时间:2023-07-28 16:42:54
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇高层建筑结构抗震设计论文范例。如需获取更多原创内容,可随时联系我们的客服老师。
关键词:高层建筑;抗震;结构设计;理论
中图分类号:[TU208.3] 文献标识码:A
1 我国的高层建筑发展历程
上世纪80年代,我国高层建筑在设计计算机施工技术等领域快速发展,100m左右及以上的将建筑快速发展,多以钢筋为主要材料,在层数与高度增加的同时,功能与类型也日益增多。各大城市几乎都建立了具有各自特色的建筑,以上海锦江饭店为代表:高度达到153.52m,全部采用的钢结构体系;而深圳的发展中心大厦有43层,高度达到165.3m,算上天线高度达到185.3m,是我国第一幢大型的高层钢结构建筑。到了90年代,我国的高层建筑结构从设计到施工进入到一个新的阶段,除了体系与材料的多样化,高度上也有了质的飞跃。在1995年完工的深圳地王大厦,共有81层,高度达到385.95m,居世界第四高。
2 建筑抗震的理论
2.1 建筑结构的抗震规范
一般的抗震规范都是各国结合具体的情况进行的经验总结,是指导抗震设计的法定文件,及反应国家经济与建设的发展水平,也反映了各个国家的抗震经验。尽管抗震理论不断完善,技术水平也在不断地提高,但是必须要有实践的指导,要将建筑工程的安全性放在首要位置,容不得任何的大意与疏忽。基于这一认识,现代建筑部分条文被列为强制条文,使用了“严禁、不得”等绝对性的字眼,同时也有不同条文有较大的自由空间。
2.2 建筑抗震设计的理论
当前建筑抗震设计的理论主要分为拟静力理论、反应谱理论及动力理论。拟静力理论起源于20世纪10~40年代出现的理论,在估测地震对结构的影响时,假设结构为刚性,地震水平作用在结构或构件的质量中心,地震力的大小当于结构的重量乘以一个比例常数(地震系数)。
反应谱理论是在上世纪40-60年展起来的,以强地震动加速度观测记录的增多与对地震地面运动特性的进一步了解,及结构动力反应特性的研究为基础,是加理工学院的学者对地震加速度记录的特性进行分析后获得的成果。
动力理论是上世纪70-80年代的应用较为广泛的地震动力理论,是在60年代以来电子计算机技术与试验技术的发展为基础,人们对各类结构在地震作用下的线性与非线性的反应过程也有了较多的了解,随着强震观测台的增加,各种受损结构的地震反应记录也在不断地增加。进一步动力理论也称地震时程分析理论,它将地震作为一个时间过程,选择具有代表性的地震加速度时过程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,完成设计工作。
3 高层建筑的抗震结构设计
3.1 必要的抗震对策
在高层建筑结构的抗震设计中国,出了要考虑到概念的设计,还要进行验算,结合地震的情况,要在高度允许的范围内建造,增加结构的延性。在当前的抗震设计中,抗震验算及构造与措施等角度入手进行分析,提高结构的抗震性与消震性能。建立地震力与结构延性互相影响的双重设计指标,直到达到预期的抗震效果。当前强柱弱梁,强剪弱弯和强节点弱构件在提高结构延性方面的作用已得到普遍的认可。
3.2 高层建筑的抗震设计思想
在《建筑抗震规范》中有明文规定,建筑的抗震设防要符合“三水准、两阶段”的要求。所谓的“三水准”就是指“小震不坏,中震可修,大震不倒”。当遇到第一设防烈度地震即低于本地区抗震设防烈度的地震时,结构处于弹性变形阶段,建筑物可以正常使用。一般情况下,建筑物不会被损害,也不需要修理即可使用。所以,高层建筑结构的抗震设计要满足地震频发下的承载力极限,要求建筑的弹性变形不超过规定的弹性变形限值。当遇到第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物结构会发生损害,但是不经修理或者简单修理就可以继续使用。所以,建筑结构必须要有足够的延性能力,不会出现脆性破坏。当发生第三设防烈度地震的情况下,就是遇到本地区地震极限外的情况,结构会受到非常严重的损害,但是结构的非弹性变形距离倒塌仍有一段距离,不致产生危及生命的损害,保障了居住人员的安全。所以在进行高层建筑结构设计的过程中,要保证建筑的足够变形能力,其弹塑变形要在规范的数值之内,保证结构良好的抗震性能。三个水准烈度的地震作用水平是根据不同超越概率进行区分的,一般情况下是:
多遇地震:50年超越概率63.2%,重现期50年;设防烈度地震(基本地震):50年超越概率10%,重现期475年;罕遇地震:50年超越概率2%-3%,重现期1641-2475年,平均约为2000年。
从高层建筑的抗震水准来看,设防的要求是通过“两个阶段”设计来实现的,具体方法如下:第一环节,第一步采用与第一水准烈度相应的地震动参数,提前计算出高层建筑结构在弹性状态下的地震作用效应,与风力、重力荷载进行高效组合。同时引入承载力抗震调整系数,进行构件截面的准确射击,进而达到第一水准的强度要求;然后是运用同一地震参数计算出结构的层间位移角,使其可以在抗震规范设定的限值之内;同时采用相应的抗震构造对策,确保结构可以有足够的延性、变形能力与塑形耗能,进而达到第二水准的变形目的。而第二阶段则是运用与第三水准对应的地震动参数,算出结构的弹塑性层间位移角,使其在抗震规范的限值之内,然后进行必要的抗震构造对策,进而实现第三水准的防倒塌目的。
3.3 现代高层建筑结构的抗震设计方法
在《建筑抗震设计规范》中对各类的建筑结构的抗震计算应该采用的方法都有明确的规定:高度要在40m之内,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法等简化方法;除1款外的建筑结构,宜采用振型分解反应谱方法;特别不规则的建筑、甲类建筑和限制高度范围的高层建筑,应采用时程分析法进行多遇地震下的补充计算,可取多条时程曲线计算结果的平均值与振型分解反应谱法计算结果的较大值。
结语
地震是威胁较大的天灾之一,必须要加强防御,从上文的分析中我们可以看到,高层建筑的抗震结构设计必须要在要求的限值之内,保证结构的良好性能,提高建筑的使用性能。
参考文献
[1]朱镜清.结构抗震分析原理[M].地震出版社,2002.
[2]李彬.对于高层建筑结构的抗震设计探讨[J].中国新技术新产品.2012(02).
论文参考文献真实规范的写作可以方便同一研究方向的研究学术者提供可靠有效的文献信息,也可以帮助读者了解作者对这一学术问题研究的程度。以下是学术参考网小编整理的关于建筑结构论文参考文献,供大家阅读欣赏。
建筑结构论文参考文献:
[1]刘烽锋.对建筑结构设计中的思路优化探讨[J].建筑工程技术与设计,2015,(9):497-497.
[2]周宏伟.刍议房屋结构设计中建筑结构设计优化方法的应用[J].四川水泥,2014,(12):283-283,286.
[3]周宏伟.刍议房屋结构设计中建筑结构设计优化方法的应用[J].四川水泥,2014,(12):313-314.
[4]周翱.房屋结构设计中建筑结构设计优化方法的应用探讨[J].建筑工程技术与设计,2014,(22):710-710.
[5]梁辉辉,杨鑫.刍议房屋结构设计中建筑结构设计优化方法的应用[J].建筑工程技术与设计,2015,(14):390-390.
[6]伍后胜,庞宇.建筑结构设计优化技术在房屋结构设计中的实际应用[J].房地产导刊,2014,(18):114-114.
[7]朴洪立.建筑结构设计中优化方法研究[J].民营科技,2014,(7):145.
[8]刘立伟.建筑结构设计优化方法在房屋结构设计中的应用探究[J].商品与质量·理论研究,2014,(7):208-208.
