧化铝,它将不是铸件中的成分。在尼龙被烧去时,这个结构基本保持不变。(b)是氮化物骨架,围绕Al粒子的一些环状结构的光学显微镜像,再渗入Al时将形成密实结构。(c)是烧结的氮化铝和渗铝组件,小柱的厚为0.5mm其密度和强度都达到了传统铸造技术的水平。他们还制作了公斤重量多种结构的样品。这是一种冶金技术的探索,开辟了一种新的冶金和制造技术途径。

2纳米材料的完美定律

描述材料结构的常用术语是原子结构和电子结构。原子结构的主要参量是晶格常数、键长、键角;电子结构的主要参量是能带、量子态、分布函数。对于我们熟悉的宏观体系,这些参量多是确定的常数,但对于纳米体系,多数参量随着原子数量的改变而变化。这是纳米材料和器件的典型特征,它决定了纳米材料的多样性。其中有个重要规律,我们称之为纳米材料的完美定律,用简单语言表述:“存在是完美的,完美的才能存在”。它包括了纳米晶粒的魔数规则,即含有13、55、147…等数量原子的原子团是稳定的,对于富勒烯碳60和碳70存在的几率最大,而对于碳59或碳71等结构体系根本不存在。这就是为什么斯莫利(Smmolley)他们当初能在大量的富勒烯中首先发现碳60和碳70,从而获得了诺贝尔奖。对于一维纳米结构,包括纳米管和纳米线,存在类似的规则。可以模型上认为是由壳层构成的,每个壳层中更精细的结构称为股,每一股是一条原子链,中心为1股包裹壳层为7股的表示为7-1结构,再外壳层为11股的,表示为11-7-1结构,等等,构成最稳定的结构,这是一维纳米结构的魔数规则。对二维纳米膜存在类似的缺陷熔化规则,即不容许存在很多缺陷,一旦超过临界值,缺陷自发产生,完全破坏二维晶态结构。上述这些低维结构特征是完美定律的具体表述,进步普遍表述理论是正在研究中的课题。

完美定律是我们讨论涂层材料的出发点,因为纳米材料有更多的人造品格,是大自然很少存在或者不存在的,需要人工大量制造。在制造过程中,方法简单、产额高、成本低是最有竞争力的。可以想象,制造成本很高的材料和器件能有市场,一定是不计成本的特殊需要,有政治背景或短期的社会需求。因此在我们探索纳米材料制造时,首先考虑的应是满足完美定律的技术,如用甲烷电弧法制备纳米金刚石粉技术[1],电化学沉积法制备金属纳米线阵列技术[19],以及电炉烧结法制造氧化物纳米带技术[20]等等。

3涂层纳米材料将给我们带来什么?

涂层纳米材料是纳米科技领域具有代表的材料,或是低维纳米材料的有序堆积结构,或者是低维纳米材料填充的复合结构。两者都比传统材料有惊人的结构和特性。如新型高效光电池[21]、各向异性结构材料[19]、新型面光源材料[22]等,这里举例介绍基于热电效应的新型纳米热电变换材料。

热电效应器件的代表是热电偶,即利用不同导体接触的温差电现象进行温度测量的器件。基于热电效应可以制成两类器件:热产生电和电产生温差。前者可以用于制造焦电器件,即用热直接发电,如将焦电材料涂于内燃机缸表面,利用缸体温度高于环境几百度的温差发电,将余热变作电能回收。后者可以做成电致冷器件。这类的直接热电变换器件具有无污染,没有活动部件,长寿命,高可靠性等优点,但块体材料制成器件的效率低,限制了它的应用。纳米科技兴起以后,人们探索利用纳米晶或纳米线结构能否解决热电效应的效率问题。认为用量子点超晶格材料有希望显著提高热电器件的效率,这是由于纳米材料显著的能级分裂,有利于载流子的共振输运和降低晶格热传导,从而提高了器件的效率。T.C.Harman等人[23]报告了量子点超晶格结构的热-电效应器件,他们制备了PbSeTe/PbTe量子点超晶格(QDSL)结构,用其制造了热电器件(Thermo-electrics,TE),图2(a)是纳米超晶格TE致冷器件的结构和电路图,(b)电流-温度曲线。将TE超晶格材料,其宽11mm,长5mm,厚0.104mm,n-型的TE片,一端置于热槽,另一端置于冷槽,为了减小冷槽热传导而形成这同结接触,用一根细金属线与热槽连接。当如图2(a)所示加电流源时,将致冷降温。对于这种纳米线超晶格结构,由于量子限制效应,发生间隔很大的能级分裂,从而得到很高的热电转换效率。图2(b)是TE器件的电流-温度曲线,实验点标明为热与冷端温差(T)与电流(I)关系,电流坐标表示相应通过器件的电流。■为热端温度Th与电流I的关系,其温度对于流过器件的电流不敏感。为冷端温度Tc与电流I的关系,其温度对于电流是敏感的。图中A是测得的最大温差,43.7K,B是块体(Bi,Sb)2(Se,Te)3固溶合金TE材料最大温差,30.8K。从图中可以看出,在较大电流时,冷端温度趋于饱和。采用这种致冷器件由室温降至一般冰箱的冷冻温度是可能的。

电热效应的逆过程的应用就是焦电器件,即利用热源与环境的温差发电。对于内燃机、锅炉、致冷器高温热端等设备的热壁,涂上超晶格纳米结构涂层,利用剩余热能发电,将是人们利用纳米材料和组装技术研究的重要课题。

类似面致冷、取暖,面光源,面环境监测等涂层功能材料,将给家电产业带来革命性的影响,将会极大地改变人类的生活方式和观念。

4含铁碳纳米管薄膜场发射

碳纳米管阵列或含碳纳米管涂层场发射被广泛研究,以其为场发射阴极做成了平板显示器。研究结果表明碳管的前端有较强的场发射能力,因此碳管涂层膜中多数碳管是平放在基底上的,场电子发射能力很差。我们制备了含有铁(Fe)纳米粒子的碳纳米管,它的侧向有更大的场发射能力,有利于用涂层法制造平板场发射阴极。图3(a)是含铁粒子碳纳米的TEM像,碳管外形发生显著改变。(b)是碳管场发射I-V特性曲线,I是CVD生长的竖直排列碳纳米管的场发射曲线,II是含铁粒子碳纳米管竖直阵列的场发射曲线,III是含粒子碳纳米管躺在基底上的场发射曲线,有最强的场发射能力。根据此结果,将含铁的碳纳米管用作涂层场发射阴极,有利于研制平板显示器。

5电子强关联体系和软凝聚态物质

上面所讲到的涂层纳米功能材料和器件是当今国际上研究的热门课题,会很快取得重要成果,甚至有新产品进入市场。当我们在讨论这个纳米科技中的重要方向时,不能不考虑更深层的理论问题和更长远的发展前景。这就涉及到物理学的重要理论问题,即电子强关联体系(electronstrongcorrelationsystem)与软凝聚态物质(softcondensationmatter)。