建筑结构论文参考文献:
[1]张世廉,董勇,潘承仕.建筑安全管理[M].2005
[2]陈肇元,土建结构工程与耐久性[M].2003
[3]杨云峰.浅谈建筑结构抗震概念设计[j].科技创新导报.2009(11)
[4]王建军.土建结构工程的安全性与耐久性[N].伊犁日报(汉),2006
[5]董心德,叶丹,张永平,蔡世连.复杂高层建筑结构基于性能的抗震设计概念[j].中国产业.2010(12)
建筑结构论文参考文献:
[1]建筑抗震设计规范(GB50011-2001)
[2]混凝土结构设计规范(GB50010-2002)
[3]建筑结构杂志
[4]高层建筑结构概念设计
[5]北京市建筑设计技术细则-结构专业
关键词:建筑方案设计;抗震;作用分析
中图分类号: TU2文献标识码: A
1、建筑方案设计在建筑抗震设计中的几个主要设计问题分析
1.1 建筑体型设计问题
建筑体型包括建筑的平面形状和立体的空间形状的设计。震害表明,许多平面形状复杂,例如平面上的外凸和凹进、侧翼的过多伸悬、不对称的侧翼布置等在地震中都遭到了不同程度的破坏。海城地震和唐山地震中有不少这样的震例。而平面形状简单规则的建筑(包括单
层和多层建筑)在地震中都未出现较重的破坏;有的甚至保持完好无损。沿高度立体空间形状上的复杂ss和不规则,例如相邻单元的高差过大、出屋面建筑部分的高度过高、有的建筑装饰悬伸过大过高,这些沿高度形状上的变化,在地震时都会造成震害,特别是在建筑结构刚度发生突变的部位更易产生破坏。在历次地震中工业与民用建筑都有此类震例。
所以,在建筑体型的设计中,应尽可能的使平面和空间的形状简洁、规则;在平面形状上,矩形、圆形、扇形、方形等对抗震来说,都是较好的体型。尽可能少做外凸和内凹的体形,尽可能少做不对称的侧翼和过长的伸翼,在体型布置上尽可能使建筑结构的质量和刚度
比较均匀地分布,避免产生因体形不对称导致质量与刚度不对称而引起建筑物在地震时发生对抗震极不利的扭转反应。在建筑方案设计中,特别是高层建筑的建筑方案设计中,为了建筑立面美观和艺术上创意,复杂的建筑体型是难以避免的,但是,在设计时一定要把建筑艺术、建筑使用功能同结构抗震安全很好的地结合起来。
1.2 建筑平面布置设计问题
建筑物的平面布置在建筑方案设计中是十分重要的部分,它直接反映建筑的使用功能和要求。柱子的距离,内墙的布置,空间活动面积的大小,通道和楼梯的位置,电梯井的布置,房间的数量和布置等等,都要在建筑的平面布置图上明确下来;而且,由于建筑使用功能
的不同,每个楼层的布置有可能差异很大。因此,这就带来一个建筑平面布置的多样化如何同时考虑结构抗震要求的问题。一个比较突出的问题是,建筑平面上的墙体(包括填充墙、内隔墙、有相应强度和刚度的非承重内隔墙)布置不对称;墙体与柱的分布不对称,不
协调;造成建筑结构质量与刚度在平面上分布的不对称,不协调;使建筑物在地震时产生扭转地震作用,对抗震很不利。根据抗震设计审查结果统计,有的城市在建筑平面布置上不合理的达17%,在墙体设置上不符合抗震要求的达24%。
1.3 地展力问题
在高层建筑方案设计中,除了考虑垂直荷载和水平荷载外,还要考虑地展力。往往由水平地震力产生的内力,成为设计控制的主要因素。高层建筑的结构体系有多种,当地震烈度低于8度时,只要建筑物体型合理。垂直刚度均匀,九层以下的高层建筑,仍可采用钢筋混凝土框架结构。然而,由于高层建筑结构体系自身的柔性较大。加上设计师在建筑方案设计时因商业要求,无法建筑结构上进行合理的设计,从而引起建筑结构设计不合理,造成这类建筑抗震性能先天不足,加上临街一面底层抗震墙设簧减少,引起底层的侧移刚度比纵横墙较多的第二层要小,这种结构的建筑物其地震倾覆力矩主要由钢筋砼框架柱承担,使得底层钢筋砼框架柱的承载能力大为降低,当地震时,因为下柔上刚,从而危及整座建筑的安全。如何才能克服这些闲难就是建筑方案设计者所面临问题。
1.4 缺乏理论指导和经验
建筑抗震设计中缺乏科学规范的理论指导,缺乏实际经验的积累;我国对地质地震的认识尚不够完善,对地震的成因,预测,防治研究不够深入,地震防治规范不够科学。因此,在进行建筑结构抗震设计时候,缺乏一定的科学依据,或依据的是不完善的理论。因此,难以在建筑结构设计中完美融合防震设计理念。设计中,没有能够深入研究地震对建筑结构破坏的层次和顺序,难以做到重视主体的设计而兼顾细节问题。没有能根据实际情况灵活变通的运用抗震设计准则。
2、建筑方案设计和抗震设计的关系分析
建筑方案设计对建筑抗震起重要的基础作用。建筑的结构设计难以对建筑方案设计有很大的改动,建筑方案设计已经初步形成了,建筑结构就必须按照原则服从建筑方案设计的要求。设计师在建筑方案能够全面的考虑到抗震设计的要求,那么结构设计人员按照建筑方案
对结构部件进行科学、合理的布置,保证建筑结构质量与结构刚度均匀分布,结构受力和结构变形共同协调,提高建筑结构抗震性能和抗震承载能力;如果建筑方案没有考虑到抗震的要求,直接给结构抗震设计带来更大的难题,建筑布局设计限制结构抗震布局设计。为了进
一步提高结构部件抗震承载能力,就必须增大结构构件的截面面积,这样又会造成很多不必要的浪费。所以,在建筑抗震设计的过程中建筑单位要对建筑体型设计、建筑平面布置设计、屋顶建筑抗震设计等问题加以关注。
3、在建筑方案设计中考虑抗震问题的作用
3.1 体型设计中能够避免质量和刚度分布不均
建筑体型包括建筑的平面形状和主体的空间形状的设计。平面形状简单规则的建筑在地震中未出现较重的破坏,有的甚至保持完好无损。沿高度立体空间形状上的复杂和不规则在地震时都会造成震害。特别是在建筑结构刚度发生突变的部位更易产生破坏。因此在建筑体型的设计中,应尽可能地使平面和空间的形状简洁、规则:在平面形状上,矩形、圆形、扇形、方形等对抗震来说都是较好的体型。尽可能少做外凸和内凹的体型,尽可能少做不对称的侧翼和过长的伸翼。在体型布置上尽可能使建筑结构的质量和刚度比较均匀地分布,避免产生因体型不对称导致质量与刚度不对称的扭转反应。
3.2 屋顶建筑的抗震设计作用
屋顶建筑的抗震设计人员常被人们忽视,这是因为屋顶并不是结构承重的重要部分。所以人们并不重视这一方面的设计。事实上恰恰相反。屋顶建筑是建筑方案设计的非常重要的一部分,根据现在一些地震的破坏来看。屋顶建筑是地震破坏最严重的地方之一。在这一部
分的设计中应该尽量降低屋顶建筑的高度,在材质上选择用高强轻质的建筑材料和轻型的建筑造型,保证屋顶建筑的结构质量和刚度的均匀分布,这样就能保证地震作用沿结构方向的均匀传递。同时在设计的过程中,要注意屋顶建筑与整体建筑的重心应该保持一致,这样能
够显著提高屋顶建筑的抗震稳定性。减少地震过程中扭转、变形等情况对建筑物自身的破坏。
结语:
总之,建筑方案设计在建筑的抗震设计中非常重要,二者之间有着非常密切的关系。因此,对于建筑方案的抗震设计,我们要有足够的重视并且使其能够发挥它的作用。从而保证建筑的抗震能力,保障人们的生命财产安全。
参考文献:
[1]蒋山.浅谈建筑方案设计在建筑抗震设计中的作用,[期刊论文]中国房地产业,2011 年10 期
[2] 陆伟权.浅析建筑方案设计在建筑抗震中的作用,[期刊论文]城市建设理论研究,2012 年14 期
[3]曾锐.重视建筑方案设计在建筑抗震设计中的作用,[会议论文]中国铁道学会铁路房建管理会议,2010
【关键词】高层建筑;结构工程;抗震设计
一、结构抗震设计的重要性
地震是一种随机振动,有难于把握的复杂性和不确定性,要准确预测建筑物所遭遇地震的特性和参数,目前尚难做到。在结构分析方面,由于未能充分考虑结构的空间作用、结构材料的非弹性性质、材料时效、阻尼变化等多种因素,同时也存在着不准确性。因此,工程抗震问题不能完全依赖“计算设计”解决,而必须立足于“概念设计”。概念设计是指设计人员从结构的宏观整体出发,用结构系统的观点,着眼于结构整体反应,正确地解决总体方案、材料使用、分析计算、截面设计和细部构造等问题,力求得到最为经济、合理的结构设计方案以达到合理抗震设计的目的。结构抗震概念设计的目标是使整体结构能发挥耗散地震能量的作用,避免结构出现敏感的薄弱部位。地震能量的聚散,如果仅集中在少数薄弱部位,必会导致结构过早破坏,目前各种抗震设计方法的前提之一就是假定整个结构能发挥耗散地震能量的作用,在此前提下才能以多遇地震作用进行结构计算、构件截面设计并辅以相应的构造措施,必要时采用弹性时程分析法进行补充计算,试图达到罕遇地震作用下结构不倒塌的目标。
二、高层混凝土建筑结构抗震设计策略
1、从建筑的全局出发
高层混凝土建筑结构设计要从建筑的全局出发,全面考虑各种建筑部位的功能,在此基础上,科学设计每个部分的构件,保证每个部件之间的契合,促使每个部件或者是若干部件组合起来可以完成某一特定的设计要求,满足一定的现实需求,同时,通过抗震设计,使得每个构件都可以具有相应的承载力,当地震来袭,每个构件都可以有着一定的次序先后破会,整体组合构件将会有着更强大的承载力和柔性,从而延缓地震破坏的速度,消耗爆发的能量。增强建筑的整体抗震能力。
2、地基选址
地基选址是进行建筑结构设计的基础,因此,在房间结构抗震设计中,要科学避开山嘴,山包,陡坡,河流等不利因素,要本着坚硬,牢固,平坦,开阔的选址原则。亲身实地,利用先进技术设备,进行地质勘探,山石水土监测,并取样论证,科学严谨分析。力求使得整个地基牢固可靠,地质稳定无渗漏,无坍塌,无暗河,无熔岩,无火山……从而保证整个地基不会因为承载而发生小范围的坍塌。影响到整体承载能力和抗震能力设计。
3、高度的确定
按我国现行高层建筑混凝土结构技术规程(JGJ3-2002)规定,在一定设防烈度和一定结构型式下,钢筋混凝土高层建筑都有一个适宜的高度。这个高度是我国目前建筑科研水平、经济发展水平和施工技术水平下,较为稳妥的,也是与目前整个土建规范体系相协调的。可实际上,已有许多混凝土结构高层建筑的高度超过了这个限制。对于超高限建筑物,应当采取科学谨慎的态度:一要有专家论证,二要有模型振动台试验。在地震力作用下,超高限建筑物的变形破坏性态会发生很大的变化。因为随着建筑物高度的增加,许多影响因素将发生质变,即有些参数本身超出了现有规范的适宜范围,如安全指标、延性要求、材料性能、荷载取值、力学模型选取等。
4、材料的选用和结构体系
在地震多发区,采用何种建筑材料或结构体系较为合理应该得到人们的重视。我国150m以上的建筑,采用的三种主要结构体系(框—筒、筒中筒和框架—支撑体系),都是其他国家高层建筑采用的主要体系。但国外,特别在地震区,是以钢结构为主,而在我国钢筋混凝土结构及混合结构占了90%。如此高的钢筋混凝土结构及混合结构,国内外都还没有经受较大地震作用的考验。在高层建筑中采用框架———核心筒体系,因其比钢结构的用钢量少,又可减少柱子断面,故常被业主所看中。混合结构的钢筋混凝土内简往往要承受80%以上的震层剪力,有的高达90%以上。由于结构以钢筋混凝土核心筒为主,变形控制要以钢筋混凝土结构的位移限值为基准。但因其弯曲变形的侧移较大,靠刚度很小的钢框架协同工作减小侧移,不仅增大了钢结构的负担,且效果不大,有时不得不加大混凝土筒的刚度或设置伸臂结构,形成加强层才能满足规范侧移限值;此外,在结构体系或柱距变化时,需要设置结构转换层。加强层和转换层都在本层形成大刚度而导致结构刚度突变,常常会使与加强层或转换层相邻的柱构件剪力突然加大,加强层伸臂构件或转换层构件与外框架柱连接处很难实现强柱弱梁。因此在需要设置加强层及转换层时,要慎重选择其结构模式,尽量减小其本身刚度,减小其不利影响。
在高层建筑中,应注意结构体系及材料的优选。现在我国钢材生产数量已较大,建筑钢材的类型及品种也在逐步增多,钢结构的加工制造能力已有了很大提高,因此在有条件的地方,建议尽可能采用钢骨混凝土结构、钢管混凝土(柱)结构或钢结构,以减小柱断面尺寸,并改善结构的抗震性能。在超过一定高度后,由于钢结构质量较小而且较柔,为减小风振而需要采用混凝土材料,钢骨(钢管)混凝土,通常作为首选。
另外,许多高层建筑底部几层柱虽然长细比小于4,但并不一定是短柱。因为确定是不是短柱的参数是柱的剪跨比,只有剪跨比≤2的柱才是短柱。有专家学者提出现行抗震规范应采用较高轴压比。但是即使能调整轴压比限值,柱断面并不能由于略微增大轴压比限值而显著减小。因此在抗震的超高层建筑中采用钢筋混凝土是否合理值得商榷。
总之,钢筋混凝土框架结构是我国大量存在的建筑结构形式之一,钢筋混凝土框架结构的柱端与节点的破坏较为严重,其抗震设计中应该钢筋混凝土高层建筑结构抗震关键设计,另外,必须满足“强柱弱梁”“、强剪弱弯”“、强节点”“、强底层柱底”等延性设计原则和有关规定。
5、运用延性设计
结构良好的延性有助于减小地震作用,吸收与耗散地震能量,避免结构倒塌。因此,结构设计应力求避免构件的剪切破坏,争取更多的构件实现弯曲破坏。始终遵循“强柱弱梁,强煎弱弯、强节点、弱锚固”原则。构件的破坏和退出工作,使整个结构从一种稳定体系过渡到另外一种稳定体系,致使结构的周期发生变化,以避免地震卓越周期长时间持续作用引起的共振效应。
三、结语
总之,高层建筑结构的抗震设计方法和技术是不断变化和进步的,需要在具体的实践中对高层建筑所处的地质和环境进行详细的分析和研究,选用适合的抗震结构,注重建筑结构材料的选择,减小地震的作用力,增强地震的抵抗力,从而达到高层建筑抗震的目的。
参考文献:
[1]计静.套建增层预应力钢骨混凝土框架抗震性能与设计方法研究.哈尔滨工业大学博士学位论文,2008.