在量子力学出现之前,金属材料电导的来源是个谜,20世纪初量子力学诞生后,解决了金属导电问题。基于Bloch假设:晶体中原子的外层电子,适应晶格周期调整它们的波长,在整个晶体中传播;电子-电子间没有相互作用。这是量子力学的简化模型,没有考虑电子间的相互作用,特别是在局域态电子的强相互作用。2003年又有人提出了金属导电问题,Phillips和他的同事以“难以琢磨的Bose金属”为题重新讨论了金属导电问题[24]。当计入电子间的相互作用时,可能产生的多体态,超导和巨磁阻就是这种状态。晶体中的缺陷破坏了完善导体,导致电子局域化。电子与核作用的等效结果表现为电子间的吸引作用,导致电荷载流子为Cooper对。但这个对的形成,不是超导的充分条件。当所有Cooper对都成为单量子态时,才能观察到超导性。这样,对于费米子由于包利(Paulii)不相容原则,不可能产生宏观上的单量子态。Cooper对的旋转半径小于通常两个电子相互作用的空间,成为Bose子。宏观上呈现单量子态,Bose子的相干防止了局域量子化。在局域化电子范围内,超导性可能认为是玻色-爱因斯坦凝聚,这个观点现今被很多人接受。从20世纪初至今,对于基本粒子的量子统计有两种,一是Fermi统计,遵从Paulii不相容原理,即每个能量量子态上只能容纳自旋不同的2个电子,而Bose子则不受这个限制。在凝聚态物质中有两个基态:即共有化Bose子呈现超导态,局域化Bose子呈现绝缘态。然而,在几个薄合金膜的实验中,观察到金属相,破坏了超导体和绝缘体之间直接转换。经分析认为这是玻色金属态,参与导电的是Bose子。推断这个金属相可能是涡流玻璃态,这个现象在铜氧化物超导体中得到了验证。

软凝聚态物质研究的对象是原子、分子间不仅存在短程作用力,而且存在长程作用力,表观上呈现的粘稠物质形态,称为软凝聚态。至今,人类对于晶体和原子存在强相互作用的固体已经知道得相当透彻了,但对软凝聚态的很多科学问题还没有深入研究,21世纪以来,引起了科学家的极大兴趣。软凝聚态物质包括流体、离子液体、复合流体、液晶、固体电解、离子导体、有机粘稠体、有机柔性材料、有机复合体,以及生物活体功能材料等。这其中的液晶由于在显示器件上的很大市场需求,是被研究得相当清楚的一种。其他软凝聚态结构和特性的科学问题和应用前景是目前被关注的研究课题。这其中主要有:微流体阀和泵、纳米模板、纳米阵列透镜、有机半导体、有机陶瓷、流体类导体、表面敏感材料、亲水疏水表面、有机晶体、生物材料(人造骨和牙齿)、柔性集成器件,以及他们的复合,统称为分子调控材料(materialsofmolecularmanipulation)。其主要特征是原子结构的多变性和柔性,研究材料的设计、制造、结构和特性的测量、表征,追求特殊功能;理论上探讨原子结构的稳定体系,光、电、热、机械特性,以及载流子及其输运。关于软凝聚态物质,有些早已为人类所用,电解液、液晶等,但对其理论研究处于初期阶段。科学的发展和应用的需求促进深入的理论研究,判断体系稳定存在的依据是自由能最小,体系自由能可表示为F=E-TS,其中S是熵。对于软凝聚态物质体系,S是重要参量。其中更多的缺陷,原子、分子运动的复杂行为,更多的电子强关联,不再是单粒子统计所能描述,需要研究粒子间存在相互作用的统计理论。多样性是这个体系的突出特征,因此其理论涉及广泛、复杂问题。

物理学是探索物态结构与特性的基础学科,是认识自然和发展科技的基础,其中以原子间有较强作用的稠密物质体系为主要研究对象的凝聚态物理近些年有了迅速进展,研究范围不断扩大,从固体结构、相变、光电磁特性扩展到液晶、复杂流体、聚合物和生物体结构等。几乎每一二十年就有新物质状态被发现,促进了人类对自然的认识和对其规律把握能力,推动了科学和技术的发展。21世纪仍有一些老的科学问题需要深入研究,一些新科学问题已提到人们的面前。特别是低维量子限域体系和极端条件下的基本物理问题。20世纪80年代出现的介观物理,后来发展成为纳米科技所涉及的学科领域。与宏观体系和原子体系相比,低维量子限域体系,还有很多物理问题有待解决,人们熟悉的宏观体系得到的规则和结论有些不再有效,适用于低维量子限域体系的处理方法和理论需要探索,特别是将涉及到多层次多系统问题的描述和表征,将会有更多的新现象、新效应、新规律被发现。在纳米尺度,研究原子、分子组装、测量、表征,涉及有机材料、无机/有机复合材料和生物材料,这将大大的扩展了物理学研究的范围和深度。涉及的重大科学前沿问题和重点发展方向有①强关联和软凝聚态物质,及其他新奇特性凝聚态物质;②低维量子限域体系的结构和量子特性,包括纳米尺度功能材料和器件结构和特性;③粒子物理,描述物质微观结构和基本相互作用的粒子物理标准模型和有关问题,以及复杂系统物理;④极端条件下的物理问题,探索高能过程、核结构、等离子体、新物理现象和核物质新形态等;⑤生命活动中的物理问题,物理学的基本规律、概念、技术引入生命科学中,研究生物大分子体系特征、DNA、蛋白质结构和功能等,其研究关键将在于定量化和系统性,必然是多学科的交叉发展,成为未来科学的重要领域。

6结论

本文讨论了纳米线涂层的结构和特性,重点是纳米线的复合涂层和其电学特性、光电特性。其中包括制造技术新观念,纳米材料的完美定律,纳米涂层的热-电效应,碳纳米管的侧向场发射,以及电子强关联体系和软凝聚态物质,展示了涂层科学与技术的发展前景。

参考文献:

[1]薛增泉,纳米科技探索[M].北京:清华大学出版社,2002.

[2]Pavlova-VerevkinaOB,Kul’kovaNV,PolitovaED,etal.COLLLOIDJ+2003,65(2):226.

[3]DattaMS,TINDIANIMETALS2002,55(6):531.

[4]YamaguchiY,JJPNSOCTRIBOLOGIS2003,48(5):363.

[5]HayashiN,SakamotoI,ToriyamaT,etal.SURFCOATTECH2003,169:540.

[6]PocsikI,VeresM,FuleM,eta1.VACUUM2003,7l(1-2):171.

[7]FanQP,WangX,LiYD,CHINESEJINORGCHEM2003,19(5):521.

[8]ArakiH,FukuokaA,SakamotoY,etal.JMOLCATALA-CHEM2003,199(1-2):95.

[9]BottiS,CiardiR,CHEMPHYSLETT2003,37l(3-4):394.

[10]TianML,WangJU,KurtzJ,etal.NANOLETT2003,3(7):919.

[11]RajeshB,ThampiKR,BonardJM,etal.JPHYSCHEMB2003,107(12):2701.

[12]FuRW,DresselhausMs,DresselhausG,etal.JNONCRYSTSOLIDS2003,318(3):223.

[13]KimTW,KawazoeT,SOLIDSTATECOMMUN2003,127(1):24.