[2]蒋新梅.高层建筑结构的抗震设计[J].广东科技.2009(08)
关键词:高层建筑;抗震设计;结构体系
结构工程师按抗震设计要求进行结构分析与设计,其目标是希望使所设计的结构在强度、刚度、延性及耗能能力等方面达到最佳,从而经济地实现“小震不坏,中震可修,大震不倒”的目的。本文围绕高层建筑结构,总结了高层建筑结构设计的特点以及提出了高层建筑结构分析和各种体系相对应的方法。为实际高层建筑结构分析与设计提供一定参考。
1 高层建筑抗震结构设计的基本原则
1.1结构构件应具有必要的承载力、刚度、稳定性、延性等方面的性能
(1)结构构件应遵守“强柱弱梁、强剪弱弯、强节点弱构件、强底层柱(墙)”的原则。(2)对可能造成结构的相对薄弱部位,应采取措施提高抗震能力。(3)承受竖向荷载的主要构件不宜作为主要耗能构件。
1.2在设计构造上宜有多道抗震防线
(1)一个抗震结构体系应由若干个延性较好的分体系组成,并由延性较好的结构构件连接协同工作。例如框架―剪力墙结构由延性框架和剪力墙两个分体组成,双肢或多肢剪力墙体系组成。(2)地震之后往往伴随多次余震,如只有一道防线,则在第一次破坏后再遭余震,将会因损伤积累导致倒塌。抗震结构体系应有最大可能数量的内部、外部冗余度,有意识地建立一系列分布的屈服区,主要耗能构件应有较高的延性和适当刚度,提高结构抗震性能,避免大震时倒塌。(3)适当处理结构构件的强弱关系,同一楼层内宜使主要耗能构件屈服后,其他抗侧力构件仍处于弹性阶段,使“有效屈服”保持较长阶段,保证结构的延性和抗倒塌能力。(4)在抗震设计中某一部分结构设计超强,可能造成结构的其他部位相对薄弱,因此在设计中不合理的加强以及在施工中以大带小,改变抗侧力构件配筋的做法,都需要慎重考虑。
1.3对出现的薄弱部位,应采取措施提高其抗震能力
(1)构件在强烈地震下不存在强度安全储备,构件的实际承载能力分析是判断薄弱部位的基础。(2)要使楼层(部位)的实际承载能力和设计计算的弹性受力的比值在总体上保持一个相对均匀的变化,一旦楼层(部位)的比值有突变时,会由于塑性内力重分布导致塑性变形的集中。(3)要防止在局部上加强而忽视了整个结构各部位刚度、承载力的协调。(4)在抗震设计中有意识、有目的地控制薄弱层(部位),使之有足够的变形能力又不使薄弱层发生转移,这是提高结构总体抗震性能的有效手段。
2 高层建筑结构静力分析方法
2.1 框架-剪力墙结构
框架-剪力墙结构中剪力墙布置应按“均匀、分散、对称、周边”的基本原则考虑,内力与位移计算的方法很多,大都采用连梁连续化假定。由剪力墙与框架水平位移或转角相等的位移协调条件,可以建立位移与外荷载之间关系的微分方程来求解。由于采用的未知量和考虑因素的不同,各种方法解答的具体形式亦不相同。框架-剪力墙的机算方法,通常是将结构转化为等效壁式框架,采用杆系结构矩阵位移法求解。
2.2 剪力墙结构
计算剪力墙的内力与变形时,其剪力墙应计入端部翼缘地共同工作,剪力墙的受力特性与变形状态主要取决于剪力墙的开洞情况。单片剪力墙按受力特性的不同可分为单肢墙、小开口整体墙、联肢墙、特殊开洞墙、框支墙等各种类型。不同类型的剪力墙,其截面应力分布也不同,计算内力与位移时需采用相应的计算方法。剪力墙结构的机算方法是平面有限单元法。此法较为精确,而且对各类剪力墙都能适用。但因其自由度较多,机时耗费较大,目前一般只用于特殊开洞墙、框支墙的过渡层等应力分布复杂的情况。
2.3筒体结构
筒体结构包括框筒结构?筒中筒结构以及其它筒体结构。筒体结构的分析方法按照对计算模型处理手法的不同可分为三类:等效连续化方法、等效离散化方法和三维空间分析。等效连续化方法是将结构中的离散杆件作等效连续化处理。一种是只作几何分布上的连续化,以便用连续函数描述其内力;另一种是作几何和物理上的连续处理,将离散杆件代换为等效的正交异性弹性薄板,以便应用分析弹性薄板的各种有效方法。
3 高层建筑的结构体系
3.1框架-剪力墙体系。有框架结构布置灵活,使用方便的特点,又有较大的刚度和较好的抗震性能。当框架体系的强度和刚度不能满足要求时,往往需要在建筑平面的适当位置设置较大的剪力墙来代替部分框架,便形成了框架-剪力墙体系。在承受水平力时,框架和剪力墙通过有足够刚度的楼板和连梁组成协同工作的结构体系。在体系中框架体系主要承受垂直荷载,剪力墙主要承受水平剪力。框架-剪力墙体系的位移曲线呈弯剪型。剪力墙的设置,增大了结构的侧向刚度,使建筑物的水平位移减小,同时框架承受的水平剪力显著降低且内力沿竖向的分布趋于均匀,所以框架-剪力墙体系的能建高度要大于框架体系。
3.2剪力墙体系。剪力墙体系结构刚度大,空间整体性好,当受力主体结构全部由平面剪力墙构件组成时,即形成剪力墙体系。在剪力墙体系中,单片剪力墙承受了全部的垂直荷载和水平力。剪力墙体系属刚性结构,其位移曲线呈弯曲型。剪力墙体系的强度和刚度都比较高,有一定的延性,传力直接均匀,整体性好,抗倒塌能力强,是一种良好的结构体系,能建高度大于框架或框架-剪力墙体系。
3.3筒体体系。凡采用筒体为抗侧力构件的结构体系统称为筒体体系,包括单筒体、筒体-框架、筒中筒、多束筒等多种型式。筒体是一种空间受力构件,分实腹筒和空腹筒两种类型。实腹筒是由平面或曲面墙围成的三维竖向结构单体,空腹筒是由密排柱和窗裙梁或开孔钢筋混凝土外墙构成的空间受力构件。筒体体系具有很大的刚度和强度,各构件受力比较合理,抗风、抗震能力很强,往往应用于大跨度、大空间或超高层建筑。
4 结束语
在强烈地震作用下,建筑物的破坏机理和过程是十分复杂的,要进行精确的抗震计算是困难的,在总结大量地震灾害经验的基础上,提出了概念设计,并认为它是结构抗震设计的首要问题,比计算设计更为重要。对设计人员来说,掌握概念设计,有助于明确抗震设计思想,灵活、恰当地运用抗震设计原则,不致陷入盲目的计算工作,从而比较合理地进行抗震设计。
参考文献:
[1]朱镜清.结构抗震分析原理[M].地震出版社,2002,11
[2]徐宜,丁勇春.高层建筑结构抗震分析和设计的探讨[J].江苏建筑,2009
关键词:高层建筑,建筑结构,抗震设计
地震是一种随机振动,所以建筑结构设计人员为防止、减少地震给建筑造成的危害, 就需要分析研究建筑抗震问题不断总结工程经验,妥善处理这一工程问题。
一、实行建筑抗震设计规范,总结工程经验妥善处理工程问题:
(一)选择有利的抗震场地
地震造成建筑物的破坏, 除地震动直接引起的结构破坏外,场地条件也是一个重要的原因。地震引起的地表错动与地裂,地基土的小均匀沉陷, 滑坡和粉、砂土液化等。科技论文。因此,应选择对建筑抗震有利的地段, 应避开对抗震不利地段。当无法避开时, 应采取适当的抗震加强措施,应根据抗震设防类别、地基液化等级,分别采取加强地基和上部结构整体性和刚度、部分消除或全部消除地基液化沉陷的措施; 当地基主要受力层范围内存在软弱粘性土层、新近填土和严重不均匀土层时,应估计地震时地基不均匀沉降或其他不利影响, 采用桩基、地基加固和加强基础和上部结构的处理措施; 对于地震时可能导致滑移或地裂的场地,应采取相应的地基稳定措施。
(二)优化的平面和立面布置
关于建筑结构设计的平面与立体结构, 我们根据认为有以下几个方面可以参考:
1、结构的简单性。结构简单是指结构在地震作用下具有直接和明确的传力途径。只有结构简单,才能够对结构的计算模型、内力与位移分析, 限制薄弱部位的出现易于把握,因而对结构抗震性能的估计也比较可靠。
2、结构的刚度和抗震能力。水平地震作用是双向的,结构布置应使结构能抵抗任意方向的地震作用。通常, 可使结构沿平面上两个主轴方向具有足够的刚度和抗震能力, 结构的抗震能力则是结构强度及延性的综合反映。结构刚度的选择既要减少地震作用效应又要注意控制结构变形的增大, 过大的变形会产生重力二阶效应, 导致结构破坏、失稳。论文参考网。
3、结构的整体性。在高层建筑结构中,楼盖对于结构的整体性起到非常重要的作用,楼盖相当于水平隔板,它不仅聚集和传递惯性力到各个竖向抗侧力子结构, 而且要求这些子结构能协同承受地震作用, 特别是当竖向抗侧力子结构布置不均匀或布置复杂或抗侧力子结构水平变形特征不同时, 整个结构就要依靠楼盖使抗侧力子结构能协同工作。
(三)设置多道设防的抗震结构体系
多道抗震防线, 是指在一个抗震结构体系中, 一部分延性好的构件在地震作用下, 首先达到屈服, 充分发挥其吸收和耗散地震能量的作用, 即担负起第一道抗震防线的作用, 其他构件则在第一道抗震防线屈服后才依次屈服,从而形成第二、第三或更多道抗震防线, 这样的结构体系对保证结构的抗震安全性是非常有效的。同时底框建筑底层高度不宜太高, 应控制在4.5m 以下。高度加大, 底层刚度减小, 重心提高, 使框架柱的长细比增大, 更容易产生失稳现象。论文参考网。而且由于高度较大,很多建筑房间被业主一层改成了两层, 造成了较大的安全隐患。科技论文。宜具有合理的刚度和强度分布, 避免因局部削弱或突变形成薄弱部位.产生过大的应力集中或塑性变形集中;可能出现的薄弱部位, 应采取措施提高抗震能力。
(四)保证结构的延性抗震能力
合理选择了建筑结构后, 就需要通过抗震措施来保证结构确实具有所需的延性抗震能力,从而保证结构在中震、大震下实现抗震设防目标, 系统的抗震措施包括以下几个方面内容。强柱弱梁: 人为增大柱相对于梁的抗弯能力,使钢筋混凝土框架在大震下,梁端塑性铰出现较早,在达到最大非线性位移时塑性转动较大; 而柱端塑性铰出现较晚, 在达到最大非线性位移时塑性转动较小,甚至根本不出现塑性铰。从而保证框架具有一个较为稳定的塑性耗能机构和较大的塑性耗能能力。强剪弱弯: 剪切破坏基本上没有延性, 一旦某部位发生剪切破坏, 该部位就将彻底退出结构抗震能力, 对于柱端的剪切破坏还可能导致结构的局部或整体倒塌。因此可以人为增大柱端、梁端、节点的组合剪力值, 使结构能在大震下的交替非弹性变形中其任何构件都不会先发生剪切破坏。
(五)合理的建筑结构参数设计计算分析
对于复杂结构进行多遇地震作用下的内力和变形分析时, 应采用不少于两个不同的力学模型,目前主要有两种计算理论: 剪摩理论和主拉应力理论, 它们有各自的适用范围:砖砌体一般采用主拉应力理论,而砌块结构可采用剪摩理论。对计算机的计算结果, 应经分析判断确认其合理、有效后方可用于工程设计。结构计算控制的主要计算结果有结构的自振周期、位移、平动及扭转系数、层间刚度比、剪重比、有效质量系数等。另外, 地下室水平位移嵌固位置,转换层刚度是否满足要求等, 都要求有层刚度作为依据。复杂高层建筑抗震计算时,宜考虑平扭耦联计算结构的扭转效应, 振型数不应小于15,对多塔结构的振型数不应小手塔楼数的9 倍, 且计算振型数应使振型参与质量不小于总质量的90%。总之, 高层结构计算很难一次完成,应根据试算结果, 按上述要求多次调整,才能得到较为合理的计算结果,以保证建筑物的安全。
二、高层建筑抗震设计中经常出现的问题
(一)部分建筑物高度过高
按我国现行高层建筑混凝土结构技术规程规定,在一定设防烈度和一定结构型式下,钢筋混凝土高层建筑都有一个适宜的高度。在这个高度,抗震能力还是比较稳妥的,但是目前不少高层建筑超过了高度限制。在震力作用下,超高限建筑物的变形破坏性会发生很大的变化,建筑物的抗震能力下降,很多影响因素也发生变化,结构设计和工程预算的相应参数需要重新选取。
(二)地基的选取不合理
由于城市人口的增多和相对空间的缩小,不少建筑商忽略了这一问题,哪里商业空间大就在哪里建。高层建筑应选择位于开阔平坦地带的坚硬土场地或密实均匀中硬土场地,远离河岸,不应垮在两类土壤上,避开不利地形、不采用震陷土作天然地基,避免在断层、山崖、滑坡、地陷等抗震危险地段建造房屋。高层建筑的地基选取不恰当可能导致抗震能力差。
(三)材料的选用不科学,结构体系不合理
在地震多发区,采用何种建筑材料或结构体系较为合理应该得到人们的重视。由于我国建筑结构主要以钢筋混凝土核心筒为主,变形控制要以钢筋混凝土结构的位移限值为基准。但因其弯曲变形的侧移较大,靠刚度很小的钢框架协同工作减小侧移,不仅增大了钢结构的负担,而且效果不大,有时不得不加大混凝土的刚度或设置伸臂结构,形成加强层才能满足规范侧移限值。
(四)较低的抗震设防烈度
许多专家提出,现行的建筑结构设计安全度已不能适应国情的需要,建筑结构设计的安全度水平应该大幅度提高。我国现行抗震设防标准是比较低的,中震相当于在规定的设计基准期内超越概率为lO%的地震烈度,较低的抗震设防烈度放松了高层建筑的抗震要求。论文参考网。科技论文。
三、结语
地震是一种目前难以准确预测的自然灾害,为避免它给人类带来大的灾难。作为工程技术设计人员在建筑结构的研究和工程设计中,应从整体宏观的观点出发,综合处理好建筑功能、技术、艺术、安全可靠性和经济合理等几方面内容,从而创造出更加安全、适用、经济美观的高层建筑;新型结构的出现,高性能材料的发展,计算机技术水平的提高,促使人类建筑精品再上新的台阶。
关键词:高层结构抗震,抗震规范,高层抗震注意问题,纤维增强混凝土
1引言