[14]NguyenP,NgHT,KongJ,etal.NANOLETT2003,3(7):925.

[15]LiQ,WangCR,APPLPHYS.LETT2003,83(2):359.

[16]ChenYF,KoHJ,HongSK,YaoT,APPLlEDPHYSICSLETTERS,2000,76(5):559.

[17]JinBJ,BaeSH,LeeSY,ImS,MATERIALSSCIENCEANDENGINEERINGB,2000,(71):301.

[18]T.B.SercombeandG.B.Schaffer,SCIENCE,2003,301:1225.

[19]薛增泉,等.新型纳米功能材料[J].真空,2004,41(1):1-7.

[20]Z.W.Pan,Z.R.Dai,Z.L.Wang,SCIENCE,200l,(291):1947.

[21]W.U.Huynh,J.J.Dittmer,A.P.Alivisatos,SCIENCE,2000,(295):2425.

[22]P.Nguyen,H.T.Kongetal.NANO.LETT.2003,(3):925.

第7篇

关键词:大学物理;教学;建议;微积分

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2017)07-0213-02

大学物理课程是整个物理学的基础,大学物理包括力学、电磁学、热学、光学、原子物理学,为以后电动力学、量子力学、量子统计、流体力学、半导体物理学等物理学课程的学习树立好的物理概念十分重要。大学物理的学习效果直接影响到学生学习物理学的兴趣以及未来的知识结构。因此,学好大学物理课程,让学生从本质上理解大学物理的精髓显得特别重要。而学好大学物理课程中比较关键的一点就是学会在大学物理课程的学习中熟练运用微积分。

一、大学物理教学的弊端

大学物理是物理学专业的一门基础专业课,学生在学习这门课程时由于一开始讲解的内容对从高中上来的学生来说比较熟悉,所以学生会放松警惕,一旦讲到运用微积分时,学生反应过来要认真学习时发现学不懂了。自主能力差的学生慢慢就会放弃学习新知识。再加上这门课程相对比较抽象,学生的学习兴趣较低。再加上课堂教学法单一,学生被动接受知识的能力较差,就会导致大学物理的教学效果下降,从而降低学习整个从物理学的兴趣。

1.课程内容较为抽象。大学物理课程主要介绍了力学、电磁学、光学、热学、原子物理学等分支的基本原理以及经典思想。涉及的知识面较广,公式较多,学生较难理解。需要有物理思维,高等数学作为基础。单靠教师的讲解无法满足学生对知识的要求。学生由于感觉内容抽象,对学学物理课程没有兴趣。

2.教学方式单一。受传统教学模式的影响,大学物理的教学过程主要采取传统的教师讲解加多媒体课件的教学方式。这种单一的教学方式让学生让学生对知识的理解不够透彻,知识和实践相脱离,学生对基本知识的学习感到吃力,教学效果不明显。因此单一的教学方式,使学生对改课程知识的接受程度减小。

二、微积分在大学物理教学课程中的应用

1.微积分。微积分最重要的思想就是用“微元”与“无限逼近”,就是把一个一直在变化的量通过微分分成很小,这样我们就认为这个很小的量是不变的,然后我们对这个很小的量进行研究,最后把所有的和加起来就是我们要求的那个变量。这就是微积分在各个领域中应用的优点。这种分析连续过程累积的方法已经成为解决问题的基本方法,也是微积分最重要的优点。物理学更是接近于生活,因此微积分也经常应用于物理学当中。

2.微积分在大学物理应用中的举例。

(2)微积分在做功方面的应用。用微积分的方法解决变力做功的问题。变力作功的问题是热学和力学中的常见问题。例如,质点在恒力F的作用下,沿直线产生位移r过程中的功A=F*r。但对一般情况,质点沿曲线从a运动到b,且质点运动过程中,作用于质点上力的大小和方向都可能不断改变,要计算F力对质点所做的功,可将运动曲线分成许多微小的线段dr,计算出F在每一小段上所做的元功,再对整个轨道上所有元功求和。由于dr极小,所以每一小曲段都可看成直线段,而质点所受力可视为恒力。这样质点所做的功为dA=F*dr变力所做的功就是全部元功的和,写成积分的形式就是:A=∫F*dr因此通过微积分的方法可以把物理问题中变化的量转化为不变的量,先求微元再求和的方法,从而求出变力在整个物理过程中做的总功,使看似复杂的问题简单化。

三、结语

微积分是大学课程的重要的基础学科之一,并是物理学中解决问题必不可少的工具之一,学习微积分不但要学习它的应用,更重要的是理解它的思想,熟练掌握微积分,在面对物理学的具体问题时采用适当的单元,用微积分进行分割解决,即将复杂的问题简单分割,逐个击破,如此在使枯燥的物理学看起来更生动具体的同时,也减轻了学生对于物理学产生的畏难情绪。微积分作为物理解题的关键和基础,其重要性可见一斑,因此熟练掌握微积分,是大学物理课程必要的教学要求,这不仅能够让学生掌握大学物理的基本方法,也在无形中降低了物理学的难度,从而很好地提高了学生学学物理的兴趣,改善了教学效果。

参考文献:

[1]张礼.近代物理学进展[M].北京:清A大学出版社,1997:170-205.

[2]朱荣华.基础物理学[M].高等教育出版社,2000.

[3]陈丽佳.“半导体物理学”课程教学中的几点建议[J].教育教学论坛,2016,(5):82-83.

第8篇

关键词: 化学史 中学化学 教学应用

一、问题的提出

近年来,中学化学教学中化学史的应用逐渐被重视,许多高等师范院校开设了化学史课程。对于中学化学教学中需要应用的化学史实,已有研究都以举例形式呈现,未能系统指出中学化学阶段涉及的化学史实。笔者在中学化学课程内容的基础上,将化学史实分四个部分,下面对化学课程内容涉及的化学史实进行论述。

二、化学学科的形成与奠基者

1.化学学科的形成

人类从用火开始,由野蛮进入文明,开始用化学方法认识和改造物质,人类用火烧制熟食、制作陶瓷、冶炼金属,逐渐学会酿造、染色等。早在公元前四世纪,我国有阴阳五行学说,认为万物的构成以金、木、水、火、土为基础,古希腊人提出的火、风、土、水四元素说,二者是古代朴素的元素观。公元前两世纪,炼丹术在古代中国盛行,后来传入欧洲,演化为炼金术,成为近代化学的雏形。

2.波义耳――把化学确立为科学

化学史学家把1661年作为近代化学的开端,因为这年有本对化学发展产生重大影响的著作问世,这本书是《怀疑派化学家》,它的作者是英国化学家波义耳(1627-1691),波义耳最大的贡献是给化学元素下了科学定义,他的科学成就还有对空气性质的研究、燃烧现象本质的研究、酸碱和指示剂的研究,波义耳被誉称“把化学确立为科学”。

3.拉瓦锡――近代化学之父

拉瓦锡(1743-1794),法国化学家,被称为“近代化学之父”,拉瓦锡的科学研究方法开创化学发展的新纪元,他了统治化学理论达百年之久的燃素说,建立了以氧为中心的燃烧理论,他提出规范的化学命名法,倡导并改进定量分析方法,验证了质量守恒定律,撰写了第一部真正意义的化学教科书《化学基本论述》。

三、原子分子论与元素周期律

1.道尔顿――原子学说

道尔顿(1766-1844),英国化学家,1808年道尔顿提出了原子学说,为近代化学的发展奠定了重要基础,在提出原子论的同时,确定原子量的测定工作,从而成为化学史上测定原子量的第一人,成为这一领域的拓荒者,引起当时欧洲科学界的广泛关注,测定各元素的原子量成为当时热门的课题。

2.阿伏伽德罗――分子学说

阿伏伽德罗(1776-1856),意大利物理学家、化学家,1811年阿伏伽德罗提出分子学说,在之后的50年里分子学说没有受到科学界的重视,尽管阿伏伽德罗做了再三努力,直到他1856年逝世,分子学说仍然没有为大多数化学家所承认,为了纪念阿伏伽德罗,把一摩尔某种微粒集体所含微粒数为阿伏伽德罗常数。

3.康尼查罗――原子分子论

康尼查罗(1826-1910),意大利化学家,1860年在德国卡尔斯鲁厄的国际化学家会议上,他用充分的论据证实了分子学说的正确性,康尼查罗的工作使原子分子论得以确立,当时因为不承认分子的存在,化合物的原子组成难以确定,原子量的测定和数据呈现一片混乱,原子分子论的确立使原子量测定工作走出困境。

4.贝采尼乌斯――元素符号

贝采尼乌斯(1779-1848),瑞典化学家,对化学的突出贡献是测定原子量和制定元素符号,他在近二十年的时间里孜孜不倦地从事原子量的测定工作,在化学发展史上写下光辉的一页,他首先倡导以元素符号代表各种化学元素,用化学元素的拉丁文名表示元素,这就是一直沿用至今的化学元素符号系统,他的元素符号系统公开发表在1813年由汤姆逊主编的《哲学年鉴》上。

5.戴维――发现元素最多者

戴维(1778-1829),英国化学家,19世纪初,戴维用电解法和热还原法制得钾、钠、镁、钙、锶、钡、硼和硅,证明了舍勒发现的黄绿色气体不是所谓的“氧化盐酸”,而是一种化学元素的单质。他将这种元素命名为Chlorine,中文译名为氯,使元素的种类增加了九种,是发现元素种类最多的科学家。

6.门捷列夫――元素周期律

门捷列夫(1834-1907),俄国化学家,于1869年发现元素性质随原子量的递增呈周期变化的规律――元素周期律,他根据元素周期律编制了第一个元素周期表,把当时已经发现的63种元素全部列入表里,从而初步完成使元素系统化的任务,此时还有许多元素没有被发现,他在元素周期表里留下空位,对某些未发现元素的性质作了预言,后来他的预言都得到证实。

四、化学重要原理的提出

1.化学热力学与动力学理论

盖斯(1802-1850),俄国化学家,热化学的奠基人,化学反应的反应热只与反应体系的始态和终态有关,而与反应的途径无关,即著名的盖斯定律。吉布斯(1839-1903),美国科学家,他奠定了化学热力学的基础,提出了吉布斯自由能。范特霍夫(1852-1911),荷兰化学家,在化学反应速度、化学平衡和渗透压方面取得了骄人的研究成果,1901年第一个诺贝尔化学奖授予范特霍夫。勒夏特列(1850-1936),法国化学家,1888年他提出了化学平衡移动原理(勒夏特列原理)。哈伯(1868-1934),德国化学家,发明了合成氨的方法,1918年获诺贝尔化学奖。

2.化学酸碱理论

波义耳提出了最初的酸碱理论:能使石蕊试液变红的物质是酸,能使石蕊试液变蓝的物质是碱。阿伦尼乌斯(1859-1927),瑞典科学家,电离理论的创立者,1887年提出了酸碱电离理论(阿伦尼乌斯酸碱理论):凡在水溶液中电离出的阳离子全部都是H+的物质是酸,电离出的阴离子全部都是OH-的物质是碱,他还研究温度对化学反应速度的影响,得出著名的阿伦尼乌斯公式,提出活化分子理论和盐的水解理论等,获得1903年诺贝尔化学奖。

3.有机化学理论

维勒(1800-1882),德国化学家,1828年他因人工合成了尿素,打破了有机化合物的生命力学说而闻名,使有机化学得到了迅猛发展。李比希(1803-1873),德国化学家,被称为“有机化学之父”,他发明和改进了有机分析的方法,准确地分析了大量有机化合物,提出了化合物基团的概念及多元酸的理论。凯库勒(1829-1896),德国化学家,有机结构理论的奠基人,1857年提出碳原子四价和碳原子间相互成链理论,1890年提出苯分子的结构式,推动了有机化学的发展。

五、化学微观世界的探究

1.原子结构理论

在道尔顿的原子学说基础上,展开了原子结构的研究。汤姆逊(1856-1940),英国物理学家,1903年他在发现电子的基础上提出了原子结构的葡萄干布丁模型。卢瑟福(1871-1937),英国物理学家,他根据α粒子散射实验提出了原子结构的核式模型。波尔(1885-1962),丹麦物理学家,于1913年建立起核外电子分层排布的原子结构模型。20世纪20年代建立的量子力学理论,使人们对于原子结构的认识更深刻,从而有了原子结构的量子力学模型。

2.分子间作用力与化学键理论

范德华(1837-1923),荷兰物理学家,范德华首先研究了分子间作用力,分子间作用力又称范德华力。科塞尔(1888-1956),美国化学家,1916年提出离子键理论。路易斯(1875-1946),美国化学家,提出共价键理论。鲍林(1901-1994),美国化学家,他提出共价半径、离子半径、电负性、杂化轨道等概念和理论,他撰写的《化学键的本质》被认为是化学史上最重要的著作之一,1954年因在化学键方面的工作取得诺贝尔化学奖。

六、结语

上述是中学化学课程内容涉及化学史实的系统总结,由于理论水平和篇幅限制,难免有所遗漏并且未能展开论述。化学史实应用在化学教学中具有极大价值,有利于中学化学和大学化学教学的衔接,对化学课程标准和教科书的编写有启示意义,从学生角度而言,可以激发学生的学习兴趣和探究欲望,使其了解化学学科发展的大致历程,加深学生对科学本质的理解。在实际化学教学中,要依据课程内容要求和学生的认知水平,把握好化学史实涉及知识理论的深度和难度,合理应用化学史进行化学教学。

参考文献:

[1]中华人民共和国教育部.普通高中化学课程标准(实验)[S].北京:人民教育出版社,2003.

[2]周公度.化学是什么[M].北京:北京大学出版社,2011.

[3]邱道骥.化学哲学概论[M].南京:南京师范大学出版社,2007.