地震是一种突发性和毁灭性的自然灾害,它对人类社会的危害首先是引起建筑物的破坏或倒塌,导致严重的人身伤亡和财产损失;其次是引起火灾、水灾等次生灾害,破坏人类社会赖以生存的自然环境,造成严重的经济损失,产生巨大的社会影响。近十年来,地壳运动进入活跃期,世界各地都爆发了不同程度的地震,而我国更是世界上大陆地震最多的国家之一,20世纪以来,全球发生7级以上地震1200余次,其中十分之一在我国。例如,1976年7月28日的唐山7.8级地震,2008年5月12日的汶川8.0级地震,2010年4月14日的玉树地震,都给人们的生命财产安全带来巨大的损失。同时,由于地震破坏的后果严重,我国抗震规范在2008年与2010年都进行了不同程度的修正,目的是加强建筑结构的安全性。因此,为保障地震作用下人们的生命财产损失降至最低,有必要对建筑物的抗震设计进行研究,本文就高层结构的一些常用抗震设计方法进行了讨论。
2结构抗震设计方法的发展
结构抗震设计方法的发展历史是人们对地震作用和结构抗震设计能力认识不断深化的过程,对结构抗震设计方法发展历史进行回顾,有助于对结构抗震设计原理的认识,
结构抗震设计方法经历了静力法、反应谱法、延性设计法、能力设计法、给予能量平衡的极限设计方法、基于损伤设计方法和近年来正在发疹的基于性能/位移设计法几个阶段[1]。这些抗震设计方法在发展阶段相互交错与渗透,对齐进行系统化整理,结构抗震设计方法可以分为以下几类[2]:
基于承载力设计方法
基于承载力和构造保证延性设计方法
基于损伤和能量设计方法
能力设计法
基于性能/位移设计方法
根据清华大学叶列平教授的研究,第(5)种方法在结构抗震设计中较前几种方法优点更为突出,并且在各国规范中应用最广泛。
3高层抗震设计的设防目标
长期的地震观测表明,在同一地区不同强度地震的重现期是不同的。强度小的地震重现期,一般10~50年左右发生一次,即所谓频遇地震或“小震”;强度较大的地震,重现期较长,一般100~500年发生一次,即所谓偶遇地震或“中震”;而强度特别大的强烈地震,重现期一般为数千年,即所谓罕遇地震或“大震”。
高层建筑的使用寿命一般为50~100年,高层住宅的寿命更短,因此要求结构在“大震”作用下不破坏显然四不合适和不经济的。这就提出了对于不同强度地震的重现期,结构应具有不同的抗震性能,即所谓抗震设防目标。目前国际上公认的较为合理的抗震设防目标是:
(1)在频遇地震作用下,结构地震反应应处于弹性阶段,结构无损坏或轻微破坏,且结构变形很小,不会导致非结构构件的破坏,震后可无条件继续使用;
(2)在偶遇地震作用下,结构和非结构构件损伤在一定限度内,震后经修复可继续使用;
(3)在罕遇地震作用下,结构不产生倒塌,非结构构件无脱落或落下,保证人身安全,
上述抗震设防目标与我国抗震设计规范中的“三水准”即“小震不坏,中震可修,大震不倒”是一个含义。现在的问题是这种单一的抗震设防目标已不能适应现代工程结构对抗震性能的需求。许多重要建筑对大震作用下的性能要求也不再是不倒塌,而是应满足一定性能指标要求,以保证其仍具有一定的建筑功能和使用功能,这即是基于性能抗震设计方法研究的目的。
高层抗震设计方法的几点讨论
4.1遵循建筑抗震设计规范
建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件。它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然收抗震有关科学理论的引导,向技术经验合理性的方向发展,但它更是具有坚定的工程实践基础,把建筑工程的安全性放在首位。正是基于这种认识,现代规范的条文有的被列为强制性条文,有的条文中应用了“严禁、不得、不许、不宜”等体现不同程度限制性和“必须、应该、宜于、可以”等体现不同程度灵活性的用词。任何结构的抗震设计都必须以抗震规范为基础,按其规定条文执行。
4.2高层建筑抗震设计应注意的问题
高层建筑结构应根据房屋高度和高宽比、抗震设防类型、抗震设防烈度、场地类别、结构材料和施工技术条件等因素考虑其适宜的结构体系,高层建筑的高宽比是对结构刚度、整体稳定、承载能力和经济合理性的宏观控制,在设计过程中应注意以下几点:
应当注意抗震缝的设计,必须留有足够的防震缝宽度;
平面形状和刚度不对称,会是建筑物产生显著的扭转、震害严重,设计中应避免这种情况,不能避免时应对抗震薄弱处进行加强;
凸出屋面的塔楼受高振型的影响,产生显著的鞭梢效应,破坏严重,设计中加以注意;
高层部分和底层部分之间的连接构造是否合理;
框架柱截面太小、箍筋不足、柱子的延性和抗震能力不够等容易导致剪切破坏或柱头压碎;
沿竖向楼层质量与刚度变化太大容易导致楼层变形过分集中而产生破坏;
地基的稳定性尤为重要;
伸缩缝和沉降缝宽度过小(W昂王与防震缝一切三缝合一)使得碰撞破坏很多;
不应在建筑物端部设置楼梯间,楼板有大洞口会因刚度不均匀而产生扭转;
中间部分楼层柱子截面和材料改变或取消部分剪力墙,都会产生刚度或承载力的突变,形成结构薄弱层。
4.3采用纤维增强混凝土
对于高层建筑,混凝土材料由于其自身缺陷,地震作用下易于发生脆性破坏,引起结构损伤,因此从建筑材料角度分析,可以在某些关键部位采用韧性材料代替混凝土提高整体结构的吸收能量能力与抗震能力。抗震建筑材料必须具备轻质、高强、高韧性特征,例如,木材、轻钢、型钢、钢筋混凝土、复合材料等都可以从某些方面达到抗震目的。而在我国,森林覆盖面积少,人居木材占有量少,而钢材成本较高,这些材料的使用都有相当的局限性。而在钢筋混凝土结构的关键部位采用一些韧性较高、延性较好、抗性强度高的纤维增强混凝土对提高结构的抗震性能具有非常明显的作用[3]。目前,我国的纤维增强混凝土种类繁多,例如,钢纤维混凝土、聚丙烯增强混凝土、聚合物增强砂浆、超高韧性水泥基复合材料等,这些材料的研究与发展对高层结构的抗震也起着重要作用。
结束语
本文在回顾结构抗震设计方法发展历史的基础上,探究了高层结构的抗震设防标准,并讨论文高层抗震设计中应该注意的问题。高层抗震是个很复杂的课题,涉及的考虑因素众多,由于笔者参加工作时间较短,相关工程经验较少,本文仅提供一般性的参考,如有不到之处,敬请指正。
参考文献
白绍良. 对新西兰、欧共体、美国、日本和中国规范钢筋混凝土结构抗震条文的初步对比分析. 重庆大学, 2000.
小古俊介, 叶列平. 日本基于性能结构抗震设计方法的发展. 建筑结构, 2000年第6期.
Parra-Montesinos G.. High Performance Fiber Reinforced Cement Composites: an Alternative for Seismic Design of Structures. ACI Structural Journal, 2005, 102(5):668-675.
[论文摘要]文章分析高层建筑结构的六个特点,并介绍目前国内高层建筑的四大结构体系:框架结构、剪力墙结构、框架剪力墙结构和筒体结构。
我国改革开放以来,建筑业有了突飞猛进的发展,近十几年我国已建成高层建筑万栋,建筑面积达到2亿平方米,其中具有代表性的建筑如深圳地王大厦81层,高325米;广州中天广场80层,高322米;上海金茂大厦88层,高420.5米。另外在南宁市也建起第一高楼:地王国际商会中心即地王大厦共54层,高206.3米。随着城市化进程加速发展,全国各地的高层建筑不断涌现,作为土建工作设计人员,必须充分了解高层建筑结构设计特点及其结构体系,只有这样才能使设计达到技术先进、经济合理、安全适用、确保质量的基本原则。
一、高层建筑结构设计的特点
高层建筑结构设计与低层、多层建筑结构相比较,结构专业在各专业中占有更重要的位置,不同结构体系的选择,直接关系到建筑平面的布置、立面体形、楼层高度、机电管道的设置、施工技术的要求、施工工期长短和投资造价的高低等。其主要特点有:
(一)水平力是设计主要因素
在低层和多层房屋结构中,往往是以重力为代表的竖向荷载控制着结构设计。而在高层建筑中,尽管竖向荷载仍对结构设计产生重要影响,但水平荷载却起着决定性作用。因为建筑自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比;而水平荷载对结构产生的倾覆力矩、以及由此在竖向构件中所引起的轴力,是与建筑高度的两次方成正比。另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化。
(二)侧移成为控指标
与低层或多层建筑不同,结构侧移已成为高层结构设计中的关键因素。随着建筑高度的增加,水平荷载下结构的侧向变形迅速增大,与建筑高度H的4次方成正比(=qH4/8EI)。
另外,高层建筑随着高度的增加、轻质高强材料的应用、新的建筑形式和结构体系的出现、侧向位移的迅速增大,在设计中不仅要求结构具有足够的强度,还要求具有足够的抗推刚度,使结构在水平荷载下产生的侧移被控制在某一限度之内,否则会产生以下情况:
1.因侧移产生较大的附加内力,尤其是竖向构件,当侧向位移增大时,偏心加剧,当产生的附加内力值超过一定数值时,将会导致房屋侧塌。
2.使居住人员感到不适或惊慌。
3.使填充墙或建筑装饰开裂或损坏,使机电设备管道损坏,使电梯轨道变型造成不能正常运行。
4.使主体结构构件出现大裂缝,甚至损坏。
(三)抗震设计要求更高
有抗震设防的高层建筑结构设计,除要考虑正常使用时的竖向荷载、风荷载外,还必须使结构具有良好的抗震性能,做到小震不坏、大震不倒。
(四)减轻高层建筑自重比多层建筑更为重要
高层建筑减轻自重比多层建筑更有意义。从地基承载力或桩基承载力考虑,如果在同样地基或桩基的情况下,减轻房屋自重意昧着不增加基础造价和处理措施,可以多建层数,这在软弱土层有突出的经济效益。
地震效应与建筑的重量成正比,减轻房屋自重是提高结构抗震能力的有效办法。高层建筑重量大了,不仅作用于结构上的地震剪力大,还由于重心高地震作用倾覆力矩大,对竖向构件产生很大的附加轴力,从而造成附加弯矩更大。
(五)轴向变形不容忽视
采用框架体系和框架——剪力墙体系的高层建筑中,框架中柱的轴压应力往往大于边柱的轴压应力,中柱的轴向压缩变形大于边柱的轴向压缩变形。当房屋很高时,此种轴向变形的差异将会达到较大的数值,其后果相当于连续梁中间支座沉陷,从而使连续梁中间支座处的负弯矩值减小,跨中正弯矩值和端支座负弯矩值增大。
(六)概念设计与理论计算同样重要
抗震设计可以分为计算设计和概念设计两部分。高层建筑结构的抗震设计计算是在一定的假想条件下进行的,尽管分析手段不断提高,分析的原则不断完善,但由于地震作用的复杂性和不确定性,地基土影响的复杂性和结构体系本身的复杂性,可能导致理论分析计算和实际情况相差数倍之多,尤其是当结构进入弹塑性阶段之后,会出现构件局部开裂甚至破坏,这时结构已很难用常规的计算原理去进行分析。实践表明,在设计中把握好高层建筑的概念设计也是很重要的。
二、高层建筑的结构体系
(一)高层建筑结构设计原则
1.钢筋混凝土高层建筑结构设计应与建筑、设备和施工密切配合,做到安全适用、技术先进、经济合理,并积极采用新技术、新工艺和新材料。
2.高层建筑结构设计应重视结构选型和构造,择优选择抗震及抗风性能好而经济合理的结构体系与平、立面布置方案,并注意加强构造连接。在抗震设计中,应保证结构整体抗震性能,使整个结构有足够的承载力、刚度和延性。
(二)高层建筑结构体系及适用范围
目前国内的高层建筑基本上采用钢筋混凝土结构。其结构体系有:框架结构、剪力墙结构、框架—剪力墙结构、筒体结构等。
1.框架结构体系。框架结构体系是由楼板、梁、柱及基础四种承重构件组成。由梁、柱、基础构成平面框架,它是主要承重结构,各平面框架再由连系梁连系起来,即形成一个空间结构体系,它是高层建筑中常用的结构形式之一。
框架结构体系优点是:建筑平面布置灵活,能获得大空间,建筑立面也容易处理,结构自重轻,计算理论也比较成熟,在一定高度范围内造价较低。
框架结构的缺点是:框架结构本身柔性较大,抗侧力能力较差,在风荷载作用下会产生较大的水平位移,在地震荷载作用下,非结构构件破坏比较严重。
框架结构的适用范围:框架结构的合理层数一般是6到15层,最经济的层数是10层左右。由于框架结构能提供较大的建筑空间,平面布置灵活,可适合多种工艺与使用的要求,已广泛应用于办公、住宅、商店、医院、旅馆、学校及多层工业厂房和仓库中。
2.剪力墙结构体系。在高层建筑中为了提高房屋结构的抗侧力刚度,在其中设置的钢筋混凝土墙体称为“剪力墙”,剪力墙的主要作用在于提高整个房屋的抗剪强度和刚度,墙体同时也作为维护及房间分格构件。剪力墙结构中,由钢筋混凝土墙体承受全部水平和竖向荷载,剪力墙沿横向纵向正交布置或沿多轴线斜交布置,它刚度大,空间整体性好,用钢量省。历史地震中,剪力墙结构表现了良好的抗震性能,震害较少发生,而且程度也较轻微,在住宅和旅馆客房中采用剪力墙结构可以较好地适应墙体较多、房间面积不太大的特点,而且可以使房间不露梁柱,整齐美观。
剪力墙结构墙体较多,不容易布置面积较大的房间,为了满足旅馆布置门厅、餐厅、会议室等大面积公共用房的要求,以及在住宅楼底层布置商店和公共设施的要求,可以将部分底层或部分层取消剪力墙代之以框架,形成框支剪力墙结构。
在框支剪力墙中,底层柱的刚度小,形成上下刚度突变,在地震作用下底层柱会产生很大内力及塑性变形,因此,在地震区不允许采用这种框支剪力墙结构。
3.框架—剪力墙结构体系。在框架结构中布置一定数量的剪力墙,可以组成框架—剪力墙结构,这种结构既有框架结构布置灵活、使用方便的特点,又有较大的刚度和较强的抗震能力,因而广泛地应用于高层建筑中的办公楼和旅馆。
4.筒体结构体系。随着建筑层数、高度的增长和抗震设防要求的提高,以平面工作状态的框架、剪力墙来组成高层建筑结构体系,往往不能满足要求。这时可以由剪力墙构成空间薄壁筒体,成为竖向悬臂箱形梁,加密柱子,以增强梁的刚度,也可以形成空间整体受力的框筒,由一个或多个筒体为主抵抗水平力的结构称为筒体结构。通常筒体结构有:
(1)框架—筒体结构。中央布置剪力墙薄壁筒,由它受大部分水平力,周边布置大柱距的普通框架,这种结构受力特点类似框架—剪力墙结构,目前南宁市的地王大厦也用这种结构。
(2)筒中筒结构。筒中筒结构由内、外两个筒体组合而成,内筒为剪力墙薄壁筒,外筒为密柱(通常柱距不大于3米)组成的框筒。由于外柱很密,梁刚度很大,门密洞口面积小(一般不大于墙体面积50%),因而框筒工作不同于普通平面框架,而有很好的空间整体作用,类似一个多孔的竖向箱形梁,有很好的抗风和抗震性能。目前国内最高的钢筋混凝土结构如上海金茂大厦(88层、420.5米)、广州中天广场大厦(80层、320米)都是采用筒中筒结构。
(3)成束筒结构。在平面内设置多个剪力墙薄壁筒体,每个筒体都比较小,这种结构多用于平面形状复杂的建筑中。
(4)巨型结构体系。巨型结构是由若干个巨柱(通常由电梯井或大面积实体柱组成)以及巨梁(每隔几层或十几个楼层设一道,梁截面一般占一至二层楼高度)组成一级巨型框架,承受主要水平力和竖向荷载,其余的楼面梁、柱组成二级结构,它只是将楼面荷载传递到第一级框架结构上去。这种结构的二级结构梁柱截面较小,使建筑布置有更大的灵活性和平面空间。
除以上介绍的几种结构体系外,还有其他一些结构形式,也可应用,如薄壳、悬索、膜结构、网架等,不过目前应用最广泛的还是框架、剪力墙、框架—剪力墙和筒体等四种结构。
[参考文献]
[1]GB50011-2001建筑抗震设计规范.