第9篇

1.信息是哲学层次上的抽象

信息论的主要创始人,美国数学家克芬特・仙农在研究信号、消息和信息的相互关系时指出:信号是信息的物理表达层;消息是信息的数学表达层;信息则是更高层次哲学上的抽象,是信号与消息的更高表达层次。这是一个非常精辟的论述。可惜,现在我们很多人在很多情况下都把消息和信息混淆在一起。包括仙农先生本人给信息一词下的定义:“信息就是不确定性的消除量”,也并不是从哲学层次上提出来的。混淆信息和消息的背后是我们对哲学和数学的认知出现了差错。我们要找出这些差错,还要对整个事件发生的来龙去脉详加分析。信息论、控制论和系统伦这三个密切相关又自成体系的理论为什么会在短短的三、五年内同时出现?它们产生的历史背景是什么?恐怕还得从一百年前相对论和量子力学的出现开始谈起。

A.哲学百年沧桑

我在上一章“时间和空间”中讲到:现代哲学一直停留在19世纪的水平上没有多大的进展,表现出了明显的衰落。造成这一状况的原因是:自从20世纪初相对论和量子力学先后问世,人们对客观世界的认识就进入到一个新的层次,而哲学家的步伐却一直跟不上来。辩证法只能解读“牛顿三定律”层次的东西,而科学家们急需要有一种新的思想方法来解读相对论和量子力学。在这样的历史背景下,一些科学家在从事自己所在专业的研究过程中,逐渐触及到一个新的哲学体系――系统观察法。这是一个超出辩证法而又不脱离辩证法的思想体系,就像相对论既超出又不脱离牛顿三定律一样。由于大家所处的具体专业不同,每一个人都仅仅接触到这个思想体系的一部份,于是信息论、控制论和系统论纷纷出笼。这三个科学理论实际上就是不同专业的科学家从不同的角度对同一个哲学思想体系的表述。可惜的是已经半个世纪过去了一直没有人能把三者融会贯通地结合起来,提炼出一个完整的哲学思想体系,形成一个完整的宇宙观。

为什么会这样呢?经过了二、三百年的发展,现代科学已经在西方文化的基础上形成了一个相对完整的思想体系。在思维方式上它以微观分析思维为主导思维方式,拒绝承认宏观综合思维的主导作用;在思想方法上它仅仅认识到矛盾双方的辩证关系,对矛盾双方生存的共同基础认识不足,对多头矛盾共同作用缺乏认识;在宇宙观上它固守“牛顿三定律――广义相对论”的宇宙观,对量子力学的宇宙观视而不见。只把量子力学当作奴隶来使用,而拒绝承认它的宇宙观,真可谓是天大的冤枉。在这样一个具有明显缺陷的思想体系主导下,我们的科学家即便是在自己的实践活动中已经认识到了更高层次的思想方法,也是仅仅局限于一般性应用,不能从宇宙观的高度把一个完整的哲学思想体系建立起来。

如此说来,目前信息论、控制论和系统论都还是一种处在原生状态的哲学。它们刚刚从社会实践中走出来,还需要有一个锤炼和升华的过程,最后才能形成一个更高层次的哲学思想体系。一个全新的思想方法背后必然有一个全新的宇宙观。尽管目前人们在强大的思维惯性作用下仅仅把新的思想方法当作工具在广泛使用,而拒绝承认它的宇宙观,但是它入主哲学殿堂的步伐是谁也阻挡不了的。当唯物辩证法升级为系统观察法的时候,唯物主义宇宙观也自然会提升为一个系统性的宇宙观。总之,哲学在20世纪发生了一场跨越式的发展,很多哲学家被抛弃在了19世纪,这是不容否认的历史事实。

信息论、控制论和系统论它们究竟属于哪一个学科?为什么我们不能讲“信息学、控制学和系统学”?我们为什么仍然称克芬特・仙农和诺伯特・维纳是数学家,难道他们在信息论和控制论方面的贡献比不上在数学方面的贡献吗?我心头多年的疑惑总算是有了一个说法。“名不正则言不顺”,现在到了给信息论正名的时候了。信息论就是20世纪最伟大的哲学论著;它的作者就是20世纪最伟大的哲学家。我们不这样给他们定位,我们就不可能真正理解什么是“信息”;也不能真正理解什么是哲学。

我在前面“第三章时间和空间”中曾经说:“20世纪没有严格意义上的哲学家”,现在看来也需要稍作修正。应该说:信息论、控制论和系统论的几位创始人真真正正是20世纪的哲学家。虽然连他们自己都没有意识到他们触及到的是一个高层次的哲学体系,这并不影响他们成为新的哲学体系的发现者和实践者。这也正显示出哲学的奥妙所在。从历史上看,真真正正坐在那里大篇大篇地写哲学专著的人,往往并不一定是真正意义上的哲学家。

联想信息论、控制论和系统论在当今社会中的显赫地位,岂不正好是哲学理应所处的位置吗?20世纪衰落的并不是哲学,而是我们这些职业的哲学人。历史给我们哲学家们开了一个不大不小的玩笑,恍然大悟之后还真有点让人羞愧难当。“往者不可谏,来者犹可追。”尊敬的哲学家们,让我们把19世纪的一些哲学命题权当是宝贵的文物暂且搁置起来吧,什么物质和精神呀,唯物和唯心呀,都暂且不要考虑,赶快投身到建设新的哲学体系的宏伟工程中来吧!现在,信息论、控制论和系统论已经渗透到了全社会的各行各业和所有的科学领域,我们再将它们贯通起来整合成一个完整的哲学思想体系,那还不把整个人类社会都折腾到天堂上去?

B.哲学源于实践

我们从信息论、控制论和系统论的产生到它们向全社会各个研究领域全面渗透的过程中看到了什么?看到的是:一个新的哲学体系从实践中产生又返过来指导实践的过程。

广义相对论和量子力学把人类对客观世界的认识带入了一个新的层次;在这个新的层次里面产生了新的认识方法;新的认识方法背后隐藏一个新的宇宙观。所以,要想在新的世纪里面当一位新的哲学家,首先必须认真理解广义相对论和量子力学,特别是要学会系统地理解它们的时空观,然后再学习在这两个基础理论之上已经形成的信息论、控制论和系统论。最后才有资格展开你的哲学思维。哲学源于实践,你不进入到这样的物质层次就不可能产生相应的哲学思考。

当我们学习了信息论、控制论和系统论再去学习中国哲学的时候,我们会发现它们两者之间竟然能非常容易地沟通起来。这是为什么呢?我们把上面的道理返过来想一想就会明白,原来它们的思维都深入到了同一个物质层次。现代人是由广义相对论和量子力学把思维引入到这个物质层次里面来的,那么中国古代哲人是如何把自己的思维深入到这个层次里面来的呢?没有别的方法,只有练功“入静”,让大脑进入“庄子”所说的那种“坐忘”状态,从而感触到一个更深入的物质世界。练功就是中国古代哲人非常重要的一种实践活动。

研究哲学需要有很深入的社会实践体验。一个现代的哲学家,你如果想研究中国哲学就必须要学会“入静”。你感触不到意境中的那个物质世界,你就不能理解中国哲学的精髓所在。同样,你要是想当一个21世纪的哲学家,就必须跟随广义相对论和量子力学进入到一个更深入的物质世界,特别是要弄清楚它们的时空观。这是最基本的入门条件,你如果作不到这一点就只能停留在19世纪,做一个19世纪西方哲学的守护神。因为19世纪以前的西方哲学对客观世界的认识只局限在四维时空的显物质世界。