[2]GB50010-2002混凝土结构设计规范.
关键词:高层建筑;抗扭设计
Abstract: This article mainly discusses the torsion nature, factors and reverse design and control measures these four respects in the architecture structure, for your reference.
Key words: high-rise building; torsion resistance design
中图分类号:TU7文献标识码:A 文章编号:2095-2104(2012)
扭转效应是建筑遭受震害的重要因素之一,建筑设计工作者在对高层建筑进行结构设计时,一定要充分重视建筑结构的扭转问题,熟悉结构扭转产生的原因,了解结构扭转的性质,并掌握扭转的理论和计算方法。最关键的还是要充分考虑各方面的影响因素,做好计算和校核工作,根据建筑的具体特点,针对薄弱点,做好建筑结构的抗扭设计措施,使高层建筑能经得起地震的考验,保障人民的生命财产安全。
1 高层建筑结构扭转的性质
高层建筑结构在地震荷载作用发生扭转破坏时,会加大建筑抗推刚度较弱的一侧的位移,并使其剪力增加,破坏程度加重。如果平面的刚度不均匀,一端刚度很大,另一端只有刚度很小的柱子,地震荷载作用下发生扭转,导致没有剪力墙的一端柱子塌落而使楼板也跟着塌下。若每个结构单元两端之问的质量和刚度相差悬殊,也会在地震作用下产生扭转,造成钢筋混凝土柱出现交叉裂缝。如果建筑的每层平面布置不尽相同,有些柱子上、下错位或形状和长边方向改变,这样可能造成地震时底层柱折断而导致上层整体塌落。当结构平面形状不规则时,产生破坏时交叉斜裂缝的宽度可达100mm。对单一受扭构件的破坏的研究表明,少筋及超筋构件以脆性形式破坏,而且破坏是突发性的,没有明显塑性变形,而适筋受扭构件以延性形式破坏,破坏具有明显的塑性变形过程。但对于整体结构发生扭转破坏来讲,破坏是具有突发性的,塑性变形量较小,属脆性破坏范畴。
2 引起结构扭转的因素
2.1 建筑结构扭转振动原因
2.1.1 外来干扰
地震时地面质量间具有运动的差别性,使地面不仅产生平动分量,同时也产生转动分量,正是后者迫使结构产生了扭转。但由于地震观测的工作条件复杂,使得扭转分量的相关理论和计算方法还不成熟,一些实际技术工作也没能得到解决,所以目前的抗震规范都没有考虑地震扭转分量的计算。但我国规范中考虑了其影响:当不对规则结构进行扭转耦联计算时,应将平行于地震作用方向的两个边榀的地震作用效应乘以一个适当的增大系数,通常短边可取1.15,长边可取1.05,若扭转刚度较小,则增大系数不宜小于1.3。
2.1.2 建筑结构本身因素
当建筑结构的刚度中心没有与质量中心重合时,会导致地震作用下结构的扭转振动。就算各层的刚心与质心重合,但建筑整体的质心不在同一轴线上,也会受到地面运动的扭转分量、活荷载的偏心及其他复杂因素的影响,也会引起结构的扭转振动。造成扭转破坏的一个重要原因是平面刚度是否均匀,而剪力墙的布置是影响刚度是否均匀的主要因素。
2.2 建筑结构的平面和立面布置
2.2.1 平面布置
地震区的高层建筑,最好采用圆形、方形或矩形平面,椭圆形、扇形、正六边形、正八边形也可以采用。虽然三角形平面看起来也比较简单和对称,但它并非沿主轴方向都对称,地震时也易产生较强的扭转振动,所以地震区高层建筑的现状尽量避免采用三角形。此外,带有较长翼缘的L形、U形、H形、T形、十字形、Y形平面也不宜采用,因为此类平面在地震时容易发生差异侧移而使震害加重。
2.2.2 立面布置
地震区高层建筑的立面也尽量采用矩形和梯形等均匀的几何形状,不宜采用带有突然变化的立面形状,因为形状突变会引起质量和刚度的剧烈变化,致使该突变部位在地震时因塑性变形集中效应而加重破坏。在地震区尤其不宜出现倒梯形建筑和大底盘建筑,但这两种建筑形式是比较流行的。倒梯形建筑虽然建筑风格比较时尚,但其在质量、刚度和强度分布上均不符合抗震设计原则,它的上部质量大而下部质量小,使得重心偏高,增加了倾覆力矩;上部刚度大而下部刚度小,相对增大了底层的薄弱程度。许多大底盘高层建筑,在低层裙房与高层主楼相连处容易引起刚度突变,使主楼底部楼层变成相对柔弱的楼层,容易在地震中因塑性变形集中效应而导致严重破坏。
3 高层建筑结构扭转设计控制方法及措施
引发高层建筑结构的扭转振动的因素众多,包括地面的运动、建筑物质量和刚度分布的不均匀、计算分析的误差以及抗扭构件的脆性破坏等,这些使得扭转振动在所难免。在设计中应尽量改善结构扭转效应,并在构造上采取一定措施来减小扭转。
3.1 改善扭转效应
总的来说,就是要做到削弱中间、加强周边。具体可从以下几个方面来改善扭转效应:
3.1.1 建筑平面总体布置应规则、对称,具有良好的整体性。
3.1.2 建筑的立面形状应规则,竖向抗侧力构件的材料强度和形状尺寸从上到下应逐渐增加,避免其刚度和承载力突变。
3.1.3 增加远离质心处的剪力墙厚度,尽量使刚心接近质心,减小偏心率。
3.1.4 若简体刚度很大,则可加开结构洞以减小刚度偏心。
3.1.5 平面凹凸不规则处应加拉梁或增设拉接楼板。
3.1.6 尽量加大周边构件截面,以增加整个平面的抗扭刚度。
3.2 抗扭措施
3.2.1 根据建筑具体高度来选择适宜的结构类型。
3.2.2 确保框架一剪力墙基础具有良好的整体性和刚度。
3.2.3 框架结构和框架一剪力墙结构中,梁中线与柱中线、柱中线与剪力墙中线之间的偏心距不宜过大,并且框架和剪力墙均应双向设置。
3.2.4 剪力墙的设置宜贯通房屋全高,其横向与纵向墙体应相连;较长房屋中的纵向剪力墙不宜设置在端开间,应设置在墙面不需开大洞口的位置,剪力墙上的洞口宜上下对齐。
3.2.5 调整后的框架的角柱的剪力设计值和组合弯矩设计值还应乘以一个增大系数,并且其值不小于1.1。
3.2.6 剪力墙的底部加强部位及以上一层的截面组合的弯矩设计值,应采用墙肢底部截面组合弯矩设计值,而其余部位设计值应乘以增大系数1.2。
3.2.7 各级剪力墙底部加强部位的截面剪力墙设计值均应乘以相应的增大系数,一、二、三级的增大系数分别为1.6、1.4、1.2。
3.2.8 控制好建筑的高宽比,不应使这一值过大,基础埋深应达到一定的限值。
3.2.9 适当增大边柱、角柱及剪力墙端柱的纵向钢筋面积。
4 结语
高层建筑结构破坏大多是由扭转所导致的,因此加强结构的抗扭刚度和抗扭能力是减小建筑结构震害程度的重要措施,也是结构设计的一个重要概念。扭转效应大多是由建筑布置不合理而产生的,因此抗震设计中首先要考虑合理的建筑布置,抗震结构应尽量满足平、立面简单对称的原则,尽量减少凸出和凹进等复杂平面,还应尽可能使平面刚度均匀。
参考文献:
[1] JGJ 3-2010,高层建筑混凝土结构技术规程[S].
[2] 平面不规则高层结构的扭转分析与抗扭设计[A]. 第全国高层建筑结构学术会议论文[C]. 2006.