C.信息和意识

“信息”实际上就是哲学家通常所说的“意识”,是更高理论层次上的意识。信息较意识有着更广泛、更深入、更充实、更具体、更实用的内涵。从意识到信息,标志着人类对客观世界的认识深入到一个新的物质层次,也是哲学在20世纪发生的一次跳跃式的发展。

20世纪初,广义相对论把一个由时空张力广泛联系的宇宙介绍给我们;量子力学把一个不确定的混沌宇宙介绍给我们;而在此之前,人们只有一个由万有引力广泛联系的宇宙。人类对客观世界的认识由此深入到了一个新的层次。人与外界的交换越来越频繁、越来越复杂。人与人之间的意识交流出现了越来越多的转换形式。原来人与人之间是通过语言来直接进行意识交流的,语言是意识的表现形式;语言是现实的意识。电话的出现,使电信号也成了意识的表现形式和现实的意识。到了信息论我们就把电信号改称为信息的表现形式和现实的信息,意识就是这样很简单地转称为信息进入一个更高层次的哲学体系。现在人们往往不能十分清晰地界定信号、消息和信息之间的关系,我们只要把这三者的关系稍微理顺一下就很容易明白:信息就是原来的哲学体系中的意识。原来我们把语言看作是现实的意识、把一本书看作是固化的意识;现在我们把语言看作是信息在物理层次上的表达、把一本书看作是储存起来的信息。

信息一点也不否定原来的意识,只是在原来意识一词的含义上加入了一些新的内容。新的内容主要是从两个方面加入的。一个方面就是上面刚讲过的,原来的哲学仅仅把语言看成是意识的表现形式和现实的意识,而信息论则把信号看成是“意识”的物理表现形式,把消息看成是“意识”的数学表现形式。很明显是根据时展的需要把意识的表达形式更进一步细化了。

另一方面加入的内容就不太容易理解了。我们对客观世界的认识不断深入,“物质”一词的内涵不断向“意识”方向扩展,到了暗物质、暗能量,物质和意识实际上已经完全合二为一了。按说依照辩证法并不应该难以理解,矛盾双方在一定条件下的相互转化呀!可是我们的哲学家就是拒绝承认。历史要发展,科学要前进,“信息”一词也就应运而生了。它不仅保留了“意识”一词原来的内涵:“意识是物质的产物”,它更告诉我们:“在物质世界的一定深度,意识就是物质”。也就是说,信息一词不仅包涵了主观的意识还增加了客观的意识。信息论要讨论主观信息和客观信息的问题,这在原来的哲学体系中是拒绝讨论这个问题的。

总之,信息就是系统化、层次化、客观化的意识。在这里一下子还讲不明白,到下面“主观信息和客观信息”一节再作详谈。

D.信息和消息

信息和消息的关系非常复杂,因为它涉及到哲学和数学的关系。研究它们之间的关系使我想起了中国哲学一句名言:“道可道,非常道”。就是说:用语言可以表达清楚的道理,都不是自然界最根本的、永恒不变的道理。我们给“信息”一词下了几十上百个定义,没有一个十分妥贴让人满意的。就是因为“信息”与中国哲学的“道”进入了大致相同的哲学层次。用语言(包括数学语言)都不可能完全表达清楚它的内涵。

能够用语言表达清楚的“道理”比“道”低一个层次,但是当我们所要认识的客观事物本身就处在物质世界比较浅显的层次的时候,“道理”和“道”就完全一致了,在这种情况下我们完全可以把道理看作是“道”。同样,信息和消息的也是这样。信息一词具有较深层次的哲学内涵,是不可能用语言(包括数学语言)完全表达清楚的。用语言(包括数学语言)能够完全解释清楚的应该是消息。但是,当信息所在的系统处在客观世界比较浅显的层次时,信息和消息是完全等同的,在这样的情况下我们把信息和消息混淆在一起也不为错。只是我们必须清楚二者在什么情况下是相同的,可以相互通称;在什么情况下二者是截然不同的不能相互通称。

信息是哲学层次上的抽象。如何抽象才是哲学层次上的抽象呢?我对克芬特・仙农先生的论述是这样理解的:对客观事物的物理特征进行抽象,包括三维大小尺度、颜色、温度、频率、速度、强度等等,可以获得信息的最低级表达层次---信号;对信号进行数字化处理,运用数学语言进行逻辑推理、综合、分析,可以获得信息的较低级表达层次―-消息;哲学层次上的抽象在以前的哲学中主要是指运用辩证法对客观事物进行多方位的抽象,而到了信息论这里已经上升为运用系统观察法对客观事物进行多时空的系统的抽象了。学习过系统论的人都知道,系统可以赋予我们一种洞察力,让我们能认识到其他方法观察不到的一些客观现象,而信息一词的内涵恰恰就包括了这样一些新的内容。

消息是信息的数学表达层,或者说是语言表达层。由于四维时空的“数理屏障”作用,消息只能存在于四维时空之内,而信息一词是不受时空屏障制约的。在四维时空之外只有客观信息存在,没有消息和信号存在;在四维时空之内既有客观信息存在还有主观信息存在。消息与主观信息是完全相通的,可以通称;消息与四维时空内的客观信息就不在同一个层次,是不可以通称的。详细解释还是放到下面“主观信息和客观信息”一节来讲。

2.信息是我们与外界交换内容的名称

信息论与控制论的创始人之一,美国著名数学家诺伯特・维纳认为:“信息就是我们在适应外部世界和控制外部世界的过程中,同外部世界进行交换的内容的名称。”这一句话讲的很有内涵,值得我们仔细探究。首先它告诉我们:信息存在于我们同外界进行交换的过程中,我们不与外界进行交换的时候信息就不存在。在没有我们存在的客观世界中本来是没有信息存在的,“信息”的主观属性赫然若揭。

“交换内容的名称”这7个字也值得我们细心玩昧,信息不就是我们对交换内容的一个称呼嘛?这使我想起中国古人的一句名言:“名可名,非常名”。说的是我们对周围事物的任何称呼都不是一成不变的,随着时间和空间的变化,我们对周围事物的称呼一直都在不断地发生着变化。一般情况下,我们都是给相对稳定的事物起一个名字,对于变化快的、比较复杂的事物我们没有必要给它起名字,或者不方便起名字,这时候就需要有一个统称,信息就是我们在这个时候使用的一个统称。所以,不管是已经有名称的客观事物,还是没有名称的客观事物我们都可以把它们的基本属性和存在方式看作是一个信息。当然这样的信息在未被我们的大脑意识到之前只能算是一个消息或一个信号。

我们在适应外部世界和控制外部世界的过程中,同外部世界在不断地进行着物资和能量的交换。对于交换的内容有时我们有具体的名称,我们既可以直呼其名,也可以称之为“信息”;如果没有具体的名称,我们就直接称之为“信息”。在此,我想模仿我的祖人“庄子”说一句粗话,还望大家见谅。“什么都是信息,信息也什么都不是。信息是个‘屁’”。消化道中的脏气从排出,它的响声和气味开始扩散、稀释,一直到人的感觉器官不能感觉到为止,我们把这一时间段的脏气称之为:屁。通常我们说:甲某放了一个屁把乙某给呛跑了。如果我们用信息化的思维方式来说这句话,就是:甲某释放出一个信息,乙某接受到这一信息后迅速离开了。这个简单的例子告诉我们:信息论就是一个方法论,它告诉我们如何用信息化的思维方式去认识复杂的客观世界。

一个外科医生可以从患者的放屁声中获得手术成功的信息。因为“屁”是患者消化道的产物,它携带着患者消化系统的信息,它携带的信息量与它所在系统的复杂度密切相关。屁声在没有转输到医生的大脑之前只是一个客观信号,被医生的意识系统接受之后才成为信息,这时它的信息量与医生大脑意识系统的复杂程度密切相关,一个经验丰富的医生可以获得更多的信息量。从这个简单的例子我们可以看到:任何信息都是系统中的信息,脱离开系统无所谓信息。所以要认识一个信息,首先要了解它所在的系统。

总之,信息论是一种方法论,是我们认识复杂问题的一种思想方法.当我们不使用这一种思维方法的时候,信息是不存在的.客观世界中只存在着物质,不存在信息.当我们开始运用这一种思想方法的时候,我们可以把任何物质称之为信息,包括我们已经认识到的物质和我们还没有认识到的物质;信息就是我们的大脑对物质的一种意识方法.信息化的认识方法和信息化的思维方式是系统思维的主要内容之一,任何信息都是一定系统中的信息,脱离开系统就没有信息。我们必须把信息论、控制论和系统论结合起来一块研究,形成一个完整的系统观察法。

3.主观信息和客观信息

作为一个唯物论者,我不认为信息[意识]是一种客观存在。但是我是一个中国式的唯物论者,承认有客观信息[意识]存在。走出四维时空物质就是意识,意识也就是物质。对于中国哲学,言重一点的人称它为:“客观唯心”,平和一点的人称它是“朴素的唯物主义”。以前我知道他们说的都不对,可是不知道如何来反驳,现在当我学习了信息论、控制论和系统论以后,我明白了,原来中国哲学中的唯物主义应该叫做:“系统辩证唯物主义”。中国哲学的“天人合一”思想就是透过人体这个小系统去认识宇宙这个大系统。系统辩证唯物主义对客观世界的认识比辩证唯物主义更深入一个层次,是辩证唯物主义的升级版。辩证唯物主义仅仅是系统辩证唯物主义的一个重要组成部分。

我是马克思和恩格斯的崇拜者,我崇尚马克思充满睿智的头脑;我佩服恩格斯思路的敏捷,我对他们的辩证唯物主义从未有过怀疑。但是,我是一个中国人,我更信奉中国哲学;我还是一个现代人,我更喜欢学习现代科学理论。我曾经在它们三者之间徘徊,不知所措。现在好了系统辩证唯物主义把它们非常科学地协调起来了。中国哲学、辩证唯物主义和信息论、控制论、系统论原本都是一体的,出现矛盾是我们对客观世界的认识还不够深入。

信息论、控制论、系统论三论归一是现代科学理论研究的一大趋势,系统论是前两论的基础也已经基本明确,只是这三归一该如何一个归法?多年来一直没有一个明确的说法。我的方法就是首先给它们区分主观、客观属性,就是把主观系统和客观系统,主观控制和客观控制,主观信息和客观信息一一区分开来。

A.主观系统和客观系统

系统就是一种整体观念。当我们用整体的观念去认识宇宙的时候,我们就把宇宙在主观上设定为一个系统;当我们把一个国家在主观上设定为一个系统的时候,也就是在用整体的观念研究这个国家。系统论就是一个整体方法论。可是不知大家是否想过,你只要用整体的观念去认识客观事物就必然会落入中国哲学的套路,因为在运用整体观念上目前还没有谁能比得上中国哲学。

我们说:“系统论是具有逻辑和数学性质的一门新兴的科学”,并常常以它具有逻辑和数学性质来证明它的科学性。其实我们错了,正是逻辑和数学的局限性制约了系统论的整体性,致使自然界中广泛存在的另一大类系统不能被纳入系统论研究。这另一大类系统就是德国科学家艾根在他的超循环理论中描述的“循环生成和循环制约系统”;也就是中国哲学中的“五行生克系统”。现代的超循环理论和古代的五行生克循环,他们研究的是同一类自然现象。

这两大类系统就像是一对孪生兄弟紧密联系,相互影响,相互制约共同维护着客观事物的平衡发展。也就是说:任何一个客观事物的历史发展过程都是这两类系统相互影响,相互制约,相互依存共同发展的过程,像物质世界的膨胀运动和旋转运动、生物界的遗传和变异、人类社会中的民主和集中等等。可惜的是这两类系统中有一类系统是不能用逻辑和数学来表达的,现在的系统论只研究具有逻辑和数学性质的系统也是出于无奈。

对系统论的深入研究,让我们认识到:系统起源于混沌,而最终也结束于混沌,系统的边缘地带也都是混沌的,系统处在混沌的包围之中。那么系统究竟是如何起源于混沌的呢?

我们知道混沌是物质的彻底的自由运动状态。自由运动导致部分物质和能量聚积起来,大聚积引发大爆炸、大膨胀。就是这种膨胀运动势力在自由运动的混沌之中支撑起了系统;反过来说,系统是膨胀运动势力把物质组织起来形成的。所以系统都具有方向性[时间性]和扩张性。但是,在膨胀运动势力支撑起来的系统之中自由运动势力并没有被消灭,原来表现为混沌状态的自由运动的物质在膨胀运动势力的冲压下转变成了旋转运动,旋转运动进一步演化出循环运动。循环运动让物质在自由运动的原则下组织起来形成另外一种系统。这样在一个相对独立、完整的系统内部就出现了两种组织形式的系统,按照膨胀运动组织原则形成的系统我们称之为“主观系统”;按照自由运动组织原则形成的系统我们称之为“客观系统”。所有自然形成的系统都是主观和客观两种系统交织在一起形成的。

很明显,现在的系统论研究的主要是主观系统。虽然德国科学家艾根在研究生物系统进化过程时发现了循环系统,也认识到了循环系统在自然界中存在的广泛性,但是几十年过去了,人们一直没有把这两类系统并列到一起来研究。造成这一现象发生的原因大概有如下三个方面:首先是人们的基本观念问题。现代社会的主流文化是以分析思维占主导地位的西方文化。人们刚刚开始运用像信息论、系统论这样的整体思想方法去认识客观事物,还不能完全摆脱分析思维惯性的制约。客观系统中各要素之间的复杂关系超出了辩证逻辑的认识范围,数学语言也无能为力,导致科学在客观系统面前驻足不前。科研对象的局限性也制约了系统整体思维的全面发展。现在科学家们研究的系统大多还是以人工系统为主,而人工系统工程都是主观系统。在大自然中客观控制系统主要表现为旋转运动,如原子的旋转、太阳系的旋转,我们目前还不知道它们为什么要旋转;在四维时空之外它表现为暗物质和暗能量,而我们对暗物质也还知之甚少。

在生物界和社会组织中,客观系统虽然容易被我们认识到,由于物理学家认识不到,数学家又解读不了,这种客观系统也只能被排斥在主流文化之外。如果再没有哲学来揭开其中的奥妙,长此以往后果很严重,整个人类社会的发展都会受到很大影响。

通过对系统论的研究,我们认识到:系统来源于混沌。由于系统论研究的主要是主观系统,而混沌本身就是一种客观控制系统,所以应该说:主观系统产生于客观系统之中。而随着系统的发展,主观系统中又出现客观系统;客观系统中又产生主观系统。从宇宙大爆炸到生命的产生,再到人类社会的出现,再到人类社会的发展和完善,系统就是这样由客观中产生主观,再由主观中出现客观,主观系统与客观系统交替促进,协调发展。

总之,系统就是一种整体观念。任何一个完整的系统或者说自然形成的系统都是主观和客观两类系统交织在一起形成的。主观系统是按照膨胀运动的组织原则组织起来的,因而它具有方向性和扩张性;客观系统是按照自由运动的组织原则组织起来的,因而它具有不确定性。主观系统内部各要素之间有级差关系,这是由系统的方向性所决定的控制与被控制关系;而客观系统内部各要素之间都是相互平等的,这是物质的自由运动原则所决定的相互制约,相互协同关系。现代系统论研究的仅仅是主观系统,这是因为数学语言解读不了客观系统。要想建立一个完整的系统理论就必须站在哲学的高度把主观系统和客观系统结合起来一块研究。

B.主观控制和客观控制

在现宇宙中,任何客观事物都是在膨胀运动和自由运动两种势力的相互抗衡中发展起来的。当我们把某一相对独立、完整的客观事物看作是一个系统来进行研究的时候,就把膨胀运动势力对系统的影响作用称之为:“主观控制”;自由运动势力对系统的影响作用称之为:“客观控制”。实际上,主观控制和客观控制是相互依存、密不可分的,任何一个独立、完整的系统内部都同时存在着主观和客观两种控制形式。比如:议会对国家的控制就是一种客观控制,而政府对国家的控制就是一种主观控制;董事会对企业的控制属于客观控制,而总经理对企业的控制就属于主观控制。

主观控制是膨胀运动势力对客观事物的影响过程。它具有种种膨胀运动的基本特性,如:扩张性、时序性和方向性等。指令和反馈是主观控制的最基本形式,而促进客观事物不断向前发展是主观控制的目的。

客观控制是自由运动势力对客观事物的影响过程。系统内部各要素之间自由平等、有序竞争是其基本特性。在这里,“有序”是围绕主观控制的方向和目的形成的有序,是主观控制的结果。循环相生、循环相克是客观控制的基本形式,而维持系统平衡是客观控制的目的。

现代系统论主要是研究主观系统;同样,现代控制论研究的也主要是主观控制。这是人类对客观世界认识的阶段性造成的,随着人们对客观世界认识的不断深入,将逐渐认识客观控制,这是一种不容易用逻辑思维和数学语言解读的控制形式。

C.主观载体信息和客观本体信息

任何信息都是系统中的信息,没有系统无所谓信息。在主观系统中运行的是主观信息;在客观系统中运行的是客观信息。主观信息和客观信息在结构形式上是截然不同的。主观信息只能依附于相应的载体而存在,故称之为:主观载体信息;客观信息就是一种客观自在的物质,故称之为:客观本体信息。

现代信息论主要讲的是主观信息,客观信息这一概念缺失,主观信息和客观信息混淆不清,导致“信息”一词的概念一直不能确定。比如:现代科学家经常说:“信息被吸入黑洞、黑洞释放出信息”等等,在这里信息就是物质,物质就是信息,这就是客观本体信息。由于不明白主观信息和客观信息之间的关系,一些人在论坛上大声疾呼:“某某科学家在宣扬唯心主义,唯心主义必败”等过激言辞。实际上科学家没有错,错误的是我们,我们对系统科学理论的认识不够深刻;我们对客观物质世界的认识还停留在比较肤浅的一个层次。研究21世纪的哲学必须在深入理解广义相对论和量子力学之后。

我们的大脑就是客观世界中自然生成的一个信息处理器。主观信息就是大脑把物质的存在状态和基本属性抽象出来,以一定的物理符号[信号]、记录、储存起来。大脑抽象的过程既是主观信息形成的过程,也是主观意识形成的过程,在这里主观信息等于主观意识。当我们非常客观地把大脑当作一个信息处理器来认识思维过程时,我们的思路似乎突然开阔起来,原来意识的实质就是物质的存在状态和基本属性。原本物质和物质的存在状态、物质的属性是不可分离的,是大脑把物质的存在状态和属性抽象出来与本体相分离。

在四维时空之外,宇宙大爆炸之前,物质处于自由运动的混沌状态,物质就是信息――客观信息;物质就是意识――客观意识。物质处于混沌状态,物质和物质的基本属性无可分离,就不存在主观信息和主观意识。

物质进入四维时空,进入了多层次的旋转运动状态,有了相对稳定的形体,可以被大脑所意识。物质的存在特征和基本属性被大脑抽象出来就形成了主观信息和主观意识。

进入四维时空的物质,在膨胀运动势力和自由运动势力的双重作用下,运动形式不断提高。生命运动的产生,社会运动的出现,主观控制和客观控制的表现形式也不断提高,客观信息的表现形式相应发生了一定的变化。比如:在人类社会中,议会对国家的控制属于客观控制,议会选举过程中每一张选票都是一个客观信息,都代表一定的社会势力。选票作为一个载体与社会势力之间是一个代表关系,是一个设定关系。选票不是抽象出来的,是设定出来的。所以说,在比较高级的客观控制系统中,客观信息可以和客观事物本身相分离,但是,这种分离不是抽象出来的和主观载体信息有着明显的区别。

举例说明一下:前几年长虹集团在电视机市场上掀起一场降价风波。长虹集团老总的一纸电文,长虹彩电在全国范围内全面降价。这一纸电文就是一个主观载体信息。这一降价行为作用于电视机市场引起各个品牌的电视机纷纷降价。这一降价行为就是一个客观本体信息。

4.小结

20世纪初相对论和量子力学先后问世,人们对客观世界的认识进入到一个新的物理层次。更开阔的视野,引发人们更深入的思考。到了20世纪四、五十年代,新的思想方法开始不断涌现,信息论,控制论和系统论几乎是同时出现。这些新的思想方法背后是一个新的宇宙观、一个新的哲学思想体系。新、旧思想体系之间不是相互否定、不是相互对立,而是一种新的拓展。这也决定了新、老宇宙观之间不是直接的对抗,就像相对论与牛顿三定律之间的关系一样,是一种承接、发展关系。辩证唯物主义就是这样发展成为系统的辩证唯物主义。

我们现在都没有把信息论、控制论和系统论当作一个新的哲学体系来看待,这是因为客观世界中同时存在着两大类系统,而现代系统论只研究其中占主导地位的一类系统,对另一类系统视而不见。巨大的认识缺陷,不认真仔细地潜心思辨,还真的不容易发现。我们把客观系统、客观信息和客观控制提出来,把主、客观系统之间的相互关系辨析清楚,一个崭新的哲学体系就显现在我们的面前。

相关文章
相关期刊